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A QUASINONLOCAL COUPLING METHOD FOR NONLOCAL AND LOCAL

DIFFUSION MODELS

QIANG DU, XINGJIE HELEN LI, JIANFENG LU, AND XIAOCHUAN TIAN

Abstract. In this paper, we extend the idea of “geometric reconstruction” to couple a nonlo-
cal diffusion model directly with the classical local diffusion in one dimensional space. This new
coupling framework removes interfacial inconsistency, ensures the flux balance, and satisfies en-
ergy conservation as well as the maximum principle, whereas none of existing coupling methods
for nonlocal-to-local coupling satisfies all of these properties. We establish the well-posedness and
provide the stability analysis of the coupling method. We investigate the difference to the local
limiting problem in terms of the nonlocal interaction range. Furthermore, we propose a first order
finite difference numerical discretization and perform several numerical tests to confirm the theo-
retical findings. In particular, we show that the resulting numerical result is free of artifacts near
the boundary of the domain where a classical local boundary condition is used, together with a
coupled fully nonlocal model in the interior of the domain.

1. Introduction

Nonlocal continuum models have found interesting applications in a number of important scien-
tific and engineering problems, for example, the phase transition [2,14], the nonlocal heat conduc-
tion [3], fracture and damage in brittle solids [35]. Meanwhile, they can often be linked to classic
local continuum models where the latter are known to hold [4,6,7,9,11,13,15–17,19,22,23,25,28,36].

While nonlocal integral-type formulations in a nonlocal continuum model can often provide a
more accurate description of physical systems, especially near defects and singularities, the non-
locality also increases the computational cost, compared to classical local models based on partial
differential equations (PDEs). As a result, it is imperative to employ multiscale methods which
can retain accuracy around defect cores while improving efficiency away from singularities through
local continuum descriptions. In addition, the nonlocal models usually bring modeling challenges
near the boundary, as volumetric boundary conditions are needed that require additional calibra-
tions with the physical system. Improper boundary conditions may create unintended modeling
error [8, 10, 41]. It is thus interesting to explore alternatives that enable the use of the usual local
boundary conditions.
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In the past ten years, a number of strategies have been proposed to couple together local-to-
nonlocal or two nonlocal continuum models with different nonlocality. These coupling methods
include (1) Arlequin type domain decomposition (see e.g., [18, 29]); (2) Optimal-control based
coupling (see e.g., [5]); (3) Morphing approach (see e.g., [24]); (4) Force-based blending mechanism
(see e.g., [30, 31]); and (5) Energy-based blending mechanism (see e.g., [1, 37, 38]); just to name a
few. Among these multiscale models, some exhibit spurious interfacial forces (“ghost forces”) under
uniform strain, while others forgo the need for energy and develop consistent force-based methods
which are non-conservative.

Recently, a new symmetric, consistent and stable coupling strategy for nonlocal diffusion prob-
lems was developed in [20] that couples two nonlocal operators with different horizon parameters
δ1 and δ2. The crucial step in the formulation is the idea of “geometric reconstruction” from the
quasinonlocal atomistic-to-continuum method for crystalline solids (see e.g., [12, 21,26,27,32,34]).
In this paper, we extend the “geometric reconstruction” idea to couple the nonlocal diffusion di-
rectly with the classical local diffusion in one dimensional space. This new framework leads a
coupled model that enjoys linear consistency and preserves the maximum principle. Furthermore,
well-posedness of the coupling problem, stability analysis and error estimates are established in this
work to ensure the validity and reliability of the modeling approach and computational results.

Let us first review nonlocal diffusion equations associated with a positive number δ that charac-
terizes the finite range of nonlocal interaction. We refer to [6] for more detailed studies on nonlocal
diffusion equations. Generically, the spatial interactions in a linear nonlocal diffusion equation are
characterized by a linear operator Lδ acting on a function u = u(x) : Rd → R such that

Lδu(x) = 2

∫

Rd

(u(y) − u(x))γδ(x,y)dy, ∀x ∈ Ω , (1.1)

for some open domain Ω ⊂ R
d. The kernel γδ is usually nonnegative, symmetric and translational

invariant for isotropic systems. Often it is chosen as a radial function with a compact support, i.e.,
γδ(x,y) = γδ(|x−y|) and supp(γδ) ⊂ Bδ(0), where Bδ(0) is the d-dimensional ball of radius δ. The
constant δ > 0 is often called a horizon parameter that characterizes the range of nonlocality. We
note that the operator Lδ can be written in the form of Lδ = DγδD

∗ where D and D∗ are some basic
nonlocal operators defined in a nonlocal vector calculus given in [7]. Such a formulation naturally
draws an analogy between the nonlocal operator Lδ and the local second order elliptic differential
operator ∇ · (C∇). Thus the nonlocal diffusion problems can be studied and compared with the
classical diffusion problems. The nonlocal equations defined on the domain Ω are complemented
by the “Dirichlet type” boundary conditions, which are constraints on a domain with nonzero
d-dimensional volume. Thus we arrive at the steady-state nonlocal volume-constrained diffusion
problem:

{

−Lδu = f on Ω,

u = 0 on ΩI
(1.2)

for a function u(x) : Rd → R and ΩI being the nonlocal interaction domain of nonzero d-dimensional
volume.

To make connections of equation (1.2) with their local differential counterparts, we usually
consider the kernel γδ to be suitably localized as δ → 0. Without being too technical, this essentially
means that we want γδ(|x|)|x|

2 to be approximating the Dirac delta measure at the origin as δ → 0.
Often, a convenient assumption for us to make is that γδ is a rescaled kernel,















γδ(|x|) =
1

δd+2
γ

(

|x|

δ

)

, γ is nonnegative and nonincreasing on (0,1),

with supp(γ) ⊂ [0, 1] and

∫

Rd

|x|2γ(|x|)dx = d .

(K)
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In this paper, we propose an energy-based coupling method that combines the nonlocal diffusion
equation defined as above with the local classical diffusion equation. Since the construction of
our coupling follows the spirit of the quasinonlocal atomistic-to-continuum coupling methods for
crystalline materials (see for example, [12, 21, 26, 27, 32, 34]), we call our method the quasinonlocal
(QNL) coupling of nonlocal and local diffusion. We focus on one-dimensional problems in this work
to better illustrate the idea. The multi-dimensional generalizations are possible and will be carried
out in separate works.

More specifically, in section 2 we first define the combined total energy from which the quasi-
nonlocal operator is derived through energy variation, followed by the discussion of the concerned
issue of patch-test consistency. Section 3 contains rigorous arguments of the well-posedness of the
coupled problem. Section 4 further explores the modeling accuracy of the coupled method com-
pared with the fully local diffusion equation in terms of small δ, in which the uniform first order
accuracy in terms of δ is shown. Section 5 contains numerical experiments and then conclusion and
discussions are put in section 6.

2. Consistent coupling of nonlocal and local diffusions

In this section, we formulate our idea of the QNL coupling in a one-dimensional bar. Without
loss of generality, we work on the domain Ω = (−1, 1) throughout the paper. We consider the
nonlocal interaction region to be on the left side of the bar Ω and the local interaction region to
be on the right side with a transition layer in the middle of width δ. Now that the domain Ω
is composed of both nonlocal and local interaction regions, the Dirichlet boundary condition to
impose should be considered as a mixture of nonlocal and local boundary conditions. Specifically,
to the left of the bar Ω there is a nonlocal boundary (−1− δ,−1) and to the right of the bar a local
boundary {1}. In all further discussions we use Ωδ = (−1 − δ,−1) ∪ {1} as the boundary domain
which is mixed with nonlocal and local boundary. See Figure 1 for the graphical illustration of the
coupled nonlocal and local domain.

pure nonlocal pure local
transitionalnonlocal bdry local bdry

−1 0 δ 1

Figure 1. Graphical illustration of the 1D domain

2.1. The energy space. The QNL coupling method comes from energy variation of the total
energy defined as

Eqnl
δ (u) :=

1

2

∫∫

x≤0 or y≤0
γδ(|y − x|) (u(y)− u(x))2 dydx+

1

2

∫

x>0
|u′(x)|2ωδ(x) dx. (2.1)

where the weight function ωδ is given by

ωδ(x) :=

∫ 1

0
dt

∫

|s|<x

t

|s|2γδ(|s|) ds. (2.2)

From the definition of the kernel γδ in (K), in particular that the second moment of γδ is equal
to d = 1, it is easy to see that ωδ(x) is a nondecreasing function on [0,∞) with ωδ(0) = 0 and
ωδ(x) = 1 for x ≥ δ. Thus the total quasinonlocal energy has a transition from pure nonlocal to
pure local through the transitional region (0, δ). We further characterize of the weight function
ωδ(x) in the following lemma.
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Lemma 2.1. By the definition of ωδ in (2.2), we have the following equations

ωδ(x) = 2

∫ x

0
s2γδ(|s|)ds + 2x

∫ ∞

x
sγδ(|s|)ds, (2.3)

ω′
δ(x) = 2

∫ ∞

x
sγδ(s)ds. (2.4)

Proof. For the first equation,

ωδ(x) =

∫ 1

0
dt

∫

|s|<x

t

s2γδ(|s|)ds = 2

∫ 1

0
dt

∫ x

t

0
s2γδ(|s|)ds

= 2

∫ x

0
s2γδ(|s|)

∫ 1

0
dtds+ 2

∫ ∞

x
s2γδ(|s|)

∫ x

s

0
dtds

= 2

∫ x

0
s2γδ(|s|)ds + 2x

∫ ∞

x
sγδ(|s|)ds .

Then ω′
δ(x) is obtained by taking derivatives of the expression. �

Remark 2.1. For given kernel γ, we could calculate ωδ using the formula (2.3) given in the Lemma
2.1. We give two examples in the following and the plot of the corresponding weight function is
shown in Figure 2. These kernels will be used in our numerical example too.

(1) γδ(x) =
3

2δ3
χ(−δ,δ)(x), then

ωδ(x) =







3x

2δ
−

x3

2δ3
x ∈ (0, δ),

1 x ≥ δ.

(2) γδ(x) =
1

|x|δ2
χ(−δ,δ)(x), then

ωδ(x) =







2x

δ
−

x2

δ2
x ∈ (0, δ).

1 x ≥ δ.

x

ωδ(x)

δ

1

Figure 2. Blue line: weight function for γδ(x) = 3
2δ3χ(−δ,δ)(x). Red dashed line:

weight function for γδ(x) =
1

|x|δ2χ(−δ,δ)(x).
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The energy defined in (2.1) has a more intuitive interpretation from the geometric reconstruction
formulation [12,20,21]. We will show in Proposition 2.1 that (2.1) is equivalent to the following

Eqnl
δ (u) =

1

2

∫∫

x≤0 or y≤0
γδ(|y − x|) (u(y)− u(x))2 dydx (2.5)

+
1

2

∫∫

x>0 and y>0
dydx γδ(|y − x|)

∫ 1

0
dt
∣

∣u′(x+ t(y − x))
∣

∣

2
|y − x|2.

To better convey the idea of geometric reconstruction proposed in [20], we first assume that
Ω = Ω1 ⊔ Ω2 is dominated by two different nonlocal kernels γδ1 and γδ2 (δ2 < δ1), respectively.
Next, we utilizes the interaction kernel γδ1 throughout the entire domain Ω, while in the subregion
Ω2, the displacement of bond (u(y) − u(x)) will be reconstructed so that it only involves x and y
pairs that are closer in distance. More concretely, to link the interaction with kernel γδ2 to γδ1 where
δ1 = Mδ2, if a bond {x− y} is completely contained in the subregion Ω2, then the displacement of
this bond (u(y)− u(x)) will be reconstructed by the following expression:

u(y)− u(x) →

(

u
(

x+
j + 1

M
(y − x)

)

− u
(

x+
j

M
(y − x)

)

)

M, for j = 0, . . . , (M − 1).

Hence, the bond interaction γδ2(|y − x|) (u(y)− u(x))2 in Ω2 is approximated by

γδ1(|y − x|)
1

M

M−1
∑

j=0

((

u
(

x+
j + 1

M
(y − x)

)

− u
(

x+
j

M
(y − x)

)

)

δ1
δ2

)2

. (2.6)

Note that if |x− y| ≤ δ1, the difference on the right is evaluated at points with distance at most
δ1
M = δ2; thus effectively, the difference u(y)−u(x) is reconstructed by a more local interaction (and
hence the idea was referred to as the “geometric reconstruction” scheme in [12]). In fact, if such
reconstruction is adopted everywhere in the entire domain Ω, one will recover the fully nonlocal
interactions with kernel γδ2 only [20]. Notice that when M = δ1

δ2
→ ∞, the summation in (2.6) can

be viewed as a Riemann sum that converges to an integral, that is

1

M

M−1
∑

j=0

(

(

u
(

x+
j + 1

M
(y − x)

)

− u
(

x+
j

M
(y − x)

)

)δ1
δ2

)2

=
M−1
∑

j=0

(

u
(

x+ j+1
M (y − x)

)

− u
(

x+ j
M (y − x)

)

1
M (y − x)

(y − x)

)2
1

M

→

∫ 1

0

∣

∣u′(x+ t(y − x))
∣

∣

2
|y − x|2dt as M → ∞.

The nonlocal bond interaction γδ(|y − x|) (u(y)− u(x))2 can be reconstructed by its local continuum
approximation:

γδ(|y − x|) ·

∫ 1

0

∣

∣u′(x+ t(y − x))
∣

∣

2
|y − x|2dt. (2.7)

Based on this construction, we arrive at the total coupling energy (2.5).
We will show now that the two ways of writing the quasinonlocal total energy are the same.

From the expressions (2.1) and (2.5), it suffices to show that local contribution to the total energy
is equivalent. The two different ways of writing the local contribution of the energy has their own
advantages and we will adopt either definition at our convenience in the sequel.
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Proposition 2.1. The following two expressions of local contribution to the total energy are equiv-
alent

Eloc
δ (u) =

1

2

∫∫

x>0 and y>0
dxdy γδ(|y − x|) ·

∫ 1

0
dt
∣

∣u′(x+ t(y − x))
∣

∣

2
|y − x|2, (2.8)

and,

Eloc
δ (u) =

1

2

∫

x>0
|u′(x)|2ωδ(x) dx. (2.9)

Proof. We start with recasting the right hand side of (2.8)

1

2

∫∫

x>0 and y>0
γδ(|y − x|) ·

∫ 1

0
dt
∣

∣u′(x+ t(y − x))
∣

∣

2
|y − x|2

=
1

2

∫ 1

0
dt

∫

x>0
dx

∫

z>(1−t)x
dzγδ

(
∣

∣

∣

∣

z − x

t

∣

∣

∣

∣

)

|u′(z)|2
1

t3
|z − x|2

=
1

2

∫ 1

0
dt

∫

z>0
dz|u′(z)|2

∫

0<x< z

1−t

γδ

(∣

∣

∣

∣

x− z

t

∣

∣

∣

∣

)

1

t3
|x− z|2 dx

=
1

2

∫

z>0
dz|u′(z)|2

∫ 1

0
dt

∫

− z

t
<s< z

1−t

γδ (|s|) |s|
2 ds .

Now since
∫ 1

0
dt

∫

− z

t
<s< z

1−t

|s|2γδ (|s|) ds

=

∫ 1

0
dt

∫

− z

t
<s<0

|s|2γδ (|s|) ds+

∫ 1

0
dt

∫

0<s< z

1−t

|s|2γδ (|s|) ds

=

∫ 1

0
dt

∫

− z

t
<s<0

|s|2γδ (|s|) ds+

∫ 1

0
dt

∫

0<s< z

t

|s|2γδ (|s|) ds ,

we arrive at definition of Eloc
δ in (2.9) with the weight function ωδ as in (2.2). �

Naturally, we seek solutions in the energy space Sqnl
δ (Ω) equipped with norm

‖u‖2
Sqnl

δ
(Ω)

= ‖u‖2L2(Ω∪Ωδ)
+ |u|2

Sqnl

δ
(Ω)

where |u|2
Sqnl

δ
(Ω)

:= 2Eqnl
δ (u). Now define Sqnl

δ (Ω) to be the completion of C∞
c (Ω) under the norm

‖ · ‖
Sqnl

δ
(Ω)

, namely,

Sqnl
δ (Ω) = {u ∈ L2(Ω ∪Ωδ) : ∃{un} ∈ C∞

c (Ω), ‖un − u‖
Sqnl

δ
(Ω)

→ 0 as n → ∞} .

Then we know first that Sqnl
δ (Ω) is a Hilbert space with inner product (·, ·)

Sqnl

δ
(Ω)

to be defined as

(u, v)
Sqnl

δ
(Ω)

= (u, v)L2(Ω∪Ωδ) + bqnlδ (u, v)

where bqnlδ (u, v) is defined as

bqnlδ (u, v) =

∫∫

x≤0 or y≤0
γδ(|y − x|) (u(y)− u(x)) (v(y)− v(x)) dydx

+

∫

x>0
u′(x)v′(x)ωδ(x) dx.

(2.10)
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Moreover, Poincaré type inequality holds on the space Sqnl
δ (Ω) that is crucial in showing the well-

posedness of the variational problem.

Proposition 2.2 (Poincaré inequality). For u ∈ Sqnl
δ (Ω), we have the following Poincaré type

inequality,

‖u‖L2(Ω) ≤ C|u|
Sqnl

δ
(Ω)

, (2.11)

where C is independent of u.

Proof. From Proposition 3.1 which will be shown later in section 3, we know that the quasinonlocal
energy |u|

Sqnl

δ
(Ω)

is bounded from below by a purely nonlocal energy defined on the entire domain

Ω. Thus by the nonlocal Poincaré inequality established previously in early works, e.g., [6, 25],
(2.11) is true. Indeed, [25] shows that for a given small number ǫ there exists δ0(ǫ) such that for
all δ < δ0 the lemma holds with C(δ0) = A+ ǫ, where A is the classical local Poincaré constant for
the domain Ω. �

2.2. The QNL operator. We will derive the QNL operator denoted as Lqnl
δ from energy variation.

We take the first variation of Eqnl
δ (u) in (2.5) with any test function v ∈ C∞

c (Ω), and get

〈dEqnl
δ (u), v〉 := lim

ǫ→0

Eqnl
δ (u+ ǫv)− Eqnl

δ (u)

ǫ
(2.12)

=

∫∫

x≤0 or y≤0

γδ(|y − x|) (u(y)− u(x)) (v(y)− v(x)) dydx+

∫

x>0

ωδ(x)u
′(x)v′(x)dx

= −2

∫∫

x≤0 or y≤0

γδ(|y − x|) (u(y)− u(x)) v(x)dydx−

∫

x>0

(ωδ(x)u
′(x))′v(x)dx,

where the last equality comes integration by parts and the fact that ωδ(0) = 0. The force formalism

Lqnl
δ u(x) is negative to the first variation of total energy, and it splits into three cases:

• Case I (nonlocal region): for x ≤ 0,

Lqnl
δ u(x) =2

∫

y∈R
γδ(|y − x|) (u(y)− u(x)) dy. (2.13)

• Case II (transitional region): for 0 < x ≤ δ,

Lqnl
δ u(x) =2

∫

y<0
γδ(|y − x|) (u(y)− u(x)) dy + (ωδ(x)u

′(x))′ . (2.14)

• Case III (local region): for x > δ, and since ωδ(x) = 1 for x ≥ δ,

Lqnl
δ u(x) =(ωδ(x)u

′(x))′ = u′′(x) . (2.15)

Remark 2.2. Since the QNL operator Lqnl
δ is defined through the first variation of total energy, Lqnl

δ
is self-adjoint, that is, from a physical point of view, the force acting on x from y is equal to the force
acting on y from x. This symmetry in acting forces guarantees the balance of linear momentum.
In addition, this QNL framework ensures the flux balance, and satisfies energy conservation.

2.3. Consistency at the interface. We will show in this part that the QNL coupling is consistent
at the interface (in the language of atomistic-to-continuum coupling, it is free of ghost force),
namely, for a linear displacement ulin(x) = Fx+ a, the force equals zero. For this matter, we only

need to worry about the values of Lqnl
δ ulin in the interfacial region, since it is obviously zero in the

pure nonlocal and local regions as given by case I and case III in (2.13) and (2.15). For a more
general consideration that will also be useful in the next sections, we give the following lemma
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that involves the operator Lqnl
δ acting on smooth functions in the interfacial region. The lemma

states that if δ is small, the QNL diffusion is approximately a local diffusion with effective diffusion
constant a(x).

Lemma 2.2. For any smooth function v,

Lqnl
δ v(x) = a(x)v′′(x) +O(δ‖v′′′‖C0), 0 < x < δ , (2.16)

where a is given by

a(x) = 1−

∫ δ

x
s2γδ(|s|)ds + 2x

∫ δ

x
sγδ(|s|)ds . (2.17)

Proof. For x ∈ (0, δ), by the expressions of ωδ and ω′
δ in Lemma 2.1, we have

Lqnl
δ v(x) = 2

∫

y<0
γδ(|y − x|) (v(y)− v(x)) dy + (ωδ(x)v

′(x))′

= 2

∫ −x

−δ
γδ(s)

(

sv′(x) +
1

2
s2v′′(x) +O(|s|3‖v′′′‖C0)

)

+ ωδ(x)v
′′(x) + ω′

δ(x)v
′(x)

=

(
∫ δ

x
s2γδ(|s|)ds

)

v′′(x) + ωδ(x)v
′′(x) +O(δ‖v′′′‖C0)

=

(

1−

∫ δ

x
s2γδ(|s|)ds + 2x

∫ δ

x
sγδ(|s|)ds

)

v′′(x) +O(δ‖v′′′‖C0) .

Thus, we proved this lemma. �

Remark 2.3. We can further quantify a(x) as follows.

(1) One can show that 1
2 ≤ a(x) ≤ 3

2 for x ∈ (0, δ) and a(δ) = 1. Indeed,

a(x) ≥ 1−

∫ δ

x
s2γδ(|s|)ds ≥ 1−

∫ δ

0
s2γδ(|s|)ds =

1

2
,

and

a(x) ≤ 1−

∫ δ

x
s2γδ(|s|)ds + 2

∫ δ

x
s2γδ(|s|)ds ≤ 1 +

∫ δ

0
s2γδ(|s|)ds =

3

2
.

As last, a(δ) = 1 is obvious.
(2) For the two examples that γδ(x) = 3

2δ3χ(−δ,δ)(x) and γδ(x) = 1
|x|δ2χ(−δ,δ)(x), we could

calculate a(x) explicitly through equation (2.17).

a(x) =















1

2
+

3x

2δ
−

x3

δ3
for γδ(x) =

3

2δ3
χ(−δ,δ)(x)

1

2
+

2x

δ
−

3x2

2δ2
for γδ(x) =

1

|x|δ2
χ(−δ,δ)(x) .

We remark that although the effective local diffusion coefficient a(x) is not equal to a
constant one for 0 < x < δ, we have in the two cases

∫ δ

0
a(x)dx = δ .

In other words, the spacial averaged diffusion coefficient for 0 < x < δ is equal to one.

Lemma 2.2 shows the expansion of Lqnl
δ v(x) in the interfacial region using with the second and

higher derivatives of v. Thus it is obvious that for a linear function ulin, Lqnl
δ ulin = 0. In other

words, the QNL coupling passes the patch-test.
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Corollary 2.1 (Patch-test consistency). For a linear function ulin(x) = Fx+ a,

Lqnl
δ ulin = 0 .

Proof. This immediately follows from (2.13), (2.14), and (2.15) using Lemma 2.2. �

3. Stability and well-posedness

In this section, our goal is to show that the bilinear form bqnlδ (·, ·) : Sqnl
δ (Ω) × Sqnl

δ (Ω) → R

defined by (3.4) is bounded and coercive, thus the well-posedness of the variational problem can

be followed. The boundedness of the bilinear norm is obvious since Sqnl
δ (Ω) is a Hilbert space and

bqnlδ (·, ·) is part of its inner product. The coercivity is from the Poincaré inequality (2.11), and the
essential step is proved in Proposition 3.1. Now let us define the local contribution of the bilinear
form as

blocδ (u, v) :=

∫

x>0
u′(x)v′(x)ωδ(x) dx. (3.1)

We can see the lower bound of blocδ (u, u) in the following lemma.

Lemma 3.1. For blocδ (u, v) defined in (3.1), we have

blocδ (u, u) ≥

∫∫

x>0 and y>0
γδ(|y − x|)

(

u(y)− u(x)
)2

dxdy. (3.2)

Proof. The right hand side of (3.2) can be recast as
∫

x>0 and y>0
γδ(|y − x|)

(

u(y)− u(x)
)2

dxdy

=

∫

x>0
dx

∫

y>0
dyγδ(|y − x|)

[
∫

0<t<1
du
(

x+ t(y − x)
)

]2

=

∫

x>0
dx

∫

y>0
dyγδ(|y − x|)

[
∫ 1

0
(y − x) · u′

(

x+ t(y − x)
)

dt

]2

≤

∫

x>0
dx

∫

y>0
dyγδ(|y − x|)(y − x)2

∫ 1

0
|u′
(

x+ t(y − x)
)

|2dt , (3.3)

where the last expression is exactly 2Eloc
δ (u) = blocδ (u, u) as shown in Proposition 2.1. �

Lemma 3.1 immediately leads to the stability property compared to the fully nonlocal bilinear
operator.

Proposition 3.1. For bqnlδ (u, v) defined in (3.1), we have

bqnlδ (u, u) ≥

∫∫

x,y∈R
γδ(|y − x|) (u(y)− u(x))2 dydx. (3.4)

Proof. Recall the definition of bqnlδ (u, u) and use the conclusion of Lemma 3.1, we immediately get

bqnlδ (u, u) =

∫

x≤0 or y≤0
γδ(|y − x|) (u(y)− u(x))2 dxdy + blocδ (u, u)

≥

∫

x≤0 or y≤0
γδ(|y − x|) (u(y)− u(x))2 dxdy

+

∫

x>0 and y>0
γδ(|y − x|)

(

u(y)− u(x)
)2

dxdy

�
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Now from the Poincaré inequality Proposition 2.2, we conclude that bqnlδ (·, ·) is bounded and
coercive, thus leading to the well-posedness of the QNL model.

Theorem 3.1. The QNL diffusion equation given by
{

−Lqnl
δ uqnlδ (x) = f(x), for x ∈ Ω

uδ(x) = 0, for x ∈ Ωδ
(3.5)

is well-posed, where Lqnl
δ is defined in subsection 2.2.

Proof. The well-posedness follows immediately from Lax-Milgram theorem. �

4. Convergence to the local diffusion as δ → 0

We consider in this section the modeling error estimate of the QNL coupling equation (3.5) as
δ → 0 to the local differential equation

{

−u′′0(x) = f(x), x ∈ Ω

u0(−1) = u0(1) = 0 .
(4.1)

In this section we assume that u0 has a smooth zero extension into (−1− δ,−1) to avoid discus-
sions on the effect of nonlocal boundary condition there. We denote the error between the solutions

to (3.5) and (4.1) to be eδ(x) = uqnlδ − u0(x). With this extension and both local and nonlocal

homogeneous Dirichlet conditions imposed on uqnlδ on the interval (−1 − δ,−1) and the right end
point 1 of Ω respectively, we see that eδ(x) = 0 for x ∈ Ωδ.

Truncation error. Let the truncation error be Tδ(x) = Lqnl
δ u0(x)− u′′0(x). Then Tδ(x) = T 1

δ (x)+

T 2
δ (x), where T

1
δ (x) = Tδ(x)χ(−1,0)(x) and T 2

δ (x) = Tδ(x)χ(0,δ)(x). According to the calculations in

section 2.3, we know that T 1
δ (x) = O(δ2) for x ∈ (−1, 0) and T 2

δ (x) = O(1) for x ∈ (0, δ). Notice
that from Lemma 2.2, for x ∈ (0, δ),

T 2
δ (x) = Lqnl

δ u0(x)− u′′0(x) = a(x)u′′0(x)− u′′0(x) +O(δ)

= (a(x)− 1)u′′0(x) +O(δ) .

Since 1
2 ≤ a(x) ≤ 3

2 by Remark 2.3, we have

|T 2
δ (x)| ≤

1

2
C∗ +O(δ) , (4.2)

where C∗ = ‖u0‖C2 . Now that −Lqnl
δ eδ(x) = −Lqnl

δ uqnlδ (x) + Lqnl
δ u0(x) = Tδ(x), we have eδ(x) =

(−Lqnl
δ )−1T 1

δ (x) + (−Lqnl
δ )−1T 2

δ (x) = e1δ(x) + e2δ(x), where e1δ(x) and e2δ(x) are defined as
{

e1δ(x) = (−Lqnl
δ )−1T 1

δ (x),

e2δ(x) = (−Lqnl
δ )−1T 2

δ (x) .
(4.3)

We are going to show next that |e1δ(x)| = O(δ2) and |e2δ(x)| = O(δ). Thus the total error is of order
O(δ). The main ingredients are maximum principle and barrier functions.

In the following, we will show a maximum principle for solutions of (3.5) that may have dis-
continuity at 0. We need such result for error estimate because the truncation error Tδ has been
decomposed into two piecewise smooth functions such that e1δ and e2δ might be discontinuous at 0.

Lemma 4.1 (Maximum principle). The operator Lqnl
δ satisfies the maximum principle, namely, if

u ∈ C([−1− δ, 0]) ∩ C2([0, 1]), then −Lqnl
δ u(x) ≤ 0 in Ω implies that,

max
x∈Ω∪Ωδ

u(x) ≤ max
x∈Ωδ

u(x).
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Proof. First, from −Lqnl
δ u(x) ≤ 0 in (0, 1) we can show that

max
x∈(0,1)

u(x) ≤ max
x∈{0+}∪{1}

u(x) , (4.4)

where u(0+) = limx→0,x>0 u(x). Indeed, if we assume the opposite is true, namely if x̃ ∈ (0, 1) is
an isolated maximum point, then we must have u′(x̃) = 0 and u′(x̃) < 0. From the expressions of

Lqnl
δ in (2.14) and (2.15), we have immediately −Lqnl

δ u(x̃) > 0, which contradicts the assumption.

Second, from −Lqnl
δ u(x) ≤ 0 in [−1, 0] we could show

max
x∈(−1−δ,δ)

u(x) ≤ max
x∈(−1−δ,−1)∪(0,δ)

u(x) . (4.5)

The argument is the following. Assume the opposition is true, namely,

max
x∈(−1−δ,δ)

u(x) > max
x∈(−1−δ,−1)∪(0,δ)

u(x),

then we could find x∗ ∈ [−1, 0] such that u(x∗) = maxx∈(−1,0) u(x) and

−Lqnl
δ u(x∗) = −

∫ δ

−δ
γδ(|s|)(u(x

∗ + s)− u(x∗))ds > 0,

which gives us a contradiction. So u has to satisfy (4.5).
Now combine the result of (4.4) and (4.5), we only need to show u(0+) ≤ maxx∈Ωδ

u(x). Assume
the opposite, namely u(0+) > u(x) for any x ∈ [−1 − δ, 0−] ∪ (0, 1]. Then since u(0+) > u(0−),
we have

∫

y<0 γδ(|y − x|) (u(y)− u(x)) dy < 0 for sufficiently small x > 0. Considering also that

u′(0+) ≤ 0 (since u(0+) > u(x) for any x > 0) and ωδ(0
+) = 0, we see that for small enough x > 0,

−Lqnl
δ u(x) = −2

∫

y<0
γδ(|y − x|) (u(y)− u(x)) dy − ωδ(x)u

′′(x)− ω′
δ(x)u

′(x) > 0 ,

which gives us a contradiction.
Hence, we proved the lemma. �

Theorem 4.1. Suppose uqnlδ and u0 are strong solutions to (3.5) and (4.1) respectively. Assume

that u0 ∈ C3(Ω ∪Ωδ), then

‖uqnlδ (x)− u0(x)‖L∞(Ω) = O(δ) .

Proof. We will construct barrier functions of nonnegative values on Ω ∪ Ωδ and then estimate
e1δ(x) and e2δ(x) defined by (4.3). The first barrier function is a simple quadratic function. Take

Φ1(x) = −cx2 + 4c, then from the calculations in section 2.3 we know that −Lqnl
δ (δΦ1(x)) ≥ cδ.

For u0 ∈ C3(Ω ∪ Ωδ), we know that T 1
δ (x) is at least of order O(δ), so by choosing c large enough

we could have cδ ≥ T 1
δ (x). Now from Lemma 4.1 we conclude that

max
x∈Ω∪Ωδ

(e1δ(x)− δΦ1(x)) ≤ max
x∈Ωδ

(e1δ(x)− δΦ1(x)) ≤ 0 ,

so we have e1δ(x) ≤ δΦ1(x) ≤ 4cδ. Applying the same arguments to −e1δ(x) we also have −e1δ(x) ≤
4cδ. Thus |e1δ(x)| = O(δ).

The second barrier function Φ2(x) is more carefully designed in order to get the estimate of e2δ(x).
The key is to define Φ2(x) such that Φ2 ∈ C([−1 − δ, 0]) ∩ C2([0, 1]) (so as to use the maximum
principle) and it is linearly decaying to zero outside the interfacial region. We define the barrier
function Φ2(x) to be

Φ2(x) =



















δx+ δ + δ2 x ∈ (−1− δ, 0)

1

8δ
x3 −

3

4
x+

1

2
δx+ δ + δ2 x ∈ [0, 2δ]

− δx+ δ + 2δ2 x ∈ [2δ, 1) .

(4.6)
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One could check that Φ2 ∈ C([−1 − δ, 0]) ∩ C2([0, 1]) and −Lqnl
δ (Φ2(x)) ≥ 0 for x ∈ (−1, 1). In

particular, for x ∈ (0, δ), after taking Taylor-expansion, we can write

−Lqnl
δ (Φ2(x)) =− a(x)Φ′′

2(x)− 2

∫ −x

−δ
γδ(s)

(

1

6
s3Φ′′′

2 (x)ds

)

=− a(x)

(

3

4

x

δ
−

3

2

)

−
1

3
·
3

4δ

∫ −x

−δ
s3γδ(s)ds

≥
3

4
a(x) +

1

4δ

∫ x

δ
s3γδ(s)ds ≥

3

8
,

where the last inequality comes from the fact that a(x) ≥ 1
2 . Then by the expression of T 2

δ (x)

in (4.2), we could take a c̃ > 0 large enough such that −Lqnl
δ (c̃Φ2(x)) ≥ T 2

δ (x), then from the
maximum principle we conclude that

max
x∈Ω∪Ωδ

(e2δ(x)− c̃Φ2(x)) ≤ max
x∈Ωδ

(e2δ(x)− c̃Φ2(x)) ≤ 0 .

So we have e2δ(x) ≤ c̃Φ2(x) ≤ c̃(δ + δ2). Using the same arguments to −e2δ(x) we also have
−e2δ(x) ≤ c̃(δ + δ2). Thus |e2δ(x)| = O(δ). �

5. Numerical discretization and numerical examples

In this section, we will develop a finite difference discretization and consider several benchmark
problems to check the accuracy and stability performance of the numerical scheme. The patch-
test consistency, symmetry and positive definiteness of the finite difference matrix are validated
numerically.

5.1. Numerical scheme. We use finite difference for spatial discretization. The domain Ω =
(−1, 1) is divided into 2N uniform subintervals with equal length h = 1/N and grid points −1 =
x0 < x1 < · · · < x2N = 1 so the interface grid point is xN = 0. Homogeneous Dirichlet boundary
condition u = 0 is assumed on the boundary domain Ωδ = (−δ − 1,−1) ∪ {1}. We use the scaling
invariance of second moments of γδ and local diffusion and approximate the quasinonlocal diffusion

operator Lqnl
δ in the three regimes. The finite difference scheme we uses is not only a convergent

scheme for the QNL problem with fixed δ, but also a convergent scheme for the local differential
equation with fixed ratio between δ and h, thus an asymptotically compatible scheme, a notion
developed in [39,40].

For simplicity of discussion, we always assume that δ/h = r with r being an integer in the
following. We discuss in order the discretization scheme in the nonlocal region, transitional region
and local region respectively. Special treatment is used in the transitional region for the scheme to
be asymptotically compatible.

• Case I (nonlocal region): for i ∈ {0, 1, · · · , N},

Lqnl
δ u(xi) =2

∫ δ

−δ
(u(xi + s)− u(xi)) γδ(s)ds

=2

∫ δ

0

(

u(xi + s)− 2u(xi) + u(xi − s)

s2

)

s2γδ(s)ds

≈2

r
∑

j=1

(

u(xi+j)− 2u(xi) + u(xi−j)

(jh)2

)
∫ jh

(j−1)h
s2γδ(s)ds .

(5.1)

• Case II (transitional region): for i ∈ {N + 1, N + 2, · · · , N + r}
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Lqnl
δ u(xi) =2

∫ δ

xi

γδ(|s|) (u(xi − s)− u(xi)) ds+ 2

(
∫ δ

xi

sγδ(s)ds

)

u′(xi)

+

(

2

∫ xi

0
s2γδ(|s|)ds + 2xi

∫ δ

xi

sγδ(|s|)ds

)

u′′(xi).

(5.2)

Now we split the nonlocal integral term into diffusion part and convection part:

2

∫ δ

xi

γδ(|s|) (u(xi − s)− u(xi)) ds

=

∫ δ

xi

γδ(|s|) (u(xi + s)− 2u(xi) + u(xi − s)) ds

−

∫ δ

xi

γδ (u(xi + s)− u(xi − s)) ds .

From here we derive the discretization for Lqnl
δ u(xi):

Lqnl
δ u(xi) ≈

r
∑

j=xi/h

u(xi+j)− 2u(xi) + u(xi−j)

(jh)2

∫ jh

(j−1)h
s2γδ(s)ds

−

r
∑

j=xi/h

u(xi+j)− u(xi−j)

jh

∫ jh

(j−1)h
sγδ(s)ds

+ 2

(
∫ δ

xi

sγδ(s)ds

)

u(xi+1)− u(xi)

h

+

(

2

∫ xi

0
s2γδ(|s|)ds + 2xi

∫ δ

xi

sγδ(|s|)ds

)

u(xi+1)− 2u(xi) + u(xi−1)

h2
.

(5.3)

• Case III (local region): for i ∈ {N + r + 1, · · · , 2N},

Lqnl
δ u(xi) =u′′(xi) ≈

u(xi+1)− 2u(xi) + u(xi−1)

h2
. (5.4)

Remark 5.1. The finite difference discretization described above is a first order scheme with respect
to h for fixed horizon δ to the QNL equation (3.5), as well as a first order scheme for fixed ratio r
between δ and h to the local equation (4.1). We split the convection and diffusion parts in (5.2) to
balance the convection from nonlocal and local contributions. The resulting discretized expression
(5.3) will be asymptotically compatible to the local equation. Otherwise, direct discretization of
(5.2) will lead to artificial convention terms and thus it will cause numerical inconsistency and
instability on the interfacial regions. To demonstrate this, we compute the nonlocal-local coupling
model (3.5) with external force (5.5) and interface x∗ = 1/2 by the direct discretization and
the compatible scheme (5.3), respectively. The results are plotted in Figure 3. Notice that the
exact gradient is not zero at interface x∗ = 1/2, and thus the artificial convection due to direct
discretization causes divergence in the computations.

Remark 5.2. For the general case that the interface is at x∗ 6= 0, we have the following formulas in
replace of equation (5.2). If x∗ is at the left side of the transitional region, then (5.2) is replace by

Lqnl
δ u(xi) =2

∫ δ

xi−x∗

γδ(|s|) (u(xi − s)− u(xi)) ds+ 2

(
∫ δ

xi−x∗

sγδ(s)ds

)

u′(xi)

+

(

2

∫ xi−x∗

0
s2γδ(|s|)ds + 2(xi − x∗)

∫ δ

xi−x∗

sγδ(|s|)ds

)

u′′(xi) .
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Figure 3. Plots of the nonlocal-local coupling model (3.5) with external force (5.5) and
interface x∗ = 1/2 computed by the direct method and the compatible scheme (5.3), respec-
tively. Kernel function is chosen to be γδ(x) =

1
δ2|x|χ(−δ,δ)(x). The ratio between δ and h is

fixed to be δ = 3h. The exact gradient is not zero at interface x∗ = 1/2, hence the artificial
convection due to direct discretization leads to divergence in the computations.

If x∗ is at the right side of the transitional region, then (5.2) is replace by

Lqnl
δ u(xi) =2

∫ δ

x∗−xi

γδ(|s|) (u(xi + s)− u(xi)) ds− 2

(
∫ δ

x∗−xi

sγδ(s)ds

)

u′(xi)

+

(

2

∫ x∗−xi

0
s2γδ(|s|)ds + 2(x∗ − xi)

∫ δ

x∗−xi

sγδ(|s|)ds

)

u′′(xi) .

5.2. Numerical experiments. We solve the QNL problem (3.5) with right hand side f to be

f(x) = −12x2 + 4 . (5.5)

The exact solution for the limiting local diffusion problem (4.1) is

u0 = (1− x)2(1 + x)2 for x ∈ Ω. (5.6)

We adopt the discretization scheme described in section 5.1 and compute the QNL solution
with the ratio between δ and spatial step size h to be fixed. Two types of kernels are used with
one being γδ(x) = 3

2δ3
χ(−δ,δ)(x) and another being γδ(x) = 1

δ2|x|
χ(−δ,δ)(x). We compute first the

L∞ difference between the QNL solution and the local solution and then the L∞ difference of
the gradients which are approximated by second order central finite difference at the mesh points.
First order convergences with respect to h are observed in both cases. The results are listed in
Table 1 and 2. More careful studies on errors in other norms and more effective gradient recovery
techniques, like those proposed in [10] for nonlocal problems, will be studied in the future.

h ‖uqnlδ − u0‖L∞ Order ‖(uqnlδ − u0)
′‖L∞ Order

1/50 1.56e-2 − 1.91e-2 −
1/100 8.07e-3 0.95 9.61e-3 0.99
1/200 4.10e-3 0.98 4.82e-3 0.99
1/400 2.06e-3 0.99 2.42e-3 1.00
1/800 1.04e-3 0.99 1.21e-3 1.00

Table 1. L∞ differences of solutions uqnlδ to u0 and their gradients. We fix δ = 3h

and the kernel function is γδ(x) =
3

2δ3
χ(−δ,δ)(x).
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h ‖uqnlδ − u0‖L∞ Order ‖(uqnlδ − u0)
′‖L∞ Order

1/50 1.19e-2 − 1.80e-2 −
1/100 6.19e-3 0.95 9.13e-3 0.98
1/200 3.14e-3 0.97 4.59e-3 0.99
1/400 1.59e-3 0.99 2.30e-3 1.00
1/800 7.97e-4 0.99 1.15e-3 1.00

Table 2. L∞ differences of solutions uqnlδ to u0 and their gradients. We fix δ = 3h

and the kernel function is γδ(x) =
1

δ2|x|
χ(−δ,δ)(x).

5.3. Local-nonlocal-local coupling. Volumetric constraints for nonlocal models often cause non-
physical boundary layer issues, as shown in Figure 4 (a). We could fix the boundary layer problem
by coupling the nonlocal models with local models and remove the volume constraints completely.
Figure 4 (b) shows the solution of the local-nonlocal-local coupling with interfaces at xa = −1

2 and

xb = 1
2 . We see that the coupling method removes the artificial boundary layer caused by volume

constraints with classical local Dirichlet boundary conditions imposed.
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(a) Nonlocal-local coupling model
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(b) Local-nonlocal-local coupling model

Figure 4. Plots of solutions to nonlocal-local coupling model, local-nonlocal-local coupling
model and fully local local model with homogeneous Dirichlet boundary condition and right
hand side f ≡ 1. Kernel function is chosen to be γδ(x) = 3

2δ3χ(−δ,δ)(x). The nonlocal-
local coupling model has interface at x = 0. The local-nonlocal-local coupling model has
interfaces at xa = −1

2 and xb = 1
2 . The mesh size is h = 1/800, the horizon size of nonlocal

interaction is δ = 0.2. The nonlocal-local coupling model displays non-physical boundary
layer at the nonlocal side, whereas the result of local-nonlocal-local removes the boundary

layer.

Next we consider the following singular external forces:

f(x) =
(1− x2)(1 + x2)

|x− x∗|
, x∗ = h/2. (5.7)

The solutions for fully nonlocal, local-nonlocal-local coupling and classical local models are plotted
in Figure 5. We can see that the local-nonlocal-local coupling not only captures the singular
behavior of the nonlocal solution at x∗, but also matches with the local solution at two sides of the
bar (−1, 1).

6. Conclusion

By extending the idea of “geometric reconstruction” proposed in [12, 20], we developed a top-
down quasinonlocal coupling method to study the nonlocal-to-local (NtL) diffusion problem in one
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Figure 5. The solutions are plotted with mesh size h = 1/800, and horizon size
δ = 0.2. We fix the local-nonlocal-local coupling with interfaces at xa = −1

2 and

xb = 1
2 . Kernel function is chosen to be γδ(x) =

3
2δ3χ(−δ,δ)(x)

dimensional space. This new coupling framework removes interfacial inconsistency and maintains
all physical properties at local continuum PDE levels, whereas none of existing coupling methods
for nonlocal-to-local problems satisfies all of these properties. We proved the well-posedness of the
coupling problem by a quasinonlocal version of the Poincaré inequality and established rigorous
estimate of the modeling error by the maximum principle. Furthermore, we proposed a first order
finite difference numerical discretization and confirmed the analysis by several numerical tests. The
coupling formulation also removes artificial boundary effects caused by the fully nonlocal model
when only classical Dirichlet boundary conditions are imposed. Although our discussions here have
focused on the scalar one dimensional model problems, it is natural to investigate whether similar
ideas can be developed for systems of equations and for problems defined in multi-dimensions.
Such generalization is indeed possible, partly because of the fact that the nonlocal diffusion mod-
els considered here are based on pairwise interactions, the cases that have been explored in the
atomistic-to-continuum coupling methods, see for example [32, 33]. Further investigations will be
carried out in our follow-up works along this direction and for nonlocal problems possibly involving
more general interactions.
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