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Abstract

In this paper we develop general LP and ILP techniques to find an approximate solution
with improved objective value close to an existing solution. The task of improving an ap-
proximate solution is closely related to a classical theorem of Cook et al. [7] in the sensitivity
analysis for LPs and ILPs. This result is often applied in designing robust algorithms for
online problems. We apply our new techniques to the online bin packing problem, where
it is allowed to reassign a certain number of items, measured by the migration factor. The
migration factor is defined by the total size of reassigned items divided by the size of the
arriving item. We obtain a robust asymptotic fully polynomial time approximation scheme
(AFPTAS) for the online bin packing problem with migration factor bounded by a polyno-
mial in 1

ε . This answers an open question stated by Epstein and Levin [10] in the affirmative.
As a byproduct we prove an approximate variant of the sensitivity theorem by Cook at el.
[7] for linear programs.

1 Introduction
The idea behind robust algorithms is to find solutions of an optimization problem that are not
only good for a single instance, but also if the instance changes in certain ways. Instances change
for example due to uncertainty or when new data arrive. With changing parameters and data,
we have the effort to keep as much parts of the existing solution as possible, since modifying
a solution is often connected with costs or may even be impossible in practice. Achieving
robustness especially for linear programming (LP) and integer linear programming (ILP) is
thus a big concern and a very interesting research area. Looking at worst case scenarios, how
much do we have to modify a solution if the LP/ILP is changing? There is a result of Cook
et al. [7] giving an upper bound for ILPs when changing the right hand side of the ILP. Many
algorithms in the theory of robustness are based on this theorem.

As a concrete application we consider the classical online bin packing problem, where items
arrive over time and our objective is to assign these items into as few bins as possible. The
notion of robustness allows to repack a certain number of already packed items when a new
item arrives. On the one hand we want to guarantee that we use only a certain number of
additional bins away from the minimum solution and on the other hand, when a new item
arrives, we want to repack as few items as possible. In the case of offline bin packing it is
known that unless P = NP there is no polynomial time approximation algorithm for offline bin
packing that produces a solution better than 3

2OPT , where OPT is the minimum number of
bins needed. For this reason, the most common way to deal with the inapproximability problem
is the introduction of the asymptotic approximation ratio. The asymptotic approximation ratio
for an algorithm A is defined to be limx→∞ sup{ A(I)

OPT(I ) | OPT (I ) = x}. This leads to the
notion of asymptotic polynomial time approximation schemes (APTAS). Given an instance of
size n and a parameter ε ∈ (0, 1], an APTAS has a running time of poly(n)f( 1

ε
) and asymptotic
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approximation ratio 1 + ε, where f is an arbitrary function. An APTAS is called an asymptotic
fully polynomial time approximation scheme (AFPTAS) if its running time is polynomial in
n and 1

ε . The first APTAS for offline bin packing was developed by Fernandez de la Vega &
Lueker [13], and Karmakar & Karp improved this result by giving an AFPTAS [19] (see survey
on bin packing [6]).

Since the introduction by Ullman of the classical online bin packing problem [23], there
has been plenty of research (see survey [8]). The best known algorithm has an asymptotic
competitive ratio of 1.58889 [21] compared to the optimum in the offline case, while the best
known lower bound is 1.54037 [2]. Due to the relatively high lower bound of the classical online
bin packing problem, there has been effort to extend the model with the purpose to obtain an
improved competitive ratio. Gambosi et al. [14] presented a model where they allow repacking
of items. They presented an algorithm which achieves ratio 1.33 by moving at most 7 items
to a different bin each time a new item arrives. The idea of a dynamic packing was developed
pretty early by Coffman, Garey and Johnson [4]. They developed and analyzed an algorithm
for the dynamic bin packing model when arrival and departure of items are known in advance.
Ivkovic and Lloyd [17] presented an algorithm for dynamic bin packing having ratio 1.25. In
their model items and their arrival and departure are not known in advance. The algorithm
requires O(logn) shifting moves, where a shifting move consists of moving a large item or a
bundle of small items from one bin to another. In another work Ivkovic and Lloyd [16] gave an
algorithm which achieves approximation ratio 1 + ε by using amortized O(logn) shifting moves.
Concerning reassignment of jobs in scheduling, Albers and Hellwig [1] presented an algorithm
for online scheduling with minimizing the makespan on m machines. The algorithm has a
competitive ratio of αm, where α2 = 4/3 and for m → ∞ the competitive ratio αm converges
to ≈ 1.4659. The reassignment of jobs is bounded by O(m). They also proved that it is not
possible to obtain an algorithm with better competitive ratio than αm without reassigning Θ(n)
jobs.

The model we follow is the notion of robustness. Introduced by Sanders et al. [20] it allows
repacking of arbitrary items while the number of items that are being repacked is limited. To
give a measure on how many items are allowed to be repacked Sanders et al. [20] defined the
migration factor. It is defined by the complete size of all moved items divided by the size
of the arriving one. An (A)PTAS is called robust if its migration factor is of the size f(1

ε ),
where f is an arbitrary function that only depends on 1

ε . Since the promising introduction of
robustness, several robust algorithms have been developed. Sanders et al. [20] found a robust
PTAS for the online scheduling problem on identical machines, where the goal is to minimize
the makespan. The robust PTAS has constant but exponential migration factor 2O( 1

ε
log2 1

ε
).

In case of bin packing Epstein and Levin [10] developed a robust APTAS for the classical bin
packing problem with migration factor 2O( 1

ε2
log 1

ε
) and running time double exponential in 1

ε .
In addition they proved that there is no optimal online algorithm with a constant migration
factor. Furthermore, Epstein and Levin [11] showed that the robust APTAS for bin packing can
be generalized to packing d-dimensional cubes into a minimum number of unit cubes. Recently
Epstein and Levin [12] also designed a robust algorithm for preemptive online scheduling of jobs
on identical machines, where the corresponding offline problem is polynomial solvable. They
presented an algorithm with migration factor 1− 1

m that computes an optimal solution whenever
a new item arrives. Skutella and Verschae [22] studied the problem of maximizing the minimum
load given n jobs and m machines. They proved that there is no robust PTAS for this machine
covering problem. On the positive side, they gave a robust PTAS for the machine covering
problem in the case that migrations can be reserved for a later timestep. The algorithm has an
amortized migration factor of 2O( 1

ε
log2 1

ε
).
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1.1 Our Results:

An online algorithm is called fully robust if its migration factor is bounded by p(1
ε ), where p is a

polynomial in 1
ε . The purpose of this paper is to give methods to develop fully robust algorithms.

In Section 2 we develop a theorem for a given linear program (LP) min {‖x‖1 |Ax ≥ b, x ≥ 0}.
Given an approximate solution x′ with value (1 + δ)LIN (where LIN is the minimum objective
value of the LP) and a parameter α ∈ (0, δLIN ], we prove the existence of an improved solution
x′′ with value (1 + δ)LIN − α and distance ‖x′′ − x′‖1 ≤ α(2/δ + 2). In addition, for a given
fractional solution x′ and corresponding integral solution y′, the existence of an improved integral
solution y′′ with ‖y′′ − y′‖1 = O(α+m

δ ) is shown (where m is the number of rows of A). Since
both results are constructive, we propose also algorithms to compute such improved solutions.
Previous robust online algorithms require an optimum solution of the corresponding ILP and
use a sensitivity theorem by Cook et al. [7]. This results in an exponential migration factor in
1
ε ([10, 11, 22, 20]). In contrast to this we consider approximate solutions of the corresponding
LP relaxations and are able to use the techniques above to improve the fractional and integral
solutions. Furthermore we also prove an approximate version of a sensitivity theorem for LPs
with modified right hand side b and b′. During the online algorithm the number of non-zero
variables increases from step to step and would result in a large additive term. To avoid this
we present algorithms in Section 3 to control the number of non-zero variables of the LP and
ILP solutions. We can bound the number of non-zero variables and the additive term by
O(εLIN ) +O( 1

ε2 ). In Section 4 we present the fully robust AFPTAS for the robust bin packing
problem. We use a modified version of the clever rounding techniques of Epstein and Levin
[10]. This rounding technique is used to round the incoming items dynamically and control the
number of item sizes. One difficulty is that we use approximate solutions of the LP. During the
online algorithm items are rounded to different values and are shifted across different rounding
groups. We show how to embed the rounded instance into another rounded instance that fulfills
several invariants. By combining the dynanic rounding and the algorithm to get improved
solutions of the LP and ILP, we are able to obtain a fully robust AFPTAS for the online bin
packing problem. The algorithm has a migration factor of O(1/ε4) (or O(1/ε3) if the size of the
arriving item is Ω(1)) and running time polynomial in 1

ε and t, where t is the number of arrived
items. This resolves an open question of Epstein and Levin [10]. We believe that our techniques
can be used for other online problems like 2D strip packing, scheduling moldable tasks, resource
constrained scheduling and multi-commodity flow problems to obtain online algorithms with
low migration factors.

2 Robustness of approximate LPs
We consider a matrix A ∈ Rm×n≥0 , a vector b ∈ Rm≥0 and a cost vector c ∈ Rn≥0. The goal in
a linear program (LP) is to find a x ≥ 0 with Ax ≥ b such that the objective value cTx is
minimal. We say xOPT is an optimal solution if cTxOPT = min

{
cTx|Ax ≥ b, x ≥ 0

}
and we

define LIN = cTxOPT . In general we suppose that the objective function of a solution is positive
and hence LIN > 0. We say x′ is an approximate solution with approximation ratio (1 + δ)
for some δ ∈ (0, 1] if ‖x′‖1 ≤ (1 + δ)LIN . For the most part of the paper we will assume that
cT = (1, 1, . . . , 1) and therefore cTxOPT =

∥∥∥xOPT
∥∥∥

1
= LIN . The following theorem is central.

Given an approximate solution x′, we want to improve its approximation by some constant.
But to achieve robustness we have to maintain most parts of x′. We show that by changing x′
by size of O(αδ ), we can improve the approximation by a constant α.

Theorem 1. Consider the LP min
{
cTx|Ax ≥ b, x ≥ 0

}
and an approximate solution x′ with

cTx′ = (1 + δ)LIN for some δ > 0. For every positive α ≤ δLIN there exists a solution x′′
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with objective value of at most cTx′′ ≤ (1 + δ)LIN − α and distance ‖x′ − x′′‖1 ≤ α(1/δ +

1)‖x
′‖1+‖xOPT‖1

cT x′ . If cT = (1, 1, . . . , 1) then ‖x′ − x′′‖1 ≤ 2α(1/δ + 1).

Proof. We prove feasibility of the following LP 1.

Ax ≥ b (LP 1)
x ≥ 0

x ≥ x′ − α(1/δ + 1)
cTx′

x′

x ≤ x′ + α(1/δ + 1)
cTx′

xOPT

cTx ≤ (1 + δ)LIN − α

The assumption α ≤ δLIN implies cTx′ = (1 + δ)LIN ≥ α(1/δ + 1) and hence α(1/δ+1)
cT x′ ≤ 1.

Suppose that LP 1 is feasible and has a solution x′′. Due to constraints 3 and 4 the distance
between x′′ and x′ can be bounded. Components x′′i with x′i > 0 may be smaller compared to x′

by α(1/δ+1) x′
i

cT x′ , while components x′′i with xOPT
i > 0 may be larger than x′i by α(1/δ+1)x

OPT
i

cT x′ .
In the worst case, x′ and xOPT have no common non-zero entries and hence, ‖x′ − x′′‖1 ≤

α(1/δ + 1)(
∑
i
x′
i

cT x′ +
∑
i
xOPT
i

cT x′ ) = α(1/δ + 1)‖x
′‖1+‖xOPT‖1

cT x′ . If cT = (1, 1, . . . , 1) then ‖x
′‖1

cT x′ = 1

and ‖x
OPT‖1
cT x′ = 1

(1+δ) < 1. Therefore α(1/δ+1)‖x
′‖1+‖xOPT‖1

cT x′ < 2α(1/δ+1). It remains to prove
feasibility of LP 1. We construct a solution x′′ by x′′ = (1−α(1/δ+1)

cT x′ )x′+α(1/δ+1)
cT x′ xOPT . We prove

that each constraint of LP 1 is satisfied for x′′. Note that x′′ ≥ 0 since α(1/δ+1)
cT x′ ≤ 1. Constraint

3 is fulfilled since x′′ = x′ − α(1/δ+1)
cT x′ x′ + α(1/δ+1)

cT x′ xOPT ≥ x′ − α(1/δ+1)
cT x′ x′ and constraint 4 is

fulfilled since x′′ = x′− α(1/δ+1)
cT x′ x′+ α(1/δ+1)

cT x′ xOPT ≤ x′+ α(1/δ+1)
cT x′ xOPT . Feasibility for x′′ follows

from Ax′′ = Ax′(1− α(1/δ+1)
cT x′ )+AxOPT α(1/δ+1)

cT x′

cT x′≥α(1/δ+1)
≥ b(1− α(1/δ+1)

cT x′ )+bα(1/δ+1)
cT x′ = b. The

objective value of x′′ is bounded by cTx′′ = cTx′ − α(1/δ+1)
cT x′ (cTx′ − cTxOPT ) = cTx′ − α(1/δ +

1) + α(1/δ+1)
(1+δ)LIN LIN = cTx′ − α(1/δ + 1) + α(1/δ) = cTx′ − α.

From here on and for the rest of the paper we suppose that cT = (1, 1, . . . , 1).
Remark 1:
Suppose x′ has approximation ratio ‖x′‖1 = (1 + δ′)LIN for some δ′ > 0. By Theorem 1 the
following LP is feasible if α′ ≤ δ′LIN .

Ax ≥ b
x ≥ 0

x ≥ x′ − α′(1/δ′ + 1) x′

‖x′‖1

x ≤ x′ + α′(1/δ′ + 1)x
OPT

‖x′‖1∑
xi ≤ (1 + δ′)LIN − α′

Setting α′ = α (1/δ+1)
(1/δ′+1) for some δ > 0 yields feasibility for the following LP assuming ‖x′‖1 =

4



(1 + δ′)LIN .

Ax ≥ b (LP *)
x ≥ 0

x ≥ x′ − α(1/δ + 1) x′

‖x′‖1

x ≤ x′ + α(1/δ + 1)x
OPT

‖x′‖1∑
xi ≤ (1 + δ′)LIN − α′

Here, we use α′(1/δ′ + 1) = α 1/δ+1
1/δ′+1(1/δ′ + 1) = α(1/δ + 1). The condition that α′ ≤ δ′LIN is

equivalent to the condition that ‖x′‖1 ≥ α(1/δ+ 1) since ‖x′‖1 = (1 + δ′)LIN and α(1/δ+ 1) =
α′(1/δ′ + 1).

Remark 2:
In many cases, we do not know the exact approximation ratio ‖x′‖1 = (1 + δ′)LIN but the
approximation guarantee ‖x′‖1 ≤ (1 + δ)LIN for some δ ≥ δ′. Assuming ‖x′‖1 ≥ α(1/δ+ 1) we
can use feasibility of LP * to prove the existence of a solution x′′ with ‖x′′‖1 ≤ (1 + δ)LIN − α
and ‖x′′ − x′‖1 ≤ 2α(1/δ + 1). The distance ‖x′′ − x′‖1 ≤ 2α(1/δ + 1) follows again easily
from constraints 3 and 4 of LP *. We derive the aimed objective value ‖x′′‖1 from the last
constraint of LP *: ‖x′′‖1 ≤ (1 + δ′)LIN − α 1/δ+1

1/δ′+1 = (1 + δ)LIN − (δ − δ′)LIN − α(1/δ +

1) 1
1/δ′+1

(1+δ′)LIN≥α(1/δ+1)
≤ (1+δ)LIN −α(1/δ+1) δ−δ′

1+δ′ −α(1/δ+1) δ′

1+δ′ = (1+δ)LIN −α(1/δ+

1) δ
1+δ′ = (1 + δ)LIN −α 1+δ

1+δ′

δ′≤δ
≤ (1 + δ)LIN −α. This proves, that it suffices to know an upper

bound for the approximation to obtain an improved solution x′′.
Of course, one major application of Theorem 1 is to improve the approximation. But we can

also apply Theorem 1 to obtain a variant of the theorem of Cook et al. [7] for the sensitivity anal-
ysis of an LP. Consider the following problem: Let x′ be a solution of min {‖x‖1 |Ax ≥ b′, x ≥ 0}.
Find a solution x′′ for LIN 2 = min {‖x‖1 |Ax ≥ b′′, x ≥ 0} with changed right hand side such
that ‖x′′ − x′‖1 is small. A theorem of Cook et al. [7] states that there exists a x′′ satisfying the
LP and ‖x′′ − x′‖∞ ≤ n∆ ‖b′′ − b′‖∞, where ∆ is the largest subdeterminant of A. This result
is not satisfying if ∆ and n are too big, especially if they are exponential in m. By letting loose
of optimal solutions we obtain a corollary that is much more appropriate to derive fully robust
algorithms. In contrary to the theorem of Cook et al. [7] the amount of change in the solution
does not depend on the determinant nor on the dimensions of A but on the approximation ratio
of the solution.

Corollary 2. Consider the linear program LP 1 defined by min {‖x‖1 |Ax ≥ b′, x ≥ 0} and an
approximate solution x′ with ‖x′‖1 ≤ (1 + δ)LIN 1 (δ > 0) and ‖x′‖1 ≥ α(1/δ+ 1). There exists
a solution x′′ of LP 2 defined by min {‖x‖1 |Ax ≥ b′′, x ≥ 0} with ‖x′′‖1 ≤ (1 + δ)LIN 2 such that
the distance ‖x′′ − x′‖1 ≤ (2

δ + 7)
∥∥∥ b′′−b′

c

∥∥∥
1
where ci = maxj Aij and b′′−b′

c is a vector having

components b′′
i −b

′
i

ci
.

Proof. Suppose there is only one index i where b′i 6= b′′i . Consider the 2 cases:
Case 1: b′i < b′′i We increase x′j by

b′′
i −b

′
i

ci
, where j is the index with the maximum entry in row i.

This way we make sure that the so modified x′ covers the larger b′′i since now (Ax′)i = b′′i . Since
we simply increase x′ to cover the larger b′′ we may worsen the approximation by an additive
term of at most b′′

i −b
′
i

ci
.

Case 2: b′i ≥ b′′i . In this case we do not modify component i of x′, but since a smaller b′′i has
to be covered the optimal value of a solution may decrease. Let LIN 1 be the optimal value of
LP 1 and let LIN 2 be the optimal value of LP 2. The inequality LIN 2 < LIN 1 −

b′′
i −b

′
i

ci
leads to
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a contradiction since we can increase an optimal solution xLIN1 of LP 1 to cover the lager b′ like
we did in case 1. Modifying xLIN1 this way would lead to a smaller optimal solution. Therefore
the optimal solution of LP 1 can not decline by more than b′′

i −b
′
i

ci
. Using x′ as an approximate

solution for LP 2 yields therefore ‖x′‖1 ≤ (1 + δ)(LIN 2 + b′′
i −b

′
i

ci
) = (1 + δ)LIN 2 + (1 + δ) b

′′
i −b

′
i

ci
.

Iterating over all components 1 ≤ i ≤ m and changing the solution according to the cases
would result in an approximate solution of at most (1+δ)LIN +(1+δ)

∥∥∥ b′′−b′

c

∥∥∥
1
. Using Remark

2 with α = (1 + δ)
∥∥∥ b′′−b′

c

∥∥∥
1
guarantees the existence of a solution x̂ for LP 2 having value

(1 + δ)LIN − α and ‖x̂− x′‖1 ≤ (2/δ + 2)α = (2/δ + 2)(1 + δ)
∥∥∥ b′′−b′

c

∥∥∥
1
≤ (2/δ + 6)

∥∥∥ b′′−b′

c

∥∥∥
1
.

Modifying x̂ according to the cases yields therefore a solution x′′ with ‖x′′‖1 ≤ (1+δ)LIN 2. For
the distance between x′′ and x′ we get ‖x′′ − x′‖1 ≤ ‖x̂− x′‖1 +

∥∥∥ b′′−b′

c

∥∥∥
1
≤ (2

δ +7)
∥∥∥ b′′−b′

c

∥∥∥
1
.

Note that if A is an integral matrix without zero rows, each component ci is at least 1.

3 Algorithmic Use
Let x′ be an approximate solution of the LP with ‖x′‖1 ≤ (1 + δ)LIN . In Theorem 1, we have
proven the existence of a solution x′′ near x′ with ‖x′′‖1 ≤ (1 + δ)LIN − α. We are looking
now for algorithmic ways to calculate this improved solution x′′. We present two algorithms
that basically rely on solving an LP. According to LP * we split x′ into a fixed part xfix and
a variable part xvar. The variable part is defined according to LP * by xvar = α(1/δ+1)

‖x′‖ x′ and
the fixed part by xfix = x′ − xvar. By assigning the variable part in a better way, Theorem 1
and Remark 2 state under the assumption that ‖x′‖1 ≥ α(1/δ + 1) that we can improve the
objective value by α. We denote with bvar = b − A(xfix) the part which has to be reassigned.
The algorithm works as follows:

Algorithm 1.

1. Set xvar := α(1/δ+1)
‖x′‖ x′, xfix := x′ − xvar and bvar := b−A(xfix)

2. Solve the LP x̂ = min {‖x‖1 |Ax ≥ bvar, x ≥ 0}

3. Generate a new solution x′′ = xfix + x̂

If x̂ is a basic feasible solution, compared to x′, our new solution x′′ has up to m additional
non-zero components.

Theorem 3. Given solution x′ with ‖x′‖1 ≤ (1 + δ)LIN and ‖x′‖1 ≥ α(1/δ + 1). Algorithm 1
returns a feasible solution x′′ with ‖x′′‖1 ≤ (1 + δ)LIN − α and the distance between x′ and x′′
is ‖x′′ − x′‖1 ≤ 2α(1/δ + 1).

Proof. Solution x′′ is feasible becauseA(x′′) = A(xfix+x̂) = A(xfix)+A(x̂) ≥ A(xfix)+bvar = b.
For the approximation we use Remark 2, which guarantees the existence of a solution with
objective value ≤ (1 + δ)LIN − α by leaving the part xfix of the solution x′ unchanged. The
unchanged part xfix is defined by using the lower bounds of LP *, x′′ ≥ x′ − α(1/δ + 1) x′

‖x′‖1
.

Placing x̂ optimally leads therefore to the aimed approximation. Since the ‖xvar‖1 and ‖x̂‖1
are bounded by α(1/δ + 1) the worst possible distance between x′ and x′′ is ‖x′′ − x′‖1 =∥∥∥(xfix + x̂)− (xfix + xvar)

∥∥∥
1

= ‖x̂− xvar‖1 ≤ ‖x̂‖1 + ‖xvar‖1 ≤ 2α(1/δ + 1).

In Algorithm 1 we use an optimal LP solver as a subroutine. In many cases, like for
example bin packing, the corresponding LP relaxation is hard to solve and the running time
for computing an optimal solution is very high. For the following algorithm it is sufficient to
compute the LP approximately, which in general can be performed more efficiently. We assume
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that ‖x′‖1 ≥ 2α(1/δ + 1) because the double amount has to be reassigned to achieve the same
improvement in the approximation as in Algorithm 1.

Algorithm 2.

1. Set xvar := 2α(1/δ+1)
‖x′‖ x′, xfix := x′ − xvar and bvar := b−A(xfix)

2. Solve x̂ = min {‖x‖1 |Ax ≥ bvar, x ≥ 0} approximately with ratio (1 + δ/2)

3. If
∥∥∥xfix + x̂

∥∥∥
1
< ‖x′‖1 set x′′ := xfix + x̂ else x′′ = x′.

Theorem 4. Let x′ be a solution with ‖x′‖1 ≤ (1 + δ)LIN and ‖x′‖1 ≥ 2α(1/δ + 1). Then
Algorithm 2 returns a feasible solution x′′ with approximation guarantee (1 + δ)LIN − α and
‖x′′ − x′‖1 ≤ 4α(1/δ + 1).

Proof. The property that ‖x′′ − x′‖1 ≤ 4α(1/δ+1) follows by Theorem 3 and the fact, that xvar
has the double size 2α(1/δ+ 1) compared to xvar defined in Algorithm 1. Furthermore we have
to show that at the end of the algorithm ‖x′′‖1 ≤ (1 + δ)LIN − α. Suppose ‖x′‖ = (1 + δ′)LIN
for some δ′ ≤ δ. Using the assumption 2α(1/δ + 1) ≤ ‖x′‖1 ≤ (1 + δ)LIN implies that
2α ≤ (1+δ)LIN

(1/δ+1) = δLIN . Consider the case that 2δ′ ≤ δ. In this case x′′ has the aimed
approximation since ‖x′′‖1 ≤ ‖x′‖1 = (1 + δ′)LIN ≤ (1 + δ)LIN − δ/2LIN ≤ (1 + δ)LIN − α
using 2α ≤ δLIN . Thus in the following we assume δ ≤ 2δ′. Suppose we solve the LP in step
2 optimally. In this case, Algorithm 2 is identical to Algorithm 1 using improvement of 2α. By
feasibility of LP * we know there exists a solution x̄′′ with ‖x̄′′‖ ≤ (1 + δ′)LIN − 2α( 1/δ+1

1/δ′+1).
This implies, that an optimal solution x̂OPT of the LP min {‖x‖1 |Ax ≥ bvar, x ≥ 0} is of size∥∥∥x̂OPT

∥∥∥
1
≤ ‖xvar‖1 − 2α 1/δ+1

1/δ′+1 = 2α(1/δ + 1) − 2α 1/δ+1
1/δ′+1 . Solving the LP approximately with

ratio (1 + δ/2), solution x̂ has an additional term δ/2
∥∥∥x̂OPT

∥∥∥
1
. The value of ‖x̂‖1 is therefore

bounded by ‖x̂‖1 ≤
∥∥∥x̂OPT

∥∥∥
1
+δ/2

∥∥∥x̂OPT
∥∥∥

1
≤ ‖xvar‖1−2α 1/δ+1

1/δ′+1 +α(1+δ)−α( 1+δ
1/δ′+1). Finally

this results in the approximation for xfix + x̂ as follows.∥∥∥xfix + x̂
∥∥∥

1
=
∥∥x′∥∥1 − ‖x

var‖1 + ‖x̂‖1

=(1 + δ′)LIN − 2α( 1/δ + 1
1/δ′ + 1) + α(1 + δ)− α( 1 + δ

1/δ′ + 1)

=(1 + δ)LIN − (δ − δ′)LIN − 2α( 1/δ + 1
1/δ′ + 1) + α(1 + δ)− α( 1 + δ

1/δ′ + 1)

LIN≥2α/δ
≤ (1 + δ)LIN − 2α(δ − δ

′

δ
) + α(1 + δ)− 2α( 1/δ + 1

1/δ′ + 1)− α( 1 + δ

1/δ′ + 1)

=(1 + δ)LIN + α(−2δ + 2δ′ + δ + δ2

δ
)− 2α( 1/δ + 1

1/δ′ + 1)− α( 1 + δ

1/δ′ + 1)

=(1 + δ)LIN − α+ α(2δ′ + δ2

δ
)− 2α( 1/δ + 1

1/δ′ + 1)− α( 1 + δ

1/δ′ + 1)

=(1 + δ)LIN − α+ α(2 + 2δ′ + δ2/δ′ + δ2 − 2− 2δ − δ − δ2

δ(1/δ′ + 1) )

=(1 + δ)LIN − α+ α(2δ′ + δ2/δ′ − 3δ
δ(1/δ′ + 1) )

=(1 + δ)LIN − α+ α(
(δ − δ′)(−2 + δ

δ′ )
δ(1/δ′ + 1) )

≤(1 + δ)LIN − α
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The last inequality holds because α( (δ−δ′)(−2+ δ
δ′ )

δ(1/δ′+1) ) ≤ 0 since δ−δ′ ≥ 0 and −2+ δ
δ′ ≤ 0⇔ δ ≤ 2δ′.

By the last step of the algorithm we know that ‖x′′‖1 ≤
∥∥∥xfix + x̂

∥∥∥
1
and thus ‖x′′‖1 ≤ (1 +

δ)LIN − α.

In some cases we may not want to get a guaranteed approximation, but a guarantee that
our solution x′ is getting smaller by some α. This works if the approximation ratio of x′ is worse
than (1 + δ). The following corollary states, that if we use Algorithm 2 on a solution x′ with
‖x′‖1 = (1 + δ′)LIN for some δ′ ≥ δ the objective function of our new solution x′′ decreases by
at least α.

Corollary 5. Let ‖x′‖1 = (1+δ′)LIN for some δ′ ≥ δ and ‖x′‖1 ≥ 2α(1/δ+1). Then Algorithm
2 returns a solution x′′ with ‖x′′‖1 ≤ ‖x′‖1−α = (1+ δ′)LIN −α and ‖x′′ − x′‖1 ≤ 4α(1/δ+1).

Proof. Suppose like in the proof of Theorem 4 that we solve the LP in step 2 optimally. In this
case, Algorithm 2 is identical to Algorithm 1 using improvement of 2α and therefore by feasibility
of LP * we know that it returns a solution x̄′′ with ‖x̄′′‖ ≤ (1+δ′)LIN −2α( 1/δ+1

1/δ′+1). An optimal
solution x̂OPT of the LP min {‖x‖1 |Ax ≥ bvar, x ≥ 0} is therefore of size

∥∥∥x̂OPT
∥∥∥

1
≤ ‖xvar‖1 −

2α 1/δ+1
1/δ′+1 = 2α(1/δ + 1) − 2α 1/δ+1

1/δ′+1 . Since we actually solve the LP approximately with ratio
(1 + δ/2), solution x̂ has an additional term of δ/2

∥∥∥x̂OPT
∥∥∥

1
and the value is therefore bounded

by ‖x̂‖1 ≤ ‖xvar‖1 − 2α 1/δ+1
1/δ′+1 + α(1 + δ)− α( 1+δ

1/δ′+1) according to the proof of Theorem 5. By
construction of x′′ we get ‖x′′‖1 ≤

∥∥∥xfix + x̂
∥∥∥

1
= (1+δ′)LIN −2α( 1/δ+1

1/δ′+1)+α(1+δ)−α( 1+δ
1/δ′+1).

Since δ′ ≥ δ we know that −2α( 1/δ+1
1/δ′+1) ≤ −2α and that α(1 + δ) − α( 1+δ

1/δ′+1) ≤ α. Hence
‖x′′‖1 ≤ (1 + δ′)LIN − α.

3.1 Integer Programming

In this section we discuss how we can apply results from the previous sections to integer pro-
gramming. Consider a fractional solution x′ of the LP and a corresponding integral solution
y′. By rounding each component x′i up to the next integer value, it is easy to get a feasible
integer solution y′ with an additional additive term ‖y′‖1 ≤ ‖x′‖1 + C, where C is the number
of non-zero components. We can apply any of the previous algorithms to x′ to get an improved
solution x′′. But our actual goal is to find a corresponding integer solution y′′ with improved
objective value ‖y′′‖1 ≤ (1 + δ)LIN +C − α such that the distance between y′′ and y′ is small.
In the following we present two algorithms that compute a suitable y′′ with improved objective
value and small distance between y′′ and y′. Note that the straight forward approach to simply
round up each component x′′i leads to a distance between y′′ and y′ that depends on C and hence
(depending on the LP) is too high. Designing the algorithms, there seems to be some trade
off between the number of non-zero components and the distance between the integer solutions
y′ and y′′. The first algorithms tries to minimize the distance between y′ and y′′ while the
second guarantees better approximation of ‖y′‖1 and ‖y′′‖1 while the distance between them
increases. The existence of an algorithm combining both good properties, low distance and
good approximation guarantee of y′ and y′′, is an interesting question.

In Algorithm 3 we focus on how much components of x′ need to be reduced to achieve the
improved approximation guarantee. This defines the migration factor in robust bin packing.
The actual worst case distance between y′′ and y′ is larger and however can only be bounded by
O(m + 1/δ). Like in the previous algorithms, we assume that ‖x′‖1 ≥ α(1/δ + 1). We require
x′ to be a solution with approximation guarantee ‖x′‖1 ≤ (1 + δ)LIN and we require y′ to be
an integer solution with approximation guarantee ‖y′‖1 ≤ (1 + δ)LIN + n. For every 1 ≤ i ≤ n
we suppose that x′i ≤ y′i. For a vector z ∈ Rn≥0, let V (z) be the set of all integral vectors
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v = (v1, . . . , vn)T such that 0 ≤ vi ≤ zi. Given LP solution x′ and integer solution y′ with the
described properties above. The algorithm performs in the following way.

Algorithm 3.

1. If possible choose vector c ∈ V (y′ − x′) with ‖c‖1 = α and return y′′ = y′ − c and x′′ = x′.
Otherwise choose c ∈ V (y′ − x′) such that ‖c‖1 < α is maximal.
Set ȳ = y′ − c.

2. Set xvar := α(1/δ+1)
‖x′‖ x′, xfix := x′ − xvar and bvar := b−A(xfix)

3. Compute an optimal solution x̂ of the LP min {‖x‖1 |Ax ≥ bvar, x ≥ 0}

4. Set x′′ = xfix + x̂

5. For each 1 ≤ i ≤ n set ŷi = max{dx′′i e, ȳi}

6. If possible choose d ∈ V (ŷ−x′′) such that ‖d‖1 = α(1/δ+1) otherwise choose d ∈ V (ŷ−x′′)
such that ‖d‖1 < α(1/δ + 1) is maximal.

7. Return y′′ = ŷ − d.

Theorem 6. Let x′ be a solution of the LP with ‖x′‖1 ≤ (1 + δ)LIN and ‖x′‖1 ≥ α(1/δ + 1).
Let y′ be an integral solution of the LP with ‖y′‖1 ≤ (1 + δ)LIN + n where y′i ≥ x′i for each
i = 1, . . . , n. Then Algorithm 3 returns an integral solution y′′ with ‖y′′‖1 ≤ (1 + δ)LIN +n−α
such that

∑
y′′
i <y

′
i
(y′i − y′′i ) ≤ α(1/δ + 2).

Proof. Feasibility: Feasibility for x′′ and approximation ‖x′′‖1 ≤ (1 + δ)LIN − α follows from
Theorem 3. Step 2,3 and 4 are identical to Algorithm 1. Feasibility for the integer solution
y′′ follows from the fact, that for every component i we have y′′i = ŷi − di ≥ x′′i and hence
Ay′′ ≥ Ax′′ ≥ b.
Size of reduction of y′: The only steps where components of y′ are changed are in step 1, 5
and 6. In step 1 we change y′ to obtain ȳ, in step 5 we change ȳ to obtain ŷ and in step 6 we
change ŷ to obtain y′′. Summing up the change in each step leads therefore to the maximum
possible size of reduction of y′ compared to y′′. In step 1 there are c ≤ α components of y′
which are being reduced. In step 5 no components of ȳ are being reduced and in step 6 there
are d ≤ α(1/δ + 1) components of ŷ which are being reduced to obtain y′′. Hence there are at
most α(1/δ + 2) components of y′ which are being reduced to obtain y′′.
Approximation: It remains to prove, that y′′ has approximation ratio (1 + δ)LIN + n− α.
Case 1, ‖c‖1 = α: In this case, the algorithm returns in step 1 solution y′′ = ȳ with ‖y′′‖1 =
‖y′‖1−α and the algorithm terminates. Otherwise, if ‖c‖1 < α we have for every component i,
that ȳi − x′i < 1 and ‖x′′‖1 ≤ (1 + δ)LIN − α. Note that steps 2-4 are equivalent to Algorithm
1.
Case 2, ‖d‖1 < α(1/δ + 1): In this case y′′i − x′′i = ŷi − di − x′′i < 1 for i = 1, . . . , n, since ‖d‖1
is chosen maximally. Using ‖x′′‖1 ≤ (1 + δ)LIN − α and y′′i < x′′i + 1 for i = 1, . . . , n we have
‖y′′‖1 ≤ (1 + δ)LIN + n− α.
Case 3, ‖d‖1 = α(1/δ + 1): Let m̄ be the number of components with x′′i > ȳi. Next we
compare the vector ŷ with x′′. Using x′′ ≥ xfix and the definition of ŷ in step 5 we obtain
‖ŷ − x′′‖1 =

∑
x′′
i ≤ȳi

(ȳi − x′′i ) +
∑
x′′
i >ȳi

(dx′′i e − x′′i ) ≤
∑
x′′
i ≤ȳi

(ȳi − xfixi ) + m̄. The fact that
ŷi−x′i < 1 for i = 1, . . . , n and ‖x′‖1−

∥∥∥xfix∥∥∥
1

= ‖xvar‖1 ≤ α(1/δ+ 1) and the fact there are at
most n− m̄ components with x′′i < ȳi yield that

∑
x′′
i ≤ȳi

(ȳi − xfixi ) =
∑
x′′
i ≤ȳi

(ȳi − x′i + xvari ) ≤
n− m̄+

∑
x′′
i ≤y

′
i
xvari ≤ n− m̄+α(1/δ+ 1). As a result we can bound ‖ŷ − x′′‖1 ≤

∑
x′′
i ≤y

′
i
(y′i−

xfixi ) + m̄ ≤ n+α(1/δ+ 1). Since y′′ = ŷ−d and ‖d‖1 = α(1/δ+ 1), our integer solution y′′ has
the aimed approximation guarantee of ‖y′′‖1 = ‖ŷ‖1 − ‖d‖1 ≤ ‖x′′‖+ α(1/δ + 1) + n− ‖d‖1 =
‖x′′‖+ n ≤ (1 + δ)LIN + n− α.
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The running time of the above algorithm depends on the number of non-zero components
and the time to compute an optimal solution of an LP. The algorithms computes an integral
solution y′′ with ‖y′′‖1 ≤ (1 + δ)LIN + n − α for given fractional and integral solution. In
many cases, like bin packing, the dimension n is very large and provides thus a large additive
term in the approximation. The following algorithm describes how this large additive term can
be avoided. On the other hand the difference between y′ and y′′ increases to O(m+α

δ ). Let
x′ be an approximate solution of the LP min {‖x‖1 |Ax ≥ b, x ≥ 0} with ‖x′‖1 ≤ (1 + δ)LIN
and ‖x′‖1 ≥ α(1/δ + 1). Furthermore let y′ be an approximate integer solution of the LP with
‖y′‖1 ≤ (1 + 2δ)LIN and ‖y′‖1 ≥ (m+ 1)(1/δ + 2) and y′i ≥ x′i for i = 1, . . . , n. In addition we
suppose that both x′ and y′ have exactly K ≤ δLIN non-zero components. Our goal is now to
compute a fractional solution x′′ and and integer solution y′′ having improved approximation
properties and still ≤ δLIN non-zero components. For a vector z ∈ Rn≥0, let V (z) be the set
of all integral vectors v = (v1, . . . , vn)T such that 0 ≤ vi ≤ zi. Furthermore we denote with
a1, . . . , aK the indices of the non-zero components y′aj such that y′a1 ≤ . . . ≤ y′aK are sorted in
non-decreasing order.

Algorithm 4.

1. Choose ` maximally such that the sum of smallest ` components 1, . . . , ` is
∑

1≤i≤` y
′
ai ≤

(m+ 1)(1/δ + 2)

2. Set xvari =

x′i if i = aj for j ≤ `
α(1/δ+1)
‖x′‖ x′i else

and ȳi =
{

0 if i = aj for j ≤ `
y′i else

3. Set xfix = x′ − xvar, bvar = b − A(xfix) and compute an optimal solution x̂ of the LP
min {‖x‖1 |Ax ≥ bvar, x ≥ 0}

4. Set x′′ = xfix + x̂

5. For each 1 ≤ i ≤ n set ŷi = max{dx′′i e, ȳi}

6. If possible choose d ∈ V (ŷ−x′′) such that ‖d‖1 = α(1/δ+1) otherwise choose d ∈ V (ŷ−x′′)
such that ‖d‖1 < α(1/δ + 1) is maximal.

7. Return y′′ = ŷ − d

Theorem 7. Let x′ be a solution of the LP with ‖x′‖1 ≤ (1 + δ)LIN and ‖x′‖1 ≥ α(1/δ + 1).
Let y′ be an integral solution of the LP with ‖y′‖1 ≤ (1 + 2δ)LIN and ‖y′‖1 ≥ (m+ 1)(1/δ+ 2).
Solutions x′ and y′ have both exactly K non-zero components and for each component we have
x′i ≤ y′i. Then Algorithm 4 returns a fractional solution x′′ with ‖x′′‖1 ≤ (1 + δ)LIN − α and
an integral solution y′′ with ‖y′′‖1 ≤ (1 + 2δ)LIN − α. Both x′′ and y′′ have the same number
of non-zero components with x′′i ≤ y′′i and the number of non-zero components is bounded by
δLIN . The distance between y′′ and y′ is bounded by ‖y′′ − y′‖1 = O(m+α

δ ).

Proof. Feasibility: Feasibility and approximation for the fractional solution x′′ follow easily
from correctness of Algorithm 1 and the fact that removing additional components x′a1 , . . . , x

′
a`

and reassigning them optimally does not worsen the approximation. Each integral component
ŷi is by definition (step 5) greater or equal than x′′i . By choice of d step 6 and 7 retain this
property for y′′ and imply thus feasibility for y′′.

Distance between y′′ and y′: The only steps where components of y′ are changed are step
2, 5 and 7. In step 2 we change y′ to obtain ȳ, in step 5 we change ȳ to obtain ŷ and in step 7
we change ŷ to obtain y′′. Summing up the change in each step leads therefore to the maximum
possible distance between y′′ and y′. In step 2 of the algorithm ` components of y′ are set to
zero to obtain ȳ, which by the definition of ` results in a change of at most (m + 1)(1/δ + 2).
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We define L by L =
∑

1≤i≤` y
′
ai with 0 ≤ L ≤ (m+ 1)(1/δ+ 2). In step 5, the only components

ȳi being changed are the ones where x′′i is larger than ȳi. So the change in step 5 is bounded
by
∑
x′′
i >ȳi

(dx′′i e − ȳi) =
∑
x′′
i >ȳi

(dxfixi + x̂ie − ȳi) ≤
∑
x′′
i >ȳi

(dxfixi e − ȳi + dx̂ie) ≤
∑
x′′
i >ȳi
dx̂ie

by knowing that dxfixi e − ȳi ≤ 0 since xfixi = ȳi = 0 if i = aj for a j ≤ ` or dxfixi e < dx′ie ≤ y′i.
Furthermore we can bound

∑
x′′
i >ȳi
dx̂ie ≤ ‖x̂‖1 + m ≤ ‖xvar‖1 + m since x̂ is a basic feasible

solution and ‖xvar‖1 can be bounded by L+α(1/δ+1) (i.e. we get L for the size of components
x′a1 , . . . , x

′
aK

plus
∑
i>`

α(1/δ+1)
‖x′‖1

x′ai ≤ α(1/δ + 1) for the remaining ones). Therefore we have
‖ŷ − ȳ‖1 ≤ L + α(1/δ + 1) + m. In step 7, ‖y′′ − ŷ‖1 = ‖d‖1 ≤ α(1/δ + 2) + m. In sum this
makes a total change of at most (m + 1)(1/δ + 2) + L + α(1/δ + 1) + m + α(1/δ + 2) + m ≤
2(m+ 1)(1/δ + 2) + 2m+ α(2/δ + 3) = O(m+α

δ ).
Number of components: The property that x′ and y′ have the same number of non-zero

components together with the property that y′i ≥ x′i implies that x′i > 0 whenever y′i > 0. This
property holds also for xfix and ȳ since a component ȳi is set to zero if and only if xfixi = 0.
Notice that y′′ = ŷ− d ≥ x′′. Suppose by contradiction that there is a component i with x′′i = 0
and y′′i > 0, then ŷi = y′′i + di > 0 and by definition of ŷ we obtain ȳi > 0. In this case we have
xfixi > 0, which gives a contradiction to x′′i = 0 = xfixi + x̂i > 0. Using the property that x′′
and y′′ have the same number of non-zero components, it is sufficient to prove that the number
of non-zero components of x′′ is limited by δLIN . Our new solution x′′ is composed of xfix and
x̂. Solution xfix has K − ` non-zero components, since in step 2 we set ` components of xfix
to zero. Being a basic feasible solution, x̂ has at most m non-zero components and hence x′′
has at most K + m − ` non-zero components. If ` ≥ m, then x′′ has ≤ K ≤ δLIN non-zero
components. So let ` < m: The total number of non-zero components after step 4 is (K+m−`).
We now prove that this number is bounded by δLIN . Parameter ` is chosen to be maximal,
therefore

∑
i≤l+1 y

′
ai ≥ (m + 1)(1/δ + 2). Hence, the average size of components y′a1 , . . . , y

′
a`+1

is greater than (m+1)(1/δ+2)
`+1

`+1≤m
≥ (m+1)(1/δ+2)

m > 1/δ + 2. Since the components are sorted in
non-decreasing order, every component y′i with i ≥ ` + 1 has size > 1/δ + 2. Summing over
all non-zero components of y′ yields the following inequality: ‖y′‖1 =

∑K
i=`+2 y

′
ai + y′a`+1 + L ≥

(K−`−1)(1/δ+2)+y′a`+1 +L ≥ (K−`−1)(1/δ+2)+(m+1)(1/δ+2) = (K−`+m)(1/δ+2).
Using that ‖y′‖1 ≤ (1 + 2δ)LIN yields (1 + 2δ)LIN ≥ (K− `+m)(1/δ+ 2). Dividing both sides
by (1/δ + 2) gives (K − `+m) ≤ δLIN . This shows that the number of non-zero components
of x′′ and y′′ is at most δLIN .

Approximation: Case1: ‖d‖1 = α(1/δ + 2) +m
The following inequalities ‖ŷ‖1 ≤ ‖ȳ‖1 + L + α(1/δ + 2) + m = ‖y′‖1 + α(1/δ + 1) + m and
‖y′‖1 ≤ (1 + 2δ)LIN together yield the aimed approximation ‖y′′‖1 = ‖ŷ‖1 − ‖d‖1 = ‖ŷ‖1 −
α(1/δ + 2)−m ≤ (1 + 2δ)LIN − α.
Case2: ‖d‖1 < α(1/δ + 2) +m
Since d is chosen maximally, y′′i − x′′i < 1 for every components i = 1, . . . , n. Since ‖x′′‖1 ≤
(1+δ)LIN−α and y′′ has at most δLIN non-zero components ‖y′′‖1 is bounded by (1+δ)LIN−
α+ δLIN = (1 + 2δ)LIN − α.

Instead of using an optimal LP solution in Algorithm 3 and 4, we can solve the LP approxi-
mately with a ratio of (1+δ/2). The following algorithm is basically a combination of Algorithm
2 and Algorithm 4. We could also combine Algorithm 2 and Algorithm 3 to obtain similar re-
sults. We make the following assumption for the fractional solution x′ and the corresponding
integer solution y′: Let x′ be an approximate solution of the LP min {‖x‖1 |Ax ≥ b, x ≥ 0} with
‖x′‖1 ≤ (1 + δ)LIN and ‖x′‖1 ≥ 2α(1/δ + 1). Let y′ be an approximate integer solution of
the LP with ‖y′‖1 ≤ LIN + 2C for some value C ≥ δLIN and with ‖y′‖1 ≥ (m + 2)(1/δ + 2).
Suppose that both x′ and y′ have only K ≤ C non-zero components. For every component i
we suppose that y′i ≥ x′i. Furthermore we are given indices a1, . . . , aK , such that the non-zero
components y′aj are sorted in non-decreasing order i.e. y′a1 ≤ . . . ≤ y

′
aK

.
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Algorithm 5.

1. Set xvar := 2α(1/δ+1)
‖x′‖ x′, xfix := x′ − xvar and bvar = b−A(xfix)

2. Compute an approximate solution x̂ of the LP min {‖x‖1 |Ax ≥ bvar, x ≥ 0} with ratio
(1 + δ/2)

3. If
∥∥∥xfix + x̂

∥∥∥
1
≥ ‖x′‖1 then set x′′ = x′, ŷ = y′ and goto step 9

4. Choose the largest ` such that the sum of smallest components y′1, . . . , y′` is
∑

1≤i≤` y
′
ai ≤

(m+ 2)(1/δ + 2)

5. For all i set x̄fixi =
{

0 if i = aj for j ≤ `
xfixi else

and ȳi =
{

0 if i = aj for j ≤ `
y′i else

6. Set x̄ = x̂ + x′` where x′` is a vector consisting of components xa1 , . . . , xa`. Reduce the
number of non-zero components to at most m+ 1.

7. x′′ = x̄fix + x̄

8. For all non-zero components i set ŷi = max{dx′′i e, ȳi}

9. If possible choose d ∈ V (ŷ−x′′) such that ‖d‖1 = α(1/δ+1) otherwise choose d ∈ V (ŷ−x′′)
such that ‖d‖1 < α(1/δ + 1) is maximal.

10. Return y′′ = ŷ − d

Step 6 of the algorithm can be performed using a standard technique presented for example in
[3]. Arbitrary many components of x̄ can be reduced tom+1 without making the approximation
guarantee worse. We formulate the following theorem and corollary such that we can directly
use it in the next section.

Theorem 8. Let x′ be a solution of the LP with ‖x′‖1 ≤ (1+δ)LIN and ‖x′‖1 ≥ 2α(1/δ+1). Let
y′ be an integral solution of the LP with ‖y′‖1 ≤ LIN + 2C for some value C ≥ δLIN and with
‖y′‖1 ≥ (m+2)(1/δ+2). Solutions x′ and y′ have the same number of non-zero components and
for each component we have x′i ≤ y′i. The number of non-zero components of x′ and y′ is K with
K ≤ C. Then Algorithm 5 returns a fractional solution x′′ with ‖x′′‖1 ≤ (1 + δ)LIN −α and an
integral solution y′′ where one of the two properties hold: ‖y′′‖1 = ‖y′‖1−α or ‖y′′‖1 = ‖x′′‖1+C.
Both, x′′ and y′′ have at most C non-zero components and the distance between y′′ and y′ is
bounded by ‖y′′ − y′‖1 = O(m+α

δ ).

Proof. Note that the first 3 steps are equivalent to Algorithm 2. In steps 4-6 the number of
non-zero components x′a1 , . . . , x

′
a`

are reduced. As we apply a method that does not increase
the objective value we obtain by Theorem 4 that ‖x′′‖1 ≤ (1 + δ)LIN −α. Steps 4-9 are similar
to Algorithm 4. The main difference is that components x′a1 , . . . , x

′
a`

are not assigned by the
LP but are added to the LP solution afterwards in step 7.
Distance between y′′ and y′: As in Theorem 7, the steps where components of y′ are changed
are steps 5,8 and 10. By definition of ` the change of y′ in step 5 is bounded by (m+2)(1/δ+2).
As shown, the change in step 8 is bounded by

∑
x′′
i >ȳi
dxfixi + x̂ie − ȳi) ≤

∑
x′′
i >ȳi
dx̄ie ≤ ‖dx̄ie‖1

and ‖dx̄ie‖1 ≤ 2α(1/δ + 1) + L + 1, whereL =
∑

1≤i≤` y
′
ai . The change in step 10 is bounded

by ‖d‖1 ≤ 2α(1/δ + 2) + m + 1. Therefore the total change between y′ and y′′ is bounded by
O(m+α

δ ).
Number of components: According to Theorem 7, the number of nonzero components of y′′
is equal to the number of non-zero components of x′′ which equals K− `+m+1 (the number of
non-zero components of x̂ is bounded by m+ 1). We distinguish between the two cases where
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` ≥ m + 1 and ` < m + 1. In the case where ` ≥ m + 1 the number of components of x′′ is
smaller than K and hence bounded by C. Consider the case where ` < m+ 1. By definition of
` we know that L+ y′`+1 ≥ (m+ 2)(1/δ+ 2). Using the argument in the proof of Theorem 7, we
obtain the following inequality: ‖y′‖1 =

∑k
i=`+2 y

′
i+y′`+1 +L = (K−`−1)(1/δ+2)+y′`+1 +L ≥

(K− `−1)(1/δ+2)+(m+2)(1/δ+2) = (K− `+m+1)(1/δ+2) Using that ‖y′‖1 ≤ LIN +2C

yields LIN + 2C ≥ (K − ` + m + 1)(1/δ + 2). As LIN+2C
(1/δ+2) = δLIN+2δC

(1+2δ)
C≥δLIN
≤ C+2δC

(1+2δ) = C we
obtain that (K − `+m+ 1) ≤ LIN+2C

(1/δ+2) ≤ C.
Approximation: According to Theorem 7 we distinguish between the two cases where ‖d‖1 =
2α(1/δ + 2) + m + 1 and ‖d‖1 < 2α(1/δ + 2) + m + 1. In the second case where ‖d‖1 <
2α(1/δ + 2) + m + 1 we know that ‖y′′‖1 is bounded by ‖x′′‖1 plus the number of non-zero
components of x′′ since d is chosen maximally. Hence ‖y′′‖1 ≤ ‖x′′‖1 + C. In the case where
‖d‖1 = 2α(1/δ + 2) + m + 1, we know ‖y′′‖1 ≤ ‖ŷ‖1 − 2α(1/δ + 2) − m − 1. As ‖ŷ‖1 ≤
‖ȳ‖1 + ‖dx̄e‖1 ≤ ‖y′‖1 + 2α(1/δ + 1) +m+ 1 we get ‖y′′‖1 ≤ ‖y′‖1 − α. Note that we can also
make the general claim for y′′ that ‖y′′‖1 ≤ LIN + 2C − α.

The following corollary is an analog to Corollary 5 which states what Algorithm 5 is doing
if the approximation ratio of x′ is worse than (1 + δ). We will need this corollary in the next
section as we have no true control about the approximation ratio of x′. During the bin packing
algorithm new columns might appear in the LP, which might change the optimal solution and
therefore the approximation ratio of a solution x′.

Corollary 9. Let ‖x′‖1 = (1 + δ′)LIN for some δ′ ≥ δ and ‖x′‖1 ≥ 2α(1/δ + 1) and let
‖y′‖1 ≤ LIN + 2C for some C ≥ δ′LIN and ‖y′‖1 ≥ (m + 2)(1/δ + 2). Solutions x′ and y′

have the same number of non-zero components and for each component we have x′i ≤ y′i. The
number of non-zero components of x′ and y′ is K with K ≤ C. Then Algorithm 5 returns a
fractional solution x′′ with ‖x′′‖1 ≤ ‖x′‖1 − α = (1 + δ′)LIN − α and an integral solution y′′

where one of the two properties holds: ‖y′′‖1 = ‖y′‖1 − α or ‖y′′‖1 = ‖x′‖1 − α + C. Both x′′
and y′′ have at most C non-zero components and the distance between y′′ and y′ is bounded by
‖y′′ − y′‖1 = O(m+α

δ ).

Proof. Note that steps 1-3 are basically identical to Algorithm 2. Hence Algorithm 5 returns by
Corollary 6 a fractional solution x′′ with ‖x′′‖1 ≤ ‖x′‖1 − α. The distance between the integral
solutions y′ and y′′ are independent of the approximation ratio of x′. Hence the distance between
y′ and y′′ is according to Theorem 8 bounded by O(m+α

δ ). The number of non-zero components
of x′′ and y′′ is by the proof of Theorem 8 bounded by the numberK ≤ C of non-zero components
of y′ or by LIN+2C

1/δ+2 ≤ C. The approximation guarantee for y′′, that ‖y′′‖1 ≤ ‖y′‖1 −α follows if
‖d‖1 = 2α(1/δ+2)+m+1. If ‖d‖1 < 2α(1/δ+2)+m+1 then ‖y′′‖1 ≤ ‖x′′‖1+C ≤ ‖x′‖1+C−α.
We can also make the general claim for y′′ that ‖y′′‖1 ≤ ‖y′‖1 − α.

4 AFPTAS for robust bin packing
The goal of this section is to give a fully robust AFPTAS for the bin packing problem using the
methods developed in the previous section. For that purpose we show at first the common way
how one can formulate a rounded instance of bin packing as an ILP. In Section 4.2 we present
abstract properties of a rounding that need to be fulfilled to obtain a suitable rounding and in
Section 4.3 we present the used dynamic rounding algorithm. The crucial part however is the
analysis of the dynamic rounding in combination with ILP techniques. Since the ILP and its
optimal value are in constant change due to the dynamic rounding, it is difficult to to give a
bound for the approximation. Based on the abstract properties we therefore develop techniques
how to view and analyze the problem as a whole.
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The online bin packing problem is defined as follows: Let It = {i1, . . . it} be an instance with
t items at time step t ∈ N and let s : It → (0, 1] be a mapping that defines the sizes of the
items. Our objective is to find a function Bt : {i1, . . . , it} → N+, such that

∑
i:Bt(i)=j s(i) ≤ 1

for all j and minimal maxi {Bt(i)} (i.e. Bt describes a packing of the items into a minimum
number of bins). We allow to move few items when creating a new solution Bt+1 for instance
It+1 = It∪{it+1}. Sanders et al. [20] and also Epstein and Levin [10] defined themigration factor
to give a measure for the amount of repacking. The migration factor is defined as the total size of
all items that are moved between the solutions divided by the size of the arriving item. Formally
the migration factor of two packings Bt and Bt+1 is defined by

∑
j≤t:Bt(ij)6=Bt+1(ij) s(ij)/s(it+1).

4.1 LP-Formulation

Let I be an instance of bin packing with m different item sizes s1, . . . , sm. Suppose that for
each item ik ∈ I there is a size sj with s(ik) = sj . A configuration Ci is a multiset of sizes
{a(Ci, 1) : s1, a(Ci, 2) : s2, . . . a(Ci,m) : sm} with

∑
1≤j≤m a(Ci, j)sj ≤ 1, where a(Ci, j) denotes

how often size sj appears in configuration Ci. We denote by C the set of all configurations. Let
|C| = n. We consider the following LP relaxation of the bin packing problem:

min ‖x‖1∑
Ci∈C

xia(Ci, j) ≥ bj ∀1 ≤ j ≤ m

xi ≥ 0 ∀1 ≤ j ≤ n

Component bj states the number of items i in I with s(i) = sj for j = 1, . . . ,m. This LP-
formulation was first described by Eisemann [9]. Suppose that each size sj is larger or equal to
ε/2 for some ε ∈ (0, 1/2]. Since the number of different item sizes is m, the number of feasible
packings for a bin is bounded by |C| = n ≤ (2

ε + 1)m. Obviously an optimal integral solution
of the LP gives a solution to our bin packing problem. We denote by OPT (I) the value of an
optimal solution. An optimal fractional solution is a lower bound for the optimal value. We
denote the optimal fractional solution by LIN (I).

4.2 Rounding

We use a rounding technique based on the offline APTAS by Fernandez de La Vega & Lueker
[13]. As we plan to modify the rounding through the dynamic rounding algorithm we give a
more abstract approach on how we can round the items to obtain an approximate packing.
At first we divide the set of items into small ones and large ones. An item i is called small
if s(i) < ε/2, otherwise it is called large. Instance I is partitioned accordingly into the large
items IL and the small items IS . We treat small items and large items differently. Small items
can be packed using a greedy algorithm and large items need to be rounded using a rounding
function. We define a rounding function as a function R : IL 7→ N which maps each large
item i to a group j. By Rj we denote the set of items being mapped to the same group j, i.e.
Rj = {i ∈ IL | R(i) = j}. By λRj we denote an item i with s(i) = max{s(ik) | ik ∈ Rj}. Given
an instance I and a rounding function R, we define the rounded instance IR by rounding the
size of every large item i ∈ Rj for j ≥ 1 up to the size s(λRj ) of the largest item in its group.
Items in R0 are excluded from instance IR. We write sR(i) for the rounded size of item i in IR.
Depending on constants c and d, we define the following properties for a rounding function R.

(A) max {R(i) | i ∈ IL} = c/ε2 for a constant c ∈ R+

(B) |Ri| = |Rj | for all i, j ≥ 2

(C) |R0| = d|R1| for a constant d ∈ R+ with d ≥ 1
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(D) s(i) ≤ s(j)⇔ R(i) ≥ R(j)

Any rounding function fulfilling property (A) has at most Θ(1/ε2) different item sizes and
hence instance IR can now be solved approximately using the LP relaxation. The resulting LP
relaxation has Θ(1/ε2) rows and can be solved approximately with accuracy (1 + δ) using the
max-min resource sharing [15] in polynomial time. Based on the fractional solution we obtain
an integral solution y of the LP with ‖y‖1 ≤ (1 + δ)LIN (IR) +C for some additive term C ≥ 0.
We say a packing B corresponds to a rounding R and solution y if items in R1, . . . , Rm are
packed by B according to the integral solution y of the LP. The LP is defined by instance IR.
Items in R0 are each packed in separate bins.

Lemma 10. Given instance I with items greater than ε/2 and a rounding function R fulfilling
properties (A) to (D), then OPT (IR) ≤ OPT (I) and |R0| ≤ 2d

c εOPT (I). Let y be an integral
solution of the LP for instance IR with ‖y‖1 ≤ (1 + δ)LIN (I R) + C for some value C ≥ 0, let
B be a packing of I which corresponds to R and y and let ε′ = 2d

c ε. Then

max
i
{Bt(i)} = ‖y‖1 + |R0| ≤ (1 + ε′ + δ)OPT (I) + C.

Proof. Let m = max {R(i) | i ∈ IL}. Let Ri be the set of items in rounding group i, which
corresponds to their rounded sizes and let Ri be the set of items in Ri, which corresponds to
their actual size. Instance IR contains every item from R1 to Rm, while items from R0 are
excluded. By property (D) we know, that items in Ri are larger or equal than items in Ri+1.
By property (C) we find for every item in R1 an unique item in R0 with larger or equal size,
since the largest item in R0 to which all items are being rounded up is smaller than any item in
R1. Using property (B) for each item in Ri+1 we find a unique larger item in Ri. Therefore we
have for every item in the rounded instance IR an item with larger size in instance I and hence

OPT (I R) ≤ OPT (I ).

Since the packing B corresponds to a solution y, B gives a solution with maxi {Bt(i)} ≤
(1 + δ)LIN (IR) + C + |R0| bins and since LIN (IR) ≤ OPT (I R) ≤ OPT (I ) we obtain that
maxi {Bt(i)} ≤ (1 + δ)OPT (I) + C + |R0|. Further, we can bound |R0|. Since every item in
I is of size at least ε/2 there is a lower bound for the optimum: OPT (I ) ≥ ε/2

∑
0≤i≤m |Ri| ≥

ε/2
∑

0≤i≤m |R0|/d = ε(m+1)|R0|
2d ≥ c|R0|

2dε . Resolving this inequality, we get |R
0| ≤ 2εd

c OPT (I) and
hence |R0| ≤ ε′OPT (I). Since c and d are constant we know |R0| ≤ ε′OPT (I) = O(εOPT (I ))
which implies together with the inequality maxi {Bt(i)} ≤ (1 + δ)OPT (I) + C + |R0| ≤ (1 +
ε′ + δ)OPT (I) + C.

How can we handle the small items? Actually, small items do not make problems at all.
We can pack them via FirstFit [5] on top of the existing large items and still obtain a good
solution. FirstFit is a greedy algorithm which simply places the current item into the first bin
having enough space. FirstFit opens a new bin of the item does not fit into any used bin.

Lemma 11. [13] Let I be an instance with small and large items and given a packing B of the
large items with maxi {Bt(i)} ≤ K for some K ≥ 1. Packing the small items via FirstFit on
top of packing B gives a new packing of instance I which uses

max {K, (1 + ε)OPT (I) + 1}

bins.

Given instance I = {i1, . . . , it}, we define m by m = d1/ε2e if d1/ε2e is even and otherwise
m = d1/ε2e+1. By definitionm is always even. For every instance I we find a rounding function
R with rounding groups R0, R1, . . . Rm which fulfills properties (A)-(D) such that |R0| < 2|R1|
and |R0| ≥ |R1|.
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Algorithm 6.

1. Partition the large items according to the rounding function R in groups R0, . . . , Rm

2. Round up the size of each large item i ∈ R1, . . . , Rm to s(λRi ) to obtain instance IR

3. Compute a fractional solution x of the LP defined by IR approximately with ratio (1 + δ̄)

4. Round up each component of the fractional solution to obtain an integral solution y for
the LP for instance IR

5. Pack items in R1, . . . , Rm according to the integral solution y

6. Open a bin for each item i with R(i) = 0

7. Pack the small items in IS via FirstFit

A solution x of IR with ratio (1 + δ̄) having m+ 1 non-zero components can be computed
using max-min resource sharing [15]. According to Lemma 10 and 11, the algorithm described
above produces a solution with approximation ≤ (1 + ε′ + δ̄)OPT +m+ 1 with ε′ ≤ 2d

c ε ≤ 4ε.

4.3 Online Bin Packing

Let us consider the case where items arrive online. As new items arrive we are allowed to
repack several items but we intend to keep the migration factor as small as possible. We present
operations that modify the current rounding Rt and packing Bt to give a solution for the new
instance. The given operations worsen the approximation but by applying the results from the
previous section we can maintain an approximation ratio that depends on ε. The presented
rounding technique is similar to the one used in [10]. In our algorithm we use approximate
solutions of ILPs in contrast to the APTAS of Epstein & Levin which solve the ILPs optimally.
Handling with approximate ILPs results in a different analysis of the algorithm because many
helpful properties of optimal solution are getting lost.

Note that in an online scenario of bin packing where large and small items arrive online,
small items do not need to be considered. We use the same techniques as in [10] to pack small
items. As a small item arrives we place it via FirstFit [5]. In this case FirstFit increases the
number of bins being used by at most 1 ([13]) and the migration factor is zero as we repack no
item. Whenever a new large item arrives several small items might also need to be replaced.
Every small item in a bin that is repacked by the algorithm, is replaced via FirstFit. Packing
small items with this strategy does not increase the number of bins that need to be repacked as
a large item arrives. Later on the migration factor will solely be determined by the number of
bins that are being repacked. More precisely, we will prove that the number of bins, that need to
be repacked is bounded by O(1/ε3). Therefore we assume without loss of generality that every
arriving item is large, i.e. has a size ≥ ε/2 (see also [10]). Our rounding Rt will be constructed
by three different operations, called the insertion, creation and union operation. The insertion
operation is performed whenever a large item arrives. This operation is followed by a creation
or an union operation depending on the phase the algorithm is in. Let I = {i1, . . . , it} be the
existing instance as defined above, let R be the corresponding rounding function, let x be a
fractional solution of the LP generated for the rounded instance IR and let B be the current
packing of items in I. We define two subgroups of R0 denoted by R1.5 and R2.5 in the creation
phase, which are also being modified by the operations. Let I ′ = I∪{it+1} be the new instance.
We use the following operations that modify the current rounding R, the packing B and the
fractional and integral LP solution x and y. We denote with R′, B′, x′ and y′ the new rounding,
packing and fractional/integral LP solutions for instance I ′
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Figure 1: Insert operation
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Figure 2: Create operation

Insertion Step

Find the largest j with s(λRj ) ≥ s(it+1). Set R′(it+1) = j and B′(it+1) = B(λRj ). For every
k = 1, . . . , j we define R′(λRk ) = k − 1 and B′(λRk ) = B(λRk−1). Set x′ = x and y′ = y.

Modified Insertion Step

During the creation phase, the algorithm uses the modified insertion operation. Find the largest
j (j = 1.5 and j = 2.5 included) with s(λRj ) ≥ s(it+1). Set R′(it+1) = j and B′(it+1) = B(λRj ).
For every k = 1, 4, 5, . . . , j we define R′(λRk ) = k − 1 and B′(λRk ) = B(λRk−1). For every
k = 1.5, 2, 2.5, 3 we define R′(λRk ) = k − 0.5 and B′(λRk ) = B(λRk−0.5). Set x′ = x and y′ = y.

Creation Phase

The creation phase consists of k creation steps, where k = |R1|. At the end of each creation
phase we intend to have new rounding groups R1 and R2 created from the subgroups of R0

named R1.5 and R2.5. At the beginning of the creation phase we always have |R0| = 2k and
R1.5 and R2.5 are empty. In the first step we change the rounding group for all items i with
R(i) = j ≥ 1 to R′(i) = j + 2. Furthermore we say the k largest items of R0 belong to R1.5

and the k smallest items belong to R2.5. In each of the k creation steps we change the rounding
function for the largest items λR1.5 and λR1.5. Set R′(λR1.5) = 1 and R′(λR2.5) = 2. Since items λR1.5
and λR2.5 are moved from R0 to R1 and R2 they have to be covered by the LP. Therefore we
increase the value of the LP solution by x′i = xi + 1, x′j = xj + 1 and y′i = yi + 1, y′j = yj + 1,
where i, j are defined such that Ci = {1 : sR′(λR1.5)} and Cj = {1 : sR′(λR2.5)}. For k 6= i, j set
x′k = xk and y′k = yk.
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Figure 3: Union operation

Union Phase

The union phase consists of k union steps, where k = |R1|. At the end of each union phase
we have made out of 4 roundings groups 2 rounding groups with size doubled. For the first
union step we determine the largest index j with |Rj | < |Rj+1|. If there is no such index then
set j = m. In each step now set R′(λRj ) = j − 1 and R′(λRj−2) = j − 3 and for the other
items i we define R′(i) = R(i). Modify the packing for λRj and λRj−2 by B′(λRj ) = B(λRj−2) and
place λRj−2 into a new bin. Modifying the packing this way implies that we have to change one
configuration of the fractional and integral LP solution x and y and add one configurations for
the additional bin. Let Ci be the configuration used by B′(λj). Configuration Ci is replaced
by a configuration Ĉi where an item of size sR′(λRj−2) is exchanged by an item of size sR′(λRj ).
Furthermore we add another configuration C` with an item of size sR′(λRj−2).

Note that each repacking that we perform in the operations is valid because we always
replace items by smaller ones. New packings B′ are created in a way that they correspond to
new integer solution y′. We have to prove that this solutions y′ is feasible. Note also, that in a
creation operation and in a union operation two additional non-zero components of size 1 might
be created.

Lemma 12. Applying any operation above on a rounding R and ILP solution y with corre-
sponding packing B defines a new rounding R′ and a new integral solution y′. Solution y′ is a
feasible solution of the LP for instance IR′.

Proof. We have to analyze how the LP for instance IR′ changes in comparison to the LP for
instance IR.
Insertion Operation: The right hand side of the LP derived from R′ does not change at all
since the right hand side is determined by the cardinalities |R′1| = |R1|, . . . , |R′m| = |Rm|. For
some j ≥ 1 let Rj be the the rounding group where the new item is inserted. By construction
of the insertion operation for each rounding group R` with ` = 1, . . . , j, there is one item that
is inserted into group R′` and one item that is shifted out. Let ιR` be the second largest item of
rounding group R`. Since the largest item λR` in group R` is shifted to the next group, the size
sR′(i) of item i in a group R` is defined by sR′(i) = ιR` . Therefore each item in IR′ is rounded
to the previous smaller value since s(ιR` ) ≤ s(λR` ). Hence configurations of the LP solution for
IR can be transformed into feasible configurations for IR′ i.e. ‖y′‖1 = ‖y‖1.
Creation Operation: Note that the rounding groups R`, for ` = 1, . . . ,m+2 remain identical;
i.e. R′` = R`. The groups R′1 and R′2 get both a new item, but of smaller size. Therefore the
sizes sr(i) of all items i ∈ IR are not modified by a creation operation. We have sR(i) = sR′(i)
for items in groups R1, . . . , Rm+2. Therefore the matrix A = (a((i, j))) remains the same. Only
the right hand side b′ of the LP from instance IR′ is modified (i.e. ‖b′ − b‖1 = 2). As two new
configurations are being added to x and y they cover exactly the enhanced right hand side and
are therefore a feasible solution of the LP from instance IR′ .
Union Operation: In the union operation we basically change only 4 rounding groups. Sup-
pose we merge rounding group Rj−3 with Rj−2 and rounding group Rj−1 with Rj . While the
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size of |R′j−3| = |Rj−3|+ 1 and |R′j−1| = |Rj−1|+ 1 is incremented the size of |R′j | = |Rj | − 1
and |R′j−2| = |Rj−2| − 1 is reduced. Similar to the creation operation, this leads to a change
in the right hand side of the LP. Two components of the right hand side, which correspond
to s(λR′

j ) and s(λR′
j−2) are reduced by 1 and two other components, which correspond to the

s(λR′
j−1) and s(λR′

j−3) are increased by 1. Furthermore the sizes of items in R′j and R′j−2 are
equal or smaller than the sizes of items in Rj and Rj−2 since sR′(i) = ιRj for all items i ∈ R′j

and sR′(i) = ιRj−2 for all items i ∈ R′j−2. λRj and λRj−2 are shifted to the next rounding groups.
Consider a feasible configuration C of the LP for instance IR. Then the modified configuration
C̄ (with replaced item sizes) is also feasible in the LP for instance IR′ . The new solutions x′
and y′ use the modified configurations and cover the right hand side of the LP.

The operations are used as described in Algorithm 7 below. We apply the algorithm on
a rounding function R0 and instance I0 = {i1, . . . iT }. We suppose that |R0

0| = |R1
0| = . . . =

|Rm0 | = K for some K > 0 and hence T = K(m + 1). An improve(a, x, y, δ̄) statement stands
for a call of Algorithm 5 with improvement α = a, fractional solution x and integral solution
y. The variable part xvar is defined by xvar = 2α(1/δ̄+1)

‖x‖1
x. After an improve call the packing is

changed according to the new integral solution. Since during a creation operation and a union
operation two additional non-zero components of size 1 might appear, we change the parameter
` of Algorithm 5 slightly to `′. Parameter `′ is defined maximally such that the sum of the
smallest components y′1, . . . , y′` are

∑
1≤i≤` y

′
ai ≤ (m+ 2)(1/δ+ 2) + 2. The two additional non-

zero components belong to components y1, . . . y`+2 and are therefore reduced in step 6 along
with the others.

Algorithm 7.

for i := 1 to K do
get new item;
improve(1, x, y, δ̄); insert;

for i := 1 to m/2 do
/* Creation Phase */
for j := 1 to K do

get new item;
improve(1, x, y, δ̄);
modified insert;
create;

/* Union Phase */
for j := 1 to K do

get new item;
improve(2, x, y, δ̄);
insert;
union;

In the following we present how the algorithm changes the rounding groups for m = 6. The
table presents the state of each rounding groups after each phase. One can see that after the
execution of Algorithm 7 each rounding group has exactly 2K items. We prove the general case
for arbitrary m: Every rounding has exactly 2K items after the execution of Algorithm 7.

Lemma 13. Let R0 be the rounding function at the beginning of the algorithm. Suppose that
every rounding group R0

0, . . . , R
m
0 has exactly K items. Then after the execution of the algo-

rithm above the computed rounding function RT after T insertions has m+ 1 rounding groups
R0
T , . . . , R

m
T with |R`T | = 2K for ` = 0, . . . ,m.
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phases |R0| |R1| |R2| |R3| |R4| |R5| |R6| |R7| |R8|
start K K K K K K K 0 0

insertion 2K K K K K K K 0 0
creation K K K K K K K K K
union 2K K K K K 2K 2K 0 0

creation K K K K K K K 2K 2K
union 2K K K 2K 2K 2K 2K 0 0

creation K K K K K 2K 2K 2K 2K
union 2K 2K 2K 2K 2K 2K 2K 0 0

Proof. The algorithm starts with a rounding function that contains exactly T items. After the
first K insertion steps rounding function RK is of the form: |R0

K | = 2K, |R1
K | = K, . . . , |RmK | =

K since K items are shifted to R0 while the cardinalities of the other rounding groups remain
the same. During the next K arrivals, the algorithm is in the creation phase. We perform a
creation operation after each insertion. For each item shifted to R0, two items are shifted to the
new created groups R1 and R2. At the end of the first creation phase, the rounding function
R2K satisfies |R0

2K | = K, |R1
2K | = K, . . . , |Rm+2

2K | = K. In the following union phase, the
rounding groups Rm+2, Rm+1 and Rm, Rm−1 are merged together. For each union operation,
one item is shifted from Rm+2 to Rm+1 and another from Rm to Rm−1. Since there are K
insert operations in the union phase, rounding group |R0

3K | = 2K, |R1
3K | = K, . . . , |Rm−2

K | =
K, |Rm−1

K | = 2K, |RmK | = 2K. After the next creation and union phase, the number of rounding
groups is also m+1. On the other hand we have two additional groups |Rm−3

5K | = |R
m−2
5K | = 2K.

After j < m/2 creation and union phases the rounding function R2jK+K is by induction of the
form |R0

2jK+K | = 2K, |R1
2jK+K | = K, . . . , |Rm−2j

2jK+K | = K, |Rm−2j+1
2jK+K | = 2K, . . . , |Rm2jK+K | = 2K.

This can be proved by induction on j. For j = m/2 − 1 we get |R0
2mK−K | = 2K, |R1

2mK−K | =
K, |R2

2mK−K | = K, |R3
2mK−K | = 2K, . . . |Rm2mK−K | = 2K. Therefore, after one additional

creation and union phase, we obtain m+ 1 groups |R`2mK+K | = 2K for ` = 0, . . . ,m+ 1.

Using Algorithm 7 with a starting rounding function RT that hasm rounding groups and the
property that |R0

T | = |R1
T | = . . . = |RmT | produces according to the lemma a rounding function

R2T that has also m rounding groups of equal size, but with cardinality doubled. Therefore
we can use Algorithm 7 repetitively to always get suitable rounding functions. The following
algorithm is our final online AFPTAS for the classical bin packing problem. Let St be the sum
of all item sizes of items i1, . . . it.

Algorithm 8.

• While St ≤ (m+ 2)(1/δ̄ + 4) and (m+ 1) does not divide t get the new item it+1 and use
the offline AFPTAS 6 with an LP of approximation ratio (1 + δ̄).

• Afterwards use Algorithm 7 repetitively to obtain a packing for each instance

By using the offline AFPTAS for small instances we can make sure that Algorithm 7 is
started with a suitable rounding function. Since Algorithm 7 always produces a rounding
function fulfilling properties (A) to (D) and m+ 1 divides the current number of items t, every
rounding group R0, . . . , Rm has the same number of item sizes as the algorithm leaves the
while-loop in the first step.

In the following we give a bound for the rounding functions Rt that we produce in every
step of the algorithm. It remains to prove that the approximation during the execution of
Algorithm 7 can be bounded. Therefore we define a relation between rounding functions. Let
R and R̄ be two rounding functions, with R̄ having m̄ rounding groups for some m̄ ∈ O(1/ε2).
We can embed R into R̄ in symbols R ≤ R̄, if |R0| ≤ |R̄0| and for every item i ∈ I \ R̄0 we have
sR(i) ≤ sR̄(i). A relation R ≤ R̄ always implies that |R0|+ OPT (IR) ≤ |R̄0|+ OPT (IR̄).
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Lemma 14. For each t ∈ N+, we can embed Rt into a function R̄t, which fulfills properties (A)
to (D). Rounding function R̄t has parameter c ≥ 1/4 for property (A) and d ≤ 2 for property
(C).

Proof. Since we basically shift largest items to the following rounding group we designed op-
erations insertion, creation and union in a way that property (D) is never being violated by
any Rj for j ≤ t. As shown in the proof of Lemma 12 the number of rounding groups remains
constant between m+ 1 at the end of a union phase and m+ 3 during the creation and union
phase. Suppose the algorithm above has started with a number of items T < t ≤ 2T and
rounding groups R0

T , . . . R
m
T ,which are being modified by the algorithm. We define the rounding

function R = R̄t in which Rt can be embeded in the following way: Function R̄ has rounding
groups R̄0, . . . , R̄b

t
2K c−1 with |R̄1| = . . . = |R̄b

t
2K c−1| = 2K and |R̄0| = 2K+(t mod 2K). Since

every rounding group of R̄ except R̄0 has the same number of items, the rounding function R̄
fulfills property (B). Rounding function R̄ fulfills property (C) because 2K ≤ |R̄0| ≤ 4K and
|R̄1| = 2K. This implies constant d ≤ 2. We prove property (A) by giving an upper and a lower
bound for maxi

{
R̄(i)

}
that are both in Θ( 1

ε2 ). Recall that T/K = m+ 1. On the one hand we

get maxi
{
R̄(i)

}
= b t

2K c − 1 ≤ t
2K − 1 ≤ 2T

2K − 1 ≤ (m + 1) − 1 = m ≤ d 1
ε2 e + 1 ≤ 1

ε2 + 2. On

the other hand maxi
{
R̄(i)

}
= b t

2K c − 1 ≥ b T2K c − 1 ≥ bm+1
2 c − 1 ≥ m

2 − 1 = 1
2ε2 − 1. Since

ε ≤ 1/2 weg get c ≥ 1/4. It remains to prove that we can embed Rt in R̄ i.e. Rt ≤ R̄. Since R0

never exceeds 2K items and 2K ≤ 4K we get |R0
t | ≤ |R̄0|. According to the proof of Lemma 12

and the construction of the creation operation, Rt is during the creation phase of the following
form: |R0

t | = 2K − a, |R1
t | = a, |R2

t | = a, |R3
t | = . . . = |Rjt | = K, |Rj+1

t | = . . . |Rm+2
t | = 2K for

some a ≤ K and j ≤ m + 2. Rounding function R̄ has in every rounding group R̄j for j ≥ 1
exactly 2K items. Since property (D) holds for both rounding function Rt and R̄, the rounding
groups Rj+1

t , . . . , Rm+2
t contain the same items as the lastm+2−j rounding groups of R̄. Items

in these groups are therefore rounded identically. For some m̄ let R̄m̄ be the rounding group
which contains the same items as Rj+1

t . Since rounding groups R3
t , . . . , R

j
t each contain exactly

K items, the rounding groups R̄1, . . . , R̄m̄−1 contain the items of exactly two rounding groups.
Therefore the items in R̄1, . . . , R̄m̄−1 are rounded to a smaller size compared to using R̄. Items
that belong to R1

t and R2
t are contained in R̄0 and by definition do not need to be considered.

Hence, any rounding function Rt which is in an creation phase can be embedded into an R̄. By
construction of the union operation and the proof of Lemma 12, Rt is during the union phase
of the form |R0

t | = K + a, |R1
t | = . . . = |Rj−4

t | = K, |Rj−3
t | = K + a, |Rj−2

t | = K − a, |Rj−1
t | =

K+a, |Rjt | = K−a, |Rj+1
t | = . . . |Rm+2

t | = 2K for some a ≤ K and j ≤ m+ 2. As shown in the
union phase, items in Rj+1

t , . . . , Rm+2
t are rounded equally in R̄. As the sum of Rj−1

t and Rjt is
2K and the sum of Rj−3

t and Rj−2
t is 2K the items of Rj−1

t and Rjt and the items in Rj−3
t and

Rj−2
t belong in R̄ to the same rounding group and are hence rounded equally or to a smaller

size compared to using R̄. Items in R1
t , . . . , R

j−4
t are each of size K and are rounded equally or

to a smaller size than using R̄ since the same argument as in the creation phase holds.

Define ε̄ by ε̄ = 1
16ε. As R̄t fulfills property (A) to (D), we obtain by Lemma 10 and Rt ≤ R̄t

the following two equations for every t:

1. OPT (IR̄t) ≤ OPT (It)

2. |R0
t | ≤ |R̄0

t | ≤ 2d
c εOPT (It) ≤ ε̄OPT (It)

Note that since ε ≤ 1/2 we have ε̄ ≤ 1
32 . Recall that Rt ≤ R̄t implies that |R0

t |+ OPT (IRt) ≤
|R̄0

t |+OPT (IR̄t) and that LIN (IRt)+m ≥ OPT (IRt) (rounding up a basic feasible solution). Let
us discuss how the methods from the previous section apply to the presented online algorithm.
The procedure improve is implemented by using Algorithm 5 in order to get an improved
solution for instance IRt . Algorithm 5 is applied using δ̄ as the approximation parameter. In
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the following lemma we prove that applying Algorithm 5 to improve a solution for IRt impacts
the overall approximation ∆ = ε̄+ δ̄ + ε̄δ̄ in the same way. We define C = ∆OPT (It) +m.

Theorem 15. Given a rounding function Rt and an LP defined for IRt. Let x be a fractional
solution of the LP with ‖x‖1 + |R0

t | ≤ (1 + ∆)OPT (It) and ‖x‖1 ≥ 2α(1/δ̄+ 1) and ‖x‖1 = (1 +
δ′)LIN (IRt) for some δ′ > 0. Let y be an integral solution of the LP with ‖y‖1 ≥ (m+2)(1/δ̄+2)
and corresponding packing B such that maxiBt(i) = ‖y‖1 + |R0

t | ≤ (1 + 2∆)OPT (It) + m.
Suppose x and y have the same number ≤ C of non-zero components and for all components i
we have yi ≥ xi. Then using Algorithm 5 on x and y returns new solutions x′ with ‖x′‖1+|R0

t | ≤
(1 + ∆)OPT (It)− α and integral solution y′ with corresponding packing B′t such that

max
i
B′t(i) ≤ (1 + 2∆)OPT (It) +m− α.

Further, both solutions x′ and y′ have the same number ≤ C of non-zero components and for
each component we have x′i ≤ y′i.

Proof. As shown in the following, Algorithm 5 maintains the property that x and y have the
same number of non-zero components and that xi ≤ yi since we can use Theorem 8 and Corollary
9. By condition we have maxiBt(i) = ‖y‖1 + |R0

t | ≤ (1 + 2∆)OPT (It) +m. Since OPT (It) ≤
OPT (IRt )+|R0

t | we obtain for the integral solution y that ‖y‖1 ≤ 2∆OPT (It)+m+OPT (IRt ) ≤
2∆OPT (It) +m+ LIN (IRt ) +m. Hence by definition of C we get ‖y‖1 ≤ LIN (IRt ) + 2C. This
is one requirement to use Theorem 8 or Corollary 9. We look at the cases separately where on
the one hand δ′ ≤ δ̄ and on the other hand δ′ > δ̄.

Case 1, δ′ ≤ δ̄: At first we give an upper bound for LIN (I Rt ): We get LIN (I Rt ) ≤
OPT (IRt) ≤ OPT (IRt) + |R0

t | ≤ OPT (IR̄t) + |R̄t
0| ≤ (1 + ε̄)OPT (It) using that Rt ≤ R̄t. This

implies that δ̄LIN (I Rt ) ≤ δ̄OPT (IRt) ≤ (δ̄+δ̄ε̄)OPT (It) < C. Algorithm 5 returns by Theorem
8 a solution x′ with ‖x′‖1 ≤ (1+δ̄)LIN (I Rt )−α and an integral solution y′ with ‖y′‖1 ≤ ‖x′‖1+C
or ‖y′‖1 ≤ ‖y‖1−α. For the term ‖x′‖1 + |R0

t | we get ‖x′‖1 + |R0
t | ≤ (1+ δ̄)OPT (IRt)−α+ |R0

t |.
Using that Rt can be embedded in R̄t we get |R0

t | + OPT (IRt) ≤ |R̄t
0| + OPT (IR̄t) ≤

OPT (It) + ε̄OPT (It). Therefore ‖x′‖1 + |R0
t | ≤ δ̄OPT (IRt) − α + OPT (It) + ε̄OPT (It) ≤

(δ̄+δ̄ε̄)OPT (It)−α+(1+ ε̄)OPT (It) ≤ (1+∆)OPT (It)−α. In the case where ‖y′‖1 ≤ ‖x′‖1+C
we can bound the number of bins of the new packing B′ by maxiB′t(i) = ‖y′‖1 + |R0

t | ≤
‖x′‖1 + |R0

t | + C ≤ (1 + ∆)OPT (It) − α + C = (1 + 2∆)OPT (It) + m − α. In the case that
‖y′‖1 ≤ ‖y‖1 − α we obtain maxiB′t(i) = ‖y′‖1 + |R0

t | ≤ ‖y‖1 − α + |R0
t | = maxiBt(i) − α ≤

(1 + 2∆)OPT (It) +m− α.
Case 2, δ′ > δ̄: By condition we have ‖x‖1 + |R0

t | ≤ (1 + ∆)OPT (It). Since OPT (It) ≤
OPT (IRt)+|R0

t | we obtain for the solution x that ‖x‖1 ≤ ∆OPT (It)+OPT (IRt) ≤ ∆OPT (It)+
LIN (IRt) + m. Hence by definition of C this implies ‖x‖1 ≤ LIN (IRt) + C and therefore
δ′LIN (IRt) < C, which fulfills the requirements of Corollary 9. Using Algorithm 5 on solutions
x with ‖x‖1 = (1 + δ′)LIN (IRt) and y with ‖y‖1 ≤ LIN (IRt) + 2C we obtain by Corollary 9
a fractional solution x′ with ‖x′‖1 ≤ ‖x‖1 − α and an integral solution y′ with either ‖y′‖1 ≤
‖y‖1−α or ‖y′‖1 ≤ ‖x‖1+C−α. So for the new packing B′ we can guarantee, that maxiB′t(i) =
‖y′‖1 + |R0

t | ≤ ‖y‖1−α+ |R0
t | = maxiBt(i)−α ≤ (1+2∆)OPT (It)+m−α if ‖y′‖1 ≤ ‖y‖1−α.

If ‖y′‖1 ≤ ‖x‖1 +C−α, we can guarantee that maxiB′t(i) = ‖y′‖1 + |R0
t | ≤ ‖x‖1 + |R0

t |+C−α ≤
(1 + ∆)OPT (It) + C − α ≤ (1 + 2∆)OPT (It) + m − α. Furthermore we know by Corollary 9
that x′ and y′ have at most C non-zero components.

Set δ̄ = ε̄. Then ∆ = 2ε̄+ ε̄2 = O(ε). We get the central theorem:

Theorem 16. Algorithm 8 is a fully robust AFPTAS for the bin packing problem.

Proof. While instances are small Algorithm 8 uses the offline AFPTAS (see Algorithm 6).
Using Algorithm 6, we get a packing Bt for instance It that uses at most maxiBt(i) ≤ (1 + ε′+
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δ̄)OPT (It) + 1
ε2 + 1 bins, where ε′ ≤ 4ε < ε̄. Since the instance is small the migration factor

is bounded although we might repack every single item. Let τ be the first index where the
algorithm leaves the while-loop. By condition we are in the while loop while St ≤ (m+2)(1/δ̄+4)
and t does not divide m + 1. Hence Sτ ≤ (m + 2)(1/δ̄ + 4) + m = O(1/ε3). The migration
factor for instances It with t ≤ τ is therefore bounded by 2

εSt = O(1/ε4) since every arriving
item has size at least ε/2. The approximation guarantee for small instances is bounded by
maxiBt(i) ≤ (1 + δ̄ + ε̄)OPT (It) +m+ 1. In the following we consider large instances It with
t ≥ τ .

Full robustness: The migration factor for some consecutive packings Bt and Bt+1 is
bounded by the migration of the improve-call plus the migration of an insertion and an union
operation. The operations create requires no shifting of items at all. As proven in the previous
section, an improve-call changes at most O(m/δ̄) components of a solution y. Since the arriving
item is large with size ≥ ε/2, changing a complete configuration requires migration of at most
O(1/ε). Combined this results in a migration factor for the improve-call O(m/∆2) = O(1/ε4) if
we use Algorithm 5. By construction of the insertion operation it shifts in worst case one item
per rounding group. Having O(1/ε2) rounding groups this gives a migration factor of at most
O(1/ε3). Therefore the complete migration is bounded by O(1/ε4).

Running time: The running time is dominated by the max-min resource sharing (see
Algorithm 5) and the number of non-zero components. The number of non-zero components
is bounded by ∆OPT (It) + m ≤ ∆t + 1

ε2 + 1 and is therefore polynomial in 1
ε and t. As the

running time for the max-min resource sharing is also polynomial in 1
ε (see [15]), the running

time is clearly polynomial in t and 1
ε .

Approximation: We prove by induction that four properties hold for any packing Bt and
corresponding LP solutions. Given fractional solutions x and integral solution y of the LP
defined by instance IRt . Properties (2)-(4) are necessary to apply Theorem 16 and property (1)
provides the wished approximation ratio for the bin packing problem.

1. packing Bt uses at most (1 + 2∆)OPT (It) +m bins

2. ‖x‖1 + |R0
t | ≤ (1 + ∆)OPT (It)

3. for every configuration i we have xi ≤ yi

4. x and y have the same number of non-zero components and that number is bounded by
∆OPT (It) +m

To apply Theorem 15 we furthermore need a guaranteed minimal size for ‖x‖1 and ‖y‖1.
According to Theorem 15 integral solution y needs ‖y‖1 ≥ (m + 2)(1/δ̄ + 2) and ‖x‖1 ≥
4(1/δ̄ + 1) as we set at most α = 2. By condition of the while-loop we know that any in-
stance St ≥ (m + 2)(1/δ̄ + 6). Since OPT (It) ≤ ‖y‖1 + |R0

t | ≤ ‖y‖1 + ε̄OPT (It) we get
‖y‖1 ≥ (1− ε̄)OPT (It) = (1− δ̄)OPT (It). By OPT (It) ≥ (m+ 2)(1/δ̄ + 4) we finally get that
‖y‖1 ≥ (1−δ̄)(m+2)(1/δ̄+6) ≥ (m+2)(1/δ̄+6)−(m+2)(1+6δ̄) ≥ (m+2)(1/δ̄+6)−4(m+2) =
(m + 2)(1/δ̄ + 2). Since OPT (It) ≤ ‖x‖1 + m + |R0

t | we obtain by the same argument that

‖x‖1 ≥ (m + 2)(1/δ̄ + 2) −m ≥ (m + 2)(1/δ̄ + 1) and since m = 1/ε
ε≤δ̄
≥ 1/δ̄ ≥ 2 we get that

‖x‖1 ≥ 4(1/δ̄ + 1).
In the case that t = τ we have by the offline algorithm that the number of non-zero com-

ponents = m + 1 ≤ ∆OPT (It) + m since OPT (It) ≥ St > 1/∆. The number of used bins is
bounded by maxiBt(i) < (1 + δ̄ + ε̄)OPT (It) + m + 1 < (1 + 2∆)OPT (It) + m (note ε′ < ε̄)
and property (2) is fulfilled for the same reason. Furthermore in the offline algorithm every
component xi is rounded up to obtain the integral component yi. Therefore all properties (1)-
(4) are fulfilled for t ≤ τ and the induction basis holds. Now let Bt be a packing for t > τ for
instance It with solutions x and y of the LP defined by IRt . Suppose by induction that property
(1)-(4) hold. We have to prove that these properties also hold for Bt+1 and the corresponding
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solutions of the LP defined by IRt+1 . Packing Bt+1 is created by using an improve call for x
and y followed by an insertion operation and optional, an union or a creation operation.
improve: Let x′ be the resulting fractional solution of Algorithm 5, let y′ be the resulting
integral solution of Algorithm 5 and let B′t be the corresponding packing. Properties (1)-(4)
are fulfilled for x, y and Bt by induction hypothesis. Hence we can use Theorem 15. By
Theorem 15 properties (1)-(4) are then still fulfilled for x′, y′ and B′t and moreover we get
‖x′‖1 + |R0

t | ≤ (1 + ∆)OPT (It) − α and maxiB′t(i) ≤ (1 + 2∆)OPT (It) + m − α for α = 2 or
α = 2.
operations: First we take a look at how the operations modify ‖x′‖1, ‖y′‖1 and |R0

t |. By
construction of the insertion operation, the LP solutions x′ and y′ are not modified while |R0

t |
increases by 1. By construction of the creation operation ‖x′‖1 and ‖y′‖1 are increased by 2 and
|R0

t | decreases by 2. By construction of the union operation, ‖x′‖1 and ‖y′‖1 are increased by 1
and |R0

t | remains constant. Property (1): Let x′′ be the fractional solution and y′′ be the integral
solution after using operations on x′ and y′. Packing Bt+1 equals maxiBt+1 = ‖y′′‖1 + |R0

t+1|.
According to the operations an insertion operation yields maxiBt+1 = ‖y′‖1 + |R0

t | + 1 =
maxiB′t + 1. An insertion operation followed by an union operation yields maxiBt+1 =
‖y′‖1 + 1 + |R0

t | + 1 = maxiB′t + 2 and an insertion operation followed by a creation oper-
ation yields maxiBt+1 = ‖y′‖1 +2+ |R0

t |−1 = maxiB′t+1. Algorithm 7 is designed that in the
union phase maxiB′t ≤ (1 + 2∆)OPT (It) +m− 2 since there is an improve call with α = 2 and
otherwise maxiB′t ≤ (1+2∆)OPT (It)+m−1 since there is an improve call with α = 1. There-
fore we have in any case that Bt+1 uses at most (1+2∆)OPT (It)+m ≤ (1+2∆)OPT (It+1)+m
bins. The proof that property (2) holds is symmetric since ‖x′‖1 increases in the same way as
‖y′‖1 and ‖x′‖1 + |R0

t | ≤ (1 + ∆)OPT (It) − α for α = 1 or α = 2. For property (3) note that
in the operations a configuration xi of the fractional solution is increased by 1 if and only if a
configuration yi is increased by 1. Therefore the property that for all configurations x′′i ≤ y′′i
retains from x′ and y′. By Theorem 15 the number of non-zero components of x′ and y′ is
bounded by ∆OPT (It)+m ≤ ∆OPT (It+1)+m. By construction of the creation operation and
union operation x′′ and y′′ might have two additional non-zero components. But since these
are being reduced by Algorithm 5 (note that we increased the number of components being
reduced in step 6 by 2), the LP solutions x′′ and y′′ have at most ∆OPT (It+1) + m non-zero
components which proves property (4).

4.4 Running Time

Storing items that are in the same rounding group in a heap structure, we can perform each
operation (insertion, creation and union) in time O( 1

ε2 log(ε2t)). Furthermore Algorithm 5 needs
to look through all non-zero components. The number of non-zero components is bounded by
O(εOPT ) = O(εt). Main part of the complexity lies in finding an approximate LP solution.
Let M(n) be the time to solve a system of n linear equations. The running time of max-min
resource sharing is then in our case O(M( 1

ε2 ) 1
ε4 + 1

ε7 ) (see [18]). Therefore the running time of
the Algorithm is O(M( 1

ε2 ) 1
ε4 + εt+ 1

ε2 log(ε2t)).

5 Conclusion
Based on approximate solutions, we developed an analogon to a theorem of Cook et al. [7]. Our
improvement helps to develop online algorithms with a migration factor that is bounded by a
polynomial in 1/ε, while algorithms based on Cook’s theorem usually have exponential migration
factors. We therefore applied our techniques to the famous online bin packing problem. This led
to the creation of the first fully robust AFPTAS for an NP-hard online optimization problem.
The migration factor of our algorithm is of size O( 1

ε4 ), which is a notable reduction compared
to previous robust algorithms. When a new item arrives at time t the algorithm needs running
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time of O(M( 1
ε2 ) 1

ε4 + εt + 1
ε2 log(ε2t)), where M(n) is the time to solve a system of n linear

equations. Any improvement to the max-min resource sharing algorithm based on the special
structure of bin packing would immediately speed up our online algorithm. We believe that
there is room to reduce the running time and the migration factor. Note for example that we
give only a very rough bound for the migration factor as the algorithm repacks O( 1

ε3 ) bins.
Repacking these bins in a more carefully way might lead to a smaller migration factor. An open
question is the existence of an AFPTAS with a constant migration factor that is independent of
ε. We mention in closing that the LP/ILP-techniques presented are very general and hence can
possibly be used to obtain fully robust algorithms for several other online optimization problems
as well (i.e. multi-commodity flow, strip packing, scheduling with malleable/moldable task or
scheduling with resource constraints).
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