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Abstract. In this work we generalize the Jacobi-Davidson method to the case when eigenvector
can be reshaped into a low-rank matrix. In this setting the proposed method inherits advantages
of the original Jacobi-Davidson method, has lower complexity and requires less storage. We also
introduce low-rank version of the Rayleigh quotient iteration which naturally arises in the Jacobi-
Davidson method.

1. Introduction. This paper considers generalization of the Jacobi-Davidson
(JD) method [26] for finding target eigenvalue λ (extreme or closest to a given number)
and the corresponding eigenvector x of N ×N matrix A:

Ax = λx.

We treat the specific case when N = nm and the eigenvector x reshaped into n×m
matrix is exactly or approximately of small rank r. For example, consider a Laplacian
operator discretized on tensor product grid; its reshaped eigenvectors are of rank 1.
For r � n,m our assumption allows to significantly reduce storage of the final solution,
at the same time leading to algorithmic complications that we address in this paper.

Similarly to the original JD method, we derive the low-rank Jacobi correction
equation and propose low-rank version of subspace acceleration. The proposed ap-
proach takes the advantage of the original JD method. Compared with the Rayleigh
quotient iteration and the Davidson approach, the method is efficient for the cases
when arising linear systems are solved both accurately and inexactly.

The JD method is known to be a Riemannian Newton method on a unit sphere {x :
‖x‖ = 1} with additional subspace acceleration [1]. We utilize this interpretation and
derive a new method as an inexact Riemannian Newton method on the intersection
of the sphere and the fixed-rank manifold. In derivation we assume that the matrix A
is real and symmetric, however we test our approach on non-symmetric matrices as
well. Complexity of the proposed algorithm scales as O ((n+m)r(R+ r)) if A can
be approximated as

A ≈
R∑
α=1

Fα ⊗Gα,

where Fα and Gα allow fast matrix-vector multiplication, e.g. they are sparse.
Our main contributions are:
• We generalize the Jacobi correction equation (Sec. 3) and the subspace ac-

celeration (Sec. 4) to the case of fixed-rank matrix manifolds.
• We introduce low-rank version of the Rayleigh quotient iteration (Sec. 5)

which naturally arises in the JD method.
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2. Rayleigh quotient minimization on sphere. The first ingredient of the
JD method is the Jacobi correction equation. The Jacobi correction equation can be
derived as a Riemannian Newton method on the unit sphere [1], which will be useful
for our purposes. In this section we provide the derivation, and in Sec. 3 it will be
generalized to the low-rank case.

Given a symmetric matrix A ∈ Rn×n the goal is to optimize

R(x) = x>Ax, (2.1)

subject to x ∈ Sn−1, where Sn−1 is a unit sphere considered as an embedded sub-
manifold of Rn with the pullback metric gx(ξ, η) = ξ>η. The Riemannian optimiza-
tion approach implies that we optimize R(x) on Sn−1, i.e. constraints are already
accounted for in the search space. One of the key concepts in the Riemannian opti-
mization is a tangent space which is in fact a linearization of the manifold at a given
point. The orthogonal projection of ξ on the tangent space TxS

n−1 of Sn−1 at x can
be written as [1]

PTxSn−1ξ = (I − xx>)ξ. (2.2)

The Riemannian gradient of (2.1) is

gradR(x) = PTxSn−1∇R(x) = (I − xx>)(2Ax), (2.3)

where ∇ denotes the Euclidean gradient. The Hessian Hessx : TxS
n−1 → TxS

n−1 can
be obtained as [2]

HessxR(x)[ξ] =PTxSn−1 (D (gradR(x)) [ξ]) =

2PTxSn−1 (D (PTxSn−1Ax) [ξ]) =

2PTxSn−1(Aξ + ṖTxSn−1Ax), ξ ∈ TxSn−1,

(2.4)

where D denotes the differential map (directional derivative) and

ṖTxSn−1Ax ≡ D(PTxSn−1)[ξ]Ax = −(x>Ax)ξ − (ξ>Ax)x.

Since PTxSn−1x = 0 and PTxSn−1ξ = ξ we arrive at

HessxR(x)[ξ] = 2PTxSn−1

(
A− (x>Ax)I

)
PTxSn−1ξ. (2.5)

The k-th step of the Riemannian Newton methods looks as

Hessxk
R(xk)[ξk] = − gradR(xk), ξk ∈ Txk

Sn−1, (2.6)

with the retraction

xk+1 =
xk + ξk
‖xk + ξk‖

, (2.7)

which returns xk + ξk back to the manifold Sn−1. Using (2.2), (2.3) and (2.5) we can
rewrite (2.6) as

(I − xkx>k ) (A−R(xk)I) (I − xkx>k )ξk = −rk, x>k ξk = 0, (2.8)

where

R(xk) = x>k Axk, rk = (I − xkx>k )Axk = Axk −R(xk)xk.
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Equation (2.8) is called the Jacobi correction equation [26]. Note that without the
projection (I − xkx>k ) we obtain the Davidson equation

(A−R(xk)I) ξk = −rk,

which has solution ξk = −xk collinear to the current approximation xk. This is
the reason for the Davidson equation to be solved inexactly. The original Davidson
algorithm [6] replaces A by its diagonal part diag(A). By contrast, even if the Ja-
cobi correction equation (2.8) is solved inexactly using Krylov iterative methods, its
solution ξk will be automatically orthogonal to xk which is beneficial for the compu-
tational stability. Moreover, since the JD method has the Newton interpretation it
boasts local superlinear convergence.

The goal of this paper is to extend the Jacobi correction equation (2.8) and the
second ingredient of the JD method — subspace acceleration — to the case of low-rank
manifolds.

3. Jacobi correction equation on fixed-rank manifolds. Let x ∈ Rnm be
an eigenvector of A and X ∈ Rn×m be its matricization: x = vec(X), where vec
denotes columnwise reshape of n×m matrix into nm vector. In this paper we make an
assumption that matricisized eigenvector X is approximately of rank r. Therefore, for
example, to approximate the smallest eigenvalue we solve the following optimization
problem

minimize R(x) = x>Ax

s.t. x ∈ Snm−1 ∩Mr,
(3.1)

where

Mr = {vec(X), X ∈ Rn×m : rank(X) = r},

which forms a smooth embedded submanifold of Rnm of dimension (m+n)r−r2 [19].
By analogy with the derivation of the Jacobi equation we additionally intersected the
manifold Mr with the sphere Snm−1. As we will see from the following proposition
Snm−1 ∩Mr forms a smooth embedded submanifold of Rnm. Hence, optimization
problem (3.1) can be solved using Riemannian optimization techniques.
Proposition 1. Let N = Snm−1 ∩Mr, then

1. N forms smooth embedded submanifold of Rnm of dimension (n+m)r−r2−1
2. The tangent space of N at vec(X) ∈ N with X given by SVD: X = USV >,

U>U = I, V >V = I, S = diag(σ1, . . . , σr), σ1 ≥ · · · ≥ σr > 0 can be
parametrized as

TXN = {vec(UξV
> + UV >ξ + USξV

>) : Uξ ⊥ U, Vξ ⊥ V, vec(Sξ) ⊥ vec(S)}.

3. The orthogonal projection PTXN onto TXN can be written as

PTXN = PTXMrPTXSnm−1 = PTXSnm−1PTXMr

= PTXMr − vec(X)vec>(X),
(3.2)

where PTXMr is the orthogonal projection onto the tangent space of Mr:

PTXMr = V V > ⊗ UU> + V V > ⊗ (In − UU>) + (Im − V V >)⊗ UU>.
3



Proof. The first property follows from the fact that Mr and Snm−1 are transversal
embedded submanifolds of Rnm. Indeed, one can easily verify that

TXMr + TXS
nm−1 = Rnm.

Hence, by the transversality property [19] N forms a smooth embedded submanifold
of Rnm of dimension

dim(Mr) + dim(Snm−1)− dim(Rnm) = (n+m− r)r − 1

Let us prove the second property of the proposition. Vector ξ ∈ TXMr can be
parametrized [27] as

ξ = vec(UξV
> + UV >ξ + USξV

>) (3.3)

with the gauge conditions

Uξ ⊥ U, Vξ ⊥ V. (3.4)

To obtain the parametrization of ξ ∈ TXSnm−1∩TXMr we need to take into account
that ξ ∈ TXSnm−1 and, hence, ξ>x = 0 yielding the additional gauge condition

vec(Sξ) ⊥ vec(S). (3.5)

Let us prove the third property by showing that operators PTXMr
and PTXSnm−1

commute and, hence,

PTXN = PTXMr
PTXSnm−1 = PTXSnm−1PTXMr

(3.6)

is an orthogonal projection on the intersection of TXMr and TXS
nm−1. Indeed, since

vec(X) vec (X)
>

= (V ⊗ U) vec(S) (vec(S))
>

(V > ⊗ U>),

and

UU>(I − UU>) = 0, V V >(I − V V >) = 0,

we get

PTXMr vec(X) (vec(X))
>

= vec(X) (vec(X))
>

= vec(X) (vec(X))
>

PTXMr .

Finally, since PTXSnm−1 = I − vec(X) (vec(X))
>

PTXNPTXN = PTXMrPTXSnm−1 = PTXMr (I − vec(X) (vec(X))
>

)

= PTXMr
− vec(X) (vec(X))

>
= PTXSnm−1PTXMr

,

which completes the proof.

3.1. Derivation of Jacobi correction equation on N . Let us derive the
generalization of the original Jacobi correction equation, which is the Riemannian
Newton method on N . Using (3.2) and notation x = vec(X) we obtain

gradR(x) = PTXN∇R(x) = PTXMr
(I −xx>)∇R(x) = 2PTXMr

(I −xx>)Ax. (3.7)

4



Similarly to (2.4) using (3.2) we get

HessX R(x)[ξ] =2PTXN (Aξ + ṖTXNAx) =

2PTXN (Aξ − x ξ>Ax− ξx>Ax+ ṖTXMr
Ax),

ξ ∈ TXN .
According to (3.2) PTXNx = PTXMr

PTXSnm−1x = 0, thus

HessX R(x)[ξ] = 2PTXN (A− (x>Ax)I)ξ + PTXN ṖTXMrAx =

2PTXMr
(I − xx>)(A− (x>Ax)I)ξ + PTXN ṖTXMr

Ax,

where the part PTXN ṖTXMrAx corresponds to the curvature of the low-rank manifold.
This term contains inverses of singular values. Singular values can be small if the rank
is overestimated. This, therefore, leads to difficulties in numerical implementation.
Similarly to [16] we omit this part and obtain an inexact Newton method, which can
be viewed as a constrained Gauss-Newton method. Omitting PTXN ṖTXMr

Ax we get

HessX R(x)[ξ] ≈ 2PTXMr
(I − xx>)(A−R(x)I)ξ,

or in the symmetric form

HessX R(x)[ξ] ≈ 2PTXMr
(I − xx>)(A−R(x)I)(I − xx>)PTXMr

ξ. (3.8)

Using (3.7) and (3.8) we can write the linear system arising in the inexact Newton
method as

(I − xx>) [PTXMr (A−R(x)I)PTXMr ](I − xx>)ξ = −PTXMr (I − xx>)Ax,

ξ>x = 0, ξ ∈ TXMr.
(3.9)

which has the form similar to the original Jacobi correction equation (2.8) with (A−
R(x)I) projected on TXMr.

Equation (3.9) is a linear system of size nm × nm, but the number of unknown
elements is equal to dimension of the tangent space (n + m)r − r2 − 1. Hence, the
next step is to derive a local linear system that is of smaller size and is useful for the
numerical implementation. The following proposition holds.
Proposition 2. The solution of (3.9) written as

ξ = vec(UξV
> + UV >ξ + USξV

>),

can be found from the local system

(I −BB>)(A−R(x)I)loc(I −BB>)τξ = −(I −BB>)g, B>τξ = 0, (3.10)

where∗

τξ =

 vec(Uξ)
vec(V >ξ )

vec(Sξ)

 , g =

 Av,v vec(US)
Au,u vec(SV >)
Avu,vu vec(S)

 , B =

Ir ⊗ U 0 0
0 V ⊗ Ir 0
0 0 vec(S)

 ,
∗For an nm× nm matrix C we introduced notation

Cv,v = (V >k ⊗ In)C(Vk ⊗ In) ∈ Rnr×nr,

Cv,u = (V >k ⊗ In)C(Im ⊗ Uk) ∈ Rnr×mr,

Cv,vu = (V >k ⊗ In)C(Vk ⊗ Uk) ∈ Rnr×r2 .

Matrices Cu,v , Cu,u, Cu,vu and Cvu,v , Cvu,u, Cvu,vu are defined likewise.
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(A−R(x)I)loc =

 (A−R(x)I)v,v (A−R(x)I)v,u (A−R(x)I)v,uv
(A−R(x)I)u,v (A−R(x)I)u,u (A−R(x)I)u,vu
(A−R(x)I)vu,v (A−R(x)I)vu,u (A−R(x)I)vu,vu

 ,
Proof. Notice that PTXMr is a sum of three orthogonal projections

PTXMr = P1 + P2 + P3,

P1 = V V > ⊗ (In − UU>), P2 = (Im − V V >)⊗ UU>, P3 = V V > ⊗ UU>

Since PiPj = O, i 6= j and P2
i = Pi we obtainP1

P2

P3

 (I − xx>)(A−R(x)I)(I − xx>)
[
P1 P2 P3

] P1ξ
P2ξ
P3ξ

 =

P1

P2

P3

 (I − xx>)Ax.

(3.11)
It is easy to verify that

P1(I − xx>) = P1 = (V ⊗ In)(V > ⊗ (In − UU>)),

P2(I − xx>) = P2 = (Im ⊗ U)((Im − V V >)⊗ U>),

P3(I − xx>) = (V V > ⊗ UU>)(I − (V ⊗ U) vec(S) (vec(S))
>

(V > ⊗ U>)) =

(V ⊗ U)(Ir2 − vec(S) (vec(S))
>

)(V > ⊗ U>).

Then from (3.3)

P1ξ = V ⊗ (In − UU>) vec(Uξ),

P2ξ = (Im − V V >)⊗ U vec(V >ξ ),

P3ξ = V ⊗ U vec(Sξ),

Thus, the first block row in (3.11) can be written as

V ⊗ (In − UU>)( (V > ⊗ I)(A−R(x)I)(V ⊗ In)︸ ︷︷ ︸
(A−R(x)I)v,v

(Ir ⊗ (In − UU>)) vec(Uξ)+

(V > ⊗ I)(A−R(x)I)(Im ⊗ U)︸ ︷︷ ︸
(A−R(x)I)v,u

((Im − V V >)⊗ Ir) vec(V >ξ )+

(V > ⊗ I)(A−R(x)I)(V ⊗ U))︸ ︷︷ ︸
(A−R(x)I)v,uv

(Ir2 − vec(S) (vec(S))
>

) vec(Sξ) =

V ⊗ (In − UU>) (V > ⊗ I)A(V ⊗ In)︸ ︷︷ ︸
Av,v

vec(US).

Since V has full column rank we obtain exactly the first block row in (3.10). Other
block rows can be obtained in a similar way.

3.2. Retraction. Similarly to (2.7) after we obtained the solution ξ from (3.10)
we need to map the vector x + ξ from the tangent space back to the manifold. The
following proposition gives an explicit representation for the retraction on N .
Proposition 3. Let Rr be a retraction from the tangent bundle TMr onto Mr, then

R(X, Ẋ) =
Rr(X, Ẋ)

‖Rr(X, Ẋ)‖
, (3.12)

is a retraction onto N .
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Proof. To verify that R is a retraction we need to check the following properties [3]
1. Smoothness on a neighborhood of the zero element in TN ;
2. R(X, 0) = X for all X ∈ N ;

3. d
dtR(X, tẊ)

∣∣∣
t=0

= Ẋ for all X ∈ N and Ẋ ∈ TXN .

The first property follows from the smoothness of Rr. The second property holds
since Rr(X, 0) = X and ‖X‖ = 1 for X ∈ N . Let us verify the third property:

d

dt
R(X, tẊ)

∣∣∣∣
t=0

=
d

dt

(
Rr(X, tẊ)

‖Rr(X, tẊ)‖

)∣∣∣∣∣
t=0

=

d
dtRr(X, tẊ)

∣∣∣
t=0
‖Rr(X, tẊ)

∣∣∣
t=0
‖ − d

dt ‖Rr(X, tẊ)‖
∣∣∣
t=0

Rr(X, tẊ)
∣∣∣
t=0

‖ Rr(X, tẊ)
∣∣∣
t=0
‖2

.

(3.13)

Since (X, Ẋ) = 0 for X ∈ N , we get

d

dt
‖Rr(X, tẊ)‖

∣∣∣∣
t=0

=(
d
dtRr(X, tẊ), Rr(X, tẊ)

)∣∣∣
t=0

+
(
Rr(X, tẊ), ddtRr(X, tẊ)

)∣∣∣
t=0

2 ‖Rr(X, tẊ)
∣∣∣
t=0
‖

=
(Ẋ,X) + (X, Ẋ)

2‖X‖ = 0, X ∈ N , Ẋ ∈ TXN .

Substituting the latter expression into (3.13) and accounting for

‖Rr(X, tẊ)
∣∣∣
t=0
‖ = ‖Rr(X, 0)‖ = ‖X‖ = 1

we obtain d
dtR(X, tẊ)

∣∣∣
t=0

= Ẋ which completes the proof.

Remark 1. Retraction (3.12) is a composition of two retractions: first on the low-
rank manifold Mr and then on the sphere Sn−1. Note that the composition in the
reversed order is not a retraction as it does not map to the manifold N .

A standard choice of retraction on Mr is [3]

Rr(x, ξ) ≡ Rr(x+ ξ) = PMr
(x+ ξ),

where

PMr
(x+ ξ) ≡ arg min

y∈Mr

‖y − (x+ ξ)‖.

For small enough correction ξ retraction can be calculated using the SVD procedure [3]
as follows. First,

x+ ξ = vec(USV > + UξV
> + UV >ξ + USξV

>) =

vec

([
U Uξ

] [S + Sξ I
I O

] [
V Vξ

]>).
7



Then we calculate QR decompositions

QURU =
[
U Uξ

]
, QVRV =

[
V Vξ

]
.

and the truncated SVD with truncation rank r of

RU

[
S + Sξ I
I O

]
R>V ,

with r leading singular vectors Ur ∈ R2r×r, Vr ∈ R2r×r and the matrix of leading r
singular values Sr ∈ Rr×r. Thus, the resulting retraction can be written as

Rr(x+ ξ) = (QUUr)Sr(QV Vr)
>.

and from (3.12) the retraction has the form

R(x, ξ) ≡ R(x+ ξ) = (QUUr)
Sr
‖Sr‖

(QV Vr)
>. (3.14)

3.3. Properties of the local system. Let us mention several important prop-
erties of the matrix (A − R(x)I)loc. Assume that we are looking for the smallest
eigenvalue λ1 and R(x) is closer to λ1 than to the next eigenvalue λ2, i.e. the matrix
(A−R(x)I) is nonnegative definite.

First, the matrix (A−R(x)I)loc is singular. Indeed, a nonzero vector vec(U)
− vec(V >)

0


is in the nullspace of (A − R(x)I)loc. This is the result of nonuniqueness of the
representation of a tangent vector without gauge conditions. However, (A−R(x)I)loc

is positive definite on the subspace

B>τz = 0, τz =

 vec(Uz)
− vec(V >z )

vec(Sz)


where B is defined in (3.10). Indeed,

min
B>τz=0,
τz 6=0

(τz, (A−R(x)I)loc τz) =

min
B>τz=0,
τz 6=0

(vec(UzV
> + UV >z + USzV

>), (A−R(x)I) vec(UzV
> + UV >z + USzV

>)) =

min
z∈TxN ,
z 6=0

(z, (A−R(x)I) z) ≥ min
z⊥x,
z 6=0

(z, (A−R(x)I) z) ≥ λ1 + λ2 − 2R(x).

(3.15)

The latter inequality follows from [20, Lemma 3.1]. Hence, if R(x) is closer to λ1 than
to λ2, the matrix is positive definite.

Let us show that the condition number of

(I −BB>)(A−R(x)I)loc(I −BB>)

8



does not deteriorate as R(x) converges to the exact eigenvalue. The condition number
is given as

κ =

maxτz :B>τz=0,
τz 6=0

q(τz)

minτz :B>τz=0,
τz 6=0

q(τz)
, q(τz) =

(τz, (A−R(x)I)locτz)

(τz, τz)
.

Similarly to (3.15) one can show that

κ ≤
maxz:z⊥x,

z 6=0
q(z)

minz:z⊥x,
z 6=0

q(z)
.

This expression is a bound for the original Jacobi correction equation and according to
[20] its condition number does not grow as R(x) approaches the exact eigenvalue λ1.

4. Subspace acceleration. Since the considered Newton method is inexact or
linear systems are solved approximately, we can additionally do the line search

xnew = R(x+ αoptξ), (4.1)

where

αopt = arg min
α

R(R(x+ αξ)),

which can be found from the Armijo backtracking rule [1] or simply approximated
without retraction as

αopt ≈ arg min
α

R(x+ αξ), (4.2)

which can be solved exactly.
To accelerate the convergence one can utilize vectors obtained on previous iter-

ations in the Jacobi-Davidson manner. However, to avoid instability and reduce the
computational cost we use the vector transport [1]. At each iteration we project the
basis obtained from previous iterations on the tangent space of the current approxi-
mation to the solution. Let us consider this approach in more details.

After k iterations we have the basis Vb−1 = [v1, . . . , vb−1], b ≤ k and project it
on TXk

Mr:

Ṽb−1 = [PTXk
Mrv1, . . . ,PTXk

Mrvb−1].

If needed we can carry out additional orthogonalization of Ṽb−1 vectors. Note that
orthogonalization onto the tangent space is an inexpensive operation since linear com-
binations of any number of vectors from the tangent space can be at most of rank 2r.
Given the solution ξk of (3.9) next step is to expand Ṽb−1 with vb obtained from the

orthogonalization of ξk with respect to Ṽb−1:

Vb = [Ṽb−1, vb] (4.3)

A new approximation to x is calculated using the Rayleigh-Ritz procedure. Namely,
we calculate V>b AVb and then find the eigenpair (θ, c):

V>b AVb c = θc, (4.4)

9



corresponding to the desired eigenvalue. Finally, the Ritz vector c gives us a new
approximation to x:

xk+1 = Vb c.

We emphasize that the columns of Vb are from TXk
Mr, therefore there is no problem

with the rank growth. If one wants to maintain fixed rank r it is required to optimize
the coefficients c:

xk+1 = R(Vbcopt), copt = arg min
c1,...,cb

R(R(Vbc)).

Optimization can be done, e.g. by using the line search over each of ci sequentially,
starting from the initial guess found from (4.4). However, to reduce complexity one
can optimize only over the coefficient in front of vb, or simply use c instead of copt.

5. Connection with Rayleigh quotient iteration. If the linear system in
(2.8) is solved exactly, JD method without the subspace acceleration is known [26] to
be equivalent to the Rayleigh quotient iteration:

(A−R(xk)I)x̃ = xk,

xk+1 =
x̃

‖x̃‖ .
(5.1)

Let us find how the method will look like when we solve (3.9) exactly. On the k-th
iteration equation (3.9) looks as

(I − xkx>k )PTXk
Mr (A−R(xk)I)PTXk

Mrξk = −PTXk
Mr (I − xkx>k )Axk,

PTXk
Mrξk = ξk, x>k ξk = 0.

Therefore,

PTXk
Mr (A−R(xk)I)PTXk

Mrξk − αxk = −PTXk
Mr (A−R(xk)I)xk,

where

α = x>k

[
PTXk

Mr
(A−R(xk)I)PTXk

Mr

]
ξk.

Denoting x̃ = xk + ξk, we obtain[
PTXk

Mr
(A−R(xk)I)PTXk

Mr

]
x̃ = xk, PTXk

Mr
x̃ = x̃,

xk+1 = R(x̃).
(5.2)

where the parameter α was omitted thanks to R(αx̃) = R(x̃). Thus, (5.2) represents
the extension of the Rayleigh quotient (RQ) iteration (5.1) to the low-rank case and
can be interpreted as a Gauss-Newton method.

One can expect that the JD method converges faster than the RQ iteration (5.2)
when systems are solved inexactly. As we have shown in Sec. 3.3 the condition num-
ber of local systems in the proposed JD method does not deteriorate when R(xk)
approaches the exact eigenvalue. This property positively influences the convergence,
as was investigated for the original JD [21]. We will illustrate it in the numerical
experiments in Sec. 8.
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6. Complexity. Let us discuss how to solve the Jacobi correction equation nu-
merically for the matrix A given as

A =

R∑
α=1

Fα ⊗Gα, (6.1)

where matrices Fα and Gα are of sizes n×n and m×m correspondingly. In complexity
estimates we additionally assume that Fα and Gα can be multiplied by a vector using
O(n) and O(m) operations respectively, e.g. they are sparse. As an example, A can
be the Laplacian-type operator with low-rank potential.

Even if the initial operator A is sparse, the projected local system Aloc is usually
dense. Fortunately, a fast matrix-vector multiplication by Aloc can be done. Let us
consider the multiplication by the first block row of Aloc:

u = Av,vvec(U) +Av,uvec(V >) +Avu,vuvec(S)

= (V >k ⊗ In)A(vec(UV >k + UkV
> + UkSV

>
k )

= (V >k ⊗ In)A(vec(UV >k + Uk(V > + SV >k )),

(6.2)

where we took into account that the vector from the tangent space UV >k + UkV
> +

UkSVk is of rank 2r instead of 3r as in the case when summing 3 arbitrary rank-r
matrices. This slightly decreases the cost of matrix-vector multiplication. Finally
substituting (6.1) into (6.2)

u = (V >k ⊗ In)

(
R∑
α=1

Fα ⊗Gα
)(

(Vk ⊗ In)vec(U) + (In ⊗ Uk)vec(V > + SV >k )
)

=(
R∑
α=1

(V >k FαVk)⊗Gα
)

vec(U) +

(
R∑
α=1

(V >k Fα)⊗ (GαUk)

)
vec(V > + SV >k ).

Calculation of an r×r matrix V >k FαVk requiresO(nr2+nr) operations. Multiplication
of V >k FαVk ⊗ Gα by a vector costs O(mr2 + mr). Calculation of V >k Fα and GαUk
costs O(n2r) and O(m2r) respectively. As a result, matrix-vector multiplication costs
O((n+m)r2) operations. Given fast matrix-vector multiplication we can solve (3.10)
by the appropriate Krylov type iterative method. In the next section we discuss how
to construct a preconditioner for this system.

In subspace acceleration we project vectors of Vb (4.3) onto the tangent space.
Projection of each vector costs O((m + n)r2). Thus, assuming that r � n,m the
complexity of the whole algorithm is O((n+m)r(R+ r)).

7. Block Jacobi preconditioning of the local system. In the work [26] the
preconditioner of the type

Md = (I − xx>)M(I − xx>)

was proposed, where M is an approximation to A−R(x)I. If a system with M can
be easily solved, then to solve

Md y = z,

one can use the explicit formula

y = −λM−1x−M−1z, λ = −x
>M−1z

x>M−1x
. (7.1)
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Following this concept we consider a preconditioner of a type

Md = (I −BB>)Mloc(I −BB>), (7.2)

where Mloc is an approximation to (A−R(x)I)loc. Even if M is easily inverted, this
might not be the case for the projected matrix Mloc. Hence, we use a block Jacobi
preconditioner

Md = (I −BB>)

Av,v −R(x)I 0
0 Au,u −R(x)I 0
0 0 Avu,vu −R(x)I

 (I −BB>) =

P⊥U (Av,v −R(x)I)P⊥U 0
0 P⊥V (Au,u −R(x)I)P⊥V 0
0 0 P⊥S (Avu,vu −R(x)I)P⊥S

 ,
(7.3)

where the projection matrices P⊥U , P⊥V and P⊥S are defined as

P⊥U = Ir ⊗ (In − UU>),

P⊥V = (In − V V >)⊗ Ir,
P⊥S = Ir2 − vec(S) (vec(S))

>
.

Let us note that the system with the matrix Avu,vu − R(x)I can be solved directly
since it is of small size r2 × r2. Thus, to solve

P⊥S (Avu,vu −R(x)I)P⊥S y = P⊥S z, y> vec(S) = 0,

a direct formula can be used (it follows directly from (7.1))

y = (Avu,vu −R(x)I)−1P⊥S z − λS(Avu,vu −R(x)I)−1vec(S),

where

λS =
(vec(S))

>
(Avu,vu −R(x)I)−1P⊥S z

(vec(S))
>

(Avu,vu −R(x)I)−1vec(S)
.

Let us derive formulas for solving

P⊥U (Av,v −R(x)I)P⊥U y = z, P⊥U y = y

or equivalently

(Ir ⊗ (In − UU>)) (Av,v −R(x)I) (Ir ⊗ (In − UU>)) y = z, (Ir ⊗ U>)y = 0,

then

(Av,v −R(x)I)y − (Ir ⊗ U)Λ = z,

where the matrix Λ is chosen to satisfy (Ir⊗U>)y = 0. For a suitable preconditioner
Mvv which approximates (Av,v −R(x)I) we have

y −M−1
vv (Ir ⊗ U)Λ = M−1

vv z,
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Multiplying the latter equation by (Ir ⊗ U>) we obtain

Λ = −
[
(Ir ⊗ U>)M−1

vv (Ir ⊗ U)
]−1

M−1
vv z,

and

y = M−1
vv (Ir ⊗ U)Λ +M−1

vv z.

Similarly for

P⊥V (Au,u −R(x)I)P⊥V y = z, P⊥V y = y

we obtain formulas

y = M−1
uu (V ⊗ Ir)Λ +M−1

uu z, Λ = −
[
(V > ⊗ Ir)M−1

uu (V ⊗ Ir)
]−1

M−1
uu z.

Matrices
[
(V > ⊗ Ir)M−1

uu (V ⊗ Ir)
]

and
[
(Ir ⊗ U>)M−1

vv (Ir ⊗ U)
]

are of size r×r and
can be inverted explicitly. The main difficulty is to find M−1

uu and M−1
vv . Their

inversion depends on the particular application. For instance, if M = I ⊗ F +G⊗ I,
then the inverse can be approximated explicitly as [12]

M−1 ≈
K∑
k=1

ck e
−tkF ⊗ e−tkG, (7.4)

which we use later in numerical experiments. Alternatively, one can use inner itera-
tions to solve a system with diagonal blocks.

Note that similar to the original JD method, our method is not a preconditioned
eigensolver. We use the preconditioner only to solve auxiliary linear systems.

8. Numerical experiments. In numerical experiments we find approximation
to the smallest eigenvalue of the convection-diffusion operator

Au ≡ −∂
2u

∂x2
− ∂2u

∂y2
+
∂u

∂x
+
∂u

∂y
+ V u, (x, y) ∈ Ω

u|∂Ω = 0,

where Ω = (−1/2, 1/2)2, and potential V is chosen such that solution is of low rank:

V ≡ V (x, y) = e−
√
x2+y2/10. We use a standard second-order finite difference dis-

cretization on a n × n tensor product uniform grid to discretize second derivatives
and backward difference to approximate first derivatives. The potential V on the
grid is approximated by the SVD decomposition with relative accuracy 10−10 and,
hence, represented as a diagonal sum-of-product operator. The discretized operator
A is represented in the form (6.1) with sparse matrices Fα, Gα and R = 14.

Low-rank version and original JD. Let us compare the behaviour of the original
JD method and the proposed low-rank version. Figure 8.1 shows the residual plot
with respect to the number of outer iterations. We set the rank r = 5, grid size
n = 150. One can observe that the low-rank version stagnates near the accuracy of
the best rank 5 approximation to the exact eigenvector.

We note that the cost of each inner iteration is different: O(nrR) for the proposed
version and O(n2) for the original version, so the proposed version is more efficient
for large n. Nevertheless, Figure 8.1 shows that our method requires fewer number
of less expensive iterations to achieve a given accuracy (before stagnation). The less
accurately we solve the system, the more gain we observe. Such speed-up may happen
due to the usage of additional information about the solution, namely that it is of low
rank.
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Fig. 8.1: Residual norm w.r.t. the number of outer iterations for the original and the
proposed JD methods. Plots are done for different number of inner GMRES iterations
to solve linear systems. Parameters: N = 1502, r = 5.

Comparison with the low-rank Davidson approach and the Rayleigh quotient iter-
ation. In this experiment we compare performance of the proposed fixed-rank Jacobi-
Davidson approach and the proposed Rayleigh quotient inverse iteration (5.2). We
also compare them with the “Davidson” approach when no projection I − xkx>k is
done:[

PTXk
Mr

(A−R(xk)I)PTXk
Mr

]
ξk = −PTXk

Mr
rk, PTXk

Mr
ξk = ξk. (8.1)

Figure 8.2 illustrates the results of the comparison. As anticipated, when local systems
are solved accurately the Davidson approach stagnates since the exact solution of (8.1)
is −xk. So, no additional information is added to the previous approximation xk. This
problem does not occur if local systems are solved inexactly. For the Rayleigh quotient
iteration we observe opposite behaviour due to the deterioration of condition number
of local systems. The Jacobi-Davidson approach yields good convergence in both
cases.

Comparison with the ALS method. Alternating linear scheme (ALS) method is the
standard approach for low-rank optimization. The idea is following: given X = UV >

we minimize Rayleigh quotient R(x) ≡ R̃(U, V ) successively over U and V . Minimiza-
tion over U results in the eigenvalue problem with matrix Av,v, while minimization
over V results in the eigenvalue problem with matrix Au,u.

Note that in the proposed JD method we need to solve local systems, while in
the ALS approach we solve local eigenvalue problems. To make comparison fair we
ran original JD method to solve local problems in ALS. We choose the fixed number
of iterations as choosing fixed accuracy to solve eigenvalue problems in ALS leads to
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Fig. 8.2: Residual w.r.t. number of outer iterations, N = 20002, r = 3. Local
systems from Figure 8.2a were solved inexactly using 100 GMRES iterations, while
local systems from Figure 8.2b were solved accurately with the preconditioner (7.4),
K = 20 and 30 GMRES iterations.
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Fig. 8.3: Residual w.r.t. time for ALS and the proposed JD methods. Figures 8.3a
and 8.3b correspond to 150 and 600 GMRES iterations to solve local problem of the
proposed JD. Parameters of local problems in ALS were chosen to give similar to the
proposed JD time of each outer iteration, N = 20002.

stagnation of the method. Since the inner JD solver has two types of iterations: itera-
tions to solve local problem and outer iterations, we need to tune these parameters to
get fair comparison. We tuned them such that each ALS iteration runs approximately
the same amount of time as the outer iteration of the proposed JD and gives the best
possible convergence. Results are presented on Figure 8.3. On both subfigures the
proposed JD method yields the fastest convergence.

Subspace acceleration. In this part we investigate the behaviour of the subspace
accelerated version proposed in Sec. 4. First, on Figure 8.4 we compare he original
subspace acceleration and the version with vector transport when subspace is pro-
jected onto the tangent space of the current approximation. No restarts are used. As
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Fig. 8.4: Comparison of original subspace
accelerated version of JD and the version
with vector transport. In both cases full
version of JD with no restarts is used.
N = 1502, local systems are solved using
150 GMRES iterations.
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Fig. 8.5: Proposed JD method with sub-
space acceleration for two cases: when
search subspace is projected onto the tan-
gent space (with vector transport) and
when no projection is done. Parameters:
N = 20002, r = 5, 150 GMRES iterations
to solve local systems.

anticipated the projected version stagnates when accuracy of approximation equals
error of low-rank approximation. Apart from that, the convergence behaviour of the
methods is comparable, but the projected version is more suitable for low-rank cal-
culations. To illustrate this point we provide Figure 8.5, where the projected version
is compared with the version with no projection. The latter one is implemented with
hard rank thresholding of linear combination (3.12). No additional optimization over
coefficients besides Rayleigh-Ritz procedure is done. As we observe from the figure,
the projected version outperforms the version without projection. The point is that
we exactly optimize coefficients on the tangent space since no rank thresholding in
this case is required. If vectors do not belong to the tangent space, rank rapidly grows
with the subspace size and rank thresholding can introduce significant error.

9. Related work. Eigenvalue problems with low-rank constraint are usually
considered in literature in the context of more general low-rank decompositions of
multidimensional arrays, e.g. the tensor train decomposition [22]. Two-dimensional
case naturally follows from the multidimensional generalization.

There are two standard ways to solve eigenvalue problems in low-rank format:
optimization of Rayleigh quotient based on alternating minimization, which accounts
for multilinear structure of the decomposition, and iterative methods with rank trun-
cation. The first approach has been developed for a long time in the matrix product
state community [25, 28, 23]. We also should mention altenating minimization algo-
rithms that were recently proposed in the mathematical community. They are based
either on the alternating linear scheme (ALS) procedure [11, 7] or on basis enrichment
using alternating minimal energy method (AMEn) [14, 8]. Rank truncated iterative
methods include power method [4, 5], inverse iteration [10], locally optimal block
preconditioned conjugate gradient method [15, 17, 18]. For more information about
eigensolvers in low-rank formats see [9]. To our knowledge no generalization of the
Jacobi-Davidson method was considered.

In [16] authors consider inexact Riemannian Newton method for solving linear
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systems with a low-rank solution. They also omit the curvature part in the Hessian
and utilize specific structure of the operator to construct a preconditioner.

In [24] authors proposed a version of inverse iteration based on the alternating
linear scheme ALS procedure, which is similar to (5.1). By contrast, the present
work considers inverse iteration on the whole tangent space. We also provide an
interpretation of the method as an inexact Newton method.

We note that the proposed approach is considered on the fixed rank manifolds.
Recently desingularization technique was applied to non-smooth variety of bounded-
rank matrices M≤r [13].

10. Conclusions and future work. The natural next step is to consider gener-
alization to the multidimensional case. Most of the results can be directly generalized
to the tensor train decomposition, e.g. (3.9), (3.12) and (5.2). However, to avoid
cumbersome formulas and present the method in the most comprehensible way we re-
stricted the paper to the treatment of the two-dimensional case. Moreover, the correct
choice of parametrization of the tangent space and efficient practical implementation
worth individual consideration. We plan to address them in a separate work and test
the method on real-world applications.
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