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Abstract. We study the regularity properties of the value function associated with an affine
optimal control problem with quadratic cost plus a potential, for a fixed final time and initial

point. Without assuming any condition on singular minimizers, we prove that the value

function is continuous on an open and dense subset of the interior of the attainable set. As a
byproduct we obtain that it is actually smooth on a possibly smaller set, still open and dense.
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1. Introduction

The regularity of the value function associated with an optimal control problem is a classical
topic of investigation in control theory and has been deeply studied in the last decades, exten-
sively using tools from geometric control theory and non-smooth analysis. It is well-known that
the value function associated with an optimal control problem fails to be everywhere differen-
tiable and this is typically the case at those points where the uniqueness of minimizers is not
guaranteed. Actually, it is not even continuous, in general, as soon as singular minimizers are
allowed (see for instance [4, 19]).

In this paper we investigate the regularity of the value function associated with affine optimal
control problems, whose cost is written as a quadratic term plus a potential

The key starting point of our work is the characterization of points where the value function is
continuous. As we said, in presence of singular minimizers for the control problem one could not
expect the value function to be continuous. Indeed, for a fixed final time T > 0 and initial point
x0, the continuity of the value function STx0

at a point x is strictly related with the openness of
the end-point map on the optimal controls steering the initial fixed point x0 to x in time T > 0.
Here by end-point map, we mean the map that to every control u associates the final point of
the corresponding trajectory (cf. Section 2 for precise definitions).
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Without assuming any condition on singular minimizers, we focus on the set of points, that
we call tame points, in the interior of the attainable set such that the end-point map is open and
a submersion at every optimal control. The main result of this paper is that we can find a large
set of tame points. Since tame points are points of continuity for the value function, we deduce
that STx0

is continuous on an open and dense set of the interior of the attainable set.
Adapting then the arguments of [1, 15], we prove that the value function is actually smooth

on a (possibly smaller) open dense subset of the interior of the attainable set.
The main novelty with respect to the known results, valid in the drift-less case and with zero

potential, is that in the latter case the value function is everywhere continuous as a consequence
of the openness of the end-point map, even in presence of deep singular minimizers. The absence
of such a property for affine control system makes the study of the continuity of the value function
more delicate in our context.

Let us introduce briefly the notation and present the main results more in details.

1.1. Setting and main results. Let M be a smooth, connected m-dimensional manifold and
let T > 0 be a given fixed final time. A smooth affine control system is a dynamical system
which can be written in the form:

(1.1) ẋ(t) = X0(x(t)) +

d∑

i=1

ui(t)Xi(x(t)),

where X0, X1, . . . , Xd are smooth vector fields on M , and the map t 7→ u(t) = (u1(t), . . . , ud(t))
belongs to the Hilbert space L2([0, T ],Rd).

Given x0 ∈M we define:

(i) the set of admissible controls ΩTx0
as the subset of u ∈ L2([0, T ],Rd), such that the

solution xu(·) to (1.1) satisfying xu(0) = x0 is defined on the interval [0, T ]. If u ∈ ΩTx0

we say that xu(·) is an admissible trajectory. By classical results of ODE theory, the set
ΩTx0

is open.

(ii) the attainable set ATx0
(from the point x0, in time T > 0), as the set of points of M that

can be reached from x0 by admissible trajectories in time T , i.e.,

ATx0
= {xu(T ) | u ∈ ΩTx0

}.

For a given smooth function Q : M → R, we are interested in those trajectories minimizing the
cost given by:

(1.2) CT : ΩTx0
→ R, CT (u) =

1

2

∫ T

0

(
d∑

i=1

ui(t)
2 −Q(xu(t))

)
dt.

More precisely, given x0 ∈ M and T > 0, we are interested in the regularity properties of the
value function STx0

: M → R defined as follows:

(1.3) STx0
(x) = inf

{
CT (u) | u ∈ ΩTx0

, xu(T ) = x
}

;

with the understanding that STx0
(x) = +∞ if x cannot be attained by admissible curves in time

T . We call optimal control any control u which solves the optimal control problem (1.3).

Main assumptions. For the rest of the paper we make the following assumptions:

(H1) The weak Hörmander condition holds on M . Namely, we require for every point x ∈M
the equality

(1.4) Liex

{
(adX0)

j
Xi | j ≥ 0, i = 1, . . . , d

}
= TxM.
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where (adX)Y = [X,Y ], and LiexF ⊂ TxM denotes the evaluation at the point x of the
Lie algebra generated by a family F of vector fields.

(H2) For every bounded family U of admissible controls, there exists a compact subset KT ⊂
M such that xu(t) ∈ KT , for every u ∈ U and t ∈ [0, T ].

(H3) The potential Q is a smooth function bounded from above.

The assumption (H1) is needed to guarantee that the attainable set has at least non-empty
interior, i.e., int

(
ATx0

)
6= ∅ (cf. [12, Ch. 3, Thm. 3]). The second assumption (H2) is a com-

pleteness/compactness assumption on the dynamical system that, together with (H3), is needed
to guarantee the existence of optimal controls. We stress that (H2) and (H3) are automatically
satisfied when M is compact. When M is not compact, (H2) holds true under a sublinear growth
condition on the vector fields X0, . . . , Xd. We refer to Section 2 for more details on the role of
these assumptions.

As already anticipated, the key starting point of our work is the characterization of points
where the value function is continuous through the study of the set of tame points. This is the
set Σt ⊂ int

(
ATx0

)
of all points x such that the end-point map is open and a submersion at

every optimal control steering x0 to x. The main result of this paper, whose proof comprises its
technical core, is that we can find a large set of tame points.

Theorem 1. Fix x0 ∈ M and let STx0
be the value function associated with an optimal control

problem of the form (1.1)-(1.2) satisfying assumptions (H1)-(H3). Then the set Σt of tame points
is open and dense in int

(
ATx0

)
and STx0

is continuous on Σt.

In the drift-less case (more precisely, when X0 = 0 and Q = 0) the end-point map is open at
every point, even if it is not a submersion in the presence of singular minimizers. This, however,
suffices for the sub-Riemannian distance to be continuous everywhere. Moreover this remains
true for any Lp-topology on the space of controls, for p < +∞, see [7]. This is no more true if
we introduce a drift field, and the characterization of the set of points where the end-point is
open and the choice of the topology in the space of controls is more delicate.

The proof of Theorem 1 is inspired by the arguments, dealing with the sub-Riemannian case,
presented among others by the first author in [3, Chapter 11], and starts by characterizing the
set of points reached by a unique minimizer trajectory that is not strictly singular (called fair
points). The classical argument proves that this set is dense in the attainable set but, while in
the drift-less case each of these points is also a continuity point for the value function, in this
setting in principle it could likely be that the set of fair points and the set of continuity points,
both dense, may have empty intersection. Completing this gap requires ad hoc new arguments
developed in Section 4.

Once Theorem 1 is proved, an adaptation of arguments from [1, 15] let us derive the following
result.

Theorem 2. Under the assumptions of Theorem 1, STx0
is smooth on a non-empty open and

dense subset of int
(
ATx0

)
.

In [1], the author proves the analogue of Theorem 2 for the value function associated with
sub-Riemannian optimal control problems, i.e., drift-less systems with zero potential. Notice
that in this case (H1) reduces to the classical Hörmander condition, and the value function (at
time T ) coincides with one half of the square of the sub-Riemannian distance (divided by T )
associated with the family of vector fields X1, . . . , Xd.

Let us further mention that, even in the sub-Riemannian situation, it still remains an open
question to establish whether the set of smoothness points of the value function has full measure
in int

(
ATx0

)
or not.
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1.2. Further comments. Regularity of the value function for these kinds of control system
with techniques of geometric control has been also studied in [17, 19], where the authors assume
that there are no abnormal optimal controls, a condition which yields the openness of the end-
point already at the first order, while in [4] the authors obtain the openness of the end-point map
on optimal controls with second-order techniques, assuming no optimal Goh abnormal controls
exist.

For more details on Goh abnormals we refer the reader to [5, Chapter 20] (see also [3, 16]). Let
us mention that in [9] the authors prove that the system (1.1) admits no Goh optimal trajectories
for the generic choice of the (d+ 1)-tuple X0, . . . , Xd (in the Whitney topology). Finally in [14]
the author proves the Hölder continuity of the value function under a strong bracket generating
assumption, when one considers the L1 cost.

For different approaches investigating the regularity of the value function through techniques
of non-smooth analysis, one can see for instance the monographs [6, 10, 8, 11].

1.3. Structure of the paper. In Section 2 we recall some properties of the end-point map, the
existence of minimizers in our setting and recall their characterization in terms of the Hamiltonian
equation. Section 3 introduces different sets of points that are relevant in our analysis. Section
4 is devoted to the study of tame points and the proof of Theorem 1. In the last Section 5 we
complete the proof of Theorem 2. Finally, in Appendix A we present for readers’ convenience
the proof of a few technical facts, adapted with minor modifications to our setting.

2. Preliminaries

For a fixed admissible control u ∈ ΩTx0
, it is well-defined the family of diffeomorphisms

Pu0,t : Ux0
⊂M →M, t ∈ [0, T ],

defined on some neighborhood Ux0
of x0 by Pu0,t(y) = xu,y(t), where xu,y(t) is the solution of the

equation (1.1) with initial condition xu,y(0) = y. It is a classical fact that this family is absolutely
continuous with respect to t. Similarly, given u ∈ ΩTx0

it is possible to define the family of flow
diffeomorphisms Pus,t : Ux0 → M by solving (1.1) with initial condition xu,y(s) = y; notice then
that Put,t = Id, and that the following composition formulas hold true (at those points where all
terms are defined):

Pus,t ◦ Pur,s = Pur,t and
(
Pus,t

)−1
= Put,s.

Finally, we employ the notation
(
Pus,T

)
∗ to refer to the push-forward map defined from Txu(s)M

to Txu(t)M : in particular if X is any vector field on M , then the push-forward
(
Pus,t

)
∗X is

defined by:
(
Pus,t

)
∗ (X(y)) =

((
Pus,t

)
∗X
)

(Pus,t(y)).

2.1. The end-point map. In what follows we fix a point x0 ∈M and a time T > 0.

Definition 3 (end-point map). The end-point map at time T is the map

ETx0
: ΩTx0

→M, ETx0
(u) = xu(T ),

where xu(·) is the admissible trajectory driven by the control u.

The end-point map is smooth on ΩTx0
⊂ L2([0, T ],Rd). The computation of its Fréchet

differential is classical and can be found for example in [3, 16, 19]:
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Proposition 4. The differential duE
T
x0

: L2([0, T ],Rd) → Txu(T )M of the end-point map at

u ∈ ΩTx0
is given by the formula:

(2.1) duE
T
x0

(v) =

∫ T

0

d∑

i=1

vi(s)
(
Pus,T

)
∗Xi(xu(s))ds.

Let us consider a sequence of admissible controls {un}n∈N, which weakly converges to some
element u ∈ L2([0, T ],Rd). Then the sequence {un}n∈N is bounded in L2 and, thanks to our
assumption (H2), there exists a compact set KT such that xun(t) ∈ KT for all n ∈ N and
t ∈ [0, T ].

This yields that the family of trajectories {xun(·)}n∈N is uniformly bounded, and from here
it is a classical fact to deduce that the weak limit u is an admissible control, and that xu(·) =
limn→∞ xun(·) (in the uniform topology) is its associated trajectory (see for example [20]).

This proves that the end-point map ETx0
is weakly continuous. Indeed, one can prove that

the same holds true for its differential duE
T
x0

. More precisely: if {un}n∈N is a sequence of

admissible controls which weakly converges in L2([0, T ],Rd) to u (which is admissible by the
previous discussion), we have both that

lim
n→∞

ETx0
(un) = ETx0

(u) and lim
n→∞

dunE
T
x0

= duE
T
x0
,

and the last convergence is in the (strong) operator norm (see [19]).

Remark. There are other possible assumptions to ensure that the weak limit of a sequence of
admissible controls is again an admissible control; for example, as suggested in [17], one could
ask a sublinear growth condition on the vector fields X0, . . . , Xd. In this case the uniform bound
on the trajectories (equivalent to (H2)) follows as a consequence of the Gronwall inequality, and
the observation that a weakly convergent sequence in L2 is necessarily bounded.

Definition 5 (Attainable set). For a fixed final time T > 0, we denote by ATx0
the image of the

end-point map at time T , and we call it the attainable set (from the point x0).

In general the inclusion ATx0
⊂ M can be proper, that is the end-point map ETx0

may not be
surjective on M ; nevertheless, the weak Hörmander condition (1.4) implies that for every initial
point x0 one has int

(
ATx0

)
6= ∅ [12, Ch. 3, Thm. 3].

2.2. Value function and optimal trajectories. Let Q : M → R be a smooth function, which
plays in what follows the role of a potential; if we introduce the Tonelli Lagrangian

L : M × Rd → R, L(x, u) =
1

2

(
d∑

i=1

u2
i −Q(x)

)
,

then the cost CT : ΩTx0
→ R is written as:

CT (u) =

∫ T

0

L(xu(t), u(t))dt =
1

2

∫ T

0

(
d∑

i=1

ui(t)
2 −Q(xu(t))

)
dt.

The differential duCT of the cost can be recovered similarly as for the differential of the
end-point map, and is given, for every v ∈ L2([0, T ],Rd), by the formula

duCT (v) =

∫ T

0

〈u(t), v(t)〉dt− 1

2

∫ T

0

Q′(xu(t))

(∫ t

0

d∑

i=1

vi(s)(P
u
s,t)∗Xi(xu(s))ds

)
dt,
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that is obtained by writing xu(t) = Etx0
(u) and applying (2.1).

Fix two points x0 and x in M . The problem of describing optimal trajectories steering x0 to
x in time T can be naturally reformulated in the following way: introducing the value function
STx0

: M → R via the position

(2.2) STx0
(x) := inf

{
CT (u) | u ∈ ΩTx0

∩
(
ETx0

)−1
(x)
}
,

with the agreement that STx0
(x) = +∞ if the preimage

(
ETx0

)−1
(x) is empty, then, for any fixed

x ∈M , the optimal control problem consists into looking for elements u ∈ L2([0, T ],Rd) realizing
the infimum in (2.2). Accordingly, from now on we will call optimal control any admissible control
u which solves the optimal control problem.

In this paper we will aways concentrate on the case that the final point x of an admissible
trajectory belongs to the interior of the attainable set ATx0

. Indeed, it is a general fact that

int
(
ATx0

)
is densely contained in ATx0

[5, 12], and the weak Hörmander condition ensures that

int
(
ATx0

)
is non-empty; moreover, for every point x ∈ int

(
ATx0

)
, we trivially have that STx0

(x) <
+∞, since by definition there exists at least one admissible control v steering x0 to x.

Existence of minimizers under our main assumptions (H1)-(H3) follows from classical argu-
ments.

Proposition 6 (Existence of minimizers). Let x ∈ ATx0
. Then there exists an optimal control

u ∈ ΩTx0
satisfying:

ETx0
(u) = x, and CT (u) = STx0

(x).

Remark. The assumptions (H2)-(H3) play a crucial role for the existence of optimal control. An
equivalent approach could be to work directly inside a given compact set (see [2]) or with M itself
a compact manifold. For some specific cases, as in the classical case of the harmonic oscillator,
one is able to integrate directly Hamilton’s equations (cf. Section 2.4), and the existence of
optimal trajectories could be proved with ad hoc arguments.

As already pointed out in the introduction, one could not expect global continuity for the
value function. Nevertheless, it is well-known that under our assumptions, we have the following.

Proposition 7. The map STx0
: ATx0

→ R is lower semicontinuous.

Proofs of Propositions 6 and 7 are classical and follows from standard arguments in the
literature, hence their proof is omitted and left to the reader.

2.3. Lagrange multipliers rule. In this section we briefly recall the classical necessary condi-
tion satisfied by optimal controls u realizing the infimum in (2.2). It is indeed a restatement of
the classical Lagrange multipliers’ rule (see [5, 3, 13]).

Proposition 8. Let u ∈ L2([0, T ],Rd) be an optimal control with x = ETx0
(u). Then at least

one of the following statements is true:

a) ∃λT ∈ T ∗xM such that λT duE
T
x0

= duCT ,

b) ∃λT ∈ T ∗xM , with λT 6= 0, such that λT duE
T
x0

= 0.

Here λT duE
T
x0

: L2([0, T ])→ R denotes the composition of the linear maps duE
T
x0

: L2([0, T ])→
TxM and λT : TxM → R.

A control u, satisfying the necessary conditions for optimality stated in Proposition 8, is said
normal in case (a) and abnormal in case (b); moreover, directly from the definition we see that
duE

T
x0

is not surjective in the abnormal case. We stress again that the two possibilities are not
mutually exclusive, and we define accordingly a control u to be strictly normal (resp. strictly
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abnormal) if it is normal but not abnormal (resp. abnormal but not normal). Slightly abusing
of the notation, we extend this language even to the associated optimal trajectories t 7→ xu(t).

2.4. Normal extremals and exponential map. Let us denote by π : T ∗M →M the canon-
ical projection of the cotangent bundle, and by 〈λ, v〉 the duality pairing between a covector
λ ∈ T ∗xM and a vector v ∈ TxM . In canonical coordinates (p, x) on the cotangent space, we
can express the Liouville form as s =

∑m
i=1 pidxi and the standard symplectic form becomes

σ = ds =
∑m
i=1 dpi∧dxi. We denote by

−→
h the Hamiltonian vector field associated with a smooth

function h : T ∗M → R, defined by the identity:

−→
h =

m∑

i=1

∂h

∂pi

∂

∂xi
− ∂h

∂xi

∂

∂pi
.

The Pontryagin Maximum Principle [13, 5] tells us that candidate optimal trajectories are
projections of extremals, which are integral curves of the constrained Hamiltonian system:

ẋ(t) =
∂H

∂p
(u(t), ν, p(t), x(t)), ṗ(t) = −∂H

∂x
(u(t), ν, p(t), x(t)), 0 =

∂H

∂u
(u(t), ν, p(t), x(t)),

where the (control-dependent) Hamiltonian H : Rd × (−∞, 0]× T ∗M → R, associated with the
system (1.1), is defined by:

Hν(u, ν, p, x) = 〈p,X0(x)〉+

d∑

i=1

ui〈p,Xi(x)〉+
ν

2

d∑

i=1

u2
i −

ν

2
Q(x).

In particular, the non-positive real constant ν remains constant along extremals; recalling the
result of Proposition 8, there holds either the identity (p(T ), ν) = (λT , 0) in the case of abnormal
extremals, or (p(T ), ν) = (λT ,−1) for the normal ones. Moreover, we see that under the previous
normalizations, the optimal control u(t) along normal extremals can be recovered using the
equality:

(2.3) ui(t) = 〈p(t), Xi(x(t))〉, for i = 1, . . . , d.

Normal extremals are therefore solutions to the differential system:

ẋ(t) =
∂H

∂p
(p(t), x(t)), ṗ(t) = −∂H

∂x
(p(t), x(t)),

where the Hamiltonian H has the expression:

H(p, x) = 〈p,X0(x)〉+
1

2

d∑

i=1

〈p,Xi(x)〉2 +
1

2
Q(x).

In particular, being the solution to a smooth autonomous system of differential equations, the
pair (x(t), p(t)) is smooth as well, which eventually implies that the control ui(t) = 〈p(t), Xi(x(t))〉
associated to normal trajectories is itself smooth by (2.3). It is well known that, under our as-
sumptions, small pieces of normal trajectories are optimal among all the admissible curves that
connect their end-points (see for instance [5]), that is, if x1 = xu(t1) and x2 = xu(t2) are
sufficiently close points on the normal trajectory xu(·), then the cost-minimizing admissible
trajectory between x1 and x2 that solves (2.2) is precisely xu(·).

Definition 9 (Exponential map). The exponential map E with base point x0 is defined as

Ex0
(·, ·) : [0, T ]× T ∗x0

M →M, Ex0
(s, λ) = π(es

−→
H (λ)).
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When the first argument is fixed, we employ the notation Esx0
: T ∗x0

M → M to denote the
exponential map with base point x0 at time s; that is to say, we set Esx0

(λ) := Ex0(s, λ).

Then we see that the exponential map parametrizes normal extremals; moreover, mimicking
the classical notion in the Riemannian setting, it permits to define conjugate points along these
trajectories.

Definition 10. We say that a point x = Ex0
(s, λ) is conjugate to x0 along the normal extremal

t 7→ Ex0
(t, λ) if (s, λ) is a critical point of Ex0

, i.e. if the differential d(s,λ)Ex0
is not surjective.

3. On the continuity

In this section we study fine properties of the value function on different subsets of int
(
ATx0

)
.

3.1. Fair points. We start by introducing the set of fair points.

Definition 11. A point x ∈ int
(
ATx0

)
is said to be a fair point if there exists a unique optimal

trajectory steering x0 to x, which admits a normal lift. We call Σf the set of all fair points
contained in the attainable set.

We stress that only the uniqueness of the optimal trajectory matters in the definition of a fair
point; abnormal lifts are as well admitted for the moment.

The lower semicontinuity of STx0
permits to find a great abundance of fair points; their ex-

istence is related to the notion of proximal subdifferential (see for instance [10, 15] for more
details).

Definition 12. Let F : int
(
ATx0

)
→ R be a lower semicontinuous function. For every x ∈

int
(
ATx0

)
we call the proximal subdifferential at x the subset of T ∗xM defined by:

∂PF (x) =
{
λ = dxφ ∈ T ∗xM | φ ∈ C∞(int

(
ATx0

)
) and F − φ attains a local minimum at x

}
.

The proximal subdifferential is a convex subset of T ∗xM which is often non-empty in the case
of a lower semicontinuous function [10, Theorem 3.1].

Proposition 13. Let F : int
(
ATx0

)
→ R be a lower semicontinuous function. Then the proximal

subdifferential ∂PF (x) is not empty for a dense set of points x ∈ int
(
ATx0

)
.

We showed in Proposition 7 that the value function STx0
: int

(
ATx0

)
→ R is lower semicontin-

uous. By classical arguments, the proximal subdifferential machinery yields the following result
(cf. also [15, 1]).

Proposition 14. Let x ∈ int
(
ATx0

)
be such that ∂PS

T
x0

(x) 6= ∅. Then there exists a unique
optimal trajectory xu(·) : [0, T ]→M steering x0 to x, which admits a normal lift. In particular
x is a fair point.

Proof. Fix any λ ∈ ∂PSTx0
(x). Let us prove that every optimal trajectory steering x0 to x admits

a normal lift having λ as final covector.
Indeed, if φ is a smooth function such that λ = dxφ ∈ ∂PSTx0

(x), by definition the map

ψ : int
(
ATx0

)
→ R, ψ(y) = STx0

(y)− φ(y)

has a local minimum at x, i.e. there exists an open neighborhood O ⊂ int
(
ATx0

)
of x such that

ψ(y) ≥ ψ(x) for every y ∈ O. Then, let t 7→ xu(t), t ∈ [0, T ] be an optimal trajectory from x0

to x, let u be the associated optimal control, and define the smooth map:

Φ : ΩTx0
→ R, Φ(v) = CT (v)− φ(ETx0

(v)).
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There exists a neighborhood V ⊂ ΩTx0
of u such that ETx0

(V) ⊂ O, and since CT (v) ≥ STx0
(ETx0

(v))
we have the following chain of inequalities:

Φ(v) = CT (v)− φ(ETx0
(v)) ≥ STx0

(ETx0
(v))− φ(ETx0

(v))

≥ STx0
(ETx0

(u))− φ(ETx0
(u)) = CT (u)− φ(ETx0

(u)) = Φ(u), ∀v ∈ V.

Then:

0 = duΦ = duCT − (dxφ) duE
T
x0
,

and therefore we see that the curve λ(t) = e(t−T ) ~H(λ) is the desired normal lift of the trajectory
xu(·).

In particular, since any two normal extremal lifts having λ as common final point have to
coincide, we see that there can only be one optimal trajectory between x0 and x, which precisely
means that x ∈ Σf is a fair point. �

Remark. Notice that from the previous proof it follows that, when ∂PS
T
x0

(x) 6= ∅, then the unique

normal trajectory steering x0 to x is strictly normal if and only if ∂PS
T
x0

(x) is a singleton.

Corollary 15 (Density of fair points). The set Σf of fair points is dense in int
(
ATx0

)
.

In particular we have that all differentiability points of STx0
are fair points.

Corollary 16. Suppose that STx0
is differentiable at some point x ∈ int

(
ATx0

)
. Then x is a fair

point, and its normal covector is λ = dxS
T
x0
∈ T ∗xM .

Proof. Indeed, let u be any optimal control steering x0 to x; then it is sufficient to consider the
non-negative map

v 7→ CT (v)− STx0
(ETx0

(v)),

which has by definition a local minimum at u (equal to zero). Then

0 = duCT −
(
dxS

T
x0

)
duE

T
x0
,

and the uniqueness of u (hence the claim) follows as in the previous proof. �

3.2. Continuity points. We are also interested in the subset Σc of the points of continuity for
the value function. It is a fact from general topology that a lower semicontinuity functions has
plenty of continuity points.

Lemma 17. The set Σc is a residual subset of int
(
ATx0

)
.

Recall that a residual subset of a topological spaceX is the complement of a union of countably
many nowhere dense subsets of X. This fact is well-known but the proof is often presented for
functions defined on complete metric spaces. For the sake of completeness, we give a proof in
the Appendix.

The existence of points of continuity is tightly related to the compactness of optimal controls,
as it is shown in the next lemma.

Lemma 18. Let x ∈ int
(
ATx0

)
be a continuity point of STx0

. Let {xn}n∈N ⊂ int
(
ATx0

)
be a

sequence converging to x and let un be an optimal control steering x0 to xn. Then there exists
a subsequence {xnk}k∈N ⊂ {xn}n∈N, whose associated sequence of optimal controls {unk}k∈N,
strongly converges in L2([0, T ],Rd) to some optimal control u which steers x0 to x.
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Proof. Let {xn}n∈N ⊂ int
(
ATx0

)
be a sequence converging to x and let {un}n∈N be the corre-

sponding sequence of optimal controls. Since x is a continuity point for the value function, it is
not restrictive to assume that the sequence of norms {‖un‖L2}n∈N remains uniformly bounded,
and thus we can suppose to extract a subsequence {unk}k∈N ⊂ {un}n∈N such that unk ⇀ u
weakly in L2([0, T ],Rd), which in turn implies

lim
k→∞

∫ T

0

Q(xunk (t))dt =

∫ T

0

Q(xu(t))dt.

Then we have

1

2
‖u‖2L2 −

1

2

∫ T

0

Q(xu(t))dt ≤ lim inf
k→∞

1

2
‖unk‖2L2 −

1

2

∫ T

0

Q(xunk (t))dt

= lim
k→∞

STx0
(ETx0

(unk)) = lim
k→∞

STx0
(xnk)

= STx0
(x) = STx0

(ETx0
(u))

≤ 1

2
‖u‖2L2 −

1

2

∫ T

0

Q(xu(t))dt,

which readily means both that limk→∞ ‖unk‖L2 = ‖u‖L2 (from which the convergence in L2

follows), and that CT (u) = STx0
(ETx0

(u)) = STx0
(x). �

3.3. Tame points. We have introduced so far two subsets of int
(
ATx0

)
, namely the sets Σc of

the continuity points of STx0
, and the set Σf of fair points, which are essentially points that

are well-parametrized by the exponential map; both these sets are dense in int
(
ATx0

)
, still their

intersection can be empty. Here is the main differences with respect to the arguments of [1]:
indeed in that context every fair point is a point of continuity. In our setting, to relate Σc and
Σf , we introduce the following set.

Definition 19 (Tame Points). Let x ∈ int
(
ATx0

)
. We say that x is a tame point if for every

optimal control u steering x0 to x there holds

rank duE
T
x0

= dimM = m.

We call Σt the set of tame points.

Tame points locate open sets on which the value function STx0
is continuous. The precise

statement is contained in the following lemma, whose first part of the proof is an adaptation of
the arguments of [19, Theorem 4.6]. A complete proof is contained in Appendix A.

Lemma 20. Let x ∈ int
(
ATx0

)
be a tame point. Then

(i) x is a point of continuity of STx0
;

(ii) there exists a neighborhood Ox of x such that every y ∈ Ox is a tame point. In particular,
the restriction STx0

∣∣
Ox

is a continuous map.

The previous lemma can be restated as follows.

Corollary 21. The set Σt of tame points is open. Moreover Σt ⊂ Σc.

4. Density of tame points

This section is devoted to the proof that the set of tame point is open and dense in the interior
of the attainable set. We start with the observation that the set of optimal controls reaching a
fixed point x is compact in the L2-topology.
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Lemma 22. For every x ∈ ATx0
, the set

Ux =
{
u ∈ ΩTx0

| u is an optimal control steering x0 to x
}

is strongly compact in L2([0, T ],Rd).

Proof. Let {un}n∈N ⊂ Ux. Then we have STx0
(x) = CT (un) for every n ∈ N, and consequently

there exists C > 0 such that ‖un‖L2 ≤ C for every n ∈ N. Thus we may assume that there
exists a subsequence {unk}k∈N ⊂ {un}n∈N, and a control u steering x0 to x, such that unk ⇀ u
weakly in L2([0, T ],Rd). This, on the other hand, implies that

1

2
‖u‖2L2 −

1

2

∫ T

0

Q(xu(t))dt ≤ lim inf
k→∞

1

2
‖unk‖2L2 −

1

2

∫ T

0

Q(xunk (t))dt

= lim inf
k→∞

CT (unk) = STx0
(x)

= CT (u) =
1

2
‖u‖2L2 −

1

2

∫ T

0

Q(xu(t))dt,

therefore ‖u‖L2 = limk→∞ ‖unk‖L2 , and the claim is proved. �

We introduce now the notion of the class of a point. Heuristically, the class of a point
x ∈ int

(
ATx0

)
measures how much that point “fails” to be tame (see Definition 19).

Definition 23. Let x ∈ ATx0
. We define

class (x) = min
u∈Ux

rank duE
T
x0
.

Any point x ∈ int
(
ATx0

)
satisfying class (x) = m is necessarily a tame point.

Definition 24. We also define the subset Umin
x ⊂ Ux as follows:

Umin
x =

{
u ∈ Ux | rank duE

T
x0

= class (x)
}
.

By the lower semicontinuity of the rank function, the set Umin
x is closed in Ux, hence (strongly)

compact in L2([0, T ],Rd).

We can now state the main result of this section.

Theorem 25. The set Σt of tame points is dense in int
(
ATx0

)
.

We postpone the proof of Theorem 25 at the end of the section, since we need first a series of
preliminary results.

Definition 26. Pick x in int
(
ATx0

)
and let u ∈ Umin

x . If u is not strictly abnormal, then we
choose a normal covector ηx ∈ T ∗xM associated to u and we define

Ξ̂ux =
{
ξ ∈ T ∗xM | ξduETx0

= ηxduE
T
x0

}
= ηx + ker

(
duE

T
x0

)∗ ⊂ T ∗xM.

If instead u is strictly abnormal, we simply set Ξ̂ux = ker
(
duE

T
x0

)∗ ⊂ T ∗xM .

Notice that whenever u is strictly abnormal, then Ξ̂ux is a linear subspace, while if u admits at

least one normal lift, Ξ̂ux is affine; also, the dimension of these subspaces equals m−class (x) ≥ 0.

We call Ẑu ⊂ T ∗xM the orthogonal subspace to ker
(
duE

T
x0

)∗
, of dimension equal to class (x), for

which:

(4.1) T ∗xM = ker
(
duE

T
x0

)∗ ⊕ Ẑu;
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moreover we let πẐu : T ∗xM → Ẑu to be the orthogonal projection subordinated to this splitting,
that is satisfying:

ker(πẐu) = ker
(
duE

T
x0

)∗
.

Finally, by means of the adjoint map
(
Pu0,T

)∗
, we can pull the spaces Ξ̂ux “back” to Tx0M ,

and set

Ξux :=
(
Pu0,T

)∗
Ξ̂ux ⊂ T ∗x0

M.

T ∗
x0
M

T ∗
yM

Ξv
y

Ξu
x

(P v
T,0)

∗

b λu

b
λ̂v
u

λ̂u + Ẑv

b
ξ̂v

Ξ̂v
ybξv

Figure 1. We set y = ETx0
(v). The subspace Ξ̂vy is linear if v is strictly abnor-

mal, and affine otherwise; Ẑv and ker
(
dvE

T
x0

)∗
are orthogonal. The point ξ̂v

belong to T ∗yM , and is then pulled back on T ∗x0
M .

The following estimate will be crucial in what follows.

Proposition 27. Let O ⊂ int
(
ATx0

)
be an open set, and assume that:

class (z) ≡ kO < m, for every z ∈ O.
Let x ∈ O and u ∈ Umin

x . Then there exists a neighborhood Vu ⊂ ΩTx0
of u such that, for every

λu ∈ Ξux ⊂ T ∗x0
M , there exists a constant K = K(λu) > 1 such that, for every v ∈ Vu ∩Umin

ETx0
(v),

there is ξv ∈ ΞvETx0 (v) ⊂ T
∗
x0
M satisfying:

|λu − ξv| ≤ K.

Proof. Let us choose a neighborhood Vu ⊂ ΩTx0
of u, such that all the endpoints of admissible

trajectories driven by controls in Vu belong to O.
Then, if y = ETx0

(v) for some v ∈ Vu, it follows that y ∈ O; moreover, if also v ∈ Umin
y , we

can define the (m − kO)-dimensional subspace Ξvy ⊂ T ∗x0
M as in Definition 26. Therefore we

can assume from the beginning that all such subspaces Ξvy have dimension constantly equal to
m− kO > 0.

Fix λu ∈ Ξux, and set

λ̂vu = (P vT,0)∗λu ∈ T ∗yM, v ∈ Vu ∩ Umin
y , y = ETx0

(v).

The intersection (λ̂vu+ Ẑv)∩ Ξ̂vy (cf. with (4.1) and Figure 1) consists of the single point ξ̂v; since

both λ̂vu and ξ̂v belong to the affine subspace λ̂vu + Ẑv, in order to estimate the norm |λ̂vu − ξ̂v|
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it is sufficient to evaluate the norm |πẐv (λ̂vu)− πẐv (ξ̂v)| of the projections onto the linear space

Ẑv = (ker(dvE
T
x0

)∗)⊥. The key point is the computation of the norm of |πẐv (ξ̂v)|: in fact, since

ker(dvE
T
x0

)∗ = (Im dvE
T
x0

)⊥, this amounts to evaluate

(4.2) |πẐv (ξ̂v)| = sup
f∈Im dvETx0

|〈ξ̂v, f〉|
|f |

.

We deduce immediately from (4.2) that, whenever v is strictly abnormal, then πẐv (ξ̂v) = 0,

while from the expression for the normal control (2.3)

vi(t) = 〈ξ̂v(t), Xi(xv(t))〉 = 〈ξ̂v, (P vT,t)∗Xi(xv(t))〉,

we see that 〈v, w〉L2 = 〈ξ̂v, dvETx0
(w)〉, and we can continue from (4.2) as follows (Wv denotes

the kO-dimensional subspace of L2([0, T ],Rd) on which the restriction dvE
T
x0

∣∣
Wv

is invertible):

|πẐv (ξ̂v)| = sup
w∈Wv

|〈ξ̂v, dvETx0
(w)〉|

|dvETx0
(w)|

(4.3)

≤ sup
w∈Wv

|〈ξ̂v, dvETx0
(w)〉|

‖w‖L2

‖(dvETx0

∣∣
Wv

)−1‖

= sup
w∈Wv

|〈v, w〉|
‖w‖L2

‖(dvETx0

∣∣
Wv

)−1‖

≤ ‖v‖L2‖(dvETx0

∣∣
Wv

)−1‖.

It is not restrictive to assume that the L2-norm of any element v ∈ Vu∩Umin
y remains bounded;

moreover, since all the subspaces have the same dimension, the map v 7→Wv is continuous, which
implies that so is the map v 7→ (dvE

T
x0

∣∣
Wv

)−1. This, on the other hand, guarantees that the

operator norm ‖(dvETx0

∣∣
Wv

)−1‖ remains bounded for all v ∈ Vu ∩ Umin
y , and then from (4.3) we

conclude that for some C > 1, the estimate |πẐv (ξ̂v)| ≤ C holds true, which implies as well, by
the triangular inequality, that:

|λ̂vu − ξ̂v| ≤ |λ̂vu|+ C.

Finally, the continuity of both the map v 7→ P v0,T and its inverse, implies that for another real
constant C > 1 we have:

sup
v∈Vu

{
‖(P v0,T )∗‖, ‖(P vT,0)∗‖

}
≤ C.

Thus, setting ξv = (P v0,T )∗ξ̂v ∈ T ∗x0
M (cf. Figure 1) we can compute (here C denotes a constant

that can change from line to line):

|λu − ξv| ≤ C|λ̂vu − ξ̂v|

≤ C|λ̂vu|+ C2

≤ C2 (|λu|+ 1)

≤ 2C2 max{|λu|, 1}.

Setting K(λu) := 2C2 max{|λu|, 1} the claim is proved. �

Remark. Let us fix λu ∈ Ξux ⊂ T ∗x0
M and consider the kO-dimensional affine subspace

(P v0,T )∗(λ̂vu + Ẑv) = λu + (P v0,T )∗Ẑv,
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with Ẑv defined as in (4.1). Then if we call Zv := (P v0,T )∗Ẑv ⊂ T ∗x0
M , the map

v 7→ λu + Zv, v ∈ Vu ∩ Umin
y , y = ETx0

(v)

is continuous; moreover, Zv is by construction transversal to Ξvy, and ξv ∈ (λu + Zv) ∩ Ξvy.

Having in mind this remark, we deduce the following:

Corollary 28. Let O ⊂ int
(
ATx0

)
be an open set, and assume that

class (z) ≡ kO < m, for every z ∈ O.
Let x ∈ O, u ∈ Umin

x , and consider Vu ⊂ ΩTx0
as in Proposition 27. Then, for every λu ∈ Ξux,

there exists a kO-dimensional compact ball Au, centered at λu and transversal to Ξux, such that:

Au ∩ Ξvy 6= ∅ for every v ∈ Vu ∩ Umin
y , where y = ETx0

(v).

b

Ξu
x

λu

Bv
u

λu + Zu

λu + Zv

bξv

Ξv
y

Tv

b

η

T ∗
x0
M

Figure 2. On the fiber T ∗x0
M , the point η denotes the intersection between Tv

and the affine space λu + Zu.

Proof. Let λu ∈ Ξux be chosen, and assume without loss of generality that Vu is relatively
compact. For every v ∈ Vu, we can construct an m-dimensional ball Bvu, of radius Cv0 strictly
greater than K = K(λu) (given by Proposition 27), and centered at λu.

Then, the existence of an element ξv ∈ (λu + Zv) ∩ Ξvy satisfying |λu − ξv| ≤ K, proved in
Proposition 27, implies that the intersection of Bvu with Ξvy is a compact submanifold Tv (with
boundary); moreover, since the radius of Bvu is strictly greater than |λu− ξv|, it is also true that
the intersection of λu + Zv with int (Tv) is not empty.

Let us consider as before (cf. previous remark) the kO-dimensional affine subspace λu + Zu,
which is transversal to Ξux: possibly increasing the radius Cv0 , the continuity of the map w 7→
λu +Zw ensures that λu +Zu remains transversal to Tv, and in particular that the intersection
Tv ∩ (λu + Zu) is not empty (see Figure 2). Moreover, it is clear that this conclusion is local,
that is with the same choice of Cv0 it can be drawn on some full neighborhood Wv of v. Then, to
find a ball Bu and a radius C0 uniformly for the whole set Vu, it is sufficient to extract a finite
sub-cover Wv1 , . . . ,Wvl of Vu , and choose C0 as the maximum between Cv10 , . . . , Cvl0 .

We conclude the proof setting Au = Bu ∩ (λu +Zu); indeed Au is a compact kO-dimensional
ball by construction, and moreover if we call ηv any element in the intersection Tv ∩ (λu + Zu),
for v ∈ Vu, then it follows that:

ηv ∈ Ξvy ∩Bu ∩ (λu + Zu) = Ξvy ∩Au,

that is, the intersection Ξvy ∩Au is not empty for every v ∈ Vu ∩ Umin
y . �
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Lemma 29. Let O ⊂ int
(
ATx0

)
be an open set, and let

kO = max
x∈Σc∩O

class (x).

Then there exists a neighborhood O′ ⊂ O, such that class (y) = kO, for every y ∈ O′.

Proof. Let x ∈ Σc ∩ O be a point of continuity for the value function STx0
, having the property

that class (x) = kO. Assume by contradiction that we can find a sequence {xn}n∈N converging
to x and satisfying class (xn) ≤ kO − 1 for every n ∈ N. Accordingly, let un ∈ Umin

xn an
associated sequence of optimal controls; in particular, for every n ∈ N, we have by definition
that class (xn) = rank dunE

T
x0

.
By Lemma 18, we can extract a subsequence {unk}k∈N ⊂ {un}n∈N which converges to some

optimal control u steering x0 to x, strongly in the L2-topology, and write:

class (x) ≤ rank duE
T
x0
≤ lim inf

k→∞
rank dunkE

T
x0

= lim inf
k→∞

class (xnk) ≤ kO − 1,

which is absurd by construction, and the claim follows. �

Collecting all the results we can now prove Theorem 25.

Proof of Theorem 25. Let O be an open set in int
(
ATx0

)
and define

kO = max
x∈Σc∩O

class (x);

notice that this definition makes sense, since points of continuity are dense in int
(
ATx0

)
by

Proposition 17. Then we may suppose that kO is strictly less than m, for otherwise there would
be nothing to prove. Moreover, by Lemma 29 it is not restrictive to assume that class (y) = kO
for every y ∈ O.

Fix then a point x ∈ Σc ∩ O; since the hypotheses of Proposition 27 are satisfied, for every
u ∈ Umin

x we can find a neighborhood Vu ⊂ ΩTx0
of u, fix λu ∈ Ξux, and construct accordingly a

compact kO-dimensional ball Au, centered at λu and transversal to Ξux, such that (Corollary 28)

Au ∩ Ξvy 6= ∅ for every v ∈ Vu, and with y = ETx0
(v).

Since Umin
x is compact (Definition 24), we can choose finitely many elements u1, . . . , ul in

Umin
x such that

Umin
x ⊂

l⋃

i=1

Vui .

The union Au1
∪ . . . ∪Aul is again of positive codimension. Moreover, for every sequence xn of

fair points converging to x, and whose associated sequence of optimal controls (by uniqueness of
the optimal control, necessarily un ∈ Umin

xn ) the sequence un converges to some v ∈ Vui ⊂ Umin
x ,

we have that Aui is also transversal to Ξunxn . In particular, possibly enlarging the ball Aui , we
can assume that

Aui ∩ Ξunxn 6= ∅, for every n ∈ N.

For any fair point z ∈ Σf ∩O, the optimal control admits a normal lift, and we have the equality

ETx0
(Ξuz ) = z,

where ETx0
is the exponential map with base point x0 at time T of Definition 9, so that we

eventually deduce the inclusion:

(4.4) Σf ∩O ⊂ ETx0
(Au1

∪ . . . ∪Aul) .
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The set on the right-hand side is closed, being the image of a compact set; moreover, it is of
measure zero by the classical Sard Lemma [18], as it is the image of a set of positive codimension
by construction. Since the set Σf ∩ O is dense in O by Corollary 15, passing to the closures in
(4.4) we conclude that meas(O) = 0, which is impossible. �

Combining now Lemma 20 and Theorem 25 we obtain the following (cf. Theorem 1).

Corollary 30. The set Σt of tame points is open and dense in int
(
ATx0

)
.

5. On the smoothness

In this section we deduce smoothness of the value function STx0
in the presence of tame points.

Since tame points are in particular points of continuity for STx0
, the arguments of Lemma 18,

with minor changes, prove the following result.

Lemma 31. Let K ⊂ Σt be a compact subset of tame points. Then the set of optimal controls
reaching points of K

MK =
{
u ∈ ΩTx0

| ETx0
(u) ∈ K and CT (u) = STx0

(ETx0
(u))

}

is strongly compact in the L2-topology.

The first result of this section, which is an adaptation of an argument of [15, 1], is as follows:

Proposition 32. Let K ⊂ Σt be a compact subset of tame points. Then STx0
is Lipschitz

continuous on K.

Proof. By compactness, it is sufficient to show that STx0
is locally Lipschitz continuous on K.

Fix a point x ∈ K and let u be associated with an optimal trajectory joining x0 and x.
By assumption, duE

T
x0

is surjective, so that there are neighborhoods Vu ⊂ ΩTx0
of u and Ox ⊂

int
(
ATx0

)
of x such that

ETx0

∣∣
Vu

: Vu → Ox

is surjective, and there exists a smooth right inverse Φ : Ox → Vu such that ETx0
(Φ(y)) = y for

every y ∈ Ox.
Fix local coordinates around x, and let Bx(r) ⊂ M and Bu(r) ⊂ ΩTx0

denote some balls of
radius r > 0 centered at x and u respectively. As Φ is smooth, there exists R > 0 and C0 > 0
such that:

(5.1) Bx(C0r) ⊂ ETx0
(Bu(r)), for every 0 ≤ r ≤ R.

Observe that there also exists C1 > 0 such that, for every v, w ∈ Bu(R) we have

(5.2) |CT (v)− CT (w)| ≤ C1‖v − w‖L2 .

Indeed our main assumption implies that the subset {xv(t) | t ∈ [0, T ], v ∈ Bu(R)} is con-
tained in a compact set K of M , on which the smooth function Q, together with its differential
Q′, attains both a maximum and a minimum. Then, using the mean value theorem and [19,
Proposition 3.5], we deduce that

∫ T

0

|Q(xv(t))−Q(xw(t))|dt ≤ sup
y∈K
|Q′(y)|

∫ T

0

|xv(t)− xw(t)|dt ≤ C‖v − w‖L2 ,

and by means of the triangular inequality, (5.2) is proved.
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Pick any point y ∈ K such that |y − x| = C0r, with 0 ≤ r ≤ R. Then by (5.1) there exists
v ∈ Bu(r) satisfying ‖u − v‖L2 ≤ r and such that ETx0

(v) = y; since CT (u) = STx0
(x) and

STx0
(y) ≤ CT (v), we have

STx0
(y)− STx0

(x) ≤ CT (v)− CT (u) ≤ C1‖v − u‖L2 ≤ C1

C0
|y − x|.

Using the compactness of both K and MK (cf. Lemma 31), all the constants can be made
uniform, and the role of x and y can be exchanged, so that we have indeed

|STx0
(x)− STx0

(y)| ≤ C1

C0
|x− y|,

for every pair of points x and y such that |x− y| ≤ C0R. �

Definition 33. We define the set Σ ⊂ int
(
ATx0

)
of the smooth points as the set of points x such

that

(a) there exists a unique optimal trajectory t 7→ xu(t) steering x0 to x in time T , which is
strictly normal,

(b) x is not conjugate to x0 along xu(·) (cf. Definition 9).

Item (a) in the Definition 33 is equivalent to require that x is in fact a point that is at the same
time fair and tame. Notice that as a consequence of the results of Section 3, and in particular
of Corollary 30, the set Σf ∩ Σt is dense in int

(
ATx0

)
.

The following result finally proves Theorem 2.

Theorem 34 (Density of smooth points). Σ is open and dense in int
(
ATx0

)
. Moreover STx0

is
smooth on Σ.

Proof. (i.a) Let us show that Σ is dense. First we prove that, for any open set O, we have
Σ ∩ O 6= ∅. Since the set Σt of tame points is open and dense in int

(
ATx0

)
, we can choose a

subset O′ ⊂ O ∩ Σt relatively compact, and assume by Proposition 32 that STx0
is Lipschitz

on O′. Thanks to the classical Rademacher theorem we know that STx0
is differentiable almost

everywhere on O′, and therefore, since any point of differentiability is a fair point by Corollary
16, meas(Σf ∩ O′) = meas(O′). Moreover, any point in Σf ∩ O′ is also contained in the image
of the exponential map ETx0

, and Sard Lemma implies that the set of regular points is of full
measure in Σf ∩ O′. By definition any such point is in Σ, that is we have meas(Σ ∩ O′) =
meas(Σf ∩O′) = meas(O′), which implies that Σ ∩O′ 6= ∅, and this concludes the proof.

(i.b) Let us prove that Σ is open. Fix as before an open set O having compact closure in
int
(
ATx0

)
. Assume by contradiction that there exists a sequence of points xn ∈ O converging

to x ∈ Σ and such that there are (at least) two optimal trajectories connecting them with x0.
Call {un}n∈N and {vn}n∈N the corresponding sequences of optimal controls associated with such
trajectories. Lemma 18 then guarantees that, up to considering subsequences, it is not restrictive
to assume the existence of both u = limn→∞ un and v = limn→∞ vn in L2([0, T ],Rd); however,
the uniqueness of the minimizer steering x0 to x implies that u = v.

Then both dunE
T
x0

and dvnE
T
x0

have maximal rank for n large enough (u is strictly normal
because x is a smooth point), and we can define the families of covectors λn and ξn, as elements
of T ∗xnM , satisfying the identities:

λndunE
T
x0

= dunCT , ξndvnE
T
x0

= dvnCT .

Taking the limit on these two equations we see that limn→∞ λn = limn→∞ ξn = λ, where λ is
the covector associated with the unique optimal control u steering x0 to x. If, for any s ∈ [0, T ],
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we let λsn = (Puns,T )∗λn and ξsn = (P vns,T )∗ξn, then we see that even the “initial covectors” λ0
n and

ξ0
n converge to the same element λ0.

On the other hand, since by the point (b) of Definition 33 x is not conjugate to x0 along
the unique optimal trajectory xu(·), we have that λ0 is a regular point for the exponential map
ETx0

. Then there exist full neighborhoods V ⊂ T ∗x0
M of λ0 and Ox ⊂ int

(
ATx0

)
of x such that

the exponential map ETx0

∣∣
V

: V → Ox is a diffeomorphism. In particular, if we pick some point

y ∈ Ox, there is a unique optimal trajectory xu(·) steering x0 to y; moreover the covector λy
associated with xu(·) is a regular point for ETx0

, and from the equality ETx0
(u) = ETx0

(λy), we see
that u has to be strictly normal. This shows that Ox ⊂ Σ, which in the end is an open set.

(ii). Next we prove the smoothness of STx0
on Σ. Let us consider a covector λ ∈ T ∗x0

M
associated with the unique optimal trajectory connecting x0 and x. By the arguments of the
previous point, there are neighborhoods Vλ ⊂ T ∗x0

M of λ and Ox ⊂ int
(
ATx0

)
of x such that

ETx0

∣∣
Vλ

: Vλ → Ox is a diffeomorphism.

It is then possible to define a smooth inverse Φ : Ox → Vλ sending y to the corresponding
“initial” covector λy. Along (strictly normal) trajectories associated with covectors λy in Vλ we
have therefore (compare with (2.3)):

uyi (t) = 〈Φ(y), Xi(x
y
u(t))〉,

which means that the control uy ∈ ΩTx0
and, in turn, the cost CT (u) itself, are smooth on Ox. �

Appendix A. A few technical results

We give here the proof of Lemmas 17 and 20.

Lemma. The set Σc is a residual subset of int
(
ATx0

)
.

Proof. We will show that the complement of Σc is a meager set, i.e. it can be included into a
countable union of closed, nowhere dense subsets of int

(
ATx0

)
. Then the claim will follow from

the classical Baire category theorem, that holds on smooth manifolds.
Let then x be a discontinuity point of STx0

. This implies that STx0
is not upper semicontinuous

at x, i.e. there exists ε > 0 and a sequence xn → x such that for all n

STx0
(x) + ε ≤ STx0

(xn).

For any q ∈ Q define the set

Kq =
{
x ∈ int

(
ATx0

)
| STx0

(x) ≤ q
}

;

the lower semicontinuity of STx0
implies that Kq is closed. Moreover, let us choose r ∈ Q such

that STx0
(x) < r < STx0

(x) + ε; then by construction x ∈ Kr \ int (Kr), which means that

int
(
ATx0

)
\ Σc ⊂

⋃

r∈Q
(Kr \ int (Kr)) .

�

Lemma. Let x ∈ int
(
ATx0

)
be a tame point. Then

(i) x is a point of continuity of STx0
;

(ii) there exists a neighborhood Ox of x such that every y ∈ Ox is a tame point. In particular,
the restriction STx0

∣∣
Ox

is a continuous map.

Proof. To prove (i) we will show that, for every sequence {xn}n∈N converging to x, there holds
limn→+∞ STx0

(xn) = STx0
(x); in particular we will prove the latter equality by showing that

STx0
(x) is the unique cluster point for all such sequences {STx0

(xn)}n∈N.
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Let u be any optimal control steering x0 to x; by hypothesis duE
T
x0

is surjective, and therefore

ETx0
is locally open at u, which means that there exists a neighborhood Vu ⊂ ΩTx0

of u such that

the image ETx0
(Vu) covers a full neighborhood of x in int

(
ATx0

)
. This implies that, for n large

enough, the L2-norms {‖un‖L2}n∈N of optimal controls steering x0 to xn remain uniformly
bounded by some positive constant C.

Let now a be a cluster point for the sequence {STx0
(xn)}n∈N. Then, it is not restrictive

to assume that limn→∞ STx0
(xn) = a. Moreover, our previous point implies that we can find a

subsequence {xnk}k∈N, whose associated sequence of optimal controls {unk}k∈N weakly converge
in L2([0, T ],Rd) to some admissible control u steering x0 to x, which in turn yields the inequality

STx0
(x) ≤ CT (u) ≤ lim inf

k→∞
CT (unk) = lim inf

k→∞
STx0

(xnk) = a.

Let us assume by contradiction that STx0
(x) = b < a, and let ε > 0 be such that b + ε < a;

moreover, let v be an optimal control attaining that cost. By the tameness assumption, the end-
point map ETx0

is open in a (strong) neighborhood Vv ⊂ ΩTx0
of v, which means that all points

y sufficiently close to x can be reached by admissible (but not necessarily optimal) trajectories,
driven by controls w ∈ Vv satisfying CT (w) ≤ b + ε < a. But this gives a contradiction since
STx0

(xnk) must become arbitrarily close to a, as k goes to infinity.
To prove (ii), assume by contradiction that such a neighborhood Ox does not exist; then we

can find a sequence {xn}n∈N convergent to x, and such that for every n ∈ N there exists a choice
of an abnormal optimal control un steering x0 to xn, that is for every n ∈ N there exists a
norm-one covector λn such that:

(A.1) λndunE
T
x0

= 0.

By Lemma 18, there exists a subsequence unk which converges strongly in L2([0, T ],Rd) to some
optimal control u reaching x; moreover, since we assumed |λn| = 1 for all n ∈ N, it is not
restrictive to suppose that λ = limk→∞ λnk exists. Thus, passing to the limit as k tend to
infinity in (A.1), we see that u is forced to be abnormal, and thus we have a contradiction, as x
is tame. It follows then from point (i) that STx0

∣∣
Ox

is indeed a continuous map.

�
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