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Abstract

We study the Vlasov-Poisson-Fokker-Planck system with uncertainty and multiple scales.

Here the uncertainty, modeled by random variables, enters the solution through initial data,

while the multiple scales lead the system to its high-field or parabolic regimes. With the help

of proper Lyapunov-type inequalities, under some mild conditions on the initial data, the

regularity of the solution in the random space, as well as exponential decay of the solution

to the global Maxwellian, are established under Sobolev norms, which are uniform in terms

of the scaling parameters. These are the first hypocoercivity results for a nonlinear kinetic

system with random input, which are important for the understanding of the sensitivity of

the system under random perturbations, and for the establishment of spectral convergence

of popular numerical methods for uncertainty quantification based on (spectrally accurate)

polynomial chaos expansions.

Key words. Vlasov-Poisson-Fokker-Planck system, Uncertainty Quantification, random input,

hypocoercivity
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1 Introduction

In this paper we are interested in the Vlasov-Poisson-Fokker-Planck (VPFP) system with

random inputs. The VPFP system describes the Brownian motion of a large system of particles

in a surrounding bath. One of the applications is in electrostatic plasma, in which one considers

the interactions between the electrons and a surrounding bath via the Coulomb force [4]. The

uncertainty in a kinetic equation can arise from the initial and boundary data, the forcing term,
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collisional kernels, etc, due to modeling and measurement errors. In this paper we will mainly

focus on the case in which the initial data contain random inputs, modeled by random variables

with given probability density functions. The goal is to understand the regularity of the solution

in the random space, as well as its long-time behavior. Such a study is important in order

to understand the sensitivity of the system under random perturbations. It is also the basis to

study the convergence of numerical schemes for such problems, for example, the popular methods

for uncertainty quantification, such as polynomial chaos expansion based stochastic Galerkin or

stochastic collocation methods [10, 13, 30, 29], which enjoy a spectral convergence, if the solution

has the desired regularity in the random space.

While there have been many developments in the regularity of the solution to elliptic or

parabolic equations with uncertainties [2, 5, 6], such study has been scarce for hyperbolic type

equations [11, 27, 31, 3, 7] because of the poor regularity of the solution. The uncertainty quantifi-

cation, while popular in many types of partial differential equations, has seldomly been studied

for kinetic equations until very recently [33, 14, 21, 20]. Typically kinetic equations possess

multiple scales, leading to various different asymptotic regimes, demanding carefully designed

numerical methods to handle different asymptotic behavior of the equations. For deterministic

kinetic equations, one efficient multiscale paradigm is the Asymptotic-Preserving schemes, which

mimic the asymptotic transitions from kinetic equations to their diffusion or hydrodynamic limits

in the numerically discrete space [16, 17]. This concept was extended to random kinetic equa-

tions in [21], in the framework of stochastic Asymptotic-Preserving methods. Convergence study

of these methods clearly requires the understanding of the regularity of the solution. Moreover,

the correct asymptotic behavior of the numerical methods in various asymptotic regimes also re-

quire the understanding of the long time behavior, and how the decay rates depend on the small

scaling parameters. For linear transport equation with random isotropic scattering in diffusive

regime, such regularity and asymptotic behavior were first studied in [18], in which the regularity

of the solution was established, as well as its exponential decay toward the local equilibrium,

all uniformly in the mean free path (or Knudsen number). Uniform regularity for the semicon-

ductor Boltzmann equation, in which the scattering is anisotropic and random, was established

in [19]. Called hypocoercivity by Villani [28], the property of uniform exponential decay toward

the global equilibrium [8] was further explored in [22] for general linear kinetic equations with

uncertainty. So far there has been no work on hypocoercivity for nonlinear kinetic equations

with uncertainty with uniform (in small scaling parameters) estimate. The purpose of this paper

is to conduct such a study for the nonlinear VPFP system with random initial input.

Depending on different scales, the VPFP system possesses two distinguished asymptotic

limits, the high field limit and the parabolic limit. We will treat these different scalings in a

unified framework. With the help of proper Lyapunov-type inequalities, we first develop two

energy estimates for the microscopic (VPFP) and macroscopic (limiting) systems, which allows

us to obtain the uniform–in terms of the scaling parameters–regularity in the random space of

the perturbative solution of the nonlinear VPFP system near the global Maxwellian. Under some

mild conditions on the initial data, we found that the solution will decay exponentially to the

global Maxwellian in a rate independent of the small scaling parameter. Our results also reveal

that the initial random perturbation will die out exponentially in time, uniformly in the scaling

parameter, thus the solution is insensitive to the initial random perturbation, in all asymptotic

regimes.

2



For the deterministic VPFP system, the regularity and convergence toward the global Maxwellian

or asymptotic limits were conducted in, for examples, [1, 9, 12, 23, 26, 15, 25]. Our energy es-

timates rely on the hypocoercivity results of [9], and the energy estimates in [15] with suitable

modification to effectively separate the microscopic and macroscopic scales in order to get better

estimates in the asymptotic regimes. When the small scaling parameters are involved, which

was not considered in [15], it is crucial to get rid of the bad dependence on these parameters in

the initial condition and rate of convergence to the global equilibrium. Therefore we have not

only extended the regularity results to the random space, but also improved the micro-macro

energy estimates by separating the microscopic energy from the macroscopic energy suitably,

so when the small scales are involved, we can get uniform convergence rate towards the global

equilibrium, and a milder initial condition at the same time. As a result, we get an exponential

decay of the perturbative solution–independent of the small parameter– under some mild initial

condition, which leads to a uniform regularity of the solution in random space for both high field

and parabolic limits.

In this paper, for clarity of the presentation and notations, we carry out all analysis in one

space dimension for all independent variables. Its extension to higher dimension in x, v and z is

straightforward with some changes of the constants (see [32] for example).

This paper is organized as follows. Section 2 gives an introduction of the VPFP system with

uncertainty and its two different asymptotic regimes. The main results are stated in Section 3.

Then in Sections 4 - 5 we prove the energy estimates from microscopic and macroscopic systems

respectively. The uniform regularity of the perturbative solution is obtained in Section 6.

2 The VPFP System with Uncertainty and Asymptotic

Scalings

2.1 The VPFP System with Uncertainty

In the dimensionless VPFP system with uncertainty, the time evolution of particle density

distribution function f(t, x, v, z) under the action of an electrical potential φ(t, x, z) satisfies







∂tf + 1
δ v∂xf − 1

ǫ∂xφ∂vf = 1
δǫFf,

−∂2
xφ = ρ− 1, t > 0, x,v ∈ R, z ∈ Iz ⊆ R,

(2.1)

with initial data:

f(0, x, v, z) = f0(x, v, z), x, v ∈ R, z ∈ Iz ⊆ R. (2.2)

The distribution function f(tx, v, z) depends on time t, position x, velocity v and random

variable z. φ(t, x, z) is a self-consistent electrical potential and ρ(t, x, z) is the density function

defined as

ρ(t, x, z) =

∫

RN

f(t, x, v, z)dv. (2.3)
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In the VPFP system, F is a collision operator, describing the Brownian motion of the parti-

cles, which reads,

Ff = ∂v

(

M∂v

(
f

M

))

, (2.4)

where M is the global equilibrium or global Maxwellian,

M =
1√
2π

e−
|v|2

2 . (2.5)

In the dimensionless system, δ is the reciprocal of the scaled thermal velocity, ǫ represents

the scaled thermal mean free path [26]. There are two different regimes for this system. One is

the high field regime, where δ = 1. As ǫ goes to zero, f goes to the local Maxwellian Mlocal =
ρ√
2π

e−
|v−∂xφ|2

2 , and the VPFP system converges to a hyperbolic limit [1, 12, 23]:







∂tρ+ ∂x (ρ∂xφ) = 0,

−∂2
xφ = ρ− 1,

(2.6)

Another regime is the parabolic regime, where δ = ǫ. When ǫ goes to zero, f goes to the global

Maxwellian M , and the VPFP system converges to a parabolic limit [24]:







∂tρ− ∂x (∂xρ− ρ∂xφ) = 0,

−∂2
xφ = ρ− 1.

(2.7)

In this paper, we are going to study both regimes together.

In the VPFP system with uncertainty, the random variable z is in a properly defined proba-

bility space (Σ,A,P), whose event space is Σ and is equipped with σ-algebra A and probability

measure P. Define π(z) : Iz −→ R
+ as the probability density function of the random variable

z(ω), ω ∈ Σ. So one has a corresponding L2 space in the measure of,

dµ = dµ(x, v, z) = π(z)dx dv dz. (2.8)

With this measure, one has the corresponding Hilbert space with the following inner product

and norms:

〈f, g〉 =
∫

R

∫

R

∫

Iz

fg dµ(x, v, z), or, 〈ρ, j〉 =
∫

R

∫

Iz

ρj dµ(x, z), with norm ‖f‖2 = 〈f, f〉 .

(2.9)

For convenience of the readers, we list some elementary calculation on M which will be used

in later calculations:

∂vM = −vM, ∂v(
√
M) = −v

2

√
M ; (2.10)

∫

R

va
√
M dv =

∫

R

vaM dv = 0, for any odd a; (2.11)

∫

R

M dv = 1,

∫

R

v2M dv = 1,

∫

R

v4Mdv = 3; (2.12)

∫

R

|v|3M dv =
4√
2π

≤ 2,

∫

R

(

∂v(v
√
M)
)2

dv =
3

4
. (2.13)
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2.2 Notations

In this paper, we only focus on one space dimension. Without loss of generality, we assume

ǫ < 1. In order to get the convergence rate of the solution to the global equilibrium, we define,

h =
f −M√

M
, σ =

∫

R

h
√
M dv, u =

∫

R

h v
√
M dv, (2.14)

where h is the fluctuation around the equilibrium, σ is the density fluctuation, u is the velocity

fluctuation. Then the microscopic quantity h satisfies,







ǫδ ∂th
︸︷︷︸

I

+ǫ v∂xh
︸ ︷︷ ︸

II

−δ ∂xφ∂vh
︸ ︷︷ ︸

III

+δ
v

2
∂xφh
︸ ︷︷ ︸

IV

+δ v
√
M∂xφ

︸ ︷︷ ︸

V

= Lh
︸︷︷︸

V I

,

∂2
xφ = −σ,

(2.15)

(2.16)

where L is the so-called linearized Fokker-Planck operator,

Lh =
1√
M

F
(

M +
√
Mh

)

=
1√
M

∂v

(

M∂v

(
h√
M

))

. (2.17)

We give each term a number, in order to make it clear where the term comes from originally

when doing the energy estimates later.

We further introduce projections onto
√
M and v

√
M ,

Π1h = σ
√
M, Π2h = uv

√
M, Πh = Π1h+Π2h. (2.18)

These projections have the following properties:

– ∂x∂zΠ = Π∂x∂z

– Due to the mutual orthogonality of Π1h, Π2h, (1−Π)h in L2
v space, let ∂k = ∂k1z ∂k2x ,

∥
∥∂kh

∥
∥
2

L2
v
=
∥
∥Π1∂

kh
∥
∥
2

L2
v
+
∥
∥Π2∂

kh
∥
∥
2

L2
v
+
∥
∥(1−Π)∂kh

∥
∥
2

L2
v

=
∥
∥∂kσ

∥
∥
2

L2
v
+
∥
∥∂ku

∥
∥
2

L2
v
+
∥
∥(1 −Π)∂kh

∥
∥
2

L2
v
, (2.19)

which also implies,

∥
∥∂kσ

∥
∥
L2

v
,
∥
∥∂ku

∥
∥
L2

v
,
∥
∥(1 −Π)∂kh

∥
∥
L2

v
≤
∥
∥∂kh

∥
∥
L2

v
. (2.20)

Multiplying
√
M and v

√
M to (2.15), and integrating the equation over v respectively, then one

has the equations for the macroscopic quantities σ and u,







δ∂tσ + ∂xu = 0,

ǫδ ∂tu
︸︷︷︸

I

+ǫ ∂xσ
︸︷︷︸

II.1

+ǫ

∫

v2
√
M(1−Π)∂xhdv

︸ ︷︷ ︸

II.2

+δ ∂xφσ
︸ ︷︷ ︸

III

+ u
︸︷︷︸

V I

+δ ∂xφ
︸︷︷︸

V

= 0.

(2.21)

(2.22)

We call (2.15)-(2.16) the microscopic system, and (2.21)-(2.22) the macroscopic system. Note

(2.21)-(2.22) are not a closed system since it contains the microscopic quantities h.

We also define the following norms and energies,
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• Norms:

– |h|2 =
∫

R
h2 dv, ‖f‖ and 〈·, ·〉 is defined in (2.9).

– |h|2ν =
∫

R
(1 + |v|2)h2 + (∂vh)

2
dv, ‖h‖2ν =

∫

R×Iz |h|ν dµ(x, z),

– ‖f‖2Hm
z

=
∑m
l=0

∥
∥∂lzf

∥
∥
2
, ‖f‖2Hm

z (Hn
x ) =

∑

i≤n
∥
∥∂ixf

∥
∥
2

Hm
z
,

• Energy terms:

– Em,i
h =

∥
∥∂ixh

∥
∥
2

Hm
z
, Em

h = ‖h‖Hm
z (H1

x)
= Em,0

h + Em,1
h ,

– Em,i
φ =

∥
∥∂ix∂xφ

∥
∥
2

Hm
z
, Em

φ = ‖∂xφ‖Hm
z (H1

x)
= Em,0

φ + Em,1
φ ;

• Dissipation terms:

– Dm,i
h =

∑

l≤m
∥
∥∂lz∂

i
x(1−Π)h

∥
∥
2

ν
, Dm

h = Dm,0
h +Dm,1

h ,

– Dm,i
φ =

∥
∥∂ix∂xφ

∥
∥
2

Hm
z
, Dm

φ = Dm,0
φ +Dm,1

φ ;

– Dm,i
u =

∥
∥∂ixu

∥
∥
Hm

z
, Dm

u = Dm,0
u +Dm,1

u ;

– Dm,i
σ =

∥
∥∂ixσ

∥
∥
Hm

z
, Dm

σ = Dm,0
σ +Dm,1

σ ;

3 Main Results

To get the regularity of the solution in the Hilbert space, one usually uses energy estimates.

In order to balance the nonlinear term ∂xφ∂vf , and get a regularity independent of the small

parameter ǫ (or depending on ǫ in a good way), one needs the coercivity property from the

collision operator. The coercivity property one uses most commonly is

−
∫

R

hLh dv ≥ C |(1−Π1)h|2 , (3.1)

see [8, 28]. However, this is not enough for the non-linear case. We need stronger coercivity as

listed in the following Proposition, see [9] for deterministic case. Here we extend the coercivity

into random space.

Proposition 3.1. For L defined in (2.4),

(a) −〈Lh, h〉 = −〈L(1−Π)h, (1 −Π)h〉+ ‖u‖2;

(b) −〈L(1 −Π)h, (1−Π)h〉 = ‖∂v(1−Π)h‖2 + 1
4 ‖v(1−Π)h‖2 − 1

2 ‖(1 −Π)h‖2;

(c) −〈L(1 −Π)h, (1−Π)h〉 ≥ ‖(1−Π)h‖2;

(d) There exists a constant λ0 > 0, such that the following hypocoercivity holds,

−〈Lh, h〉 ≥λ0 ‖(1−Π)h‖2ν + ‖u‖2 , (3.2)

and the largest λ0 = 1
7 in one dimension.
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Proof. Here we only prove (d), see [9] for (a), (b), (c). Since

− 〈L(1−Π)h, (1 −Π)h〉
≥−a 〈L(1−Π)h, (1 −Π)h〉 − (1− a) 〈L(1 −Π)h, (1 −Π)h〉

≥a ‖∂v(1−Π)h‖2 + a

4
‖v(1−Π)h‖2 − a

2
‖(1−Π)h‖2 + (1− a) ‖(1−Π)h‖2

≥ min
0<a<1

{a, a
4
, (1− 3

2
a)} ‖(1−Π)h‖2ν , (3.3)

for a to be determined later, where the second inequality is according to (b) and (c). Then the

largest λ0 one can get is when a = 4
7 , λ0 = 1

7 . Therefore,

−〈Lh, h〉 ≥λ0 ‖(1−Π)h‖2ν + ‖u‖2 . (3.4)

Before we go into technique details, we first summarize the main strategy of this paper here,

which is mainly based on [15]. We omit ǫ, δ to see the main structure of energy estimates first.

We want to use energy estimates to analyze the energy Em = Em
h + Em

φ , the goal here is to

obtain a Lyapunov-type inequality like,

∂tE
m +Dm ≤

√
EmDm, (3.5)

so that one can control the initial data to get an uniform regularity. However, if one only does

energy estimates for (2.15) - (2.16), the dissipation from the linearized Fokker-Planck operator,

Dm
h +Dm

u , cannot bound the nonlinear term
√

Em
h + Em

φ (Dm
h +Dm

u +Dm
σ +Dm

φ ). So we involve

the microscopic system (2.21) - (2.22), where the dissipation terms Dm
σ +Dm

φ comes from II.1

and V in (2.21). Combine the microscopic and macroscopic energy estimates, one ends up with

a new energy estimates,

∂tÊ
m +Dm ≤

√

ÊmDm, (3.6)

where Êm ∼ Em, and Dm = Dm
h +Dm

u +Dm
σ +Dm

φ , so the non-linearity can be fully controlled

by the dissipation terms, which gives what we want.

With ǫ and δ involved, one needs to bound the nonlinear term more carefully, see Lemma

3.7, which is the key difference from [15]. See Remark 6.1 for the importance of these careful

estimates for the nonlinear term.

Based on the coercivity (3.2), we have the following two estimates for the microscopic and

macroscopic systems respectively.

Lemma 3.2. The solution to system (2.15) - (2.16) satisfies the following estimates, for any

m ≥ 1,

1

2
∂t

[

Em
h +

δ

ǫ
Em
φ

]

+
λ0

δǫ
Dm
h +

1

δǫ
Dm
u

≤AC2
1

aǫ

√

Em
h (3Dm

u + 2Dm
h ) +

2AC2
1

ǫ

√

Em
φ

((

4 +
1

a

)

Dm
u + 4Dm

h

)

+
aAC2

1

ǫ

√

Em
h Dm

φ +
aAC2

1

ǫ

√

Em
φ Dm

σ . (3.7)

7



and

∂t

[
m−1∑

l=0

〈
∂lzu, ∂

l
z∂xφ

〉
+

m∑

l=0

〈
∂lz∂xu, ∂

l
z∂

2
xφ
〉
+

1

2ǫ
Em
φ

]

+
1

2δ
Dm
σ +

1

ǫ
Dm
φ

≤1

δ
Dm
u +

1

2δ
Dm
h +

AC2
1

ǫ

√

Em
φ

(
3Dm

σ + 2Dm
φ

)
, (3.8)

where

A = 2
√
m+ 1

(
m

[m2 ]

)

+
√
m+ 1 (3.9)

is a constant only depending on m and [m/2] is the smallest integer larger or equal to m
2 , and

C1 is the Sobolev constant in one dimension defined in (A.3).

If one combines the above two inequalities, the ”bad terms” on the right hand side (RHS) can

be controlled by the dissipation terms on the left hand side (LHS) if the coefficients are carefully

balanced. Hence, one can come to the conclusion that the solution exponentially decays to the

global equilibrium.

Remark 3.3. The main difference between the energy estimates in Lemma 3.2 and the one

obtained in [15] is that for both micro and macro systems, we separate the microscopic energy

Em
h from the macroscopic energy Em

φ for Dm
φ and Dm

σ , which gives us more flexibility to bound

the energies, especially when small parameters are involved.

Theorem 3.4. For the high field regime (δ = 1), if

Em
h (0) +

1

ǫ2
Em
φ (0) ≤ 2λ3

0

(80AC1)
2 , (3.10)

then,

Em
h (t) ≤ 3

λ0
e−

t
ǫ

(

Em
h (0) +

1

ǫ2
Em
φ (0)

)

, Em
φ (t) ≤ 3

λ0
e−t

(
ǫ2Em

h (0) + Em
φ (0)

)
(3.11)

For the parabolic regime (δ = ǫ), if

Em
h (0) +

1

ǫ
Em
φ (0) ≤

(
2λ3

0

(80AC1)2

)
1

ǫ
, (3.12)

then,

Em
h (t) ≤ 3

λ0
e−

t
ǫ

(

Em
h (0) +

1

ǫ
Em
φ (0)

)

, Em
φ (t) ≤ 3

λ0
e−t

(
ǫEm

h (0) + Em
φ (0)

)
. (3.13)

Here A and C1 are the same as in Lemma 3.2.

Remark 3.5. Basically, Theorem 3.4 implies the following,

(a) For the High Field regime, as long as initially the electric field ∂xφ is O(ǫ) small, and the

initial data f is suitably bounded by (3.10), then the solution will converge to the global

equilibrium exponentially, uniformly in ǫ.

(b) For the Parabolic regime, the initial condition on both f and ∂xφ are independent of ǫ.

Furthermore, when ǫ become smaller, f don’t need to be near Maxwellian any more for the

solution to converge to the global equilibrium exponentially.
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(c) If one directly applies the conclusion of [15], then for the high field regime, Em
h (0) and

Em
φ (0) need to be O(ǫ) and O(ǫ3) initially, while for the parabolic regime, Em

h (0) and

Em
φ (0) need to be O(1) and O(ǫ) initially, see Remark 6.1 for details. Our result allows

more general initial data for f while keeping the optimal convergence rate at the same time,

which is because of the new energy estimates we obtained in Lemma 3.2.

(d) One notices that, the initial condition on the electric field ∂xφ for the high field regime

requires to be O(
√
ǫ), this is necessary because the limiting hyperbolic system won’t preserve

the regularity at a later time if the electric field doesn’t vanishes. On the other hand, for the

parabolic regime, the condition on the electric field is O(1), which is because when ǫ → 0,

the VPFP system goes to a parabolic equation which enjoys better regularity compared to

the high field regime.

(e) Notice here, although ‖σ(t)‖Hm
z

decays in time, the mass is still conserved, that is,
∫

R
σ(t)dx =

∫

R
σ(0)dx holds for all t > 0. It is an interesting question to study the case when this con-

servation is not true for future research.

(f) Since f = M+
√
Mh and M is the global Maxwellian without randomness, so the regularity

of the perturbative solution h in random space implies the uniform regularity of the solution

f . More specifically, one knows the regularity of the initial data in the random space is

preserved in time. Furthermore, the bound is independent of the small parameter ǫ.

One notices that the initial condition has a bad dependency on m. Actually this can be elim-

inated by defining a new energy norm. Since the main focus of this paper is uniform regularity

in ǫ, so we just give a brief proof of the following Theorem in Appendix.

Theorem 3.6. Define

∥
∥∂lzh

∥
∥
2

l
=

∥
∥
∥
∥

l + 1

l!
∂lzh

∥
∥
∥
∥

2

(3.14)

Ẽm,i
h =

∑

l≤m

∥
∥∂ix∂

l
zh
∥
∥
2

l
, Ẽm

h =
∑

i≤1

∑

l≤m

∥
∥∂ix∂

l
zh
∥
∥
2

l
= Ẽm,0

h + Ẽm,1
h , (3.15)

Ẽm,i
φ =

∑

l≤m

∥
∥∂ix∂

l
z∂xφ

∥
∥
2

l
, Ẽm

φ =
∑

i≤1

∑

l≤m

∥
∥∂ix∂

l
z∂xφ

∥
∥
2

l
= Ẽm,0

φ + Ẽm,1
φ ; (3.16)

Theorem 3.4 still holds for the new energy norms with A = 8
√∑∞

i=0
1

(i+1)2 .

Proof. See Appendix B

The proof of the main Theorem requires some equalities and inequalities, which are given

below.

Lemma 3.7. Let ∂k = ∂k1z ∂k2x , and similar for ∂i, ∂l,

(a)
〈

∂k∂xφ, v
√
M∂kh

〉

=
δ

2
∂t
∥
∥∂k∂xφ

∥
∥
2
,

(b)
〈
∂k∂xφ∂v(∂

ih), ∂lh
〉
− 1

2

〈
v∂k∂xφ∂ih, ∂lh

〉

≤ C1

∥
∥∂k∂xφ

∥
∥
H1

z (H
1
x)

(

a
∥
∥∂iσ

∥
∥
2
+ 2

∥
∥∂iu

∥
∥
2
+ 2

∥
∥(1−Π)∂ih

∥
∥
2

ν
+

(

2 +
1

a

)
∥
∥∂lu

∥
∥
2
+ 2

∥
∥(1−Π)∂lh

∥
∥
2

ν

)

,

9



(c)
〈
∂k∂xφ∂v(∂

ih), ∂lh
〉
− 1

2

〈
v∂k∂xφ∂ih, ∂lh

〉

≤ C2
1

√

‖∂k∂xφ‖2 + ‖∂k∂2
xφ‖

2



a
∑

i≤1

∥
∥∂i∂izσ

∥
∥
2
+ 2

∑

i≤1

∥
∥∂i∂izu

∥
∥
2
+ 2

∑

i≤1

∥
∥(1−Π)∂i∂izh

∥
∥
2

ν

+

(

2 +
1

a

)
∥
∥∂lu

∥
∥
2
+ 2

∥
∥(1−Π)∂lh

∥
∥
2

ν

)

(d)
〈
∂k∂xφ∂v(∂

ih), ∂lh
〉
− 1

2

〈
v∂k∂xφ∂

ih, ∂lh
〉

≤ C1

∥
∥∂ih

∥
∥
H1

z (H
1
x)

(
3

a

∥
∥∂lu

∥
∥
2
+

2

a

∥
∥(1−Π)∂lh

∥
∥
2

ν
+ a

∥
∥∂k∂xφ

∥
∥
2
)

,

(e)
〈
∂k∂xφ∂v(∂

ih), ∂lh
〉
− 1

2

〈
v∂k∂xφ∂ih, ∂lh

〉

≤ C2
1

√

‖∂ih‖2 + ‖∂i∂xh‖2


a
∑

i≤1

∥
∥∂k∂iz∂xφ

∥
∥
2
+

3

a

∥
∥∂lu

∥
∥
2
+

2

a

∥
∥(1−Π)∂lh

∥
∥
2

ν



 .

(f)
∥
∥∂k∂x∂tφ

∥
∥
2 ≤ 1

δ2

∥
∥∂ku

∥
∥
2
.

where a can be any positive constant.

Proof. See Appendix A.

Remark 3.8. Notice that in the inequalities (b) and (c), the dissipations of u and (1−Π)h are

related to both energies h and ∂xφ. However, the dissipation of σ is only related to the energy of

∂xφ through (b), while the dissipation of ∂xφ is only related to the energy of h through (c). This

is why we can get the separation of the micro and macro energies in Lemma 3.2 for Dm
σ and

Dm
φ .

4 Energy Estimates on the Microscopic Equations

Now we prove the first part of Lemma 3.2, (3.7).

4.1 Energy estimates for
∥
∥∂l

z
h
∥
∥2

Taking ∂lz to (2.15), and multiplying by ∂lzh, then integrating it over µ(x, v, z), one has,

ǫδ

2
∂t
∥
∥∂lzh

∥
∥
2
+ δ

〈

∂lz∂xφ, v
√
M∂lzh

〉

︸ ︷︷ ︸

V

−
〈
L∂lzh, ∂lzh

〉

︸ ︷︷ ︸

V I

=δ

l∑

i=0

(li)






〈
∂l−iz ∂xφ∂v∂

i
zh, ∂

l
zh
〉

︸ ︷︷ ︸

III

− 1

2

〈
v∂l−iz ∂xφ∂izh, ∂

l
zh
〉

︸ ︷︷ ︸

IV




 . (4.1)

V and V I are ”good terms”, since by Lemma 3.7 (a) and Proposition 3.1 (d),

V =
δ

2
∂t
∥
∥∂lz∂xφ

∥
∥
2
, V I ≥ λ0

∥
∥(1 −Π)∂lzh

∥
∥
2

ν
+
∥
∥∂lzu

∥
∥
2
. (4.2)
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However, III and IV are ”bad terms” here, and one wants to control it by the dissapations.

For i < l, by Lemma 3.7 (c),

III − IV ≤C1

∥
∥∂izh

∥
∥
H1

z (H
1
x)

(
3

a

∥
∥∂lzu

∥
∥
2
+

2

a

∥
∥(1−Π)∂lzh

∥
∥
2

ν
+ a

∥
∥∂l−iz ∂xφ

∥
∥
2
)

. (4.3)

For i = l, by Lemma 3.7 (b),

III − IV ≤aC1 ‖∂xφ‖H1
z (H

1
x)

∥
∥∂lzσ

∥
∥
2
+ C1 ‖∂xφ‖H1

z (H
1
x)

((

4 +
1

a

)
∥
∥∂lzu

∥
∥
2
+ 4

∥
∥(1−Π)∂lzh

∥
∥
2

ν

)

.

(4.4)

Here if one treats the case of i = l the same as the case of i < l, then the largest i = m leads

to ‖∂mz h‖H1
z (H

1
x)
, which cannot be controlled by ∂tE

m
h , so we treat i = l differently from i < l.

Therefore one has the energy estimate,

δ

2
∂t

(

ǫ
∥
∥∂lzh

∥
∥
2
+ δ

∥
∥∂lz∂xφ

∥
∥
2
)

+ λ0

∥
∥(1−Π)∂lzh

∥
∥
2

ν
+
∥
∥∂lzu

∥
∥
2

≤C1δ

l−1∑

l 6=1,i=0

(li)
∥
∥∂izh

∥
∥
H1

z (H
1
x)
(
3

a

∥
∥∂lzu

∥
∥
2
+

2

a

∥
∥(1−Π)∂lzh

∥
∥
2

ν
+ a

∥
∥∂l−iz ∂xφ

∥
∥
2
)

+ aC1δ
√

E1
φ

∥
∥∂lzσ

∥
∥
2
+ C1δ

√

E1
φ

((

4 +
1

a

)
∥
∥∂lzu

∥
∥
2
+ 4

∥
∥(1 −Π)∂lzh

∥
∥
2

ν

)

. (4.5)

Summing l from 0 to m, one gets,

δ

2
∂t

[

ǫEm,0
h + δEm,0

φ

]

+ λ0D
m,0
h +Dm,0

u

≤C1δ
m∑

l=1

l−1∑

i=0

(li)
∥
∥∂izh

∥
∥
H1

z (H
1
x)

(
3

a

∥
∥∂lzu

∥
∥
2
+

2

a

∥
∥(1−Π)∂lzh

∥
∥
2

ν

)

+ aC1δ
m∑

l=1

m∑

i=1

(li)
∥
∥∂l−iz h

∥
∥
H1

z (H
1
x)

∥
∥∂iz∂xφ

∥
∥
2

+ aC1δ
√

E1
φD

m,0
σ + C1δ

√

E1
φ

((

4 +
1

a

)

Dm,0
u + 4Dm,0

h

)

=C1δ

m∑

l=1

(
l−1∑

i=0

(li)
∥
∥∂izh

∥
∥
H1

z (H
1
x)

)(
3

a

∥
∥∂lzu

∥
∥
2
+

2

a

∥
∥(1 −Π)∂lzh

∥
∥
2

ν

)

+ aC1δ
m∑

i=1

(
m∑

l=i

(li)
∥
∥∂l−iz h

∥
∥
H1

z (H
1
x)

)

∥
∥∂iz∂xφ

∥
∥
2

+ aC1δ
√

E1
φD

m,0
σ + C1δ

√

E1
φ

((

4 +
1

a

)

Dm,0
u + 4Dm,0

h

)

≤BC1δ
√

Em
h

(
3

a
Dm,0
u +

2

a
Dm,0
h

)

+ aBC1δ
√

Em
h Dm,0

φ + aC1δ
√

E1
φD

m,0
σ

+ C1δ
√

E1
φ

((

4 +
1

a

)

Dm,0
u + 4Dm,0

h

)

≤BC1δ

a

√

Em
h

(

3Dm,0
u + 2Dm,0

h

)

+ C1δ
√

E1
φ

((

4 +
1

a

)

Dm,0
u + 4Dm,0

h

)

+ aBC1δ
√

Em
h Dm,0

φ + aC1δ
√

E1
φD

m,0
σ (4.6)

where B = 2
√
m+ 1

(
m
[m
2
]

)
, [m2 ] represent the smallest integer larger than m

2 .
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Before we move on to other estimates, let us first summarize what else we need. The goal of

the energy estimates is to get an inequality like

∂tE +D ≤
√
ED, (4.7)

so one can use the continuity argument to get the desired estimates. Therefore, one still needs

∂tE
m,1
h , Dm,0

σ , Dm,0
φ on the LHS.

4.2 Energy estimates for
∥
∥∂l

z
∂xh
∥
∥
2

Taking ∂lz∂x to (2.15), and multiplying by ∂lz∂xh, then integrating it over µ(x, v, z),

ǫδ

2
∂t
∥
∥∂lz∂xh

∥
∥
2
+ δ

〈

∂lz∂
2
xφ, v

√
M∂lz∂xh

〉

︸ ︷︷ ︸

V

−
〈
L∂lz∂xh, ∂lz∂xh

〉

︸ ︷︷ ︸

V I

=δ

l∑

i=0

(li)

〈

∂l−iz ∂2
xφ∂v∂

i
zh

︸ ︷︷ ︸

III.1

+ ∂l−iz ∂xφ∂v∂x∂
i
zh

︸ ︷︷ ︸

III.2

− v

2
∂l−iz ∂2

xφ∂
i
zh

︸ ︷︷ ︸

IV.1

− v

2
∂l−iz ∂xφ∂

i
z∂xh

︸ ︷︷ ︸

IV.2

, ∂lz∂xh

〉

.

Similar to (4.2), for V and V I, one has,

V =
δ

2
∂t
∥
∥∂lz∂

2
xφ
∥
∥
2
, V I ≥ λ0

∥
∥(1−Π)∂lz∂xh

∥
∥
2
+
∥
∥∂lz∂xu

∥
∥
2
. (4.8)

For the bad terms on the RHS, for i < l, by Lemma 3.7 (d),

III.1− IV.1 ≤ C1

∥
∥∂izh

∥
∥
H1

z (H
1
x)

(
3

a

∥
∥∂lz∂xu

∥
∥
2
+

2

a

∥
∥(1−Π)∂lz∂xh

∥
∥
2
+ a

∥
∥∂l−iz ∂2

xφ
∥
∥
2
)

. (4.9)

For i = l, by Lemma 3.7 (e),

III.1− IV.1 ≤ C2
1

√

‖∂lzh‖
2
+ ‖∂lz∂xh‖

2




3

a

∥
∥∂lz∂xu

∥
∥
2
+

2

a

∥
∥(1−Π)∂lz∂xh

∥
∥
2
+ a

∑

i≤1

∥
∥∂iz∂

2
xφ
∥
∥
2



 .

(4.10)

Remark 4.1. If one treats i = l the same as i < l, then the term ‖∂mz h‖2H1
z (H

1
x)

cannot be

controlled by Em
h , because the term

∥
∥∂m+1

z ∂xh
∥
∥
2
is not included in the energy term Em

h . That

is why we treat all these four estimates differently in (4.9) - (4.12).

For i > 0, by Lemma 3.7 (b),

III.2− IV.2 ≤C1

∥
∥∂l−iz ∂xφ

∥
∥
H1

z (H
1
x)

(

a
∥
∥∂iz∂xσ

∥
∥
2
+ 2

∥
∥∂iz∂xu

∥
∥
2
+ 2

∥
∥(1−Π)∂iz∂xh

∥
∥
2

ν

+

(

2 +
1

a

)
∥
∥∂lz∂xu

∥
∥
2
+ 2

∥
∥(1 −Π)∂lz∂xh

∥
∥
2

ν

)

. (4.11)

For i = 0, by Lemma 3.7 (c),

III.2− IV.2 ≤C2
1

√

‖∂lz∂xφ‖
2
+ ‖∂lz∂2

xφ‖
2



a
∑

i≤1

∥
∥∂iz∂xσ

∥
∥
2
+ 2

∑

i≤1

∥
∥∂iz∂xu

∥
∥
2

+2
∑

i≤1

∥
∥(1 −Π)∂iz∂xh

∥
∥
2

ν
+

(

2 +
1

a

)
∥
∥∂lz∂xu

∥
∥
2
+ 2

∥
∥(1 −Π)∂lz∂xh

∥
∥
2

ν



 . (4.12)

12



Combining all the terms gives, Summing l from 0 to m gives,

δ

2
∂t

[

ǫEm,1
h + δEm,1

φ

]

+ λ0D
m,1
h +Dm,1

u

≤C1δ

m∑

l=1

(
l−1∑

i=0

(li)
∥
∥∂izh

∥
∥
H1

z (H
1
x)

)(
3

a

∥
∥∂lz∂xu

∥
∥
2
+

2

a

∥
∥(1−Π)∂lz∂xh

∥
∥
2

ν
+ a

∥
∥∂l−iz ∂2

xφ
∥
∥
2
)

+ C1δ

m∑

l=1

(
l∑

i=1

(li)
∥
∥∂l−iz ∂xφ

∥
∥
H1

z (H
1
x)

)
(

a
∥
∥∂iz∂xσ

∥
∥
2
+ 2

∥
∥∂iz∂xu

∥
∥
2
+ 2

∥
∥(1−Π)∂iz∂xh

∥
∥
2

ν

+

(

2 +
1

a

)
∥
∥∂lz∂xu

∥
∥
2
+ 2

∥
∥(1−Π)∂lz∂xh

∥
∥
2

ν

)

+ C2
1δ

m∑

l=0

√

‖∂lzh‖
2
+ ‖∂lz∂xh‖

2




3

a

∥
∥∂lz∂xu

∥
∥
2
+

2

a

∥
∥(1 −Π)∂lz∂xh

∥
∥
2
+ a

∑

i≤1

∥
∥∂iz∂

2
xφ
∥
∥
2





+ C2
1δ

m∑

l=0

√

‖∂lz∂xφ‖
2
+ ‖∂lz∂2

xφ‖
2



a
∑

i≤1

∥
∥∂iz∂xσ

∥
∥
2
+ 2

∑

i≤1

∥
∥∂iz∂xu

∥
∥
2

+2
∑

i≤1

∥
∥(1−Π)∂iz∂xh

∥
∥
2

ν
+

(

2 +
1

a

)
∥
∥∂lz∂xu

∥
∥
2
+ 2

∥
∥(1 −Π)∂lz∂xh

∥
∥
2

ν





≤BC1δ
√

Em
h

(
3

a
Dm,1
u +

2

a
Dm,1
h + aDm,1

φ

)

+BC1δ
√

Em
φ

(

aDm,1
σ + 2Dm,1

u + 2Dm,1
h +

(

2 +
1

a

)

Dm,1
u + 2Dm,1

h

)

+ C2
1δ
√

Em
h

(
3

a
Dm,1
u +

2

a
Dm,1
h

)

+ aC2
1δ
√
m+ 1

√

Em
h D1,1

φ

+ C2
1δ

√
m+ 1

√

Em
φ

(

aD1,1
σ + 2D1,1

u + 2D1,1
h

)

+ C2
1δ
√

Em
φ

((

2 +
1

a

)

Dm,1
u + 2Dm,1

h

)

≤ (B + 1)C2
1δ

a

√

Em
h

(

3Dm,1
u + 2Dm,1

h

)

+ (B + 1)C2
1δ
√

Em
φ

((

4 +
1

a

)

Dm,1
u + 4Dm,1

h

)

+ a
(
B +

√
m+ 1

)
C2

1δ
√

Em
h Dm,1

φ + a
(
B +

√
m+ 1

)
C2

1δ
√

Em
φ Dm,1

σ , (4.13)

where A is defined as (3.9). Now combining (4.6) and (4.13) completes the energy estimates for

the microscopic system,

δ

2
∂t




ǫ E

m
h

︸︷︷︸

I

+δ Em
φ

︸︷︷︸

V




+ λ0D

m
h +Dm

u
︸ ︷︷ ︸

V I

≤ AC2
1δ

a

√

Em
h (3Dm

u + 2Dm
h ) + 2AC2

1δ
√

Em
φ

((

4 +
1

a

)

Dm
u + 4Dm

h

)

︸ ︷︷ ︸

III+IV

+aAC2
1δ
√

Em
h Dm

φ + aAC2
1δ
√

Em
φ Dm

σ
︸ ︷︷ ︸

III+IV

. (4.14)

Up to now, one still needs the dissipations Dm
σ and Dm

φ on LHS to balance the bad terms on

RHS. So next we turn to the macroscopic system.
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5 Energy Estimates on the Macroscopic System

We now prove (3.8) in Lemma 3.2.

5.1 Dissipation terms
∥
∥∂l

z
σ
∥
∥2 and

∥
∥∂l

z
∂xφ
∥
∥2

Taking ∂lz to (2.22) and multiplying by ∂lz∂xφ, then integrating it over µ(x, z), one has,

ǫδ
〈
∂t∂

l
zu, ∂

l
z∂xφ

〉

︸ ︷︷ ︸

I

+ǫ
〈
∂lz∂xσ, ∂

l
z∂xφ

〉

︸ ︷︷ ︸

II.1

+
〈
∂lzu, ∂

l
z∂xφ

〉

︸ ︷︷ ︸

V I

+δ
∥
∥∂lz∂xφ

∥
∥
2

︸ ︷︷ ︸

V

=− ǫ
〈

(1−Π)∂lz∂xh, v
2
√
M∂lz∂xφ

〉

︸ ︷︷ ︸

II.2

−δ
l∑

i=0

(li)
〈
∂l−iz ∂xφ∂

i
zσ, ∂

l
z∂xφ

〉

︸ ︷︷ ︸

III

. (5.1)

First one has,

I = ∂t
〈
∂lzu, ∂

l
z∂xφ

〉
−
〈
∂lzu, ∂t∂

l
z∂xφ

〉
, (5.2)

then by Lemma 3.7 (d),

〈
∂lzu, ∂

l
z∂x∂tφ

〉
= δ

〈
∂lz∂tσ, ∂

l
z∂tφ

〉
= δ

∥
∥∂lz∂x∂tφ

∥
∥
2 ≤ 1

δ

∥
∥∂lzu

∥
∥
2
. (5.3)

II.1 and V I are ”good terms” here, since

II.1 =
〈
∂lzσ,−∂lz∂

2
xφ
〉
=
∥
∥∂lzσ

∥
∥
2
, (5.4)

V I = −
〈
∂lz∂xu, ∂

l
zφ
〉
= δ

〈
∂lz∂tσ, ∂

l
zφ
〉
= δ

〈
∂lz∂x∂tφ, ∂

l
z∂xφ

〉
=

δ

2
∂t
∥
∥∂lz∂xφ

∥
∥
2
, (5.5)

while II.2 and III are ”bad terms”,

−II.2 =
〈

(1−Π)∂lzh, v
2
√
M∂lz∂

2
xφ
〉

≤ 1

2

∥
∥
∥v

√
M∂lzσ

∥
∥
∥

2

+
1

2

∥
∥v(1−Π)∂lzh

∥
∥
2

≤ 1

2

∥
∥∂lzσ

∥
∥
2
+

1

2

∥
∥(1 −Π)∂lzh

∥
∥
2

ν
. (5.6)

Note, for l = 0,

−III = 〈∂xφσ, ∂xφ〉 = −
〈
∂2
xφ, (∂xφ)

2
〉
=
〈
∂xφ, 2∂xφ∂

2
xφ
〉
= −2 〈∂xφσ, ∂xφ〉 , (5.7)

which implies,

−III = 0. (5.8)

For l > 0, and i = 0,

−III =
〈

σ,
(
∂lz∂xφ

)2
〉

=
〈

∂xφ, ∂x
(
∂lz∂xφ

)2
〉

= −2
〈
∂xφ∂

l
zσ, ∂

l
z∂xφ

〉

≤C1 ‖∂xφ‖H1
z (H

1
x)

(∥
∥∂lzσ

∥
∥
2
+
∥
∥∂lz∂xφ

∥
∥
2
)

, (5.9)

and for 0 < i ≤ l,

−III ≤C1

2

∥
∥∂l−iz ∂xφ

∥
∥
H1

z (H
1
x)

(∥
∥∂izσ

∥
∥
2
+
∥
∥∂lz∂xφ

∥
∥
2
)

. (5.10)
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Combining all terms in (5.1), one has,

δ∂t

[

ǫ
〈
∂lzu, ∂

l
z∂xφ

〉
+

1

2

∥
∥∂lz∂xφ

∥
∥
2
]

+
ǫ

2

∥
∥∂lzσ

∥
∥
2
+ δ

∥
∥∂lz∂xφ

∥
∥
2

≤ǫ
∥
∥∂lzu

∥
∥
2
+

ǫ

2

∥
∥(1 −Π)∂lzh

∥
∥
2

ν
+ 2C1δ

l∑

l 6=0,i=1

(li)
∥
∥∂l−iz ∂xφ

∥
∥
H1

z (H
1
x)

(∥
∥∂izσ

∥
∥
2
+
∥
∥∂lz∂xφ

∥
∥
2
)

.

(5.11)

Summing l from 0 to m gives,

δ∂t

[

ǫ

m∑

l=0

〈
∂lzu, ∂

l
z∂xφ

〉
+

1

2
Em,0
φ

]

+
ǫ

2
Dm,0
σ + δDm,0

φ

≤ǫDm,0
u +

ǫ

2
Dm,0
h + 2AC1δ

√

Em
φ

(

Dm,0
σ +Dm,0

φ

)

. (5.12)

5.2 Dissipation terms
∥
∥∂l

z
∂xσ
∥
∥2 and

∥
∥∂l

z
∂2
x
φ
∥
∥2

Taking ∂lz to (2.21) and multiplying by ∂lz∂xσ, then integrating it over µ(x, z),

ǫδ
〈
∂t∂

l
zu, ∂

l
z∂xσ

〉

︸ ︷︷ ︸

I

+ǫ
∥
∥∂lz∂xσ

∥
∥
2

︸ ︷︷ ︸

II.1

+
〈
∂lzu, ∂

l
z∂xσ

〉

︸ ︷︷ ︸

V I

+δ
〈
∂lz∂xφ, ∂

l
z∂xσ

〉

︸ ︷︷ ︸

V

=− ǫ
〈

(1−Π)∂x∂
l
zh, v

2
√
M∂lz∂xσ

〉

︸ ︷︷ ︸

II.2

−δ

l∑

i=0

(li)
〈
∂l−iz ∂xφ∂

i
zσ, ∂

l
z∂xσ

〉

︸ ︷︷ ︸

III

. (5.13)

Note that,

I = ∂t
〈
∂lzu, ∂x∂

l
zσ
〉
−
〈
∂lzu, ∂

l
z∂x∂tσ

〉
= ∂t

〈
∂lz∂xu, ∂

l
z∂

2
xφ
〉
− 1

δ

∥
∥∂lz∂xu

∥
∥
2
, (5.14)

V I =
〈
∂lzu, ∂

l
z∂xσ

〉
= δ

〈
∂lz∂tσ, ∂

l
zσ
〉
=

δ

2
∂t
∥
∥∂lzσ

∥
∥
2
=

δ

2
∂t
∥
∥∂lz∂

2
xφ
∥
∥
2
, (5.15)

V = −
〈
∂lz∂

2
xφ, ∂

l
zσ
〉
=
∥
∥∂lz∂

2
xφ
∥
∥
2
, (5.16)

−II.2 ≤ 1

2

∥
∥∂lz∂xσ

∥
∥
2
+

1

2

∥
∥(1−Π)∂lz∂xh

∥
∥
2

ν
, (5.17)

For i 6= 0

−III ≤ C1

2

∥
∥∂l−iz ∂xφ

∥
∥
H1

z (H
1
x)
(
∥
∥∂izσ

∥
∥
2
+
∥
∥∂lz∂xσ

∥
∥
2
), (5.18)

For i = 0

−III ≤ C2
1

2

√

‖∂lz∂xφ‖
2
+ ‖∂lz∂2

xφ‖
2




∑

i≤1

∥
∥∂izσ

∥
∥
2
+
∥
∥∂lz∂xσ

∥
∥
2



 . (5.19)

Using (5.14) - (5.19) in (5.13) implies,

δ∂t

[

ǫ
〈
∂lz∂xu, ∂

l
z∂

2
xφ
〉
+

1

2

∥
∥∂lz∂

2
xφ
∥
∥
2
]

+
ǫ

2

∥
∥∂lz∂xσ

∥
∥
2
+ δ

∥
∥∂lz∂

2
xφ
∥
∥
2

≤ ǫ

2

∥
∥(1−Π)∂lz∂xh

∥
∥
2

ν
+ ǫ
∥
∥∂lz∂xu

∥
∥
2
+

C1δ

2

l∑

i=1

(li)
∥
∥∂l−iz ∂xφ

∥
∥
H1

z (H
1
x)
(
∥
∥∂izσ

∥
∥
2
+
∥
∥∂lz∂xσ

∥
∥
2
)

+
C2

1

2

√

‖∂lz∂xφ‖
2
+ ‖∂lz∂2

xφ‖
2




∑

i≤1

∥
∥∂izσ

∥
∥
2
+
∥
∥∂lz∂xσ

∥
∥
2



 . (5.20)
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Summing l from 0 to m− 1, one has,

δ∂t

[

ǫ

m∑

l=0

〈
∂lz∂xu, ∂

l
z∂

2
xφ
〉
+

1

2
Em,1
φ

]

+
ǫ

2
Dm,1
σ + δDm,1

φ

≤ǫDm,1
u +

ǫ

2
Dm,1
h +AC2

1δ
√

Em
φ Dm

σ . (5.21)

Combining (5.12) and (5.21), one finishes the energy estimates for the microscopic system,

δ∂t







ǫ

m∑

l=0

〈
∂lzu, ∂

l
z∂xφ

〉
+ ǫ

m∑

l=0

〈
∂lz∂xu, ∂

l
z∂

2
xφ
〉

︸ ︷︷ ︸

I

+
1

2
Em
φ

︸ ︷︷ ︸

V I







+

ǫ

2
Dm
σ

︸︷︷︸

II.1

+δ Dm
φ

︸︷︷︸

V

≤ǫ Dm
u

︸︷︷︸

I

+
ǫ

2
Dm
h

︸︷︷︸

II.2

+AC2
1δ
√

Em
φ

(
3Dm

σ + 2Dm
φ

)

︸ ︷︷ ︸

III

. (5.22)

6 Exponential Decay to the Maxwellian

Before we do the analysis for the two energy estimates, we first go through the process in a

more general framework. If one has the energy estimate,

1

2
∂tÊ + αD ≤ β

√

ÊD, (6.1)

and one wants to get an exponential decay for E, then one requires,

REQUIREMENT 1: Ê ∼ E ≤ D. (6.2)

On the other hand, one needs the dissipations on the LHS to balance the ”bad terms” on the

RHS, so one requires,

REQUIREMENT 2: α > 0. (6.3)

Since (6.1) is equivalent to,

∂t

√

Ê >
1
√

Ê

(

β
√

Ê − α
)

D, (6.4)

therefore, if one assumes the initial data satisfies,

1
√

Ê

(

β
√

Ê − α
)

D > − α

2
√

Ê
D, or equivalently,

√

Ê(0) ≤ O

(
α

2β

)

, (6.5)

then by standard continuity argument, since
√

Ê is decreasing, so for t > 0,

∂t

√

Ê > − α

2
√

Ê
D, (6.6)

and D ≥ Ê, (6.6) implies the exponential decay,

Ê > e−CαtÊ(0) ∼ E(t) > e−CαtE(0). (6.7)
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Furthermore, if one wants to get the optimal convergence rate with least restriction on initial

data, then one needs,

REQUIREMENT 3:

√

Ê(0) ≤ O

(
α

β

)

independent of small parameters.

REQUIREMENT 4: α should be as large as possible. (6.8)

Remark 6.1. Without uncertainty, if one directly uses the energy estimates from [15], for the

high field regime, where δ = 1 , then when the small parameter ǫ are put in, the energy estimates

become,

1

2
∂t

[

Em
h +

1

ǫ
Em
φ

]

+
1

ǫ
(Dm

h +Dm
u )

>
1

ǫ

√

Em
h + Em

φ (Dm
u +Dm

h +Dm
φ +Dm

σ ), (6.9)

and,

∂t

[
m∑

l=0

〈
∂lzu, ∂

l
z∂xφ

〉
+

m∑

l=0

〈
∂lz∂xu, ∂

l
z∂

2
xφ
〉
+

1

2ǫ
Em
φ

]

+
1

2
Dm
σ +

1

ǫ
Dm
φ

>Dm
u +Dm

h +
1

ǫ

√

Em
h + Em

φ (Dm
φ +Dm

σ ). (6.10)

Let Gm =
∑m−1

l=0

〈
∂lzu, ∂

l
z∂xφ

〉
+
∑m

l=0

〈
∂lz∂xu, ∂

l
z∂

2
xφ
〉
+ 1

2ǫE
m
φ . Since −ǫEm

h + 1
4ǫE

m
φ ≤ Gm ≤

ǫEm
h + 3

4ǫE
m
φ , so if one combines the microscopic and macroscopic energy estimates (6.9) + γ

(6.10), one needs γ ≤ O(1ǫ ) to satisfy REQUIREMENT 1. Furthermore, if one wants to get

the optimal convergence rate based on this energy estimate, then one needs the dissipation terms

to be as large as possible, that is γ as large as possible, which means γ = O(1ǫ ). Therefore one

derives,

1

2
∂tÊ

m +
1

ǫ
(Dm

h +Dm
u ) +

1

ǫ
Dm
σ +

1

ǫ2
Dm
φ

>
1

ǫ

√

Em
h + Em

φ (Dm
u +Dm

h ) +
1

ǫ2

√

Em
h + Em

φ Dm
σ +

1

ǫ2

√

Em
h + Em

φ Dm
φ , (6.11)

where Êm =
(

Em
h + 1

ǫE
m
φ

)

+ 1
ǫG

m ∼ Em
h + 1

ǫ2E
m
φ . So (6.11) leads to,

1

2
∂tÊ

m +
1

ǫ
(Dm

h +Dm
u ) +

1

ǫ
Dm
σ +

1

ǫ2
Dm
φ ≤ 1

ǫ

√

Êm(Dm
h +Dm

u ) +
1

ǫ2

√

ÊmDm
σ +

1

ǫ2

√

ÊmDm
u .

(6.12)

Compare the term Dm
σ , one notes that

√

Êm needs to be O(ǫ) such that the bad term on the

RHS can be controlled by the O(1) dissipation on the LHS. That is one requires

Em
h (0) +

1

ǫ2
Em
φ (0) > O(ǫ) (6.13)

to obtain the exponential decay

Em
h +

1

ǫ
Em
φ > e−O(1)t

(

Em
h (0) +

1

ǫ
Em
φ

)

. (6.14)
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This means the initial data Em
h = O(ǫ), Em

φ = O(ǫ3). These conditions are much stronger than

the one in (3.10) of Theorem 3.4.

However, if the coefficient of the Dσ only depends on Em
φ , like the estimates we obtained in

Lemma 3.2, then (6.11) becomes,

1

2
∂tÊ

m +
1

ǫ
(Dm

h +Dm
u ) +

1

ǫ
Dm
σ +

1

ǫ2
Dm
φ

>
1

ǫ

√

Em
h + Em

φ (Dm
u +Dm

h ) +
1

ǫ

√

1

ǫ2
Em
φ Dm

σ +
1

ǫ2
√

Em
h Dm

φ

>
1

ǫ

√

Êm(Dm
h +Dm

u ) +
1

ǫ

√

ÊmDm
σ +

1

ǫ2

√

ÊmDm
u . (6.15)

Now the bad terms and good terms can be well balanced even if the initial data of Êm is O(1).

6.1 The high field regime

For the high field regime, where δ = 1, set

Fm = ǫEm
h + Em

φ , Gm = ǫ

m−1∑

l=0

〈
∂lzu, ∂

l
z∂xφ

〉
+ ǫ

m∑

l=0

〈
∂lz∂xu, ∂

l
z∂

2
xφ
〉
+

1

2
Em
φ ,

Êm = Fm +
2λ0

ǫ
Gm, Em = ǫEm

h +
1

ǫ
Em
φ , a = 1 (6.16)

where Fm is the term inside ∂t in (3.7) and Gm is that in (3.8).

By (2.20) and Young’s Inequality, one can bound Gm by

−ǫ2Em
h + (

1

2
− 1

4
)Em

φ ≤Gm ≤ ǫ2Em
h + (

1

2
+

1

4
)Em

φ ,

−ǫ2Em
h +

1

4
Em
φ ≤Gm ≤ ǫ2Em

h +
3

4
Em
φ . (6.17)

Since λ0 ≤ 1
4 , thus one obtains,

(1− 2λ0)ǫE
m
h + (ǫ+

λ0

2
)
1

ǫ
Em
φ ≤Êm ≤ (1 + 2λ0) ǫE

m
h +

(

ǫ+
3λ0

2

)
1

ǫ
Em
φ ,

λ0

2
Em ≤Êm ≤ 3

2
Em, (6.18)

or equivalently,

3

2

√

Êm ≤
√

ǫEm
h +

√

1

ǫ
Em
φ ≤ 2

λ0

√

Êm. (6.19)

So one has the equivalence between the energies Em and Êm, besides, the dissipation terms can

be lower bounded by Em,

Êm ∼ Em ≤ ǫ (Dm
u +Dm

h +Dm
σ ) +

1

ǫ
Dm
φ . (6.20)
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By (3.7) + λ0

ǫ (3.8), one has the energy estimates,

1

2
∂tÊ

m +

(

λ0 −
λ0

2

)

Dm
h + (1− λ0)D

m
u +

λ0

2
Dm
σ +

λ0

ǫ
Dm
φ

≤AC2
1

[(

1√
ǫ

√

ǫEm
h + 2

√
ǫ

√

1

ǫ
Em
φ

)

(5Dm
u + 4Dm

h ) +
√
ǫ

(

1 +
1

ǫ

)√

1

ǫ
Em
φ Dm

σ +
1√
ǫ

(

1 +
1

ǫ

)
√

ǫEm
h Dm

φ

]

≤ 10√
ǫ
AC2

1

(
2

λ0

√

Êm

)

(Dm
h +Dm

u ) +
2√
ǫ
AC2

1

(
2

λ0

√

Êm

)

Dm
σ +

2

ǫ3/2
AC2

1

(
2

λ0

√

Êm

)

Dm
φ ,

(6.21)

which implies

1

2
∂tÊ

m +
λ0

2
(Dm

h +Dm
u ) +

λ0

2
Dm
σ +

λ0

ǫ
Dm
φ

≤20AC2
1

λ0
√
ǫ

√

Êm(Dm
h +Dm

u ) +
4AC2

1

λ0
√
ǫ

√

ÊmDm
σ +

4AC2
1

λ0ǫ3/2

√

ÊmDm
ψ . (6.22)

Therefore, by standard continuity argument, under the condition of,

√

Êm(0) ≤ min







λ0

4
20AC2

1

λ0ǫ1/2

,
λ0

4
4AC2

1

λ0ǫ1/2

,
λ0

2ǫ
4AC2

1

λ0ǫ3/2






,

which holds if,

Êm(0) ≤
(
λ2
0ǫ

1/2

80AC2
1

)2

,

or equivalently,

Em
h (0) +

1

ǫ2
Em
φ (0) ≤ 2λ3

0

(80AC2
1 )

2 , (6.23)

one then has the estimate,

1

2
∂tÊ

m +
λ0

4
(Dm

h +Dm
u +Dm

σ +
1

ǫ
Dm
φ ) ≤ 0. (6.24)

which implies,

1

2
Êm(t)− 1

2
Êm(0) ≤ −λ0

4

∫ t

0

(

Em
h (s) +

1

ǫ
Em
φ (s)

)

ds

λ0

4

(

ǫEm
h (t) +

1

ǫ
Em
φ (t)

)

≤ −λ0

4

∫ t

0

(

Em
h (s) +

1

ǫ
Em
φ (s)

)

ds+
3

4

(

ǫEm
h (0) +

1

ǫ
Em
φ (0)

)

Em
h (t) ≤ −1

ǫ

∫ t

0

Em
h (s)ds +

3

ǫλ0

(

ǫEm
h (0) +

1

ǫ
Em
φ (0)

)

Em
h (t) ≤ 3

λ0
e−

t
ǫ

(

Em
h (0) +

1

ǫ2
Em
φ (0)

)

. (6.25)

Similarly, for Em
φ (t),

Em
φ (t) ≤ −

∫ t

0

Em
φ (s)ds+

3ǫ

λ0

(

ǫEm
h (0) +

1

ǫ
Em
φ (0)

)

Em
φ (t) ≤ 3

λ0
e−t

(
ǫ2Em

h (0) + Em
φ (0)

)
. (6.26)

This completes the proof of (3.11) in Theorem 3.4.
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6.2 The parabolic regime

For the parabolic regime, where δ = ǫ, set

Fm = ǫEm
h + ǫEm

φ , Gm = ǫ

m−1∑

l=0

〈
∂lzu, ∂

l
z∂xφ

〉
+ ǫ

m∑

l=0

〈
∂lz∂xu, ∂

l
z∂

2
xφ
〉
+

1

2
Em
φ , (6.27)

Êm = Fm + 2λ0G
m, Em = ǫEm

h + Em
φ , a =

√
ǫ. (6.28)

Similar to (6.17), the bounds of Gm is,

−ǫEm
h +

1

4
Em
φ ≤ −ǫEm

h +

(
1

2
− ǫ

4

)

Em
φ ≤Gm ≤ ǫEm

h +

(
1

2
+

ǫ

4

)

Em
φ ≤ ǫEm

h +
3

4
Em
φ , (6.29)

and λ0 ≤ 1
4 , so one obtains,
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2
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or equivalently,
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Êm. (6.31)

By (3.7) + λ0(3.8), one has energy estimates,
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Êm

)

Dm
φ ,

(6.32)

which implies,
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So if the initial data satisfies the condition

√
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
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,

or equivalently, Em
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1

ǫ
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(80AC1)2ǫ
, (6.34)
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then similar to (6.24) - (6.26), one has,

1

2
Êm +

λ0

4

(
Em
h + Em

φ

)
≤ 0

ǫEm
h (t) + Em

φ (t) ≤ −
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0
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3
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(
ǫEm
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)

Em
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e−

t
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(
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1

ǫ
Em
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)

, Em
φ (t) ≤ 3
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(
ǫEm

h (0) + Em
φ (0)

)
. (6.35)

This completes the proof of (3.13) in Theorem 3.4.

Appendices

A The proof of Lemma 3.7

Proof. (a) By the definition of u in (2.14), and (2.16), (2.21),

〈

∂k∂xφ, v
√
M∂kh

〉

=
〈
∂k∂xφ, ∂
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〉
= −

〈
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〉
= δ

〈
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〉

=− δ
〈
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〉
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〈
∂k∂xφ, ∂

k∂x∂tφ
〉
=

δ

2
∂t
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∥∂k∂xφ

∥
∥
2
, (A.1)

where the last equality of the first line is because of (2.21), and the first equality of the

second line is because of (2.16).

(b) First break ∂kh = ∂kσ
√
M +(∂kh−∂kσ

√
M), and then use ∂kh−∂kσ

√
M = ∂ku v

√
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where the last inequality comes from the Sobolev embedding for 1D,

‖f‖C0
x
≤ C2

1 ‖f‖H1
x
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x
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z
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1
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, ∀f ∈ H1
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1
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(A.3)
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for some constant C1 ≥ 1.

Next,
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Therefore (A.2) + (A.4) gives,
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for a to be determined later.
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Similarly,
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which gives,
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for a to be determined later.
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Next, similar to (A.8),
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Therefore (A.8) + (A.9) gives,
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(e) Similar to the proof in (c), based on the estimates in (d), one can bound the same term

by,
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(f) By (2.21) and (2.15) one derives,

∂x(∂
k∂x∂tφ) = −∂k∂tσ = ∂x(

1

δ
∂ku), (A.12)

integrating it from −∞ to x implies,
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Hence,
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B The proof of Theorem 3.6

Proof. The proof of Theorem 3.6 is almost the same as the proof of Theorem 3.4, expect for the es-

timates on the nonlinear term
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We first estimate the case of j = 0.
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Taking ∂lz on (2.15), and multiplying by
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where the last inequality comes from Lemma 3.7 (d), (b), (e). Notice
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where A′ =
√∑∞
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Here D̃m
φ is the corresponding new dissipation of ∂xφ in the new norm, similar for D̃m

σ , D̃m
u . All

other terms in (B.1) can be similarly bounded. Thus
∑m

l=0(B.1) gives,
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(B.5)

One can use similar method to bound other nonlinear terms. We omit the details here. Now

one can see that the constant A′ is independent of m, which leads to the independence of m in

the initial condition.
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