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ESTIMATION OF THE REGULARIZATION PARAMETER IN LINEAR

DISCRETE ILL-POSED PROBLEMS USING THE PICARD PARAMETER∗

EITAN LEVIN† AND ALEXANDER Y. MELTZER†

Abstract. Accurate determination of the regularization parameter in inverse problems still represents an an-

alytical challenge, owing mainly to the considerable difficulty to separate the unknown noise from the signal. We

present a new approach for determining the parameter for the general-form Tikhonov regularization of linear ill-

posed problems. In our approach the parameter is found by approximate minimization of the distance between the

unknown noiseless data and the data reconstructed from the regularized solution. We approximate this distance by

employing the Picard parameter to separate the noise from the data in the coordinate system of the generalized SVD.

A simple and reliable algorithm for the estimation of the Picard parameter enables accurate implementation of the

above procedure. We demonstrate the effectiveness of our method on several numerical examples1.

Key words. ill-posed problem, inverse problem, generalized SVD, Picard parameter, Tikhonov regularization,

regularization parameter
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1. Introduction. The Tikhonov regularization method [34] is one of the most widely applied

methods for solution of linear ill-posed problems. It is well known that the accuracy of the solution

obtained using the Tikhonov regularization method depends crucially on the chosen regularization

parameter. This parameter is often obtained using either one of the following methods - the Gener-
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alized Cross-Validation (GCV) [37, 11], L-curve [15, 21], Quasi-optimality [1, 2], Stein’s Unbiased

Risk Estimate (SURE) [32, 30], or other methods. However, none of the above-mentioned methods

consistently finds a near-optimal regularization parameter for all test problems and noise realiza-

tions in our numerical examples. In particular for rank-deficient problems the above-mentioned

methods tend to produce solutions that significantly differ from the true solutions.

We can state the problem formally as follows. Given an ill-conditioned matrix A and vector b

contaminated by noise, we solve the linear system

(1.1) Ax = b.

Linear discrete ill-posed problems of the form (1.1) arise in a variety of settings, including the

discretization of Fredholm integral equations of the first kind [23, 12, 5, 35, 16], image deblurring

problems [20, 8, 40, 4, 27], machine learning algorithms [3, 36, 31, 6, 39] and more. The method of

Tikhonov regularization replaces the original ill-posed problem (1.1) with a minimization problem

(1.2) min
x
||Ax− b||2 + λ2||Lx||2,

where || · || is the ℓ2-norm, L is a regularization matrix and λ is a regularization parameter. The

problem (1.2) is said to be in standard form if L = I, where I is the identity matrix, and in general

form if L 6= I [22, 13, 10]. The development of an accurate and reliable method for determination

of the regularization parameter λ is the main subject of this paper.

The present work is closely related to that of O’Leary [26] and Taroudaki and O’Leary [33],

who suggest a method for near-optimal estimation of the regularization parameter for standard-form

Tikhonov regularization. The essence of this method is to determine the regularization parameter

by approximate minimization of the mean-square error (MSE)

(1.3) MSE(λ) = ||xtrue − x(λ)||2,
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where xtrue is the least-squares solution of Ax = btrue, btrue is the unperturbed data vector and

x(λ) is the regularized solution of (1.2). Since the vector xtrue is not known in practice, the authors

of [33] approximate the MSE (1.3) by separating signal from noise using the coordinates of the

perturbed data b with respect to the basis of the left singular vectors of A, termed the Fourier

coefficients of b. Specifically, the authors of [33] demonstrate the existence of an index they term

the ’Picard parameter’, which separates noise dominated coefficients of b from clean ones. Using

the Picard parameter, the SVD expansion of the MSE is split into two parts - one containing

the information about the unperturbed data and another containing the noise. The first part is

replaced with its expected value, while the second part is rewritten in terms of the known Fourier

coefficients of the data. The Picard parameter is either estimated manually in [33], representing

the index where the plot of the Fourier coefficients of the data levels off, or, in the case where the

noise is Gaussian, by the Lilliefors test, as we explain in subsection 3.3.

Although the method developed in [33, 26] provides accurate results in a large percentage of

cases and is shown to be competitive with standard methods, it holds two significant limitations.

First, it does not allow the use of L 6= I which is necessary in many applications in order to

incorporate various desirable properties in the solution [7, 14, 22, 13]. In particular, L is often chosen

to be the discrete approximation of a derivative operator to control various degrees of smoothness of

the solution. The second, and arguably more important limitation is that the method is inaccurate

for some noise realizations due to inaccurate estimation of the Picard parameter. This stems from

the algorithm’s reliance on applying statistical tests to noisy sequences, which often give inconsistent

results.

In this paper we strive to overcome the above limitations. To handle the case L 6= I, we replace

the SVD of A used in [33, 26] with the generalized singular value decomposition (GSVD) of the
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pair (A,L) [28, 18]. It is significantly more difficult, however, to minimize the MSE (1.3) in the

GSVD basis [33, sect. 2]. For this reason, we replace the MSE with the predictive mean-square

error (PMSE)

PMSE(λ) = ||A(xtrue − x(λ))||2,

where Ax(λ) is the data reconstructed from the regularized solution, termed the ’predicted data’.

For simplicity, we assume that the unperturbed system is consistent, so that btrue = Axtrue, imply-

ing that the PMSE can be written as

(1.4) PMSE(λ) = ||btrue −Ax(λ)||2.

The PMSE (1.4) has a simple expansion in terms of the GSVD basis, but it does not measure the

error in the solution directly as the MSE. In principle, it is therefore possible that an algorithm

successfully minimizing the PMSE will produce a suboptimal solution with high MSE in some

problems. Nevertheless, the PMSE has approximately the same minimizer as the MSE in a variety

of settings [25, 9] and the two minimizers were shown to coincide under certain assumptions [38]. To

the best of our knowledge however, full characterization of the cases in which the minimizers of the

MSE and PMSE are equal is unavailable. Therefore, we also provide a method for approximately

minimizing the MSE as in [33], but for the more general case of L 6= I. We then show that the

expansion of the MSE in terms of the GSVD is numerically unstable and hence the accuracy of its

approximation is limited. It is therefore advantageous to minimize the PMSE in cases where its

minimizer is known to be close to that of the MSE, as it can be approximated better and hence

leads to a better choice of λ.

To determine λ, we write the PMSE in terms of the GSVD of (A,L) under very relaxed

assumptions about the sizes and ranks of the matrices involved in (1.2). Next, we approximate
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PMSE(λ) by estimating the Picard parameter, splitting the GSVD expansion and modifying the

noise-dependent terms as in [33, 26]. The regularization parameter λ is found by minimization of

the resulting approximation of PMSE(λ). We term this procedure for determination of λ the Series

Splitting (SS) method.

As an alternative to the SS method, approximate minimization of (1.4) can be performed

using a more general two-step approach. Particularly, we can obtain an approximation b̂ ≈ btrue

by applying an accurate filter based on the Picard parameter to b, substitute b̂ for btrue in (1.4)

and minimize the resulting norm ||b̂ − Ax(λ)||2. Our implementation of the filter employs the

Picard parameter to remove the noise-dominated components of the data in the GSVD coordinate

system. The advantage of this approach is its generalizability to other filters and regularization

methods beside Tikhonov (1.2), as it requires only a data filter and an algorithm for calculating

the regularized solution given a regularization parameter. We term this method the Data Filtering

(DF) approach.

According to our numerical examples, the accuracy of the Picard parameter estimation algo-

rithm [33] is somewhat limited. We suggest that this can be significantly improved by a simple

modification. Specifically, we propose to test the sequence of the Fourier coefficients in an order

reverse to the one proposed in [33] and at a higher confidence level. The performance of this al-

gorithm can also be improved by providing upper and lower bounds on the Picard parameter, to

limit the number of required tests. However, in spite of the improvement in accuracy, the algorithm

remains prone to errors due to its reliance on noisy series of the Fourier coefficient of the data. To

altogether avoid the dependence on noisy sequences, we proceed a step further to propose a new

method that relies on averages of the squared moduli of the Fourier coefficients. We prove that

the sequence of these averages decreases with increasing index of the Fourier coefficients, eventually
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converging to the value of the noise variance at the Picard parameter. In the resulting setting both

the noise variance and the Picard parameter can be estimated reliably by detecting the levelling off

of the above sequence of averages.

The SS method is closely related to the SURE and GCV methods, both of which approximately

minimize (1.4). In contrast to the SS and DF methods, GCV and SURE do not split the sum in the

GSVD expansion of (1.4). Moreover, we show that both of them rely on replacing the whole sum in

the expansion of (1.4) with its expected value, which results in an approximation less accurate than

the one that could be achieved using the SS and DF methods. We provide a detailed comparison

of the methods in a series of numerical examples.

The structure of this paper is as follows. In section 2 we formulate the problem of the Tikhonov

regularization and solve it using the generalized singular value decomposition (GSVD). In section 3,

we develop the SS and DF methods to approximately minimize the PMSE and the algorithms for

estimation of the Picard parameter. In section 4, we discuss the SURE and GCV methods. Finally,

in section 5 we present the results of the numerical simulations.

2. Formulation of the problem. We solve the linear ill-posed problem (1.1) by the Tikhonov

regularization using a general regularizationmatrix L. Throughout the paper, we make the following

assumptions:

1. The problem (1.2) has a unique solution for any λ. This implies N (A)∩N (L) = {0}, where

N (·) denotes the null-space of a matrix (see [18, sect. 5.1.1]).

2. The nullspace of L is spanned by smooth vectors. This assumption holds in most practical

cases and is necessary to ensure proper filtering of the noise by the regularization, see [19,

sect. 8.1], [18, sect. 2.1.2], [13, sect. 3].

3. The data vector b is perturbed by an additive noise so b = btrue + n, and the components
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of n are independent random variables taken from a normal distribution with zero mean

and constant variance s2.

4. The unperturbed system is consistent, so btrue = Axtrue.

5. The generalized singular values of (A,L) decay to zero with no significant gap. The smallest

generalized singular values cluster at (machine) zero. This property is common for discrete

ill-posed problems - see [18, sect. 2.1.2].

6. The problem satisfies the discrete Picard condition [14].

7. The minimizers of the MSE (1.3) and the PMSE (1.4) are close to one another. This has

been demonstrated in numerous numerical experiments such as [25, 9] and can be proved

analytically for certain problems, as was done in [38] and [37, Sect. 8.4]. However, to the

best of our knowledge, no general characterization of cases in which the two minimizers

are close is available. Therefore, for the completeness of this presentation, we provide a

method for minimization of the MSE, in addition to the one minimizing the PMSE.

The Tikhonov minimization problem (1.2) is equivalent to the normal equation

(A∗A+ λ2L∗L)x = A∗b,

where ∗ denotes the conjugate transpose, thereby yielding the Tikhonov solution as

(2.5) x(λ) = (A∗A+ λ2L∗L)−1A∗b.

We can express (2.5) in a more convenient form, using the GSVD [28] of the pair (A,L). To

do so, let A ∈ Cm×n, and L ∈ Cp×n. Using these definitions, the GSVD of the matrices A and L



8 EITAN LEVIN AND ALEXANDER Y. MELTZER

is given by

(2.6) A = U




IA

SA

OA




Y −1, L = V




OL

SL

IL




Y −1,

where

• U ∈ Cm×m, V ∈ Cp×p are unitary,

• Y ∈ C
n×n is invertible,

• SA = diag{σr+1, σr+2, ..., σr+q} and SL = diag{µr+1, µr+2, ..., µr+q} are real diagonal ma-

trices (note that {σk} are not the singular values of A),

• OA ∈ C(m−r−q)×(n−r−q), OL ∈ C(p+r−n)×r are zero matrices,

• IA and IL are r × r and (n− r − q)× (n− r − q) identity matrices, respectively.

Note that the above zero and identity matrices can be empty. The values {σk}
r+q
r+1 are arranged in

decreasing order and {µk}
r+q
r+1 in increasing order so that

(2.7) 1 > σr+1 ≥ σr+2 ≥ ... ≥ σr+q > 0, 0 < µr+1 ≤ µr+2 ≤ ... ≤ µr+q < 1.

The pairs (σk, µk) satisfy the identity

(2.8) σ2
k + µ2

k = 1 ←→ ST
ASA + ST

LSL = Iq×q.

The quantities γk = σk/µk are the generalized singular values of the pair (A,L). According to (2.7)

the sequence {γk}
r+q
r+1 is arranged in decreasing order. Note, however, that the restriction of σk and

µk to (0, 1) does not apply to γk.

To relate the parameters r and q to the ranks of A and L, we observe that

A∗A = (Y −1)∗DAY
−1, L∗L = (Y −1)∗DLY

−1,
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where DA and DL are diagonal matrices of the following form -

DA = diag{1, ..., 1︸ ︷︷ ︸
r

, σ2
r+1, ..., σ

2
r+q︸ ︷︷ ︸

q

, 0, ..., 0︸ ︷︷ ︸
n−r−q

}, DL = diag{0, ..., 0︸ ︷︷ ︸
r

, µ2
r+1, ..., µ

2
r+q︸ ︷︷ ︸

q

, 1, ..., 1︸ ︷︷ ︸
n−r−q

}.

Since DA and DL constitute diagonalizations of A∗A and L∗L, it follows that the ranks of A∗A

and L∗L are equal to the number of nonzero elements in DA and DL, respectively, yielding the

relations





rank(A) = r + q,

rank(L) = n− r,

For simplicity, we denote the columns of the matrices Y and U by {yk}nk=1 and {uk}mk=1,

respectively. We also drop the indices from the column notations {·} when referring to the entire

column. The Fourier coefficients of the data and of the noise, with respect to the basis {uk}, are

denoted by βk = u∗
kb and νk = u∗

kn respectively. Using these definitions and the decomposition

(2.6), the Tikhonov solution can be written as

(2.9) x(λ) =

r∑

k=1

βkyk +

r+q∑

k=r+1

γ2
k

γ2
k + λ2

βk

σk
yk.

If L is nonsingular, the generalized singular values {γk} are the regular singular values of AL−1 [18,

sect. 2.1.2], [15]. In particular, if L = I the SVD of A is given by

A = U




SAS
−1
L

OA


V ∗,

where r = 0, SAS
−1
L = diag{γ1, . . . , γq} and the matrices OA, U and V are obtained from the

GSVD (2.6). Furthermore, denoting the columns of V by {vk} it is easy to show that yj = µjvj

for j ≤ rank(A) and yj = vj for j > rank(A). Thus, when L = I our expression for the Tikhonov
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solution (2.9) and the Fourier coefficients βk and νk coincide with the ones given in [33, 26].

The factors γ2
k/(γ

2
k + λ2) in (2.9) can be viewed as filters applied to the noisy data coefficients

βk, since they satisfy φr+1 ≈ 1 and φr+q ≈ 0, and thereby dampen the coefficients for large k.

While these coefficients correspond to the noise, the coefficients for small k correspond to the true

data and remain almost unchanged. In general, as discussed in [33], the coefficients can be replaced

with more general filter factors φk(λ, {σk}, {µk}), with a similar dampening effect. While we shall

focus on the Tikhonov filters in this paper, all our subsequent derivations can be easily generalized

to arbitrary filter factors such as those considered in [33].

3. Estimation of the regularization parameter. In this section we consider the problem

of choosing a near-optimal value of the regularization parameter λ in (2.9). The existence of such a

value of λ is guaranteed by the discrete Picard condition [14], [18, sect. 4.5], [33, sect. 2.1], which

requires the sequence {|βk − νk|} to decay faster than the generalized singular values {γk}. Since

according to assumption 5, we have γj ≈ 0 from some index j on, the discrete Picard condition

implies the existence of an index k0 ≤ j called the Picard parameter such that |βk − νk| < γk ≈ 0,

or equivalently, βk ≈ νk for all k ≥ k0. This property of the Picard parameter k0 is used below to

approximate the PMSE.

3.1. The Series Splitting method. We assess the quality of x(λ) by measuring the distance

(1.4) between the unperturbed data btrue = b− n and the predicted data

(3.10) Ax(λ) =

r∑

k=1

βkuk +

r+q∑

k=r+1

γ2
k

γ2
k + λ2

βkuk.

We can rewrite (1.4) as

PMSE(λ) = ||b− n−Ax(λ)||2

= ||n||2 + ρ(λ)− 2C(λ),(3.11)
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where

(3.12) ρ(λ) = ||b−Ax(λ)||2 =

r+q∑

k=r+1

λ4

(γ2
k + λ2)2

|βk|
2 +

m∑

k=r+q+1

|βk|
2,

is the squared residual norm,

(3.13) C(λ) = ℜ[n∗(b −Ax(λ))] =

r+q∑

k=r+1

λ2

γ2
k + λ2

ℜ(βkνk) +

m∑

k=r+q+1

ℜ(βkνk),

and ℜ(·) denotes the real part.

Noting that the term ||n||2 in subsection 3.1 is independent of λ and can therefore be neglected,

we find that it is sufficient to minimize

(3.14) g(λ) = ρ(λ)− 2C(λ).

A direct evaluation of g(λ) is not possible since the function C(λ) depends on the unknown noise

vector n. Nonetheless, we can approximate C(λ) accurately using the Picard parameter [33, 26].

Recalling that the Picard parameter k0 is the smallest index for which βk ≈ νk is satisfied for all

k ≥ k0, we can split the sequence {βk} into two parts - the first part {βk}
k0−1
k=1 , which contains

the information about the unperturbed data and the second part {βk}mk=k0
, which contains the

noise. Therefore, when k ≥ k0 we can approximate the unknown term in (3.13) by ℜ(βkνk) ≈ |βk|2.

When k < k0 however, the coefficients βk and νk differ significantly, so we choose to approximate

the term ℜ(βkνk) in (3.13) by replacing it with its expected value. Denoting the expected value by

E(·), and noting that βk = (βk − νk) + νk where βk − νk = u∗
kbtrue is not random, we can deduce
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using assumption 3 that

(3.15)

E(ℜ(βkνk)) = ℜ (E(βkνk))

= ℜ (E [(βk − νk)νk]) + ℜ
(
E(|νk|

2)
)

= ℜ


(βk − νk) E(νk)︸ ︷︷ ︸

=0


+ s2

= s2,

see [20, sect. 6.6], [33, 26]. Therefore, for given k0 and s2 we can approximate C(λ) by splitting

the series (3.13) similarly to [33] to obtain

(3.16) C(λ) ≈ s2
k0−1∑

k=r+1

λ2

γ2
k + λ2

+

r+q∑

k=k0

λ2

γ2
k + λ2

|βk|
2 +

m∑

k=r+q+1

|βk|
2.

The regularization parameter is then found by minimizing (3.14) using the approximation of C(λ)

given by (3.16).

We can show that k0 is limited to the interval [r + 1, r + q] and therefore it is always possible

to split C(λ) as in (3.16). To justify the lower bound, we note that the nullspace of L is spanned

by the vectors {yk}rk=1, as they constitute a set of r = dimN (L) linearly independent vectors

satisfying Lyk = 0. Since the vectors {yk}rk=1 are smooth (by assumption 2) and A has a typical

smoothing effect [18, p. 21], {uk}rk=1 are also smooth and satisfy Ayk = uk for k ≤ r. Therefore,

the smooth vector btrue is well-represented by vectors {uk}rk=1, while the non-smooth noise vector n

is represented mostly by uk with k > r. Thus, we have νk ≪ βk for k ≤ r, implying that βk−νk 6≈ 0

for k ≤ r and so, k0 ≥ r + 1. To justify the upper-bound, we note that γr+q is the last generalized

singular value of A which is numerically nonzero and, by assumption 5, γr+q ≈ ǫ where ǫ is the

machine zero. Thus, by the discrete Picard condition, βr+q − νr+q ≈ 0 and we can conclude that

k0 ≤ r+ q. If L = I as in [33, 26], we have r = 0 and therefore only the upper bound k0 ≤ rank(A)

is nontrivial. The SS algorithm is summarized in Algorithm 1.
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3.2. Approximate minimization of the MSE. As discussed above, our approach approx-

imately minimizes the PMSE (1.4), in contrast to the approach of [33, 26] which minimizes the

MSE (1.3) assuming L = I. To illustrate the difference between the two approaches and to give an

alternative method of solution for problems whose PMSE and MSE minimizers may not coincide,

we repeat the above derivation for the MSE and approximate it in the general case, L 6= I.

We begin with the observation that xtrue, the least-squares solution to Ax = btrue can be

expressed in the GSVD basis as

(3.17) xtrue =

r∑

k=1

(βk − νk)yk +

r+q∑

k=r+1

βk − νk
σk

yk.

We can rewrite (3.17) as

xtrue = x(0)− x̂,

where x(0) = xLS is the least-squares solution of the perturbed problem (1.1) obtained by substi-

tuting λ = 0 in (2.9) and

x̂ =
r∑

k=1

νkyk +

r+q∑

k=r+1

νk
σk

yk,

is the least-squares solution for the pure noise problem Ax = n. The MSE can then be expanded

as

(3.18) MSE(λ) = ρ̃(λ) + ||x̂||2 − 2D(λ),

where

(3.19) ρ̃(λ) = ||x(0)− x(λ)||2 =

r+q∑

j=r+1

r+q∑

k=r+1

y∗j yk

σjσk

λ4

(γ2
j + λ2)(γ2

k + λ2)
βkβj ,
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and

(3.20)

D(λ) = ℜ (x̂∗ (x(0)− x(λ))) =

r∑

j=1

r+q∑

k=r+1

y∗j yk

σk

λ2

γ2
k + λ2

ℜ(βkνj)

+

r+q∑

j=r+1

r+q∑

k=r+1

y∗j yk

σjσk

λ2

γ2
k + λ2

ℜ(βkνj).

The first term in (3.18), ρ̃(λ), can be readily evaluated while the second term, ||x̂||2, can be dropped

entirely as it does not depend on λ. The third term, D(λ) cannot be evaluated as it depends on the

coefficients νk of the unknown noise vector n as shown in (3.20) and must therefore be approximated.

To approximate D(λ) we first rewrite the sums in (3.20) as

(3.21)

D(λ) =
r∑

j=1

r+q∑

k=r+1

y∗j yk

σk

λ2

γ2
k + λ2

ℜ(βkνj) +

k0−1∑

k=r+1

||yk||2

σ2
k

λ2

γ2
k + λ2

ℜ(βkνk)

+




k0−1∑

j=r+1

k0−1∑

k=r+1
k 6=j

+

r+q∑

j=k0

r+q∑

k=k0




y∗j yk

σjσk

λ2

γ2
k + λ2

ℜ(βkνj).

When j ≥ k0, we can approximate the coefficients of the noise, νj , by the coefficients of the data,

βj , so that ℜ (βkνj) ≈ βkβj . However, when j < k0 we approximate terms involving νj in (3.21) by

replacing them with their expected value as we do for C(λ) in (3.16). The main difference is that

(3.16), in addition to the case j = k for which E(ℜ(βkνk)) = s2 as in (3.15), contains cross terms

with j 6= k. However these terms can be neglected since assumption 3 implies

E(ℜ(βkνj)) = ℜ (E(νkνj)) = ℜ (E(νk)E(νj)) = 0.

Consequently, we can drop the first and third sum in (3.21), approximate D(λ) as

(3.22) D(λ) ≈ D̃(λ) = s2
k0−1∑

k=r+1

||yk||2

σ2
k

λ2

γ2
k + λ2

+

r+q∑

j=k0

r+q∑

k=k0

y∗j yk

σjσk

λ2

γ2
k + λ2

βkβj ,

and estimate the minimum of the MSE in (3.18) by minimizing

g̃(λ) = ρ̃(λ) − 2D̃(λ).
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The problem with this approach is that (3.19) and (3.22) are numerically unstable due to the

division by σkσj for k, j ≥ k0. Specifically, due to the ill-conditioning of A, the values {σj} decay

quickly to zero2 so that σr+q ≈ ǫ. Therefore, terms that include division by σkσj for large j

and k completely dominate the value of g̃(λ) and, due to finite machine precision, eliminate the

contribution of the terms with small j and k. This contrasts with the fact that for a desirable

choice of λ, the solution x(λ) should be smooth and its error should therefore depend significantly

on terms with j, k < k0. To circumvent this problem, we drop the terms with j, k ≥ k0 in the sums

(3.19) and (3.22), similarly to [33], so that

ρ̃(λ) ≈ ρ̂(λ) =

k0−1∑

j=r+1

k0−1∑

k=r+1

y∗j yk

σjσk

λ4

(γ2
j + λ2)(γ2

k + λ2)
βkβj ,

D̃(λ) ≈ D̂(λ) = s2
k0−1∑

k=1

||yk||2

σ2
k

λ2

γ2
k + λ2

,

and minimize ĝ(λ) = ρ̂(λ) − 2D̂(λ), thereby retaining only terms in which σk is relatively large.

Note that if L = I, the above method of minimizing ĝ(λ) becomes identical to Algorithm 1 in [33]

(implemented with the Tikhonov filter factors).

In spite of the resulting numerical stability of the above scheme upon dropping of terms with

j, k ≥ k0, we lose information that might have improved the accuracy of the approximation of the

MSE if there was no instability. In contrast, no such division by σjσk is necessary for minimization

of PMSE(λ) (1.4), in which case we can retain all the terms upon the series splitting in (3.16).

Thus, we expect our approximation (3.14) of norm (1.4) to yield a better estimate of λ compared

to the approximation minimizing ĝ(λ), where there is no discrepancy between the minimal of MSE

2More precisely, assumption 6 requires γr+q ≈ ǫ, but since γr+q = σr+q/µr+q and µr+q =
√

1− σ2
r+q

by (2.8),

we have σr+q ≈ ǫ
√
1− ǫ2 ≈ ǫ.
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and PMSE. This situation is quite common, as it is shown in [37, Sect. 8.4] and [38] that the

PMSE in (1.4) and the MSE (1.3) have approximately the same minimizer in a variety of settings,

and numerical results supporting this are available in e.g. [25, 9]. We therefore focus below on

minimizing the PMSE and not the MSE, and demonstrate in the numerical examples of section 5

that this approach yields superior results.

3.3. Estimating the Picard parameter and the variance of the noise. We begin with

a brief discussion of the methods for estimation of the Picard parameter k0, suggested in [33].

The Picard parameter can be graphically deduced from the plot of the sequence {βk} versus k.

Specifically, due to the discrete Picard condition, the plot of {βk} is expected to decay on average

with increasing index and to level-off at the Picard parameter. This levelling-off can be found

manually from the plot, see [33, sect. 2.2]. The drawback of this approach is that due to the

significant variance of plot {βk} the point at which the plot levels-off cannot be unambiguously

determined. In order to reduce this ambiguity, as well as to automate the method, it is suggested

in [33, sect. 2.3] to use the Lilliefors test for normality on subsequences of {βk}. Specifically, this

method sets k0 to the smallest index for which the sequence {βk}mk=k0
is dominated by Gaussian

noise. By applying the Lilliefors test at 95% confidence to the sequences {βk}mk=j for j = m −

3,m− 2, ..., 1, the Picard parameter k0 is chosen to be the smallest index after which the test fails

10 consecutive times. If the test fails immediately at j = m − 3, it is proposed to set k0 = m + 1

and s2 = 0, which signifies that the data is noiseless. Alternative tests that assume distributions

different from the Gaussian distribution can be utilized in a similar way [33]. Once k0 is found, the

variance s2 can be estimated as the sample variance of the sequence {βk}mk=k0
using the expression

(3.23) s2 ≈
1

m− k0 + 1

m∑

k=k0

|βk|
2
,
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where we note that, according to assumption 3, the noise terms {νk} have a zero mean, and therefore

the mean of the sequence {βk}mk=k0
≈ {νk}mk=k0

is negligible.

One can improve the accuracy of the method described above by initializing the estimate of

k0 to its lower bound r + 1 and applying the Lilliefors test to the sequences {βk}mk=j for j =

r + 1, r + 2, ..., r + q at a 99.9% confidence level. The value of k0 is set to the smallest index j

for which the Lilliefors test indicates that the sequence is normally distributed. If the test fails for

j = r+ q, we set k0 = r+ q and s2 = 0. Once k0 is estimated, we can find the variance using (3.23).

This modified algorithm is summarized in Algorithm 2.

The dependence of the estimation of the Picard parameter upon statistical tests can be avoided

using the following new method. This method is based on an averaging of the Fourier coefficients,

which reduces the variance of the sequence {|βk|
2} (see Figure 1(a)), enabling more reliable auto-

matic detection of the levelling-off of these coefficients. We note first that the sequence {|βk|2}

decreases on average until it levels-off at k0 and oscillates about s2 with a non-negligible variance.

To show this, we observe that

E(|βk|
2) = E

(
|βk − νk|

2
)
− E

(
|νk|

2
)

︸ ︷︷ ︸
=s2

+2 E (ℜ (βkνk))︸ ︷︷ ︸
=s2

= |βk − νk|
2 + s2.

Therefore, due to the discrete Picard condition, the expected value E(|βk|2) must decrease on

average with increasing k and become constant at s2 for k ≥ k0. While the actual curve of |βk|2

deviates from its expected value, these deviations are random and thus the curve of |βk|2 oscillates

about its expected value. This implies that the general trend of E(|βk|2) to decrease on average and

to level-off also applies to |βk|2, which, in its turn, justifies the graphical method of [33]. However,

instead of flattening at k0 as E(|βk|2), the curve of |βk|2 oscillates about s2 for k ≥ k0 with a
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non-negligible variance given by

(3.24) Var
(
|βk|

2
)
≈ µ4 − s4, for k ≥ k0,

where µ4 = E(|βk|4) = E(|νk|4) is the fourth moment of the noise distribution. For the derivation

of (3.24) we again use βk ≈ νk for k ≥ k0. In particular, for Gaussian noise we have µ4 = 3s4 and

therefore Var(|βk|2) = 2s4. Thus, due to the significant variance of the sequence {|βk|2}mk=k0
, any

estimation of k0 from the levelling-off of {|βk|2} is prone to error. Therefore, instead of {|βk|2}, we

consider the sequence of averages {V (k)} given by

(3.25) V (k) =
1

m− k + 1

m∑

j=k

|βj |
2.

Since the sequence {|βk|2} decays on average, so does the sequence {V (k)}. To demonstrate this,

we note that

(3.26) E(V (k)) =
1

m− k + 1

k0∑

j=k

|βj − νj |
2 + s2,

and since {|βj − νj |} decays on average, so does V (k), as follows from the inequality

1

m− k1 + 1

k0∑

j=k1

|βj − νj |
2 >

1

m− k2 + 1

k0∑

j=k2

|βj − νj |
2, for k1 < k2 < k0.

In addition, (3.26) implies that V (k) ≈ s2 for k ≥ k0 and therefore the sequence {V (k)} levels-

off at k0 and oscillates about s2, similar to {|βk|2}. However, the variance of V (k) for k ≥ k0

is significantly smaller compared to that of |βk|2, making its curve significantly flatter and more

suitable for the estimation of k0 and s2. Specifically, the variance of V (k) for k ≥ k0 is given by

Var(V (k)) =
µ4 − s4

m− k + 1
=

1

m− k + 1
Var(|βk|

2), for k ≥ k0,
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and for the Gaussian noise it is

Var(V (k)) =
2s4

m− k + 1
.

Since the variance decays as 1/(m − k + 1) the curve of V (k) remains practically flat for a wide

range of indices k.

In Figure 1 we illustrate the difference between the sequences {|βk|2} and {V (k)} for estimation

of the Picard parameter. Even though both sequences decrease on average until they level-off and

oscillate about s2, the plot of {V (k)} shown in Figure 1(a) remains almost constant for k ≥ k0,

whereas {|βk|2} shown in Figure 1(b) oscillates with a significant variance. Due to these oscillations

the exact point at which the plot of {|βk|2} levels-off cannot be unambiguously determined. In

contrast, V (k) in Figure 1(a) flattens almost completely and therefore the point at which it levels-

off is easily found to be k0 ≈ 17. Note that the nonzero variance of V (k) becomes significant at

about k ≈ 940, where Var (V (k)) ≈ s4/40.

To estimate k0 from the flatness of V (k) we suggest the following simple rule. We set k0 to the

smallest index for which the relative change in V (k) is small enough, so that

(3.27)
|V (k + h)− V (k)|

V (k)
< ε,

for some bound ε, where we require k ≤ m − h in (3.27). If V (k) does not satisfy (3.27) for any

r+1 ≤ k0 ≤ min(r+ q,m− h) we set k0 = r+ q and s2 = 0. The upper bound of k0 arises because

it should satisfy k0 ≤ r + q, as discussed in section 3, and k0 ≤ m − h due to (3.27). Once k0 is

found using (3.27), we estimate the variance as s2 ≈ V (k0) which follows from (3.23).

Condition (3.27) depends on two free parameters, h and ε. Step size h must be large enough

to ensure that the flattening of V (k) is not due to random oscillations. However, it also needs to

be small enough, h < r + q − k0, so as not to exclude the flat part of V (k) from consideration.



20 EITAN LEVIN AND ALEXANDER Y. MELTZER

Similarly, the value of ε has to be small enough to detect the levelling off of V (k) but large enough

to account for its small but nonzero variance. In practice however, we found the criterion (3.27) to

be robust to the choice of ε and h. We summarize the above procedure for estimation of k0 and s2

in Algorithm 3. Note that the estimate of k0 from Algorithm 3 is used as input into Algorithm 1

of subsection 3.1.

Algorithm 1 The SS method

Input: A,L, b, ε, h

Output: xSS

[m,n]← size(A) ⊲ size = [no. of rows, no. of columns]

r ← n− rank(L)

q ← rank(A) + rank(L)− n

[{σk}, {µk}, {yk}, {uk}]← GSVD(A,L) ⊲ Perform GSVD of the pair (A,L)

{γk} ← {σk/µk} ⊲ Define the generalized singular values

{βk} ← {u∗
kb} ⊲ Define the Fourier coefficients of b with respect to {uk}

x(λ) =
∑r

k=1 βkyk +
∑r+q

k=r+1
γ2
k

γ2
k
+λ2

βk

σk

yk ⊲ Define the Tikhonov solution as in (2.9)

ρ(λ) = ||b−Ax(λ)||2 ⊲ Define ρ(λ) as in (3.12)

⊲ Get k0 and s2 from Algorithm 3 or alternative algorithms such as Algorithm 2:

[k0, s
2]← Algorithm 3({βk}, r, q, ε, h)

Ĉ(λ) = s2
∑k0−1

k=r+1
λ2

γ2
k
+λ2 +

∑r+q
k=k0

λ2

γ2
k
+λ2 |βk|2 +

∑m
k=r+q+1 |βk|2 ⊲ Define Ĉ(λ) as in (3.13)

g(λ) = ρ(λ) − 2Ĉ(λ) ⊲ Define the function to be minimized as in (3.14)

λfound ← argminλ g(λ) ⊲ Find λ minimizing g(λ)

xSS ← x(λfound)
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Algorithm 2 Estimating the Picard parameter using the Lilliefors test

Input: {βk}, r, q

Output: k0, s
2

k0 ← r + 1 ⊲ Initialize the Picard parameter k0 to its lower bound

while lilliefors
(
{βk}mk=k0

, 0.999
)
6= 0 and k0 < r + q + 1 do

⊲ lilliefors({·},.999) returns 1 if the Lilliefors test rejects the null hypothesis at 99.9%

⊲ confidence level and 0 otherwise

k0 ← k0 + 1

end while

if k0 = r + q + 1 then ⊲ Check whether k0 exceeds the upper bound

s2 ← 0 ⊲ If yes, data is noiseless

k0 ← r + q

else

s2 ←
(∑m

k=k0
|βk|2

)
/(m− k0 + 1) ⊲ Otherwise estimate the variance s2 as in (3.23)

end if

3.4. The Data Filtering method. In this section we describe the Data Filtering (DF)

method for minimization of (1.4), which generalizes the SS method. In the DF method we minimize

the norm

(3.28) f̂(λ) = ||b̂ −Ax(λ)||2,

where b̂ is the filtered perturbed data. The Picard parameter is used to directly approximate the

true data b − n ≈ b̂, instead of approximating the noise-dependent terms in (1.4), as done in

subsection 3.1. We assume that the sequence {βk}
k0−1
k=1 is dominated by the signal and can be

regarded as the true data in basis {uk}, while the sequence {βk}mk=k0
is dominated by noise. To
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Algorithm 3 Estimating the Picard parameter using the sequence {V (k)}k=r+q
k=r+1

Input: {βk}, r, q, ε, h

Output: k0, s
2

k0 ← r + 1 ⊲ Initialize the Picard parameter k0 to its lower bound

V (k) =
(∑m

j=k |βj |2
)
/(m− k + 1) ⊲ Define V (k) as in (3.25)

while |V (k0 + h)− V (k0)|/V (k0 + 1) ≥ ε and k0 < r + q − h+ 1 do

k0 ← k0 + 1 ⊲ Increase k0 as long as the condition (3.27) is not satisfied and k0 is below

⊲ the upper bound

end while

if k0 = r + q + 1 then ⊲ Check whether k0 exceeds the upper bound

s2 ← 0 ⊲ If yes, data is noiseless

k0 ← r + q

else

s2 ← V (k0) ⊲ Otherwise estimate the variance s2 as V (k0)

end if

approximate b−n we drop the noise-dominated terms from the expansion of b in terms of the basis

{uk} to obtain the approximation

(3.29) b̂ =

k0−1∑

k=1

βkuk.

The norm (3.28) can then be written as

f̂(λ) =

k0−1∑

j=r+1

λ4

(γ2
j + λ2)2

β2
j +

r+q∑

j=k0

γ4
j

(γ2
j + λ2)2

β2
j .
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The DF method is summarized in Algorithm 4. Note that the DF method can be generalized to

use various data filters to obtain b̂ and various regularization methods to obtain x(λ). Therefore,

minimization of norm (3.28) represents a new general approach for the estimation of λ and will be

addressed in more detail in a forthcoming work.

Algorithm 4 The DF method

Input: A,L, b, ε, h

Output: xDFA

[m,n]← size(A) ⊲ size = [no. of rows, no. of columns]

r ← n− rank(L)

q ← rank(A) + rank(L)− n

[{σk}, {µk}, {yk}, {uk}]← GSVD(A,L) ⊲ Perform GSVD of (A,L)

{γk} ← {σk/µk} ⊲ Define the generalized singular values

{βk} ← {u
∗
kb} ⊲ Define the Fourier coefficients of b with respect to {uk}

⊲ Get k0 from Algorithm 3 or from alternative algorithms such as Algorithm 2 or the algorithm

of [33].

k0 ← Algorithm 3({βk}, r, q, ε, h)

b̂←
∑k0−1

k=1 βkuk ⊲ Get filtered data as in (3.29)

x(λ) =
∑r

k=1 βkyk +
∑r+q

k=r+1
γ2
k

γ2
k
+λ2

βk

σk

yk ⊲ Define Tikhonov solution as in (2.9)

f̂(λ) = ||b̂ −Ax(λ)||2 ⊲ Define the function to be minimized

λfound ← argminλ f̂(λ) ⊲ Find λ minimizing f̂(λ)

xDFA ← x(λfound)

4. Relation to other methods. In this section we describe the relationship between the SS,

the SURE and the GCV methods. In particular, we show that similarly to the SS method, the
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SURE and the GCV methods minimize an approximation of PMSE(λ) in (1.4). As discussed in

section 3, the SS method approximates (1.4) by using the Picard parameter to split C(λ) in (3.13)

and by taking the expected value of only part of the sum, as written in (3.16). In contrast, the

SURE method approximates PMSE(λ) by taking the expected value of ||n||2 and of the whole C(λ)

without splitting it. The SURE method thus minimizes the function

(4.30) SURE(λ) = ρ(λ) +ms2 − 2s2T (λ),

where

(4.31) T (λ) =
E(C(λ))

s2
= m− rank(A) +

r+q∑

k=r+1

λ2

γ2
k + λ2

.

To conclude, the SS method uses a more accurate approximation of C(λ) since the sums containing

|βk|
2 in (3.16) capture at least part of the true, oscillatory behavior of ℜ(βkνk) in (3.13), in contrast

to the SURE method, which replaces these terms with a constant.

Another popular method for determining λ is the GCV [37, 11], which relies on the minimization

of the function

(4.32) G(λ) =
ρ(λ)

(T (λ))2
,

where ρ(λ) is defined in (3.12) and T (λ) is defined in (4.31). Despite the difference in forms

between the SURE and the GCV functions, it can be shown that their minima are close to each

other. Specifically, it is easy to show that

T (λ) = trace(I −Hλ),

whereHλ = A(A∗A+λ2L∗L)−1A∗. To do so, we note that (2.5) implies Hλb = Ax(λ) and therefore,
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recalling that βk = u∗
kb, we can rewrite (3.10) as

(4.33) Hλb =

(
r∑

k=1

uku
∗
k +

r+q∑

k=r+1

γ2
k

γ2
k + λ2

uku
∗
k

)
b.

Since (4.33) holds for any b ∈ Rm, we conclude that

Hλ =
r∑

k=1

uku
∗
k +

r+q∑

k=r+1

γ2
k

γ2
k + λ2

uku
∗
k.

Since U is unitary, we can write

I = UU∗ =
m∑

k=1

uku
∗
k,

and therefore,

(4.34) I −Hλ =

r+q∑

k=r+1

λ2

γ2
k + λ2

uku
∗
k +

m∑

k=r+q+1

uku
∗
k.

Expressing (4.34) in basis {uk}, we find that

U∗ (I −Hλ)U =

r+q∑

k=r+1

λ2

γ2
k + λ2

(U∗uk) (u
∗
kU) +

m∑

k=r+q+1

(U∗uk) (u
∗
kU)

=

r+q∑

k=r+1

λ2

γ2
k + λ2

eke
∗
k +

m∑

k=r+q+1

eke
∗
k,

where {ek}mk=1 is the standard basis. Noting that eke
∗
k = diag{0, . . . , 0︸ ︷︷ ︸

k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−k

}, we obtain the

desired result

trace(I −Hλ) = trace (U∗(I −Hλ)U) =

r+q∑

k=r+1

λ2

γ2
k + λ2

+m− (r + q)︸ ︷︷ ︸
=rank(A)

= T (λ).

The function T (λ) is equivalent to the residual effective degrees of freedom used in regression

analysis, see [37, p. 63]. Therefore, the approximation

(4.35)
ρ(λ∗)

T (λ∗)
≈ s2
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holds when λ∗ is the argument of the minimum of (4.32), see [37, sect. 4.7], [15, sect. 6.3].

Differentiating (4.30) and (4.32) twice, and using the approximation (4.35) and the fact that

T (λ), T ′(λ), ρ′(λ) > 0 for all λ 6= 0, it is easy to show that the local minima of both SURE(λ)

in (4.30) and G(λ) in (4.32) satisfy

ρ′(λ∗) = 2s2T ′(λ∗), and ρ′′(λ∗)− 2s2T ′′(λ∗) > 0.

This result implies that both the GCV and the SURE methods have a local minimum at λ∗. In

practice, the global minimum coincides with this local minimum or is located very close to it.

Therefore, we conclude that the GCV method is approximately equivalent to the SURE method

and, consequently, that it too relies on replacing C(λ) in (3.13) with its expected value s2T (λ) in

(4.31). Thus, both the SURE and the GCV rely on an inferior approximation of C(λ), compared

with our SS method as explained above. For additional analysis of the relation between the SURE

method and the GCV method see [24].

5. Numerical examples. In this section we present the results of the Tikhonov regularization

with the regularization parameter estimated using the following methods:

• Regularization with the optimal regularization parameter minimizing the MSE (1.3) (TikhOPT );

• The SS method minimizing the PMSE with k0 and s2, estimated by either Algorithm 3

(SSP3), Algorithm 2 (SSP2) or the algorithm that uses the Lilliefors test from [33] (SSPL);

• The SS method minimizing the MSE with k0 and s2, estimated by either Algorithm 3

(SSM3), Algorithm 2 (SSM2) or the algorithm that uses the Lilliefors test from [33] (SSML);

• The DF method with k0 and s2, estimated using Algorithm 3;

• The GCV method;

• The SURE method with s2, estimated using Algorithm 3.
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To implement Algorithm 3, we set ε = 5× 10−2 and h = ⌈m/50⌉. The method however is generally

robust to changes of up to an order of magnitude in these quantities. We also note that occasionally,

the algorithm for estimation of k0 given in [33] returns indices outside the interval [r+1, r+ q]. In

these cases we set k0 to either r + 1 or r + q, depending on which is closer to the estimated k0.

We test the above detailed methods on four test problems. The first problem is two-dimensional

while the other three are one-dimensional problems taken from the Regularization Tools package

[17]:

• The mri test problem, an image-deblurring problem with the test image of size 128× 128

taken from Matlab’s image processing toolbox. The coefficient matrix A is chosen to be the

separable Gaussian blur used in [22, Sect. 5], which has full rank with condition number

cond(A) = 3.13× 1016. We set L = I to allow for a fair comparison to [33] and note that

this is a relatively large-scale problem.

• The gravity test problem for which we set L = D(1), where D(m) is the finite difference

approximation of the mth derivative operator. This problem, while relatively small-scale,

is severely rank-deficient with rank(A) = 45 for A ∈ R
1000×1000.

• The phillips test problem, first introduced in [29], for which we set L = D(2). For this

example, the coefficient matrix has full rank with cond(A) = 2.64×1010 for A ∈ R1000×1000.

• The heat test problem, for which we also set L = I. This problem is only mildly rank-

deficient with rank(A) = 588 for A ∈ R
1000×1000.

For each problem, we add white Gaussian noise of zero mean and a variance of s2 = αmax{|btrue|2},

where α ∈ {10−2, 10−4, 10−6}. We thus present a total of twelve tests and for each test we generate

100 independent noise realizations.

To find the global minima of the functions associated with the above methods, we use the
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following algorithm. First, we evaluate a function on a sparse grid consisting of 1000 logarithmically

spaced points between 10−15 to 105. We then apply Matlab’s fminbnd solver with TolX of 1e-9 on

11 point intervals centered about each local minima found on the grid. Finally, we choose the value

of λ corresponding to the global minimum found by the solver.

To assess the performance of each method, we use the mean-square deviation (MSD) defined

as

(5.36) MSD(λ) =
||xtrue − x(λ)||2

||xtrue||2
.

The optimal solution is then defined as the one minimizing the MSD (5.36), which also minimizes

the MSE, since xtrue does not depend on λ.

5.1. Results. In Figure 2, we present the results of our simulations by means of boxplots of

the MSD values in log scale. Boxplots graphically depict the results by splitting them into quartiles

so that each box spans the range between the first and third quartiles, termed the interquartile

range (i.e., the middle 50% of the data). The horizontal line in each box denotes the median and

the error bars span 150% of the interquartile range above the third quartile and below the first

quartile. Any point outside this interval is denoted by ’+’ and considered an outlier. We truncate

the y-axis at MSD = 1 and present the number of truncated points for each method in Table 1.

For the mri test problem and noise level α = 10−2, we also show the reconstructed images and the

error images |xtrue − x(λ)| (with the absolute value applied pixel-wise) for all methods in Figure 3

and Figure 4, respectively.

From the results in Figure 2, we can make the following observations:

1. The SSP3 method performs consistently better than or very similarly to SSP2, and both

outperform SSPL, which tends to fail in a significant percentage of cases, as can also be

seen in Table 1.
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2. For the heat problem with L = I (Figure 2(j)-(l)), the method SSML coincides with

Algorithm 1 from [33], enabling a fair comparison to our methods. The MSE minimizing

algorithms SSM2 and SSM3 are more accurate than SSML, however they are far from the

optimal Tikhonov solution. Only by using both the minimization of the PMSE and our

novel Picard estimation algorithm we obtain an almost optimal solution.

3. The DF method performs almost identically to SSP3 when both methods employ the same

algorithm to estimate the Picard parameter.

4. The SS methods that minimize the PMSE with the Picard parameter, found using any of

the algorithms, performed similarly to or better than their counterparts minimizing the

MSE in the majority of cases. The exceptions are the gravity example in Figure 2(d)-(f)

and the phillips example with α = 10−2 in Figure 2(g). In the gravity example, the

median of these methods is approximately the same, but the MSD values of the SS methods

minimizing the MSE deviate more from the median compared to those of the SS methods

minimizing the PMSE, both upwards and downwards. For the phillips example with

α = 10−2, minimizing the MSE has a small advantage which is lost for lower noise levels.

However, minimization of the PMSE also produces good results.

5. In contrast to the consistent advantage of SSP3 over the SSP2 method, SSM3 does not

consistently outperform SSM2. For example, in the heat test problem with noise levels

α = 10−2 and α = 10−6 the SSM2 is more accurate than the SSM3 method. This is due to

the fact that, contrary to the SS method minimizing the PMSE where the Picard parameter

is only used to split the sum C(λ), in the SS method that minimizes the MSE the sums ρ̃(λ)

and D̃(λ) are truncated. The truncation, even at the exact Picard parameter, decreases

the accuracy of the approximation due to the lost terms. Hence, an overestimation of the
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Picard parameter will definitely decrease the accuracy of the PMSE approximation but may

improve it for the MSE approximation by including a small number of additional terms in

the minimized function, as long as division by small σjσk does not cause instability.

6. While the algorithm of [33] for estimation of the Picard parameter is inferior to Algorithm 2

and Algorithm 3, it performs better with the SS method minimizing the PMSE (SSPL) than

the one minimizing the MSE (SSML), and as shown in Table 1 is also more consistent. This

difference is explained as above by the fact that truncation of the MSE approximation at the

estimated Picard parameter leads to exclusion of a part of the high frequency information

from the minimization target function.

7. Both SSP3 and the DF method outperformed the GCV and the SURE methods, which

do not split the sums of the PMSE expansion as in (3.16). In addition, the GCV and the

SURE methods performed almost identically, as expected from the discussion in section 4.

To conclude, our numerical examples clearly demonstrate the advantage of our new algorithm

for estimation of the Picard parameter and of our approximation of the PMSE for both L = I and

L 6= I.

6. Conclusions. We generalized the approach taken in [33] to estimate the regularization

parameter for the general-form Tikhonov regularization. While the authors of [33] approximately

minimize the MSE, we show that such an approximation is numerically unstable in this generalized

setting and propose to approximately minimize the PMSE instead. We develop two algorithms to

stably approximate the PMSE, which we term the Series Splitting (SS) and Data Filtering (DF)

methods, using the concept of the Picard parameter. While the two methods perform very similarly

in the present framework, in which the SVD of the coefficient matrix A is available, DF can be

naturally generalized to large-scale problems, in which computing this SVD is prohibitive. This will
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be the subject of future work. We also present an algorithm similar to SS for a stable approximate

minimization of the MSE, although the resulting approximation is less accurate than that for the

PMSE due to the need to drop the numerically unstable terms. This algorithm can be used in

the rare cases when the minimizers of the PMSE and MSE are far apart. The accuracy of all of

these methods depends on the estimation of the Picard parameter, for which we proposed a novel

algorithm based on an estimate of the variance of the noise.

Our methods were tested on multiple numerical examples and compared to the methods of [33],

the GCV and the SURE. The numerical results indicate that, in contrast to other methods, the

SS and the DF methods consistently produce near-optimal results for all test problems and noise

realizations.
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Figure 1: Comparison of (a) log V (k) and (b) log |βk|
2 for the test problem heat from [17], corrupted with white Gaussian noise with

s2/max{|btrue;k|
2} = 10−4. Here, we use L = I as in [33]. The non-negligible fluctuations of |βk|

2 in (b) and in contrast, almost flat

V (k) in (a) are clearly seen.
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Figure 2: Boxplots of the MSD values of the reconstructions of the following examples, first row : mri; second row : gravity; third row :

phillips; fourth row : heat. The noise levels presented are first column: α = 10−2; second column: α = 10−4; third column: α = 10−6.
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Figure 3: Reconstructed images for the mri test problem for noise level α = 10−2. The MSD values (5.36) are listed in parentheses.

Figure 4: Error images |xtrue − x(λ)| (black = 0) for the mri test problem for noise level α = 10−2 .
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Table 1: Number of points with MSD values larger than 1 out of a total of 100 points for each method. These points were truncated

from the boxplots in Figure 2. The row abbreviations are consistent with those in Figure 2.

❛
❛
❛
❛
❛
❛
❛❛

Fig.
Met. SSP3 SSP2 SSPL SSM3 SSM2 SSML DF GCV SURE

(a) 0 0 0 0 0 42 0 0 0

(b) 0 0 0 0 0 28 0 0 0

(c) 0 0 0 0 0 24 0 0 0

(d) 0 0 5 0 0 31 0 6 6

(e) 0 0 1 0 0 32 0 3 3

(f) 0 0 5 0 0 29 0 5 5

(g) 0 0 2 0 1 25 0 8 6

(h) 0 0 2 0 0 31 0 4 4

(i) 0 0 1 0 0 24 0 1 0

(j) 0 0 1 0 0 30 0 1 0

(k) 0 0 3 0 0 25 0 0 0

(l) 0 0 2 0 0 25 0 0 0
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