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Abstract

We give a convergence proof for the approximation by sparse collocation of Hilbert-space-valued
functions depending on countably many Gaussian random variables. Such functions appear as solutions
of elliptic PDEs with lognormal diffusion coefficients. We outline a general L2-convergence theory based
on previous work by Bachmayr et al. [4] and Chen [9] and establish an algebraic convergence rate for
sufficiently smooth functions assuming a mild growth bound for the univariate hierarchical surpluses of
the interpolation scheme applied to Hermite polynomials. We verify specifically for Gauss-Hermite nodes
that this assumption holds and also show algebraic convergence w.r.t. the resulting number of sparse grid
points for this case. Numerical experiments illustrate the dimension-independent convergence rate.
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1 Introduction

The elliptic diffusion problem

−∇ · (a(ω)∇u(ω)) = f in D ⊂ Rd, u(ω) = 0 on ∂D, P-a.s. , (1)

with a random diffusion coefficient a : Ω→ L∞(D) with respect to an underlying probability space (Ω,A,P)
has become the standard model problem for numerical methods for solving random PDEs. For modeling
reasons the diffusion field is often taken to have a lognormal probability law, which complicates both the
study of the well-posedness of the problem [8, 24, 19, 31] as well as the analysis of approximation methods.
One of the challenges is that the most common parametrization of a Gaussian random field – the Karhunen-
Loève expansion [2, 22] – involves a countable number of standard normal random variables

log a(x, ω) = φ0(x) +
∞∑
m=1

φm(x) ξm(ω), (2)

1

ar
X

iv
:1

61
1.

07
23

9v
2 

 [
m

at
h.

N
A

] 
 2

8 
M

ar
 2

01
7



Sparse Collocation for Lognormal Diffusion 2

where φ0, φm ∈ L∞(D) and ξm ∼ N(0, 1) i.i.d. for m ∈ N, leading to an elliptic PDE with a countably
infinite number of random parameters ξ = (ξm)m∈N ∈ RN.

Besides the stochastic Galerkin method [22, 29] the most common methods for approximating the solution
u(ξ) of such random or parametric elliptic PDEs are polynomial collocation methods. Early works on such
methods for random PDEs considered a finite (if large) number of random parameters, a setting also referred
to as finite-dimensional noise [44, 3, 37, 36]. In this case the parametric representation of log a is typically
obtained by truncating a series expansion of the random field such as (2).

The analysis of the problem involving an infinite number of random variables was first discussed by
Cohen, DeVore and Schwab in [14, 15] in the simpler setting in which the diffusion field a, rather than
its logarithm as in (2), is expanded in a series. This results in an affine dependence of a on the random
variables ξm, which are, moreover, assumed to have bounded support. In this framework the convergence
of the best N -term approximation of the solution of the diffusion equation by Taylor and Legendre series
was shown to be independent of the number of random variables; this result was further refined in the recent
paper [5]. Employing the theoretical concepts stated in [14, 15], Chkifa, Cohen and Schwab analyze in [11]
collocation methods based on Lagrange interpolation with Leja points for problems with diffusion coefficients
depending linearly on an infinite number of bounded random variables, which are adaptive in the polynomial
degree as well as the number of active dimensions or random variables, respectively. The adaptive algorithm
itself is related to the earlier work [21]. Each interpolatory approximation gives rise to a quadrature scheme,
and in [39] Schillings and Schwab consider sparse adaptive quadrature schemes in the same setting of [11]
in connection with approximating expectations with respect to posterior measures in Bayesian inference.
Extensions to the case where the diffusion coefficient a depends non-linearly on an infinite number of random
variables with bounded support was discussed in [12].

Returning to the original lognormal diffusion problem, i.e., with a expanded as in (2) and depending on
random variables with unbounded support, Hoang and Schwab [26] have obtained convergence results on
best N -term approximation by Hermite polynomials. These were recently extended by Bachmayr et al. [4]
using a different analytical approach employing a weighted `2-summability of the coefficients of the Hermite
expansion of the solution and their relation to partial derivatives. The theoretical tools provided in [4] enabled
a convergence analysis for adaptive sparse quadrature [9] employing, e.g., Gauss-Hermite nodes for Banach
space-valued functions of countably many Gaussian random variables.

In this paper we address the convergence of sparse polynomial collocation for functions of infinitely
many Gaussian random variables, such as the solution to the lognormal diffusion problem (1). Specifically,
we follow the approach of [4] and [9] to prove an algebraic convergence rate with respect to the number
of grid points for sparse collocation based on Gauss-Hermite interpolation nodes in the case of countably
many variables. In particular, the result applies to solutions u of (1) where a is a lognormal random field. In
addition, we highlight the common ideas surrounding sparse collocation found in the works mentioned above.
The convergence result in terms of the number of collocation points is obtained in two steps: we first link the
error to the size of the multi-index set definining the sparse collocation and then derive a bound on the number
of points in the associated sparse grid. This procedure has been followed also in all the above-mentioned work
analyzing the convergence of sparse grid quadrature and collocation schemes. An alternative strategy which
instead links the error directly to the number of collocation points by introducing the so-called “profits” of
each component of the sparse grids, has been discussed in [34, 25], albeit only in the case of random variables
with bounded support.

We remark that, besides the classical node families such as Gauss-Hermite and Genz-Keister [20] for
quadrature and interpolation on R with respect to a Gaussian measure, Jakeman and Narayan [32] have
introduced weighted Leja points—a generalization of the classical Leja point construction (see e.g. [30, 17]
and references therein) to unbounded domains and arbitrary weight functions. Moreover, they have proved
that these node sets possess the correct asymptotic distribution of interpolation nodes and illustrate their
computational potential in numerical experiments. Note that such weighted Leja points provide a nested and
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linearly growing sequence of interpolation nodes. The analysis of sparse collocation based on normal Leja
points, i.e., weighted Leja points for a Gaussian measure, is an interesting topic for future research.

The remainder of the paper is organized as follows. In the next section we introduce the general setting
and notation and construct the sparse grid collocation operator based on univariate Lagrange interpolation
operators. Section 3 is devoted to the convergence analysis of such operators. First, we outline in Subsection
3.1 the general approaches to prove algebraic convergence rates as they can be found in the works mentioned
above. Later, we follow in Subsection 3.2 the approach of [4, 9] and derive sufficient conditions for the un-
derlying univariate interpolation nodes in order to obtain such rates when approximating “countably-variate”
functions of certain smoothness. Finally, in Subsection 3.3 we verify these conditions for Gauss-Hermite
nodes, provide bounds for the number of nodes in the resulting sparse grids, and state a convergence result
with respect to this number. Section 4 comes back to our motivation and comments on the application to ran-
dom elliptic PDEs before we verify our theoretical findings in Section 5 for a simple boundary value problem
in one spatial dimension. We draw final conclusions in Section 6.

2 Setting and Sparse Collocation

We consider functions f defined on a parameter domain Γ ⊆ RN taking values in a separable real Hilbert
spaceHwith inner product (·, ·)H and norm ‖·‖H. As our interest lies in the approximation of the dependence
of f : Γ→ H on ξ ∈ Γ by multivariate polynomials based on Lagrange interpolation, a minimal requirement
is that point evaluation of f at any ξ ∈ Γ be well-defined. Stronger smoothness requirements on f become
necessary when deriving convergence rate estimates for the approximations.

We introduce a probability measure µ on the measurable space (RN,⊗m≥1B(R)) as the countable product
measure of standard Gaussian measures on R, i.e.,

µ =
⊗
m≥1

N(0, 1). (3)

and denote by L2
µ(Γ;H) the space of all (equivalence classes of) functions with finite second moments with

respect to µ in the sense that ∫
RN
‖f(ξ)‖2H µ(dξ) <∞

which forms a Hilbert space with inner product

(f, g)L2
µ

=

∫
RN

(f(ξ), g(ξ))H µ(dξ).

In the following we require

Assumption A1. Let f : Γ→ H where µ(Γ) = 1. There holds (for a measurable extension of f to RN) that
f ∈ L2

µ(RN;H).

It is shown, e.g., in [40, Theorem 2.5], that the countable tensor product of Hermite polynomials forms
an orthonormal basis of L2

µ(RN;H). Under Assumption A1 we therefore have

f(ξ) =
∑
ν∈F

fν Hν(ξ), fν :=

∫
RN
f(ξ)Hν(ξ)µ(dξ) ∈ H, (4)

where Hν(ξ) =
∏
m≥1Hνm(ξm) and Hν denotes the univariate Hermite orthonormal polynomial of degree

ν as well as
F :=

{
ν ∈ NN

0 : |ν|0 <∞
}
, |ν|0 := |{j ∈ N : νj > 0}|.
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2.1 Sparse Polynomial Collocation

The construction of sparse collocation operators below is based on sequences of univariate Lagrange interpo-
lation operators Uk mapping into the set Pk of univariate polynomials of degree at most k ∈ N0. Thus,

(Ukf)(ξ) =

k∑
i=0

f(ξ
(k)
i )L

(k)
i (ξ), f : R→ R,

where {L(k)
i }ki=0 denote the Lagrange fundamental polynomials of degree k associated with the set of k + 1

distinct interpolation nodes Ξ(k) := {ξ(k)
0 , ξ

(k)
1 , . . . , ξ

(k)
k }.

Remark 1. It may also be of interest to consider sequences of interpolation operators Uk with a more general
degree of polynomial exactness n(k) where n : N0 → N0 is indecreasing and n(0) = 0, see for instance
[44, 3, 37, 36, 35, 34]. However, we restrict ourselves to n(k) = k for simplicity.

We also introduce the detail operators

∆k := Uk − Uk−1, k ≥ 0,

where we set U−1 :≡ 0, and observe that

Uk = Uk−1 + ∆k = ∆0 + ∆1 + · · ·+ ∆k .

Tensorization For any multi-index k = (km)m∈N ∈ F the (full) tensor product interpolation operator
Uk :=

⊗
m∈N Ukm is defined by

(Ukf)(ξ) =

(⊗
m∈N

Ukmf

)
(ξ) =

∑
i≤k

f(ξ
(k)
i )L

(k)
i (ξ), f : RN → R, (5)

where ξ
(k)
i ∈ RN ranges over all points in the Cartesian product

Ξ(k) :=×
m∈N

Ξ(km), with |Ξ(k)| =
∏
m∈N

(1 + km), (6)

and where

L
(k)
i (ξ) :=

∏
m∈N

L
(km)
im

(ξm) (7)

is a multivariate polynomial of (total) degree |k |1 =
∑

m km. Note that L(0)
0 (ξ) ≡ 1; in particular, since

k ∈ F all but a finite number of factors in (6) and (7) are equal to one so that the corresponding products can
be regarded as finite. The tensor product interpolation operator Uk maps into the multivariate (tensor product)
polynomial space

Qk := span{ξi : 0 ≤ im ≤ km,m ∈ N}, k ∈ F . (8)

Note that, since both the univariate polynomial sets of Lagrange fundamental polynomials {L(k)
i }ki=0 and the

Hermite orthonormal polynomials {Hi}ki=0 form a basis of Pk, equivalent characterizations are

Qk = span{L(k)
i : 0 ≤ im ≤ km,m ∈ N}

= span{Hi : 0 ≤ im ≤ km,m ∈ N}, k ∈ F .

In order for the tensor product interpolation operator Uk to be applicable also to functions defined only
on a subset Γ ⊂ RN, we assume the interpolation nodes to all lie in Γ:
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Assumption A2. Let Γ ⊂ RN denote the domain from Assumption A1. For all k ∈ F the Cartesian products
of nodal sets Ξ(k) given in (6) satisfy Ξ(k) ⊂ Γ.

In the following we denote by RΓ the set of all mappings from Γ to R. In analogy to (5) we define for any
multi-index k ∈ F the tensorized detail operator

∆k :=
⊗
m∈N

∆km : RΓ → Qk .

Finally, we associate with a finite subset Λ ⊂ F the multivariate polynomial space

PΛ :=
∑
i∈Λ

Qi (9)

and define the associated sparse (polynomial) collocation operator UΛ : RΓ → PΛ by

UΛ :=
∑
i∈Λ

∆i . (10)

We will see that UΛ is exact on PΛ under some natural assumptions on the multi-index set Λ, for which we
first recall some basic definitions given in [13, 11, 12].

Partial orderings and monotone sets of multi-indices We define a partial ordering on F by

ν̃ ≤ ν :⇔ ν̃m ≤ νm ∀m ∈ N

as well as

ν̃ < ν :⇔ ν̃ ≤ ν and ν̃m < νm for at least one m ∈ N

and introduce the relation

ν̃ 6≤ ν :⇔ ν̃m > νm for at least one m ∈ N.

We shall call a set of multi-indices Λ ⊂ F monotone if ν ∈ Λ and ν̃ ≤ ν together imply that also ν̃ ∈ Λ.
Finally, for a multi-index ν ∈ F we define its rectangular envelopeRν by

Rν := {ν̃ ∈ F : ν̃ ≤ ν}.

Note thatRν for ν ∈ F is a finite (and monotone) set with cardinality

|Rν | =
∏
m∈N

(1 + νm) <∞. (11)

2.2 Polynomial Exactness of Sparse Collocation

The introduction of the rectangular envelopeRν of a multi-index ν ∈ F permits a convenient characterization
of monotone multi-index sets Λ and the associated polynomial space PΛ introduced in (9).

Proposition 2. If Λ ⊂ F is monotone, then

Λ =
⋃
ν∈Λ

Rν and PΛ = span{ξν : ν ∈ Λ} = span{Hν : ν ∈ Λ}.
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Proof. Since ν ∈ Rν for all ν ∈ Λ the set on the left is obviously a subset of that on the right. Conversely,
given i ∈ Rν for some ν ∈ Λ, the definition of Rν implies i ≤ ν, which in turn implies i ∈ Λ by the
monotonicity of Λ. Moreover, monontonicity also implies

PΛ =
∑
k∈Λ

Qk = span{ξi : i ≤ k , k ∈ Λ} = span{ξi : i ∈ Λ} = span{Hν : ν ∈ Λ},

where monontonicity is required for the two last equalities.

In view of Proposition 2, PΛ for a multi-index set Λ ⊂ Rk represents a sparsification of Qk . In partic-
ular, the full tensor product polynomial space Qk coincides with PΛ for Λ = Rk . Similarly, the full tensor
approximation operator Uk defined in (5) can be expressed as Uk =

∑
i∈Rk

∆i .

Proposition 3. Let Λ ⊂ F be a finite and monotone set. Then UΛp = p for all p ∈ PΛ. In particular, for all
p ∈ PΛ we have ∆ip = 0 for i /∈ Λ.

Proof. Observe first that, for any ν, i ∈ F such that i 6≤ ν we have

∆iξ
ν =

∏
m∈N

∆imξ
νm
m =

∏
m∈N

(Uim − Uim−1)ξνmm︸ ︷︷ ︸
=ξνmm −ξνmm ≡0 for at least one m

= 0.

It suffices to prove the assertions for all monomials ξν in PΛ. For ν ∈ Λ any i ∈ F \ Λ must satisfy i 6≤ ν
and therefore ∆iξ

ν = 0, proving the second assertion. We conclude that

UΛξ
ν =

∑
i∈Λ

∆iξ
ν =

∑
i∈Λ∩Rν

∆iξ
ν =

∑
i∈Rν

∆iξ
ν ,

where the third equality follows from the fact that Rν ⊆ Λ for all ν ∈ Λ due to the monotonicity of Λ. The
proof concludes with

UΛξ
ν =

∑
i∈Rν

∆iξ
ν =

∑
i∈Rν

(∏
m∈N

∆imξ
νm
m

)
=
∏
m∈N

(
νm∑
im=0

∆imξ
νm
m

)
=
∏
m∈N

Uνmξ
νm
m

=
∏
m∈N

ξνmm = ξν .

Note that the third equality is obtained by rewriting a (finite) product of sums: since ν ∈ F there exists an
M ∈ N such that νm = 0 for m > M . For such m we have ∆νm

im
ξνmm = ∆0ξ

0
m ≡ 1 and therefore

∏
m∈N

(
νm∑
im=0

∆imξ
νm
m

)
= (∆0ξ

ν1
1 + · · ·+ ∆ν1ξ

ν1
1 ) · · ·

(
∆0ξ

νM
M + · · ·+ ∆νM ξ

νM
M

)
=

∑
i∈NM0
im≤νm

∆i1ξ
ν1
1 · · ·∆iM ξ

νM
M =

∑
i∈Rν

(∏
m∈N

∆imξ
νm
m

)
.

Proposition 3 can be seen as an extension of [6, Proposition 1] to general monotone multi-index sets as
well as an extension of [13, Theorem 6.1] and [11, Theorem 2.1] to interpolation operators Ui with non-
nested node sets. As mentioned in [13, p. 89], if the set Λ is not monotone then UΛ will not be exact on PΛ in
general. However, the exactness on PΛ is a crucial property in the subsequent convergence analysis and we
therefore choose to work exclusively with monotone sets Λ.
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2.3 Sparse Grid Associated with UΛ

The construction of UΛf for f : Γ → R consists of a linear combination of tensor product interpolation
operators requiring the evaluation of f at certain multivariate nodes. We shall refer to the collection of these
nodes as the sparse grid ΞΛ ⊂ Γ associated with Λ. For a monotone and finite set Λ ⊂ F there holds

ΞΛ =
⋃
i∈Λ

Ξ(i), (12)

because for i ∈ F we have

∆if =
[⊗
m≥1

(Uim − Uim−1)
]
f =

∑
i−1≤k≤i

(−1)|i−k |1
[⊗
m≥1

Ukm

]
f,

i.e., for computing ∆if we need to evaluate f at

Ξ(i),∆ :=
⋃

i−1≤k≤i
Ξ(k).

Since Λ is a monotone set, the resulting sparse grid for UΛ =
∑

i∈Λ ∆i is

ΞΛ =
⋃
i∈Λ

Ξ(i),∆ =
⋃
i∈Λ

⋃
i−1≤k≤i

Ξ(k) =
⋃
i∈Λ

Ξ(i).

We remark that the unisolvence on PΛ of point evaluation on ΞΛ is discussed in [13, Theorem 6.1].

3 Convergence Analysis

In this section we analyze the error

‖f − UΛf‖L2
µ
, f : Γ→ H,

where ‖ · ‖L2
µ

denotes the norm in L2
µ(RN;H), f is assumed to satisfy Assumption A1 and Λ ⊂ F is required

to be monotone and finite. Our first goal here is to establish a convergence rate s > 0 for the error of UΛN for
a nested sequence ΛN of monotone subsets of F with |ΛN | = N , i.e.,

‖f − UΛN f‖L2
µ
≤ CN−s, f : Γ→ H, (13)

where C <∞may depend on f as well as the univariate nodal sets. The line of proof we present here follows
and builds upon the works [9, 26, 4]. We complement this convergence rate with a bound on the number of
collocation points associated with a given multi-index set.

3.1 General Convergence Results

The subsequent error analysis for the sparse collocation operator UΛ is based on the representation of multi-
variate functions f ∈ L2

µ(RN;H) in the orthonormal basis of multivariate Hermite polynomials Hν . We shall
therefore examine the worst-case approximation error of any UΛ applied to a given multivariate Hermite basis
polynomial Hν . To this end we define

cν := sup
Λ⊂F ,|Λ|<∞

‖(I − UΛ)Hν‖L2
µ
, ν ∈ F . (14)
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This quantity is finite since ∆iHν = 0 for i 6≤ ν and hence

cν = max
Λ⊆Rν

‖(I − UΛ)Hν‖L2
µ
,

where the maximum is taken over a finite set. The quantities cν also measure the deviation of the error of
oblique projection UΛ from that of orthogonal projection, as these numbers would all be zero or one if UΛ is
replaced with the L2

µ-orthogonal projection onto PΛ. Moreover, we obtain the following bound:

Proposition 4. For all ν ∈ F the quantity cν defined in (14) satisfies

cν ≤
∑
i∈Rν

‖∆iHν‖L2
µ
.

In particular, if for the univariate Hermite polynomials there exists θ ≥ 0 and K ≥ 1 such that

‖∆iHν‖L2
µ
≤ (1 +Kν)θ for all i ∈ N0, (15)

where we have denoted the univariate Gaussian measure again by µ, then

cν ≤
∏
m∈N

(1 +Kνm)θ+1, ν ∈ F . (16)

Proof. In view of Proposition 3 we have Hν = UνHν =
∑

i∈Rν
∆iHν and, particularly, ∆iHν = 0 for

i 6∈ Rν , since Hν ∈ PRν . Therefore

(I − UΛ)Hν =
∑
i∈Rν

∆iHν −
∑
i∈Λ

∆iHν =
∑
i∈Rν

∆iHν −
∑

i∈Λ∩Rν

∆iHν

=
∑

i∈Rν\Λ

∆iHν ,

giving

cν = max
Λ⊆Rν

‖(I − UΛ)Hν‖L2
µ
≤ max

Λ⊆Rν

∑
i∈Rν\Λ

‖∆iHν‖L2
µ
≤
∑
i∈Rν

‖∆iHν‖L2
µ
.

Moreover, if (15) holds, then

cν ≤
∑
i∈Rν

‖∆iHν‖L2
µ

=
∑
i∈Rν

∏
m∈N
‖∆imHνm‖L2

µ
≤
∑
i∈Rν

∏
m∈N

(1 +Kνm)θ

= |Rν |
∏
m∈N

(1 +Kνm)θ ≤
∏
m∈N

(1 +Kνm)θ+1.

where we have used (11) and K ≥ 1 in the last inequality.

Remark 5. Bounds such as (15) can often be found in the sparse collocation or sparse quadrature literature,
e.g., for quadrature operators applied to Hermite polynomials [9], norms of quadrature operators on bounded
domains [39] or Lebesgue constants for Leja points [12]. Numerical estimates for the specific case of Genz-
Keister points have been provided in [7].

The following lemma provides a natural starting point for bounding the approximation error of UΛf for
monotone subsets Λ. The proof follows the same line of argument as the proof of [9, Lemma 3.2].
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Lemma 6 (cf. [9, Lemma 3.2]). For a finite and monotone subset Λ ⊂ F there holds

‖f − UΛf‖L2
µ
≤

∑
ν∈F\Λ

cν‖fν‖H. (17)

Proof. Due to the monotonicity of Λ we can apply Proposition 3 and obtain

‖f − UΛf‖L2
µ

=

∥∥∥∥∑
ν∈F

fν (I − UΛ)Hν(ξ)

∥∥∥∥
L2
µ

=

∥∥∥∥ ∑
ν∈F\Λ

fν (I − UΛ)Hν(ξ)

∥∥∥∥
L2
µ

≤
∑

ν∈F\Λ

‖fν‖H‖(I − UΛ)Hν‖L2
µ
≤

∑
ν∈F\Λ

cν‖fν‖H.

Building on Lemma 6 the approximation error ‖f −UΛf‖L2
µ

may be further bounded given summability
results for the sequence (cν‖fν‖H)ν∈F . The key result here is known as Stechkin’s lemma which provides a
decay rate for the `q-tail of an p-summable sequence for q > p and is due to Stechkin [41] for q = 2 (cf. also
[13, Lemma 3.6]).

Lemma 7 (Stechkin). Let 0 < p < q <∞ and let

(aν)ν∈F ∈ `p(F) :=

{
(bν)ν∈F :

∑
ν∈F
|bν |p <∞

}
be a sequence of nonnegative numbers. Then for ΛN denoting the set of multi-indices ν corresponding to the
N largest elements aν , there holds( ∑

ν /∈ΛN

aqν

)1/q

≤ ‖(aν)ν∈F‖`p(N + 1)−s, s =
1

p
− 1

q
. (18)

The index sets ΛN in Stechkin’s lemma associated with the N largest sequence elements are not nec-
essarily monotone and, therefore Lemma 6 and Lemma 7 can not be combined to bound the error without
additional assumptions. An obvious way to ensure monotonicity of the sets ΛN in Stechkin’s lemma is to
assume the sequence (aν) to be nonincreasing, i.e.,

ν ≤ ν̃ ⇒ aν ≥ aν̃ .

This leads to

Theorem 8. Let Assumptions A1 and A2 be satisfied and let there exist a nonincreasing sequence (ĉν)ν∈F ∈
`p(F) with p ∈ (0, 1) such that

cν‖fν‖H ≤ ĉν ∀ν ∈ F .

Then there exists a nested sequence (ΛN )N∈N of finite and monotone subsets ΛN ⊂ F with |ΛN | = N such
that (13) holds with rate s = 1/p− 1.

We will provide a proof below. The convergence analysis in [12, 39] for sparse quadrature and interpo-
lation in case of bounded Γ follows Theorem 8, although sometimes hidden in the details. There the authors
employ explicit bounds on the norms of the Legendre or Taylor coefficients of f : Γ → H to construct a
dominating and nonincreasing sequence (ĉν)ν∈F ∈ `p(F), p ∈ (0, 1).

In our setting it is, however, not always possible to derive explicit bounds on the norm of the Hermite
coefficients ‖fν‖H. In [4] a technique was developed which relies on somewhat implicit bounds on ‖fν‖H
via a weighted `2-summability property. We adapt this approach to the current setting in
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Theorem 9. Let Assumptions A1 and A2 be satisfied and let there exist a sequence (bν)ν∈F of positive
numbers such that ∑

ν∈F
bν‖fν‖2H <∞ (19)

as well as another nonincreasing sequence (ĉν)ν∈F ∈ `p(F), p ∈ (0, 2), for which
cν

b
1/2
ν

≤ ĉν ∀ν ∈ F .

Then there exists a nested sequence (ΛN )N∈N of finite and monotone subsets ΛN ⊂ F with |ΛN | = N such
that (13) holds with rate s = 1/p− 1/2.

Proof of Theorem 8 and Theorem 9. Let ΛN be the set of multi-indices ν corresponding to the N largest
elements of (ĉν)ν∈F . Then each ΛN is monotone and the sequence (ΛN )N∈N can be chosen to be nested.

If the assumption of Theorem 8 hold, we can apply Lemma 6 and Stechkin’s lemma with q = 1 > p to
obtain

‖f − UΛN f‖L2
µ
≤

∑
ν∈F\ΛN

cν‖fν‖H ≤
∑

ν∈F\ΛN

ĉν ≤ C(N + 1)−(1/p−1)

where C = ‖(ĉν)ν∈F‖`p .
If the assumptions of Theorem 9 hold, Lemma 6 combined with the Cauchy-Schwarz inequality and

Stechkin’s lemma for q = 2 > p give

‖f − UΛN f‖L2
µ
≤

∑
ν∈F\ΛN

cν‖fν‖H =
∑

ν∈F\ΛN

(
cν

b
1/2
ν

) (
b
1/2
ν ‖fν‖H

)

≤

 ∑
ν∈F\ΛN

bν‖fν‖2H

1/2

·

 ∑
ν∈F\ΛN

c2
ν

bν

1/2

≤

(∑
ν∈F

bν‖fν‖2H

)1/2

·

 ∑
ν∈F\ΛN

ĉ2
ν

1/2

≤ C(N + 1)−(1/p−1/2),

where now C = ‖(b1/2ν ‖fν‖)ν∈F‖`2 · ‖(ĉν)ν∈F‖`p , respectively.

Remark 10. Another application of the weighted `2-summability property (19) is the analysis of sparse
quadrature given in [9], where the author employs the slightly different estimate∑

ν∈F\ΛN

cν‖fν‖H ≤ sup
ν∈F\ΛN

b
q−1/2
ν

∑
ν∈F\ΛN

cν

b−qν

b
1/2
ν ‖fν‖H.

After showing that the series on the right is bounded and applying Stechkin’s lemma to (b
q−1/2
ν )ν∈F , this

yields the same convergence rate as stated in Theorem 9.

Remark 11. We mention that sparse collocation attains a smaller convergence rate than best N -term approx-
imation in case the assumptions of Theorem 9 hold. Namely, under these assumptions the best N -term rate
is s = 1

p , see [4, Theorem 1.2]. This reduced convergence rate is not caused by the additional factors cν in
the error analysis of sparse collocation. The reason for the slower rate is missing orthogonality: in the proof
of Lemma 6 we could not apply Parseval’s identity and had to use the triangle inequality to bound the error.
This led to bounds in terms of ‖fν‖H rather than ‖fν‖2H as in the case of orthogonal projections, e.g., best
N -term approximations.
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We emphasize that the construction of such a nonincreasing, p-summable dominating sequence is by
no means trivial. Without the first property we can not conclude that the multi-index sets ΛN occurring in
Stechkin’s lemma are monotone, which in turn is needed to use Lemma 6 as the starting point of our error
analysis. Of course, we could consider monotone envelopes ΛN ⊂ Λ̃N of ΛN , but their size can grow
quite rapidly with N (e.g., polynomially or even faster, see counterexample below). Moreover, it is not at all
obvious that for a sequence (aν)ν∈F ∈ `p(F) there exists a dominating and nonincreasing (âν)ν∈F ∈ `p(F).
In particular, we provide the following counterexample: let F = N and define an, n ∈ N by

an =

{
1
m2 , n =

∑m
k=1 k,

0, otherwise,

i.e., a1 = 1, a2 = 0, a3 = 1
4 , a4 = 0, a5 = 0, a6 = 1

9 , a7 = 0, . . . , a9 = 0, a10 = 1
16 , a11 = 0, . . . . Then

(an)n∈N ∈ `1(N). The smallest positive nonincreasing sequence (ân)n∈N dominating (an)n∈N is given by
ân := supm≥n |am|, see [13, Section 3.8]. In our case, we get

ân =
1

m2
for each n such that 1 +

m−1∑
k=1

k ≤ n ≤
m∑
k=1

k

and, thus,
∞∑
n=1

|ân| =
∞∑
m=1

m
1

m2
=∞.

Although the example is somewhat pathological, it illustrates that for (aν) ∈ `p(F) a p-summable nonin-
creasing dominating sequence need not exist.

3.2 Sufficient Conditions for Weighted Summability and Majorization

We now follow the strategy of Theorem 9 and study under which requirements the assumptions of Theorem
9 hold. To this end we recall a result from [4] for weighted `2-summability of Hermite coefficients ‖fν‖H
given the following smoothness conditions on f :

Assumption A3. Let f satisfy Assumption A1. There exists an integer r ∈ N0 and a sequence of positive
numbers (τ−1

m )m∈N ∈ `p(N), p ∈ (0, 2), such that

(a) for any α ∈ F with |α|∞ ≤ r the (weak) partial derivative ∂αf exists and satisfies ∂αf ∈ L2
µ(RN;H),

(b) there holds ∑
|α|∞≤r

τ 2α

α!
‖∂αf‖2L2

µ
<∞, (20)

where τα =
∏∞
m=1 τ

αm
m and α! =

∏∞
m=1 αm!.

Observe that the sum in (20) is actually a series, because α has infinitly many components and therefore
there are countably many vectors such that |α|∞ ≤ r. Assumption A3(a) states that we require a finite
order of partial differentiability of f , i.e., up to order r with respect to each variable ξm, and, maybe more
importantly, Assumption A3(b) asks for a weighted square-summability of theL2

µ-norms of the corresponding
partial derivatives. The latter, in particular, implies bounds of the form

‖∂αf‖L2
µ
≤ K
√
α! τ−α, |α|0 ≤ r,

since otherwise the summability requirement (20) would not hold. Recalling that (τ−1
m )m∈N ∈ `p(N) this

bound implies that, e.g., the L2
µ-norm of the derivative ∂αξmf , α ≤ r, decays if m→∞.

The following result shows that the smoothness condition of Assumption A3 implies the first condition
(19) of Theorem 9:
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Theorem 12 (cf. [4, Theorem 3.1]). Let Assumption A3 be satisfied. Then, with the weights

bν = bν(τ , r) =
∑
|α|∞≤r

(
ν

α

)
τ 2α =

∏
m≥1

(
r∑
l=0

(
νm
l

)
τ2l
m

)
, ν ∈ F , (21)

where (
ν

α

)
:=
∏
m≥1

(
νm
αm

)
and

(
νm
αm

)
:= 0 if αm > νm,

there holds ∑
ν∈F

bν‖fν‖2H =
∑
|α|∞≤r

τ 2α

α!
‖∂αf‖2L2

µ
<∞. (22)

(We mention in passing that in [4] the assertion of Theorem 12 was actually proven without requiring that
both series in (22) be finite.) To apply Theorem 9 it remains to prove the existence of a nonincreasing and
p-summable sequence which dominates cν/b

1/2
ν , ν ∈ F . Since the bν are explicitly given in (21), this boils

down to the question, how fast the projection errors cν are allowed to grow. As it turns out, a polynomial
growth w.r.t. ν as given in (16) in Proposition 4 is sufficient. We therefore state the following lemma, which
is strongly based on the techniques developed in the proofs of [4, Lemma 5.1] and [9, Lemma 3.4].

Lemma 13. Let there exists a θ ≥ 0 and a K ≥ 1 such that

cν ≤
∞∏
m≥1

(1 +Kνm)θ+1, ν ∈ F .

Then for any increasing sequence (τm)m∈N such that
∑

m≥1 τ
−p
m < ∞ for a p > 0 and for any r > 2(θ +

1) + 2
p there exists a nonincreasing sequence (ĉν)ν∈F ∈ `p(F) such that

cν

b
1/2
ν

≤ ĉν ∀ν ∈ F ,

where bν = bν(τ, r) is as in (21).

Proof. We start with constructing the dominating sequence (ĉν)ν∈F and show afterwards that it belongs to
`p(F) and is nonincreasing. In the following we use the notation a ∧ b := min(a, b) and a ∨ b := max(a, b).

Step 1: Constructing ĉν We get due to(
νm

νm ∧ r

)
τ2(νm∧r)
m ≤

(
νm
r

)
τ2r
m ≤

r∑
l=0

(
νm
l

)
τ2l
m

that

c2
ν

bν
≤
∏
m≥1

(1 +Kνm)2(θ+1)∑r
l=0

(
νm
l

)
τ2l
m

≤
∏
m≥1

(1 +Kνm)2θ+2(
νm
νm∧r

)
τ

2(νm∧r)
m

=
∏
m≥1

τ−2(νm∧r)
m h(νm) (23)

where we defined the auxiliary function h(n) := (1+Kn)2θ+2

( n
n∧r)

, n ∈ N. We will now derive bounds for h(n) as

well as for τ−2(νm∧r)
m in order to construct a dominating sequence ĉν .
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For n ≤ r we get h(n) = (1 +Kn)2θ+2, but for n > r holds

h(n) =
(1 +Kn)2θ+2(

n
r

) =
r! (1 +Kn)2θ+2

(n+ 1) · · · (n+ r)
.

Thus, we have h ∈ O(n2θ+2−r), i.e., there exists a Ch ∈ [1,∞) such that

h(n) ≤ Chn2θ+2−r =: ĥ(n) ∀n ∈ N.

By setting ĥ(0) := 1 = h(0), we get h(n) ≤ ĥ(n) for all n ∈ N0.
Furthermore, since (τ−1

m )m∈N ∈ `p(N) we have τm →∞ as m→∞. Thus, there exists an M ∈ N such
that τm ≥

√
Ch for m ≥M and τm ≤

√
Ch for m < M . We define

τ̂m :=
√
Ch ∨ τm, m ∈ N,

and notice that τ̂m ≥ 1 as well as (τ̂−1
m )m∈N ∈ `p(N) by assumption. Moreover, we obtain for m ≥M

τ2(νm∧r)
m = τ̂2(νm∧r)

m ≥ τ̂2(νm∧1)
m , ∀νm ∈ N0,

since τm = τ̂m ≥
√
Ch ≥ 1 in this case. Further, let us define

Cτ := min
m≥1

min
n=0,...,r

τ2n
m

Cn∧1
h

> 0

which then yields for 1 ≤ m < M

τ2(νm∧r)
m ≥ Cτ Cνm∧1

h = Cτ τ̂
2(νm∧1)
m , ∀νm ∈ N0

since τ̂m =
√
Ch for m < M . We now define

ĉ2
ν := C−Mτ

∏
m≥1

τ̂−2(νm∧1)
m ĥ(νm). (24)

and notice that ĉ2
ν dominates c2ν

bν
by (23).

Step 2: Show that (ĉν)ν∈F ∈ `p(F) As for the p-summability, there holds∑
ν∈F

ĉpν = C−pM/2
τ

∑
ν∈F

∏
m≥1

τ̂−p(νm∧1)
m ĥp/2(νm)

= C−pM/2
τ

∏
m≥1

∑
n≥0

τ̂−p(n∧1)
m ĥp/2(n).

We get ∑
n≥0

τ̂−p(n∧1)
m ĥp/2(n) = 1 + C

p/2
h τ̂−pm

∑
n≥1

n−p(r−2θ−2)/2

︸ ︷︷ ︸
=:S

where the sum S is finite due to the assumption p
2(r − 2θ − 2) = p

2(r − 2θ − 2) > 1. The rest follows by
using log(1 + x) ≤ x for x positive in order to get

∑
ν∈F

ĉpν = C−pM/2
τ

∏
m≥1

(1 + C
p/2
h Sτ̂−pm ) ≤ C−pM/2

τ exp

Cp/2h S
∑
m≥1

τ̂−pm

 <∞

since (τ̂−1
m )m∈N is in `p(N) by construction.
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Step 3: Show that (ĉν)ν∈F is nonincreasing Let ν ∈ F be arbitrary. If m ∈ suppν = {m ∈ N : νm >
0}, then we get

ĉ2
ν+em = ĉ2

ν ·
ĥ(νm + 1)

ĥ(νm)
≤ ĉ2

ν ,

since ĥ(n) is nonincreasing for n ≥ 1. Let now m /∈ suppν. Then

ĉ2
ν+em = ĉ2

ν · τ̂−2
m · ĥ(1) = ĉ2

ν · Chτ̂−2
m ≤ ĉ2

ν · Ch(
√
Ch)−2 ≤ ĉ2

ν .

In summary, we obtain
ĉν+em ≤ ĉν ∀m ∈ N,

hence, (ĉν)ν∈F is nonincreasing.

We can now state our main convergence result for sparse collocation.

Theorem 14 (Convergence of sparse collocation). Assume that for θ ≥ 0 and K ≥ 1 there holds

‖∆iHν‖L2
µ
≤ (1 +Kν)θ, i ∈ N0. (25)

Then, for any function f which satisfies Assumption A3 with r > 2(θ + 1) + 2
p and Assumption A2, there

exists a nested sequence of monotone finite subsets ΛN ⊂ F with |ΛN | = N such that for the sparse
collocation error holds

‖f − UΛN f‖L2
µ
≤ C(1 +N)

−
(

1
p
− 1

2

)
.

Proof. We prove the assertion by verifying the assumptions of Theorem 9. Since f satisfies Assumption A3
with r > 2(θ + 1) + 2

p , condition (19) of Theorem 9 holds due to Theorem 12. Moreover, we can apply
Lemma 13 to verify the remaining assumption of Theorem 9 about a nonincreasing dominating sequence
(ĉν)ν∈F ∈ `p(F), p ∈ (0, 2): due to Proposition 4) the bound (25) implies

cν ≤
∞∏
m≥1

(1 +Kνm)θ+1, ν ∈ F ,

and the sequence (τm)m∈N appearing in Assumption A3 can w.l.o.g. be assumed to be increasing (otherwise
we can permute the dimension accordingly).

3.3 Convergence of Sparse Collocation Using Gauss-Hermite Nodes

In the following, we will verify the assumption (25) in Theorem 14 for the interpolation operators Ui based
on Gauss-Hermite nodes. Moreover, we bound the number of sparse grid points |ΞΛN | associated with a
multi-index set ΛN allowing us to relate the convergence rate previously derived to a quantity which reflects
the computational effort of the collocation approximation. For nested univariate node sets, i.e., when Ξi+i =

Ξi∪{ξ(i+1)
i+1 }, we have |ΞΛN | = |ΛN |. This simple relation, however, fails to hold for non-nested interpolation

sequences such as those based on Gauss-Hermite nodes.

Lemma 15. For Ui being the interpolation operator based on the zeros of the (i + 1)th Hermite polynomial
we have for each ν ∈ N that

‖UiHν‖2L2
µ
≤ c2 e

√
2ν − 1 ∀i ∈ N0

where c = 1.086435 is the constant appearing in Cramér’s inequality for Hermite functions. In particular,
there holds

‖∆iHν‖L2
µ
≤ (1 +Kν)

with K = 2c
√

e > 1.
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Proof. We start by recalling the L2
µ-orthogonality (µ refers here to the univariate standard Gaussian measure

N(0, 1)) of Lagrange basis polynomials L(i)
k constructed from the zeros {ξ(i)

k }
i
k=0 of the Hermite polynomial

of degree i+ 1 ([42, Theorem 14.2.1]). This orthogonality yields

‖UiHν‖2L2
µ

=

∫
R

(
i∑

k=0

Hν(ξ
(i)
k )L

(i)
k (ξ)

)2

µ(dξ) =
i∑

k=0

H2
ν (ξ

(i)
k )

∫
R

(
L

(i)
k (ξ)

)2
µ(dξ)

=

i∑
k=0

H2
ν (ξ

(i)
k )w

(i)
k

where {w(i)
k }

i
k=0 denotes the weights of the Gauss quadrature formulae based on the zeros of the (i + 1)th

Hermite polynomial, see also [42, Theorem 14.2.1].
Next, we recall Cramér’s inequality for the Hermite polynomials H̃ν taken w.r.t. the weight function

ρ̃(ξ) = exp(−ξ2), i.e.,
|H̃n(ξ)| ≤ cπ−1/4 exp(ξ2/2),

see, e.g., [1, Chapter 22, p.787 ]. Since there holds H̃n(ξ) = π−1/4Hn(ξ
√

2) [1, Chapter 22, p.778 ], we get

|Hn(ξ)| ≤ c exp(ξ2/4)

and, thus,

‖UiHν‖2L2
µ
≤ c2

i∑
k=0

exp(ξ2
ki/2)wki,

where we switched notation to ξki := ξ
(i)
k and wki := w

(i)
k for convenience. Furthermore, we use a conse-

quence of [33, Lemma 4]. The latter states for ξ̃kn being the zeros of H̃n and w̃kn the Christoffel numbers of
corresponding Gauss-Hermite quadrature (i.e. Gauss-Hermite weights for ρ̃) that

n∑
k=1

w̃kn exp(ξ̃2
kn) ≤ e

√
π(2n+ 1).

It can be easily verified that
ξkn =

√
2ξ̃kn and wkn = π−1/2w̃kn.

Hence, we get

i∑
k=0

exp(ξ2
ki/2)wki ≤ e

√
2(i+ 1) + 1

and by noticing that for i ≥ ν we have UiHν = Hν and, thus, ‖UiHν‖2L2
µ

= 1, and for i = ν − 1 we get
UiHν ≡ 0 the first assertion is shown.

For the second statement we notice

‖UiHν‖2L2
µ
≤ c2 e ν, ∀i ∈ N0 ∀ν ≥ 1

since ν ≥
√

2ν − 1 for ν ≥ 1. And, because of ∆iH0 ≡ 0 for i ≥ 1 and ∆0H0 ≡ H0, we get

‖∆iHν‖L2
µ
≤ 1 +Kν, ∀i, ν ∈ N0.
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Thus, interpolation on Gauss-Hermite points satisfies the assumptions of Theorem 14 with θ = 1 and we
obtain

Theorem 16 (Convergence of sparse collocation, Gauss–Hermite nodes). For any function f which satisfies
Assumption A3 with r > 4 + 2

p and Assumption A2, there exists a nested sequence of mononote finite
subsets ΛN ⊂ F with |ΛN | = N such that for the error of the sparse collocation operator UΛN based on
Gauss-Hermite nodes holds

‖f − UΛN f‖L2
µ
≤ C(1 +N)

−
(

1
p
− 1

2

)
.

Remark 17. In numerical experiments we actually observed for ν = 0, . . . , 39 that

‖UiHν‖L2
µ
≤ 1, ∀i ∈ N0,

see Figure 1. This would imply

‖∆iHν‖L2
µ
≤

{
1 if ν = 0,

2 otherwise,
∀i, ν ∈ N0.

Again, we even observed a smaller bound numerically, see the right plot in Figure 1. However, we have not
been able to prove ‖UiHν‖L2

µ
≤ 1 and the improvement in the statement of Theorem 16 would have been

minor, i.e., the assertion would also hold with the same rate for functions f : Γ → H satisfying Assumption
A3 with r > 2+ 2

p . Note that similar numerical evidence was presented in [9] for quadrature operators applied
to Hermite polynomials. See also [7] for analogous numerical bounds in the case of Genz-Keister points.
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Figure 1: Computed values of ‖UiHν‖L2
µ

(left) and ‖∆iHν‖L2
µ

(right) for Gauss-Hermite nodes. The dashed,
black line in the right plot indicates the value

√
2.

3.4 Convergence Rate With Respect to Number of Collocation Nodes

We now derive bounds for the number of nodes in the sparse grid ΞΛ associated with UΛ. Consider first the
following simple monotone index of cardinality N : ΛN = {0ej , . . . , (N − 1)ej}. Then due to |Ξ{kej}| =
(k + 1) we get for this ΛN that

|ΞΛN | ≤
N−1∑
k=0

(k + 1) =
N(N + 1)

2
∈ O(N2).
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The quadratic complexity is indeed sharp, since 0 is the only reappearing Gauss-Hermite node. We will show
in the subsequent two propositions that this complexity holds also for arbitrary monotone multi-index sets.
We start with rectangular envelopes Λ = Rν and provide also a rather technical ordering result which we
will require later on. Recall that |Ξ(i)| =

∏
m≥1(1 + im).

Proposition 18. Let ν ∈ F . Then there exists an ordering n of Rν , i.e., a bijective mapping n : Rν →
{1, . . . , |Rν |} such that

|Ξ(i)| ≤ n(i) ∀i ∈ Rν ,

which implies, in particular,

|ΞRν | ≤
|Rν | (|Rν |+ 1)

2
.

Proof. The second assertion follows easily by the first one since

|ΞRν | ≤
∑
i≤ν
|Ξ(i)| ≤

|Rν |∑
n=1

n =
|Rν | (|Rν |+ 1)

2
.

We prove the first assertion by induction. Since ν ∈ F , there exist only finitely many m ∈ N such that
νm > 0. Without loss of generality we assume that νm = 0 for m > M where M ∈ N. We now perform an
induction over the number M of non-zero entries in ν.

• base case M = 1: The only possible multi-indices ν ∈ F are ν = ke1, k ∈ N0, and we have
Rν = {0e1, 1e1, . . . , ν1e1}. The ordering is then simply n(i) = i1 + 1. Then

|Ξ((i1,0,...))| = 1 + i1 = n(i).

• Induction step: the assertion holds for M ≥ 1. Let ν ∈ F be such that νm = 0 for m ≥ M + 2.
Moreover, let nM denote the ordering forRν−νM+1eM+1 = {i ∈ Rν : iM+1 = 0}, i.e., it holds

|Ξ(i)| =
M∏
m=1

(1 + im) ≤ nM (i) ∀i ∈ Rν−νM+1eM+1 .

For notational convenience, we set iM := (i1, . . . , iM , 0, . . .) for each i ∈ Rν and observe that iM ∈
Rν−νM+1eM+1 . We define the ordering

n(i) := iM+1

(
M∏
m=1

(1 + νm)

)
+ nM (iM ), i ∈ Rν .

It is easy to check that n : Rν → {1, . . . , |Rν |} is again bijective. Furthermore, we get for each
i ∈ Rν

|Ξ(i)| =
M+1∏
m=1

(1 + im) = (iM+1 + 1)

M∏
m=1

(1 + im)

= iM+1

(
M∏
m=1

(1 + im)

)
+

M∏
m=1

(1 + im)

= iM+1

(
M∏
m=1

(1 + im)

)
+ |Ξim |

≤ iM+1

(
M∏
m=1

(1 + νm)

)
+ nM (iM ) = n(i)

where the last line follows by im ≤ νm for allm ≥ 1 and the fact that iM ∈ Rν−νM+1eM+1 for i ∈ Rν .
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We extend the estimate for ΞRν in the above proposition now to arbitrary finite and monotone index sets
Λ:

Proposition 19. Let Λ ⊂ F be a finite and monotone, then there holds

|ΞΛ| ≤
|Λ| (|Λ|+ 1)

2
. (26)

Proof. Since Λ is supposed to be monotone, it is a union of rectangular envelopes, see Proposition 2. Thus,
there exist n indices ν1, . . . ,νn ∈ F such that

Λ =
n⋃
k=1

Rνk and ΞΛ =
n⋃
k=1

ΞRνk
.

We prove the assertion by induction over n:

• base case n = 1: The assertion follows by Proposition 18.

• Induction step: the assertion holds for n ≥ 1. With a slight abuse of notation we set Λn :=
⋃n
k=1Rνk

and obtain ∑
i∈Λn∪Rνn+1

|Ξ(i)| =
∑
i∈Λn

|Ξ(i)|+
∑

i∈Rνn+1\Λn

|Ξ(i)|.

Let m := |Rνn+1 \ Λn|. The first statement of Proposition 18 now implies

∑
i∈Rνn+1\Λn

|Ξ(i)| ≤
|Rνn+1 |∑

k=1+|Rνn+1 |−|Rνn+1\Λn|

k ≤
|Λn|+|Rνn+1\Λn|∑

k=1+|Λn|

k

where the last inequality is due to |Rνn+1 | ≤ |Rνn+1 \ Λn| + |Λn|. Thus, we get by the induction
hypothesis ∑

i∈Λn∪Rνn+1

|Ξ(i)| ≤
|Λn|∑
k=1

k +

|Λn|+|Rνn+1\Λn|∑
k=1+|Λn|

k =

|Λn∪Rνn+1 |∑
k=1

k.

Thus, employing non-nested points such as Gauss-Hermite points, yields at most a quadratic growth of
the number of sparse grid points

|ΞΛ| ∈ O(|Λ|2)

whereas in the nested case one has |ΞΛ| = |Λ|.

Remark 20. We provide some numerical validation of the bound (26). More precisely, we consider the
following two families of multi-index sets Λ (cf. [6]):

Total Degree (TD): Λ = Λ(w,M) = {ν ∈ F :
∑M

m=1 νm ≤ w, νm = 0 for m > M}

Hyperbolic Cross (HC): Λ = Λ(w,M) = {ν ∈ F :
∏M
m=1(νm + 1) ≤ w, νm = 0 for m > M},

In Figure 2 we fix the number of (active) dimensions M and display the cardinality of ΞΛ(w,M) for both
choices of Λ(w,M) and increasing values of w ∈ N. The plot shows that estimate (26) is valid but slightly
pessimistic for the two specific examples considered here.
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Figure 2: Numerical verification of estimate (26) for “Total Degree” sparse grids (left) and “Hyperbolic
Cross” sparse grids (right).

We finally arrive at the resulting error-cost theorem:

Theorem 21 (Convergence rate of Gauss-Hermite sparse grid collocation in terms of nodes). For any function
f which satisfies Assumption A3 with r > 4 + 2

p and Assumption A2, there exists a nested sequence of
mononote finite subsets ΛN ⊂ F with |ΛN | = N such that for the error of the sparse collocation operator
UΛN based on Gauss-Hermite nodes holds

‖f − UΛN f‖L2
µ
≤ C|ΞΛN |

−
(

1
2p
− 1

4

)
where C depends on f .

Hence, assume we require an approximation error ‖f −UΛN f‖L2
µ
≤ ε, then we can achieve this accuracy

with
cost(ε) ∈ O

(
ε

1
2p
− 1

4

)
(27)

number of function evalutions of f . In this cost complexity (27) we neglected of course the computational
work which is necessary to find the resulting multi-index sets ΛN . This is a very important issue. Typically,
they are constructed employing adaptive algorithms, see [11, 39, 35] and also Section 5. Our result makes no
statement about the actual computational work of those.

Remark 22 (On sparse collocation employing weighted Leja points). As mentioned in the introduction
weighted Leja points [32] seem to be a promising node family for interpolation and sparse collocation. So far
we are, however, unable to prove bounds like (25) for them. Possibly a more suitable approach for analyzing
convergence in case of weighted Leja nodes is to measure the approximation error in the L∞µ -norm instead
of the L2

µ-norm and to estimate the corresponding Lebesgue constant. See [27] for first results on the latter –
which does not yet imply an analogous estimate to (25) – and [12, 11] for the convergence analysis of sparse
collocation using Leja points on [−1, 1] via estimates of the associated Lebesgue constant [10].

4 Application to Elliptic PDEs

We recall our motivation from the introduction: approximating the weak solution u of an elliptic boundary
value problem with lognormal diffusion coefficient as in (1) where f ∈ L2(D) and a(ξ) ∈ L∞(D) is given
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as (2). We will discuss now under which conditions the map ξ 7→ u(ξ) ∈ H1
0 (D) satisfies Assumptions A1,

A2 and A3 and can therefore be approximated by sparse grid collocation methods based on Gauss-Hermite
nodes as outlined in the previous section. We will mainly cite results from [4] but try to emphasize those
details which are sometimes omitted in the literature.

Verifying Assumption A1 First of all, we have to investigate the domain Γ of the mapping ξ 7→ u(ξ).
There holds Γ 6= RN since for arbitrary ξ ∈ RN the expansion (2) need not converge. A natural domain Γ for
the mapping ξ 7→ u(ξ) is

Γ := {ξ ∈ RN : ‖
∞∑
m=1

φmξm‖L∞(D) <∞}. (28)

Further, a natural condition on the decay of the φm is

∞∑
m=1

‖φm‖2L∞(D) <∞ (29)

since (29) implies that the series (2) converges in L2
µ(RN;L∞(D)):

E

∥∥∥∥∥
∞∑
m=1

φm ξm

∥∥∥∥∥
2

L∞(D)

 ≤ E

( ∞∑
m=1

‖φm(x)‖L∞(D) |ξm|

)2


=
∞∑
m=1

‖φm(x)‖2L∞(D) E
[
|ξm|2

]
=
∞∑
m=1

‖φm(x)‖2L∞(D)

due to E [ξmξn] = δmn. Moreover, by a classical result [28, Lemma 4.16] from probability theory this implies
that the series converges also µ-a.e. in L∞(D). Thus, if (29) holds, then we get µ(Γ) = 1. It remains to state
conditions under which we can ensure that ξ 7→ u(ξ) belongs to L2

µ(Γ;H1
0 (D)). Measurability follows from

the continuous dependence of the weak solution u ∈ H1
0 (D) on exp(a) ∈ L∞(D), see [23]. Moreover, if we

can ensure that for a(ξ) := essinfx∈D exp(a(x, ξ)) we have a−1 ∈ L2
µ(Γ;R) (e.g., by Fernique’s lemma, as

shown in [8]) then the ξ-pointwise application of the Lax-Milgram lemma [23] yields for the random solution
u ∈ L2

µ(Γ;H1
0 (D)). The latter can be guaranteed by an even weaker assumption than (29)

Assumption A4 ([4, Assumption A]). There exists a strictly positive sequence (τm)m∈N such that

sup
x∈D

∞∑
m=1

τm|φm(x)| <∞,
∞∑
m=1

exp(−τ2
m) <∞.

Under Assumption A4, it is shown in [4, Corollary 2.1] that u ∈ L2
µ(Γ;H1

0 (D)) with µ(Γ) = 1, hence
u : Γ→ H1

0 (D) satisfies Assumption A1.

Verifying Assumption A2 It is obvious that for Gauss-Hermite nodes there holds Ξ(i) ⊂ Γ, i ∈ F , with Γ

as in (28), because due to i ∈ F there exists an M ∈ N such that for ξ ∈ Ξ(i) we have ξm = ξ
(0)
0 for any

m ≥M and ξ(0)
0 = 0. Actually, by Assumption A4 there holds for any ξ ∈ `∞(N) that ξ ∈ Γ:∥∥∥∥∥
∞∑
m=1

φmξm

∥∥∥∥∥
L∞(D)

≤ ‖ξ‖`∞ sup
x∈D

∞∑
m=1

|φm(x)| ≤ ‖ξ‖`∞
minm τm

sup
x∈D

∞∑
m=1

τm |φm(x)| <∞,

where minm τm > 0, because Assumption A4 implies τm →∞ as m→∞.
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Verifying Assumption A3 Again, we refer to results from [4], namely, [4, Theorem 4.2] where the authors
show that the (weak) solution u of (1) satisfies Assumption A3 for any r ∈ N0 given

Assumption A5. There exists a strictly positive sequence (τ−1
m )m∈N ∈ `p(N) such that

sup
x∈D

∞∑
m=1

τm|φm(x)| <∞.

Please note that Assumption A5 implies Assumption A4, see [4, Remark 2.2]. Hence, we obtain

Theorem 23. Let a be given as in (2) and satisfy Assumption A5. Then there exists a nested sequence of
monotone finite subsets ΛN ⊂ F with |ΛN | = N such that for the sparse collocation operator UΛN based on
Gauss-Hermite nodes applied to the solution u of (1) holds

‖u− UΛNu‖L2
µ(RN;H1

0 (D)) ≤ C1N
−
(

1
p
− 1

2

)
≤ C2|ΞΛN |

−
(

1
2p
− 1

4

)
.

5 Numerical Experiments

We apply the sparse collocation outlined and analyzed in the previous sections to approximate the solution u
of a simple boundary value problem taken from [4, Section 7]. In particular, we verify numerically the state-
ment of Theorem 23 and provide some comments on algorithms for constructing sparse grid approximations.

5.1 Problem Setting

We consider the following boundary value problem on the unit interval D = [0, 1]:

− d

dx

(
a(x, ξ)

d

dx
u(x, ξ)

)
= f(x), u(0, ξ) = u(1, ξ) = 0, µ-a.e. (30)

where we choose f(x) = 0.03 sin(2πx) and employ for log a the following expansion

log a(x, ξ) = 0.1
∞∑
m=1

√
2

(πm)q
sin(mπx)ξm, ξm ∼ N(0, 1) i.i.d., q ≥ 1. (31)

For q = 1 the random field log a is a Brownian bridge, cf. [4, Section 7], and for q > 1 it is a smoother
random field. In particular, we get with φm(x) :=

√
2

(πm)q sin(mπx) that for k = q − 1− ε with ε > 0

sup
x∈D

∑
m≥1

mk|φm(x)| ≤
√

2

πq

∑
m≥1

m−(q−k) ∝
∑
m≥1

m−(1+ε) <∞.

Thus, given q > 1 the expansion (31) satisfies Assumption A5 for each p > 1
q−1 and according to Theorem 23

there exists, if q > 1.5, a nested sequence of monotone finite subsets ΛN ⊂ F , |ΛN | = N , such that for the
sparse collocation operator UΛN based on Gauss-Hermite nodes holds

‖u− UΛNu‖L2
µ(RN;H1

0 (D)) ≤ CN−(q−1.5) ≤ C|ΞΛN |
−( q−1.5

2 ). (32)

In the following we will verify these rates numerically for various values of q.
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5.2 Numerical Algorithms

The multi-index sets ΛN appearing in Theorem 23 and (32) correspond to the largest entries in a p-summable
decreasing sequence (ĉν)ν∈F which dominates

(
cν/b

1/2
ν

)
ν∈F

. Such a dominating sequence was constructed

in Lemma 13. However, the resulting multi-index sets ΛN are in general not available as closed form expres-
sions and need to be constructed by numerical algorithms.

A-priori algorithm The following greedy algorithm is based on [21] and appears in a similar form in
the recent work [9]. It successively adds to the set of multi-indices Λ a new multi-index ν from the set of
neighbors N (Λ) which maximizes |ĉν |. A constraint mbuffer restricts the index of dimensions considered for
admissible neighbors:

1. Initialize N = 1 and Λ̃N := {0}, choose mbuffer ∈ N and Nmax ∈ N.

2. For N = 2, . . . , Nmax set

Λ̃N := Λ̃N−1 ∪ {ν∗N}, ν∗N := argmax
ν∈N (Λ̃N−1)

|ĉν | (33)

where with supp (ν) := {m ∈ N : νm > 0} and supp (Λ) :=
⋃

ν∈Λ supp (ν)

N (Λ) := {ν ∈ F \ Λ : ν − em ∈ Λ ∀m ∈ supp (ν) and

νm = 0 for m > max(supp (Λ)) +mbuffer}.

The set of admissible neighbors N (Λ) of Λ is defined such that adding any ν ∈ N (Λ) to Λ maintains
monotonicity. The restriction in the definition of N (Λ) above is that we do not allow the activation of any
dimensionm ∈ N, i.e., including ν = em for arbitrarily (large)m ∈ N, but restrict the selection to the “next”
mbuffer higher dimensions. Moreover, for our numerical simulations, we have chosen

ĉν :=
∏
m≥1

(νm)2θ+2−rτ−2(1∧νm)
m

with τm = mq−1, θ = 1 and a suitable value1 for r > 2(θ + 1) + 2
p , cf. the proof of Lemma 13.

A-posteriori algorithm Beside this a-priori construction which is usually cheap to run, we also apply a
more costly a-posteriori algorithm for generating monotone multi-index sets ΛN . Such an algorithm already
appeared in [39, 11, 12, 9, 35] and is motivated by using a-posteriori heuristics for estimating the improve-
ment of including ∆νu in the sparse collocation approximation. In particular, the a-posteriori algorithm works
exactly as the a-priori algorithm except for substituting the choice (33) by

ν∗n := argmax
ν∈N (Λ̃n−1)

‖∆νu‖L∞µ
|Ξ(ν)|

. (34)

The ratio ‖∆νu‖L∞µ /|Ξ
(ν)| represents the profitability or profit of the multi-index ν ∈ F , i.e., the associated

gain in approximation ‖∆νu‖L∞µ in relation to the associated computational cost |Ξ(ν)|. By choosing the most
profitable multi-index in the neighborhood of Λ̃n−1 we may obtain a better sparse collocation approximation

1We used r = 2 (2(θ + 1) + 2/p+ 1) = 10 + 4(q − 1) in the numerical simulations.
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Table 1: Statistics for numerical results in Tests - Part I. See equation (32) for the theoretical rates.
q var. perc. rate w.r.t. |ΛN | rate w.r.t. |ΞΛN |

theory a-post. a-priori theory a-post. a-priori
1 99.91% N.A. 0.5 0.4 N.A. 0.5 0.5
1.5 99.9999% 0 0.8 0.7 0 0.9 0.8
2 99.9999999% 0.5 1.1 1.0 0.25 1.2 1.1
3 100% 1.5 1.7 1.7 0.75 2 2

than when applying the a-priori construction (33), although the theory developed above does not apply to the
multi-indices generated in this way. Here, we estimated ‖∆νu‖L∞µ as in [35] by

‖∆νu‖L∞µ ≈ max
ξk∈Ξ(ν)

‖ρ(ξk ) [∆νu] (ξk )‖H1
0 (D),

where ρ(ξ) = exp(−1
2

∑
m≥1 ξ

2
m) represents the (unnormalized) product density funtion of µ =

⊗
m≥1N(0, 1).

Thus, for the a-posteriori algorithm we have to evaluate u on a much larger grid than just ΞΛ̃N
, namely,

ΞΛ̃N
∪ΞN (Λ̃N−1), ΞN (Λ̃N−1) :=

⋃
ν∈N (Λ̃N−1) Ξ(ν). We will refer to ΞΛ̃N

as the a-posteriori grid (associated
with ΛN ) and to ΞΛ̃N

∪ΞN (Λ̃N−1) as the extended grid (associated with ΛN ). The latter represents the “true”
computational cost of the sparse collocation approximation generated by the a-posteriori algorithm.

Remark 24. For our numerical simulations we choose a maximal number of parameter dimensionsM , which
may be arbitrarily large, to construct the refererence solution. Then, for a given ξ ∈ RM we approximate the
solution u(x, ξ) to (30) by evaluating its exact representation

u(x, ξ) =

∫ x

0

K(ξ)− F (y)

a(y, ξ)
dy, F (x) :=

∫ x

0
f(y) dy, K(ξ) :=

∫ 1
0

F (y)
a(y,ξ) dy∫ 1

0
1

a(y,ξ) dy
,

by numerical quadrature, particularly the trapezoidal rule based on an equidistant spatial grid with spacing
∆x = 2−10.

5.3 Results

We are now ready to discuss the details and the results of the numerical tests we performed. The tests are
divided into two parts: in the first set of experiments we aim at validating the sharpness of our analysis, i.e.,
whether we can actually observe numerically the rate predicted by Theorem 23 for the case of countably
many random variables; in the second set of experiments, we will instead gradually increase the number of
random variables and see if the observed rate of convergence is actually dimension-independent. Concerning
the first set of experiments, we recall that the convergence results in Theorem 23 strictly apply only to the
sparse collocation constructed by the a-priori index selection algorithm. However, we will assess whether the
set of indices proposed by the a-posteriori construction, i.e., the a-posteriori grid, achieves the same rate and
also examine the convergence rate w.r.t. number of points in the extended grid.

Tests - Part I In this section, we will compare the numerical convergence rate of both the a-priori and the
a-posteriori versions of the proposed algorithm against the theoretical convergence rate for q = 1, 1.5, 2, 3
to verify the sharpness of our theoretical analysis. For each tested value of q, the errors will be computed
against a reference solution uref based on the first 640 random variables which captures more than 99% of
the log-diffusion variability for every value of q (see Table 1 for the precise value). The error is computed
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Figure 3: From top-left to bottom-right: convergence with respect to the number of points in the sparse grid
for q = 1, 1.5, 2, 3.

with a Monte Carlo sampling over NMC = 1000 random samples:

‖u− UΛNu‖L2
µ(RN;H1

0 (D)) ≈ ‖uref − UΛNu‖L2
µ(RN;H1

0 (D))

≈ 1

NMC

NMC∑
k=1

‖uref (ξk)− UΛNu(ξk)‖H1
0 (D), (35)

where ξk are samples drawn from
⊗640

m=1N(0, 1). We remark that we have verified thatNMC is large enough
for our purposes.2

We begin by reporting in Figure 3 the convergence of the error measure (35) with respect to the number
of collocation points needed to construct the sparse grid approximation for each value of q. The convergence
plots in Figure 3 show a monotone, well-established decreasing trend for the error for all the variations of
the sparse grid considered. As expected, the errors get larger in size and the convergence rate gets worse
as q decreases for all the reported sparse grids (a-posteriori grid, extended grid, a-priori). In particular, the
convergence rate appears to be similar for the a-priori and the a-posteriori algorithm, with the rate of the
latter being actually slightly larger, thus validating the a-posteriori construction. On top of this, the error of
the a-posteriori algorithm appears to be smaller in size than the a-priori construction. We also remark that

2i.e., repeating the same analysis with NMC = 5000 produced identical results.
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Figure 4: From top-left to bottom-right: convergence with respect to the number of indices in the set ΛN for
q = 1, 1.5, 2, 3.

the rate that we measure numerically is better than the one predicted by our theory, cf. Table 1. The quite
significant difference between the rate of convergence of the a-posteriori grid and the extended grid is also to
be expected. These results are consistent with the ones detailed in [9], although there the a-priori construction
is a bit different from the one we propose. At this junction, two factors can explain the suboptimality of our
theoretical result: a conservative estimate of the growth of the number of points in the sparse grid with respect
to the number of indices in the set ΛN and a conservative link between the summability of the log-diffusion
field representation and the convergence of the sparse grid. As will be clearer later, both issues turn out to be
actually affecting our analysis.

The numbers in the plot show the number of activated random variables in the a-posteriori grid and in the
a-priori grid, i.e., in how many random variables these grids allocate at least one non-trivial point (observe that
by construction the numbers for the extended grid are the ones of a-posteriori grid plus the buffer mbuffer). It
can be seen that this number steadily increases. The numerical results we show were obtained by mbuffer = 5.
3

We then report in Figure 4 the convergence of the error (35) with respect to the number of indices in the
set ΛN . In this Figure, we show the convergence of both the a-priori and the a-posteriori algorithm, as well
as an estimate of the convergence of the best N -term approximation of u (we will detail in a moment how we

3We report (not shown) that we have also run the same simulations with a larger buffer mbuffer = 20 and the results were identical
(i.e., same a-posteriori grid and same number of activated random variables).
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Figure 5: Convergence of the sparse grid approximation with increasingly larger number of dimensions: the
asymptotic rate is not constant with respect to M .

computed this approximation). Also in this case, the convergence plots show a monotone, well-established
decreasing trend for the error. The results are similar to the previous case: a) the convergence rate of the
sparse grid gets worse as q decreases; b) the convergence rate seems to be identical for both the a-priori and
the a-posteriori constructions, and again quite larger than the theoretical estimate, cf. Table 1; c) the error
of the a-posteriori algorithm is substantially smaller than the one of the a-priori algorithm. It is also relevant
to notice that the measured convergence rate here is essentially identical to the one observed with respect to
the number of sparse grid points. This is in agreement with the results in [9] and implies that for the sparse
grids constructed here the growth of number of points w.r.t. the number of indices is essentially linear, and
therefore our Lemma 19 is quite conservative.

We now turn the attention to the best N -term approximation presented in Figure 4. To compute this ap-
proximation, we follow [18, 38, 43] and convert the extended grid first into its combination technique form,
i.e., as a linear combination of Lagrange polynomials, and then we further convert this expression into the
equivalent linear combination of Hermite polynomials; see also [16]. By sorting in decreasing order the coef-
ficients of the Hermite expansion thus computed and picking them one at a time, we obtain an approximation
of the sequence of best N -term approximations. 4 The comparison of the best N -term and the a-posteriori
grid in Figure 4 reveals that the two approximations are actually very close a-posteriori grid for every value
of q, which suggests that the a-posteriori algorithm is producing an excellent approximation.

Tests - Part II In this set of experiments, with fix q = 2, σ = 0.1, and we consider log-diffusion coefficients
with M = 10, 20, 40, 80, 120, 160 random variables. For each M , the reference solution uses M random
variables as well, contrary to the previous experiment, where the reference solution was based on 640 random
variables. In this way, we aim at assessing the behavior of the convergence rate as M increases: indeed, the
previous experiment was only verifying that we get a rate for M → ∞. We report our results in Figure 5,
where we show the convergence with respect to the cardinality of the index set ΛN . It is clearly visible that
the convergence curves are all superposed at the beginning of the convergence and then they depart from each
other: the point of departure is actually the point where all M variables have been activated. The result seems
to suggest that the convergence rate with respect to the cardinality of ΛN for finite M is actually depending
on M , and decreases as M increases, until reaching the asymptotic rate for M →∞.

4Of course, this approximation is as good as the original extended grid; however, we found the results to be stable as the number
of points in the extended grid grows, and therefore we deemed this approximation to be sufficient for our purposes.
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6 Conclusions

We have presented a general convergence analysis of sparse grid collocation based on Lagrange interpolation
for functions of countably many Gaussian variables. In particular, we have stated sufficient conditions on
the underlying univariate interpolation nodes such that for functions of a certain smoothness we obtain an
algebraic rate of convergence for the sparse collocation approximation with respect to the number of multi-
indices. Moreover, we verified these assumptions for the classical Gauss-Hermite nodes and were able to state
also a convergence result in terms of the resulting number of collocation points. We finally discussed in detail
that these methods can be applied to weak solutions of lognormal diffusion problems and illustrated our theory
with numerical tests, which show that the convergence rate achieved by a-priori sparse grid constructions is
actually higher than predicted, both with respect to the number of multi-indices and the number of collocation
points. The classical adaptive a-posteriori sparse grid construction is also seen to achieve such rates, although
not covered by our theory.
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