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Abstract

An abstract convergence theorem for a class of generalized descent methods that explicitly models
relative errors is proved. The convergence theorem generalizes and unifies several recent abstract conver-
gence theorems. It is applicable to possibly non-smooth and non-convex lower semi-continuous functions
that satisfy the Kurdyka– Lojasiewicz (KL) inequality, which comprises a huge class of problems. Most
of the recent algorithms that explicitly prove convergence using the KL inequality can cast into the
abstract framework in this paper and, therefore, the generated sequence converges to a stationary point
of the objective function. Additional flexibility compared to related approaches is gained by a descent
property that is formulated with respect to a function that is allowed to change along the iterations, a
generic distance measure, and an explicit/implicit relative error condition with respect to finite linear
combinations of distance terms.

As an application of the gained flexibility, the convergence of a block coordinate variable metric
version of iPiano (an inertial forward–backward splitting algorithm) is proved, which performs favorably
on an inpainting problem with a Mumford–Shah-like regularization from image processing.

Keywords — abstract convergence theorem, Kurdyka– Lojasiewicz inequality, descent method, relative errors, block coordinate

method, variable metric method, inertial method, iPiano, inpainting, Mumford–Shah regularizer

1 Introduction

The Kurdyka– Lojasiewicz (KL) inequality is key for the convergence analysis for non-smooth and non-convex
optimization problems.  Lojasiewicz introduced an early version of this inequality for analytic functions [41],
which was extended to more general classes of smooth functions in [32, 42, 33] and to non-smooth func-
tions (that are definable in an o-minimal structure [22]) in [8, 9]. While it was originally used to study the
asymptotic behavior of gradient-like systems [8, 27, 29, 34] and PDEs [17, 53], the KL inequality is also
used for numerical methods such as the gradient method [1], proximal methods [3], projection or alternating
minimization methods [4, 7]. A unifying and concise formulation of the key ingredients, which, combined
with the KL inequality, lead to asymptotic convergence to a critical point and a trajectory with finite length
(the accumulated distance between consecutive points of the sequence is finite) is proposed by Attouch et
al. [5] and further refined by Bolte et al. [12] using a uniformization result for the KL inequality. These
early developments revolutionized the study of numerical methods for non-smooth non-convex optimization
problems.
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Introduction

In this work, we continue the abstract unification of the convergence analysis of algorithms for non-
smooth non-convex optimization [5, 12]. Their convergence analysis is driven by two central assumptions: a
sufficient decrease condition and a relative error condition. While they use the sufficient decrease condition
on the objective function, [48] formulates conditions that apply to a global surrogate function of Lyapunov-
type, which allows the objective values also to increase locally. Note that this idea is different from the
majorization minimization principle [30], where in each iteration a majorizer of the objective is constructed
and minimized, which usually leads to a descent of the actual objective values. In the KL context, this
algorithmic strategy was used in [11, 49], and led to another abstract convergence result in [11] alike [5].
The abstract conditions formulated in our paper contains [5, 12, 11, 48, 49] as special instances.

The relative error condition is justified by the fact that most algorithms require to solve subproblems for
which possibly inexact approaches are required. The condition reflects relative inexact optimality conditions
[5], and is related to [31, 55, 54, 56]. In [11] the relative error condition is of explicit nature (see also [1, 46]),
whereas in [5, 12, 48] it is implicit. The abstract convergence theorem in our paper comprises the explicit
and the implicit formulation.

The sufficient decrease condition and the relative error condition depend rather on the structure of
the algorithm than on fine properties of the objective function. Therefore, the parameters appearing in
these conditions are tightly linked to properties of the algorithm such as the step size. While the abstract
convergence conditions discussed so far rely on a constant choice of these parameters, Frankel et al. [23]
introduced a significantly more flexible parameter setting into these conditions. As a result, an alternating
version of the variable metric forward–backward splitting algorithm is formulated and its convergence is
proved, which opens the door for non-smooth and non-convex version of the Levenberg–Marquardt algorithm.
The conditions in our paper are formulated such that [23] appears as a special case.

Beyond the flexibility introduced in [23], in this paper, (i) we allow for a parametric function for which
the sufficient decrease condition is required. This allows the objective or any surrogate relative to which
decrease is measured can change along the iterations. We believe that this additional flexibility has sig-
nificant potential, which in this paper is only rudimentary explored in the context of an inertial variable
metric method. (ii) The relative error condition can be formulated with respect to a linear combination of
finitely many distance terms, which seems to be essential for multi-step methods [48, 47, 15, 40]. Finally,
(iii) all distances and the decrease in (i) are formulated using abstract distances. Of course, unless there
is a closer relation between the abstract distance measure and the Euclidean metric, we have to content
ourselves with a weaker convergence result. Nevertheless, we consider this as an essential step to generalize
the convergence results further; possibly to algorithms that use Bregman distances [16] without smoothness
or strong convexity assumption. In the present paper, we use the abstract distance measures to restrict the
Euclidean distance to blocks of coordinates, which leads (almost for free) to a block coordinate version of
the inertial variable metric method iPiano. Without the variable metric aspect, the block coordinate inertial
method was already proposed in [50], though as a result of a more explicit analysis.

So far, we focused on abstract convergence results for non-smooth non-convex optimization problems. As
mentioned above, there are many concrete algorithms that are proved to converge in such a general setting
using the abstract conditions or an explicit verification of the convergence following the lines of the abstract
convergence proof.

Convergence of the gradient method is proved in [1, 5], and has been extended to proximal gradient
descent (resp. forward–backward splitting method) [5], which applies to a class of problems that is given
as the sum of a (possibly non-smooth and non-convex) function and a smooth (possibly non-convex) func-
tion. Accelerations by means of a variable metric are considered in [18, 23], and in combination with a
line-search procedure in [13]. The convergence of proximal methods is inspected in [3, 5, 10, 44], and an
alternating proximal method is considered in [4]. Extensions to block coordinate methods are given, e.g. in
[5] under the name regularized Gauss–Seidel method, which is actually a variable metric version of the block
coordinate methods in [4, 6, 26]. The combination of the ideas of alternating proximal minimization and
forward–backward splitting can be found in [12], where the algorithm is called proximal alternating linearized
minimization (PALM). For an extension that allows the metric to change in each iteration with a flexible
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Preliminaries

order of the block iterations we refer to [19]. Convergence of a non-smooth subgradient method is studied
in [46, 28].

Another possibility to accelerate descent methods (instead of using a variable metric) are so-called in-
ertial methods. In convex optimization, some inertial or overrelaxation methods are known to be optimal
[45]. Although it is hard to obtain sharp lower complexity bounds in the non-convex setting, hence to argue
about optimal methods, experiments show a favorable performance of inertial algorithms. In [48] an exten-
sion of inertial gradient descent (also known as Heavy-ball method or gradient descent with momentum),
which includes an additional non-smooth term in the objective function alike forward–backward splitting,
is analyzed in the KL framework. The proposed algorithm is called iPiano and shows good performance
in applications. An earlier subsequential convergence proof of Polyak’s Heavy-ball method [51] without the
KL inequality for smooth non-convex functions is proposed in [58]. In [47, 15] the original problem class
“non-smooth convex plus smooth non-convex” in [48] was extended to “non-smooth non-convex plus smooth
non-convex”. In [15] also (smooth and strongly convex) Bregman proximity functions are used in the update
step. See [14] for a variant of this algorithm. A block coordinate version of iPiano or an inertial variant
of the proximal alternating linearized minimization method was recently proposed as iPALM in [50]. A
variable metric version of iPiano and iPALM —block coordinate variable metric iPiano—is proposed in this
paper. The accelerated method in [39] is based on an extrapolation of the gradient alike Nesterov’s proximal
gradient method instead of an inertial term. Liang et al. [40] pursue a unifying approach of the preceding
methods by a generic multi-step method. All of these inertial methods share the property that the sufficient
decrease condition holds for a Lyapunov function instead of the actual objective function.

This concept is important beyond inertial methods. It is used to prove convergence of splitting methods
for composite problems [37], Douglas–Rachford splitting [35] and Peaceman–Rachford splitting [38] for non-
convex optimization problems.

Section 2 introduces the basic notation and results from (non-smooth) variational analysis [52] and the
Kurdyka– Lojasiewicz inequality. Section 3 formulates the basic conditions for the abstract convergence the-
orem, which is motivated by the results in [5, 23, 48, 12]. The gained flexibility of the conditions is compared
to related work in Section 3.1, and further discussed in Section 3.2 where also some future perspectives are
provided. Examples for the necessity of the generalizations are given in Appendix A.1. The convergence
under the abstract conditions is proved in Section 3.3. The flexibility that is gained is used in Section 4
to prove convergence of a variable metric version of iPiano [48, 47] and in Section 5 of a block coordinate
variable metric version of iPiano. Several block coordinate, variable metric, and inertial versions of forward–
backward splitting/iPiano are applied to an image inpainting problem in Section 6, which emphasizes the
importance of a variable metric and block coordinate methods.

2 Preliminaries

2.1 Notation and definitions

Throughout this paper, we will always work in a finite dimensional Euclidean vector space RN of dimension
N ∈ N, where N := {1, 2, . . .}. Define Z := {. . . ,−1, 0, 1, . . .}. The vector space is equipped with the standard
Euclidean norm ‖·‖ := ‖·‖2 that is induced by the standard Euclidean inner product ‖·‖ =

√
〈·, ·〉. If specified

explicitly, we work in a metric induced by a symmetric positive definite matrix A ∈ S++(N) ⊂ RN×N ,
represented by the inner product 〈x, y〉A := 〈Ax, y〉 and the norm ‖x‖A :=

√
〈x, x〉A. For A ∈ S++(N) we

define ς(A) ∈ R as the largest value that satisfies ‖x‖2A ≥ ς(A)‖x‖22 for all x ∈ RN .
As usual, we consider extended read-valued functions f : RN → R, R := R ∪ {+∞}, that are defined

on the whole space with domain given by dom f := {x ∈ RN | f(x) < +∞}. A function is called proper if
dom f 6= ∅. We define the epigraph of the function f as epi f := {(x, µ) ∈ RN+1|µ ≥ f(x)}. We will also
need to consider set-valued mappings F : RN ⇒ RM defined by the graph

GraphF := {(x, y) ∈ RN × RM | y ∈ F (x)} ,
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The Kurdyka– Lojasiewicz property

where the domain of a set-valued mapping is given by domF := {x ∈ RN |F (x) 6= ∅}. For a proper function
f : RN → R we define the set of (global) minimizers as

arg min f := arg min
x∈RN

f := {x ∈ RN | f(x) = inf f} , inf f := inf
x∈RN

f(x) .

The Fréchet subdifferential of f at x̄ ∈ dom f is the set ∂̂f(x̄) of those elements v ∈ RN such that

lim inf
x→x̄
x 6=x̄

f(x)− f(x̄)− 〈v, x− x̄〉
‖x− x̄‖

≥ 0 .

For x̄ 6∈ dom f , we set ∂̂f(x̄) = ∅. For convenience, we introduce f -attentive convergence: A sequence
(xn)n∈N is said to f -converge to x̄ if

xn → x̄ and f(xn)→ f(x̄) as n→∞ ,

and we write xn
f→ x̄. The so-called (limiting) subdifferential of f at x̄ ∈ dom f is defined by

∂f(x̄) := {v ∈ RN | ∃xn f→ x̄, vn ∈ ∂̂f(xn), vn → v} ,

and ∂f(x̄) = ∅ for x̄ 6∈ dom f . A point x̄ ∈ dom f for which 0 ∈ ∂f(x̄) is a called a critical point of stationary
point. As a direct consequence of the definition of the limiting subdifferential, we have the following closedness
property:

xn
f→ x̄, vn → v̄, and for all n ∈ N : vn ∈ ∂f(xn) =⇒ v̄ ∈ ∂f(x̄) .

[52, Ex. 8.8] shows that at a point x̄ ∈ RN , for the sum of an extended-valued function g that is finite at x̄
and a continuously differentiable (smooth) function f around x̄, it holds that ∂(g + f)(x̄) = ∂g(x̄) +∇f(x̄).
Moreover for a function f : RN×RM → R with f(x, y) = f1(x)+f2(y) the subdifferential satisfies ∂f(x, y) =
∂f1(x)× ∂f2(y) [52, Prop. 10.5].

Finally, the distance of x̄ ∈ RN to a set ω ⊂ RN as is given by dist(x̄, ω) := infx∈ω ‖x̄ − x‖ and we
introduce ‖∂f(x̄)‖− := infv∈∂f(x̄) ‖v‖ = dist(0, ∂f(x̄)) what is known as the lazy slope of f at x̄. Note that
inf ∅ := +∞ by definition. Furthermore, we have (see [23]):

Lemma 1. If xn
f→ x̄ and lim infn→∞ ‖∂f(xn)‖− = 0, then 0 ∈ ∂f(x̄).

For a function f , we use the notation [f < µ] := {x ∈ RN | f(x) < µ}. Analogously, we use the same
notation for other conditions, for example, [f ≥ µ], [f = 1], etc.

2.2 The Kurdyka– Lojasiewicz property

Definition 2 (Kurdyka– Lojasiewicz property / KL property). Let f : RN → R be an extended real valued
function and let x̄ ∈ dom ∂f . If there exists η ∈ (0,∞], a neighborhood U of x̄ and a continuous concave
function ϕ : [0, η)→ R+ such that

ϕ(0) = 0, ϕ ∈ C1((0, η)), and ϕ′(s) > 0 for all s ∈ (0, η),

and for all x ∈ U ∩ [f(x̄) < f(x) < f(x̄) + η] the Kurdyka– Lojasiewicz inequality

ϕ′(f(x)− f(x̄))‖∂f(x)‖− ≥ 1 (1)

holds, then the function has the Kurdyka– Lojasiewicz property at x̄.
If, additionally, the function is lower semi-continuous and the property holds for each point in dom ∂f ,

then f is called a Kurdyka– Lojasiewicz function.
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The Kurdyka– Lojasiewicz property

f

f(x)− f(x̄)

(x̄, f(x̄))
U

U ∩ [f(x̄) < f(x) < f(x̄) + η]

f(x̄) + η

ϕ

ϕ ◦ f

x
(x̄, f(x̄))

Figure 1: Example of the KL property for a smooth function. The composition ϕ ◦ f has a slope of magnitude 1
except at x̄.

Figure 1, which is taken from [47], shows the idea and the variables appearing in the definition of the
KL property for a smooth function. For smooth functions (assume f(x̄) = 0), (1) reduces to ‖∇(ϕ ◦ f)‖ ≥ 1
around the point x̄, which means that after reparametrization with a desingularization function ϕ the function
is sharp. “Since the function ϕ is used here to turn a singular region—a region in which the gradients are
arbitrarily small—into a regular region, i.e. a place where the gradients are bounded away from zero, it
is called a desingularization function for f .” [5]. It is easy to see that the KL property is satisfied for all
non-stationary points [4].

The KL property is satisfied by a large class of functions, namely functions that are definable in an
o-minimal structure (see [4, Thm. 14] and [9, Thm. 14]).

Theorem 3 (Nonsmooth Kurdyka– Lojasiewicz inequality for definable functions). Any proper lower semi-
continuous function f : X → R which is definable in an o-minimal structure O has the Kurdyka– Lojasiewicz
property at each point of dom ∂f . Moreover the function ϕ in Definition 2 is definable in O.

In particular, semi-algebraic and globally subanalytic sets and functions are definable in such a struc-
ture. There is even an o-minimal structure that extends the one of globally subanalytic functions with the
exponential function (thus also the logarithm is included) [57, 22]. In fact, o-minimal structures can be
seen as an axiomatization of the nice properties of semi-algebraic functions, and are therefore designed such
that the structure is preserved under many operations, for example, pointwise addition and multiplication,
composition and inversion. A brief summary of the concepts that are important for this paper can be found
in [4].

Before we introduce the general framework and the convergence analysis in the next sections, let us first
consider a so-called uniformization results, which was proved in [3] for the  Lojasiewicz property and adjusted
in [12] for the KL property. Its main implication for this paper—like in [12]—is that it allows for a direct
proof of the main convergence theorem without the need of an induction argument.

Lemma 4 (Uniformization result [12]). Let ω be a compact set and let f : Rd → R be a proper and lower
semi-continuous function. Assume that f is constant on ω and satisfies the KL property at each point of ω.
Then, there exist ε > 0, η > 0, and a continuous concave function ϕ : [0, η)→ R+ such that

ϕ(0) = 0, ϕ ∈ C1((0, η)), and ϕ′(s) > 0 for all s ∈ (0, η),

such that for all x̄ ∈ ω and all x in the following intersection

[dist(x, ω) < ε] ∩ [f(x̄) < f(x) < f(x̄) + η] (2)

one has,
ϕ′(f(x)− f(x̄))‖∂f(x)‖− ≥ 1 .
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An abstract inexact convergence theorem

3 An abstract inexact convergence theorem

In this section, let F : RN×RP → R be a proper, lower semi-continuous function that is bounded from below.
We analyze convergence of an abstract algorithm that generates a sequence (xn)n∈N in RN under the following
realistic assumptions. Many algorithms, such as the gradient descent method, forward–backward splitting,
alternating projection, proximal minimization, Heavy-ball method, iPiano, and many more methods satisfy
these assumption. An application to block coordinate and variable metric iPiano is presented in Sections 4
and 5.

Assumption H. Let (un)n∈N be a sequence of parameters in RP , and let (εn)n∈N be an `1-summable sequence
of non-negative real numbers. Moreover, we assume there are sequences (an)n∈N, (bn)n∈N, and (dn)n∈N of
non-negative real numbers, a non-empty finite index set I ⊂ Z and θi ≥ 0, i ∈ I, with

∑
i∈I θi = 1 such that

the following holds:

(H1) (Sufficient decrease condition) For each n ∈ N, it holds that

F(xn+1, un+1) + and
2
n ≤ F(xn, un) .

(H2) (Relative error condition) For each n ∈ N, the following holds: (set dj = 0 for j ≤ 0)

bn+1‖∂F(xn+1, un+1)‖− ≤ b
∑
i∈I

θidn+1−i + εn+1 .

(H3) (Continuity condition) There exists a subsequence ((xnj , unj ))j∈N and (x̃, ũ) ∈ RN × RP such that

(xnj , unj )
F→ (x̃, ũ) as j →∞ .

(H4) (Distance condition) It holds that

dn → 0 =⇒ ‖xn+1−xn‖2 → 0 and ∃n′ ∈ N : ∀n ≥ n′ : dn = 0 =⇒ ∃n′′ ∈ N : ∀n ≥ n′′ : xn+1 = xn

(H5) (Parameter condition) It hold that

(bn)n∈N 6∈ `1 , sup
n∈N

1

bnan
<∞ , inf

n
an =: a > 0 .

Let us first discuss how these assumptions generalize previous results and what are the perspectives of
the newly gained flexibility. The convergence of the sequence (xn)n∈N is proved in Theorem 10.

3.1 Relation to other abstract convergence conditions

The following works explicitly formulate abstract conditions that are used in specific algorithms. Examples
of algorithms for which the generalizations are necessary are provided in Appendix A.1.

Relation to [5]. For a proper lower semi-continuous function f : RN → R and a sequence (xn)n∈N, the
conditions in [5] are the following:

(ABS13-H1) For each n ∈ N, f(xn+1) + a‖xn+1 − xn‖22 ≤ f(xn) .

(ABS13-H2) For each n ∈ N, the exists wn+1 ∈ ∂f(xn+1) such that ‖wn+1‖ ≤ b‖xn+1 − xn‖2.

(ABS13-H3) There exists a subsequence (xnj )j∈N and x̃ such that xnj → x̃ and f(xnj )→ f(x̃) as j →∞.

If the conditions (ABS13-H1)–(ABS13-H3) hold, then also Assumption H is satisfied, which shows that
our result is more general. The relation is explicitly shown by setting F(xn, un) = f(xn), un = 0, an = a ∈ R,
bn = 1, I = {1}, θ1 = 1, εn = 0 for all n ∈ N, and dn = ‖xn+1 − xn‖2.
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Relation to [23]. In [23], the conditions in [5] are generalized to a flexible parameter setting and Hilbert
spaces. In RN , the conditions read as follows:

(FGP14-H1) For each n ∈ N, for some an > 0, f(xn+1) + an‖xn+1 − xn‖22 ≤ f(xn) .

(FGP14-H2) For each n ∈ N, for some bn+1 > 0 and εn+1 ≥ 0, bn+1‖∂f(xn+1)‖− ≤ ‖xn+1 − xn‖2 + εn+1.

(FGP14-H3) The sequences (an)n∈N, (bn)n∈N, (εn)n∈N satisfy

an ≥ a > 0 for all n ∈ N , (bn)n∈N 6∈ `1 , sup
n∈N

1

bnan
<∞ , and (εn)n∈N ∈ `1 .

The continuity condition (ABS13-H3) is replaced by a f -precompactness assumption. The fact that
Assumption H is a generalization of these conditions follows immediately from the relation to [5] and the
design of our parameters (an)n∈N, (bn)n∈N, (εn)n∈N, in analogy to those in [23]. Our relative error condition
(H2) and distance condition (H4) are more general and we allow for a second argument in the objective
function un whose convergence is not sought in the end, i.e., we allow for a controlled change of the objective
function along the iterations.

Relation to [11]. The abstract convergence statement [11, Proposition 4], poses conditions on a triplet
of points {xn−1, xn, xn+1} and a function f : RN → R. The conditions are the following1:

(BP16-H1) For each n ∈ N, f(xn) + a‖xn+1 − xn‖22 ≤ f(xn−1) .

(BP16-H2) For each n ∈ N, ‖∂f(xn)‖− ≤ b‖xn+1 − xn‖2.

(BP16-H3) There exists a subsequence (xnj )j∈N and x̃ such that xnj → x̃ and f(xnj )→ f(x̃) as j →∞.

In contrast to (ABS13-H2) and (FGP14-H2), the relative error condition (BP16-H2) is explicit (like in [1]
or more explicitly discussed in [46, Section 2.4]), i.e., xn+1 does not appear inside the subdifferential estimate.
Setting dn = ‖xn+2 − xn+1‖2, I = {1}, θ1 = 1, an = a ∈ R, bn = 1, εn = 0, un = 0 and F(xn, un) = f(xn)
in Assumption H recovers the conditions (BP16-H1)–(BP16-H3). Note that the definition of dn does not
conflict with (H4).

Relation to [48]. The abstract convergence theorem of [48] applies to a sequence (zn)n∈N given by zn =
(xn, xn−1) with a sequence (xn)n∈N in RN for a function f : R2N → R. The conditions are the following:

(OCBP14-H1) For each n ∈ N, f(zn+1) + a‖xn − xn−1‖22 ≤ f(zn) .

(OCBP14-H2) For each n ∈ N, the exists wn+1 ∈ ∂f(zn+1)
such that ‖wn+1‖ ≤ b

2 (‖xn − xn−1‖2 + ‖xn+1 − xn‖2).

(OCBP14-H3) There exists a subsequence (znj )j∈N and z̃ such that znj → z̃ and f(znj )→ f(z̃) as j →∞.

These conditions are recovered from our framework by setting F(zn, un) = f(zn), dn = ‖xn − xn−1‖2,
an = a ∈ R, bn = 1, I = {1, 2}, θ1 = θ2 = 1

2 and εn = 0 for all n ∈ N.

Remark 1. Note that, using the equivalence between norms, the right hand side of the inequality in (OCBP14-
H2) can be bounded from above: ‖xn − xn−1‖2 + ‖xn+1 − xn‖2 ≤

√
2‖zn+1 − zn‖2.

1We neglect the dependence of b in (BP16-H2) on the compact set that contains xn, as this set will be chosen to be the
KL-neighborhood of the set of limit points, which fixes the parameter for sufficiently large n.
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Discussion and perspectives

3.2 Discussion and perspectives

In Section 3.1, we have seen that the conditions in Assumption H are more general than previous abstract
convergence results. In the following, we provide some discussion, intuition, and perspectives of the conditions
in Assumption H.

• Since F is bounded from below, (H1) requires that andn tends to 0 as n→∞. Moreover, as infn an > 0,
this implies that dn → 0.

• However, (an)n∈N is not a priori assumed to be bounded. The faster an tends to ∞, the faster the
property andn → 0 requires dn to tend to 0.

• If dn → 0 and, assuming for a moment that infn bn > 0, (H2) implies that ‖∂F(xn, un)‖− → 0.
However, (bn)n∈N may tend to 0, though not to fast because of (H5). The required slow behavior of
bn → 0 will still allows us to conclude that lim infn→∞ ‖∂F(xn, un)‖− = 0.

• The usage of the sequence (εn) accepts a larger relative error in (H2) compared to (ABS13-H2).

• The sequence (dn)n∈N is introduced as a more general distance measure, which by (H4) is “consistent”
with the Euclidean distance. The purpose of this generalization is to open the door for Bregman
distances [16] without the common assumption of strong convexity or Lipschitz continuity of the
gradient. Alternatively, the sequence (dn)n∈N can measure the distance between (xn)n∈N and a sequence
of surrogate points, which only asymptotically, require ‖xn+1 − xn‖2 → 0. Of course, when distances
are only measured with such an abstract distance measure, convergence in the Euclidean sense cannot
be expected without further assumptions. A third option, which we explore in this paper, is a sequence
(dn)n∈N that measures the Euclidean distance only of a block of coordinates of (xn)n∈N, which leads
to block coordinate descent algorithms. A sufficient condition to achieve (H4) is to repeat each block
after a finite number of steps (possibly unordered).

• The extension of (H2) to the sum
∑
i∈I θidn+1−i seems to be important for multi-step methods such

as the Heavy-ball method [51], iPiano [48, 47], and other inertial forward–backward splitting methods
[15, 40]. For the setting of [40], we provide some details in the appendix.

• The introduction of a sequence (un)n∈N adds some flexibility in the asymptotic behavior of the objective
function. For example, in [48], most of the analysis allows for step sizes and other parameters to change
in each iteration. However, there is a crucial parameter (δ-parameter inside the Lyapunov function),
which is required to be constant for the convergence result. Using the gained flexibility from the
sequence (un)n∈N, the problem can be resolved. The variable metric iPiano considered in Section 4
requires a Lyapunov function that depends on a whole matrix, which thanks to the sequence (un)n∈N
in Assumption H can change in each iteration (see (17)). Note that this problem occurs due to the
definition of the Lyapunov function and does not appear, for example, in [23] where the variable metric
is handled in a different way.

3.3 Convergence analysis

3.3.1 Direct consequences of the descent property

Sufficient decrease (H1) of a certain quantity that can be related to the objective function value is key for
the convergence analysis. The following lemma lists a few simple but favorable properties for such sequences.

Lemma 5. Let Assumption H hold. Then

(i) (F(xn, un))n∈N is non-increasing,

(ii) (F(xn, un))n∈N converges,

(iii)
∑n
k=1 d

2
k < +∞ and, therefore, dn → 0 and ‖xn+1 − xn‖2 → 0, as n→∞.
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Proof. (i) and (ii) follow from (H1) and the boundedness from below of F . (iii) follows from summing (H1)
from k = 1, . . . , n and (H4), (H5):

a

n∑
k=1

d2
k ≤

n∑
k=1

akd
2
k ≤

n∑
k=1

F(xk, uk)−F(xk+1, uk+1) = (F(x1, u1)− inf
(x,u)∈RN×RP

F(x, u)) < +∞ .

3.3.2 Direct consequences for the set of limit points

Like in [12], we can verify some results about the set of limit points (that depends on a certain initialization)
of a bounded sequence ((xn, un))n∈N

ω(x0, u0) := lim sup
n→∞

{(xn, un)} .

This definition uses the outer set-limit of a sequence of singletons, which is the same as the set of cluster
points in a different notation. Moreover, we denote by ωF (x0, u0) the subset of limit points that is generated
along F-attentive subsequences, i.e.,

ωF (x0, u0) := {(x̄, ū) ∈ ω(x0, u0) | (xnj , unj ) F→ (x̄, ū) for j →∞} .

We collect a few results that are of independent interest.

Lemma 6. Let Assumption H hold and let ((xn, un))n∈N be a bounded sequence.

(i) The set ωF (x0, u0) is non-empty and the set ω(x0, u0) is non-empty and compact.

(ii) F is constant and finite on ωF (x0, u0).

Proof. (i) By (H3), there exist a subsequence ((xnj , unj ))j∈N of ((xn, un))n∈N that converges to (x̃, ũ),
where at the same time the function values along this subsequence converge to F(x̃, ũ), therefore
limj→∞(xnj , unj ) ∈ ωF (x0, u0) and ωF (x0, u0) is non-empty. The non-emptiness of ω(x0, u0) is clear
and the compactness of ω(x0, u0) is direct consequence of its definition as an outer set-limit and the
boundedness of ((xn, un))n∈N.

(ii) By Lemma 5(ii) (F(xn, un))n∈N converges to some F̃ ∈ R. For any (x̄, ū) ∈ ωF (x0, u0) there exists a
subsequence ((xnj , unj ))j∈N that F-converges to (x̄, ū), therefore,

F̃ = lim
j→∞

F(xnj , unj ) = F(x̄, ū) ,

which shows that F is constant on ωF (x0, u0).

Lemma 7. Let Assumption H hold and ((xn, un))n∈N be a bounded sequence. Denote by Πx(ω) = {x ∈
RN | (x, u) ∈ ω} the projection of ω ∈ RN × RP onto the first N coordinates. Then, we have the following
results:

(i) The set Πx

(
ω(x0, u0)

)
is connected.

(ii) If (un)n∈N converges, then the set ω(x0, u0) is connected.

(iii) It holds that
lim
n→∞

dist((xn, un), ω(x0, u0)) = 0 .

Proof. (i) is a simple application of the connectedness results [12, Lemma 5] and the fact that ‖xn+1−xn‖2 →
0 for n → ∞ by Lemma 5(iii). (ii) follows in almost the same manner, as convergence of un implies
‖un+1 − un‖2 → 0 as n→∞. (iii) is a direct consequence of the definition of the set of limit points.
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Lemma 8. Let Assumption H hold, let ((xn, un))n∈N be a bounded sequence and let
∑∞
n=0 dn < ∞. Then,

the set ωF (x0, u0) ⊂ critF .

Proof. Let (x̄, ū) ∈ ω(x0, u0). Then, since (bn)n∈N 6∈ `1 holds, from (H2), (εn)n∈N ∈ `1 and

∞∑
n=0

bn‖∂F(xn, un)‖− ≤ b
∞∑
n=0

∑
i∈I

θidn−i +

∞∑
n=0

εn <∞

follows lim infn→∞ ‖∂F(xn, un)‖− = 0. For (x̄, ū) ∈ ωF (x0, u0) the subsequence ((xnj , unj ))j∈N F-converges
to (x̄, ū) as j →∞ and Lemma 1 implies that 0 ∈ ∂F(x̄, ū), which was to be proved.

Corollary 9. Let Assumption H hold and let ((xn, un))n∈N be a bounded sequence. Suppose F is continuous
on the set W ∩ domF with an open set W ⊃ ω(x0, u0) (e.g. F is continuous on domF), then

ω(x0, u0) = ωF (x0, u0) .

Proof. Let (xnj , unj )→ (x̄, ū) ∈ ω(x0, u0) as j →∞. There is a neighborhood V ⊂W with (x̄, ū) ∈ V such

that (xnj , unj ) ∈ V ∩ domF for sufficiently large j ∈ N and continuity of F implies (xnj , unj )
F→ (x̄, ū), thus

ω(x0, u0) ⊂ ωF (x0, u0). The converse inclusion holds by definition.

3.3.3 The convergence theorem

Theorem 10. Suppose F is a proper lower semi-continuous Kurdyka– Lojasiewicz function that is bounded
from below. Let (xn)n∈N be a bounded sequence generated by an abstract algorithm parametrized by a bounded
sequence (un)n∈N that satisfies Assumption H. Assume that F-attentive convergence holds along converging
subsequences of ((xn, un))n∈N, i.e. ω(x0, u0) = ωF (x0, u0). Then, the following holds:

(i) The sequence (dn)n∈N satisfies
∞∑
k=0

dk < +∞ , (3)

i.e., the trajectory of the sequence (xn)n∈N has finite length with respect to the abstract distance measures
(dn)n∈N.

(ii) Suppose dk satisfies ‖xk+1 − xk‖2 ≤ c̄dk+k′ for some k′ ∈ Z and c̄ ∈ R, then

∞∑
k=0

‖xk+1 − xk‖2 < +∞ , (4)

and the trajectory of the sequence (xn)n∈N has a finite Euclidean length, and thus (xn)n∈N converges
to x̃ from (H3).

(iii) Moreover, if (un)n∈N is a converging sequence, then each limit point of ((xn, un))n∈N is a critical point,
which in the situation of (ii) is the unique point (x̃, ũ) from (H3).

Proof. By (H3) there exists a subsequence ((xnj , unj ))j∈N such that (xnj , unj )
F→ (x̃, ũ) as j →∞. If there

is n′ such that F(xn
′
, un

′
) = F(x̃, ũ), then (H1) implies that F(xn, un) = F(x̃, ũ) for all n ≥ n′, thus also

and
2
n = 0 and by a > 0 (see (H4)) dn = 0 for all n ≥ n′. Therefore, (H4) shows that xn+1 = xn for all

n ≥ n′′ for some n′′ ∈ N, and by induction (xn)n∈N gets stationary (i.e. xn = xn
′′

for all n ≥ n′′) and the
statement is obvious.

Now, we can assume that F(xn, un) > F(x̃, ũ) for all n ∈ N. Moreover, non-increasingness of (F(xn, un))n∈N
by (H1) implies that for all η > 0 there exists n1 ∈ N such that F(x̃, ũ) < F(xn, un) < F(x̃, ñ) + η for all
n ≥ n1. By definition there is also a region of attraction for the sequence (xn, un)n∈N, i.e., for all ε > 0
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there exists n2 ∈ N such that dist((xn, un), ω(x0, u0)) < ε holds for all n ≥ n2. In total, we know that for
all n ≥ n0 := max{n1, n2} the sequence ((xn, un))n∈N lies in the set

[F(x̃, ũ) < F(x, u) < F(x̃, ũ) + η] ∩ [dist((x, u), ω(x0, u0)) < ε] .

Combining the facts that ω(x0, u0) = ωF (x0, u0) is nonempty and compact from Lemma 6(i) with F
being finite and constant on ω(x0, u0) from Lemma 6(ii), allows us to apply Lemma 4 with ω = ω(x0, u0).
Therefore, there are ϕ, η, ε as in Lemma 4 such that for n > n0

ϕ′(F(xn, un)−F(x̃, ũ))‖∂F(xn, un)‖− ≥ 1 (5)

holds on ω. Plugging (H2) into (5) yields

ϕ′(F(xn, un)−F(x̃, ũ)) ≥ bn

(
b
∑
i∈I

θidn−i + εn

)−1

. (6)

By concavity of ϕ: (let m > n)

Dϕ
n,m := ϕ(F(xn, un)−F(x̃, ũ))−ϕ(F(xm, um)−F(x̃, ũ)) ≥ ϕ′(F(xn, un)−F(x̃, ũ))(F(xn, un)−F(xm, um)) ,

using (6) and (H1), we infer

Dϕ
n,n+1 ≥

bnand
2
n

b
∑
i∈I θidn−i + εn

⇔ d2
n ≤

(∑
i∈I

θ′idn−i + ε′n

)(
b′

anbn
Dϕ
n,n+1

)

where we use the substitutions θ :=
∑
j∈I θj , b

′ := bθ, θ′i := θi/θ, and ε′n := εn/b
′. Applying 2

√
αβ ≤ α+ β

for all α, β ≥ 0, we obtain (set c := supn
b′

anbn
<∞ (by (H4)))

2dn ≤
b′

anbn
Dϕ
n,n+1 +

∑
i∈I

θ′idn−i + ε′n ≤ cD
ϕ
n,n+1 +

∑
i∈I

θ′idn−i + ε′n .

Now summing this inequality from k = n0, . . . , n yields:

2

n∑
k=n0

dk ≤
n∑

k=n0

∑
i∈I

θ′idk−i + c

n∑
k=n0

Dϕ
k,k+1 +

n∑
k=n0

ε′k . (7)

The first sum on the right hand side can be rewritten as follows2: (use the substitution j = k − i)

n∑
k=n0

∑
i∈I

θ′idk−i =
∑
i∈I

n−i∑
j=n0−i

θ′idj =
(∑
i∈I

θ′i

) n∑
j=n0

dj +
∑
i∈I

n0−1∑
j=n0−i

θ′idj +
∑
i∈I

n−i∑
j=n+1

θ′idj .

Using
∑
i∈I θ

′
i = 1 and rearranging terms in (7) yields

n∑
k=n0

dk ≤
∑
i∈I

n0−1∑
j=n0−i

θ′idj +
∑
i∈I

n−i∑
j=n+1

θ′idj + c

n∑
k=n0

Dϕ
k,k+1 +

n∑
k=n0

ε′k .

From this inequality, we conclude that limn→∞
∑n
k=0 dk < +∞. The first and second term of the right hand

side are finite summations and dn → 0 as n→∞. The third term equals cDϕ
n0,n+1, which is bounded from

above by ϕ(Fn0(xn0) − F(x̃)) < +∞. The last term is finite by assumption (εn)n∈N ∈ `1, which, in total,
verifies (i).

2We use the convention that the summation is zero when the start index is larger than the termination index.
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(ii) is a consequence of (i) and the fact that for arbitrary m > n > 0

‖xm − xn‖2 ≤
m−1∑
k=n

‖xk+1 − xk‖2 ≤ c
m−1∑
k=n

dk+k′ < +∞

holds, which shows that (xn)n∈N is a Cauchy sequence (The right hand side vanishes for n,m → ∞).
Therefore, xn → x̃ as n → ∞, which verifies (ii). Using (i) and (ii), (iii) is a direct consequence of
Lemma 8.

4 Variable metric iPiano

We consider a structured non-smooth, non-convex optimization problem with a proper lower semi-continuous
extended valued function h : RN → R, N ≥ 1, that is bounded from below by some value h > −∞:

min
x∈RN

h(x) , h(x) = f(x) + g(x) . (8)

The function f : RN → R is assumed to be C1-smooth (possibly non-convex) with L-Lipschitz continuous
gradient on dom g, L > 0. Further, let the function g : RN → R be simple (possibly non-smooth and
non-convex) and prox-bounded, i.e., there exists λ > 0 such that

eλg(x) := inf
y∈RN

g(y) +
1

2λ
‖y − x‖2 > −∞

for some x ∈ RN . Saying “g is simple” refers to the fact that the associated proximal map can be solved
efficiently for the global optimum.

We propose Algorithm 1 to find a critical point x∗ ∈ domh of h, which in this case is characterized by

−∇f(x∗) ∈ ∂g(x∗) ,

where ∂g denotes the limiting subdifferential. The parameter restrictions are discussed in Lemma 11 and
Remark 3.

Depending on the properties of g, the step size parameter αn and the inertial parameter βn must satisfy
different conditions. We analyse the properties when g is convex, semi-convex, or non-convex in a concise
manner. If g is semi-convex with respect to the metric induced by A ∈ S++(N), let m be the semi-convexity
parameter, i.e., m ∈ R is the largest value such that g(x) − m

2 ‖x‖
2
A is convex. For convex functions m = 0

and for strongly convex functions m > 0. Instead of considering the situation where g is non-convex as a
semi-convex function with “m = −∞”, we introduce a “flag variable” σ ∈ {0, 1}, which is 1 if g is semi-convex
and 0 if g is non-convex. Note that if σ = 1 the property of semi-convexity is satisfied for any A ∈ S++(N),
but with possibly changing modulus. Therefore, sometimes the metric is not explicitly specified.

Lemma 11. A necessary condition for the sequences (αn)n∈N and (βn)n∈N to satisfy γn ≥ c > 0 for all
n ∈ N is

αn ≤
1 + σ − 2βn

Ln − σmn + 2c
and βn ≤

1 + σ

2
.

Proof. The bounds directly follow from infn γn > 0.

Remark 2. The minimization problem in (9) is equivalent to (constant terms are dropped)

arg min
x∈RN

g(x) + 〈∇f(xn), x− xn〉 − βn
αn

〈
xn − xn−1, x− xn

〉
An

+
1

2αn
‖x− xn‖2An . (13)
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Algorithm 1. Variable metric inertial proximal algorithm for nonconvex optimization (vmiPiano)

• Parameter: Let

– (αn)n∈N be a sequence of positive step size parameters,

– (βn)n∈N be a sequence of non-negative parameters, and

– (An)n∈N be a sequence of matrices An ∈ S++(N) such that An � id and infn ς(An) > 0.

– Let σ = 1 if g is semi-convex and σ = 0 otherwise.

• Initialization: Choose a starting point x0 ∈ domh and set x−1 = x0.

• Iterations (n ≥ 0): Update:

yn = xn + βn(xn − xn−1)

xn+1 ∈ arg min
x∈RN

Qn(x;xn) , Qn(x;xn) := g(x) + 〈∇f(xn), x− xn〉+
1

2αn
‖x− yn‖2An ,

(9)

where Ln > σmn is determined such that

f(xn+1) ≤ f(xn) +
〈
∇f(xn), xn+1 − xn

〉
+
Ln
2
‖xn+1 − xn‖2An (10)

holds and αn, βn with infn αn > 0 are chosen such that (see e.g. Lemma 11)

δσn :=
1

2

(
1 + σ − βn

αn
− (Ln − σmn)

)
and γn := δσn −

βn
2αn

(11)

satisfy
inf
n
γn > 0 and δσn+1‖xn+1 − xn‖2An+1

≤ δσn‖xn+1 − xn‖2An , (12)

where mn ∈ R denotes the semi-convexity modulus of g w.r.t. An ∈ S++(N) (if σ = 1).

The optimality condition of the minimization problem in (9) yields

0 ∈ ∂Qn(x;xn) = ∂g(x) +∇f(xn) +
1

αn
An(x− yn)

and using the expression for yn and a simple rearrangement, we obtain the necessary condition for xn+1:

x ∈ (id + αnA
−1
n ∂g)−1

(
xn − αnA−1

n ∇f(xn) + βn(xn − xn−1)
)
. (14)

For a convex function g, inverting the expression id + αnA
−1
n ∂g yields a unique solution and the inclusion

can be replaced by an equality. Here, the operator is set-valued.

Remark 3. • The assumption in (10) is satisfied for example, if f has an L-Lipschitz continuous gradient
with An = id, or when a local estimate of the Lipschitz constant Ln is known (also An = id).

• Since ∇f is assumed to be Lipschitz continuous, given A ∈ S++(N), we can always find L such that
An can be “normalized” to 0 � A � id. In practice the algorithm can be extended by a backtracking
procedure for estimating Ln.

• The additional hyperparameters δσn and γn can be seen as an disadvantage, however, actually, they
allow for a constructive selection of the step size parameters (cf. [48]). For example in [15], such
hyperparameters do not appear and only existence of parameters that satisfy certain conditions can
be guaranteed.
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• The first condition in (12) is satisfied by the parameter choice suggested in Lemma11. The second
condition can be achieved by specifying a monotonically non-increasing sequence (δσn)n∈N; then the
condition on the descent w.r.t. the metric is slightly more restrictive than the standard assumption in
this context [20, 21], but could potentially be included into the backtracking procedure for (10).

• Unlike in [48, 47], where the sequence δn is assumed to be stationary after a finite number of iterations
to obtain the final convergence result, here, the restrictions for δn and An are very loose: essentially
boundedness is required.

As mentioned before, we want to take advantages out of g being semi-convex. The next lemmas are
essential for that.

Lemma 12. Let g be proper semi-convex with modulus m ∈ R with respect to the metric induced by A ∈
S++(N). Then, for any x̄ ∈ dom ∂g it holds that

g(x) ≥ g(x̄) + 〈v̄, x− x̄〉+
m

2
‖x− x̄‖2A , ∀x ∈ RN and v̄ ∈ ∂g(x̄) .

Proof. Fix x̃ ∈ dom g and apply the subgradient inequality to gm(x) := g(x)− m
2 ‖x− x̃‖

2
A around the point

x̄, i.e., it holds that
gm(x) ≥ gm(x̄) + 〈w̄, x− x̄〉 , ∀x ∈ RNand w̄ ∈ ∂gm(x̄) .

Note that w̄ is an element from the (convex) subdifferential. Due to the smoothness of m
2 ‖x− x̃‖

2
A, we can

use the summation rule for the limiting subdifferential to obtain

∂gm(x̄) = ∂
(
g − m

2
‖ · −x̃‖22

)
(x̄) = ∂g(x̄)−mA(x̄− x̃) ,

and, therefore, replacing w̄ by v̄−mA(x̄− x̃) with v̄ ∈ ∂g(x̄) in the subgradient inequality above, we obtain
after using

2 〈x̄− x̃, x− x̄〉A = ‖x− x̃‖2A − ‖x̄− x̃‖2A − ‖x− x̄‖2A
that the following inequality holds

gm(x) +
m

2
‖x− x̃‖2A ≥ gm(x̄) +

m

2
‖x̄− x̃‖2A +

m

2
‖x− x̄‖2A + 〈v̄, x− x̄〉 , ∀x ∈ RN and v̄ ∈ ∂g(x̄) ,

which implies the statement.

Lemma 13. Let σ = 1 if g is proper semi-convex with modulus m ∈ R with respect to the metric induced by
A ∈ S++(N) and σ = 0 otherwise. Then it hold that

Qn(xn+1;xn) +
σ

2

(
m+

1

αn

)
‖xn+1 − xn‖2A ≤ Qn(xn;xn) . (15)

Proof. Apply Lemma 12 with x = xn and x̄ = xn+1 to the function x 7→ Qn(x;xn) from (9), which is
semi-convex with modulus σ (m+ 1

αn
) with respect to the metric induced by A.

Verification of Assumption H. We define the proper lower semi-continuous function

F : RN × RN × RN×N × R→ R given by F(x, y,A, δ) := H(δ,A)(x, y) := h(x) + δ‖x− y‖2A (16)

for some A ∈ S++(N) and δ ∈ R. Regarding the variables in Assumption H, the u-component of F is treated
as u = (A, δ), which allows the function F to change depending on the metric A and another parameter δ.
Convergence will be derived for the x and y variables only.

The following proposition verifies (H1), with dn = ‖xn − xn−1‖2 and an = γn.
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Proposition 14 (Descent property). Let the variables and parameters be given as in Algorithm 1. Then, it
holds that

H(δσn,An)(x
n+1, xn) ≤ H(δσn,An)(x

n, xn−1)− γnς(An)‖xn − xn−1‖22 , (17)

and the sequence (H(δσn,An)(x
n, xn−1))n∈N is monotonically decreasing, which verifies Condition (H1) with

F as in (16), dn = ‖xn − xn−1‖2, and an = γnς(An).

Proof. Combining (9) (in the equivalent form (13)) with (10) and (15) yields

f(xn+1) + g(xn+1) +
σ

2

(
m+

1

αn

)
‖xn+1 − xn‖2An

≤ f(xn) +
〈
∇f(xn), xn+1 − xn

〉
+
Ln
2
‖xn+1 − xn‖2An

+ g(xn)−
〈
∇f(xn), xn+1 − xn

〉
+
βn
αn

〈
xn+1 − xn, xn − xn−1

〉
An
− 1

2αn
‖xn+1 − xn‖2An

= f(xn) + g(xn) +
βn
αn

〈
xn+1 − xn, xn − xn−1

〉
An

+
(Ln

2
− 1

2αn

)
‖xn+1 − xn‖2An

and using 〈a, b〉M ≤
1
2 (‖a‖2M + ‖b‖2M ) for any a, b ∈ RN and M ∈ S++(N) implies the following inequality

h(xn+1) ≤ h(xn) +
βn

2αn
‖xn − xn−1‖2An −

1

2

(
1 + σ − βn

αn
− (Ln − σm)

)
‖xn+1 − xn‖2An

and rearranging terms yields

h(xn+1) + δσn‖xn+1 − xn‖2An ≤ h(xn) + δσn‖xn − xn−1‖2An − (δσn −
βn

2αn
)‖xn − xn−1‖2An .

The parametrization of the step sizes is chosen as in [47] (see [47, Lemma 6.3] for well-definedness of the
parameters.) Therefore, we obtain the same step size restrictions here, but with the flexibility to change the
metric in each iteration.

Remark 4. The proof shows that instead of (13) we could also consider

arg min
x∈RN

g(x) + 〈∇f(xn), x− xn〉 − βn
αn

〈
xn − xn−1, x− xn

〉
+

1

2αn
‖x− xn‖2An , (18)

which yields a slightly different algorithm, but step size restrictions are the same. This expression differs
from (13) in the metric of the inner product with coefficient βn/αn.

Next, we prove the relative error condition (Assumption (H2)) with bn ≡ 1 and εn ≡ 0, I = {1, 2}, and
θ1 = θ2 = 1

2 . First, we derive a bound on the (limiting) subgradient of the function h and then for the
function F .

Lemma 15. Let the variables and parameters be given as in Algorithm 1. Then, there exists b > 0 such that

‖∂h(xn+1)‖− ≤
b

2

(
‖xn+1 − xn‖2 + ‖xn − xn−1‖2

)
.

Proof. (14) can be used to specify an element from ∂g(xn+1), namely

An
xn − xn+1

αn
−∇f(xn) +

βn
αn

An(xn − xn−1) ∈ ∂g(xn+1) ,

which implies

‖∂h(xn+1)‖− = ‖∇f(xn+1) + ∂g(xn+1)‖− ≤
(
‖An‖
αn

+ L

)
‖xn+1 − xn‖2 +

βn
αn
‖An‖‖xn − xn−1‖2 .

Using the Lipschitz continuity of ∇f and A � id, the statement is verified.
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Proposition 16. Let the variables and parameters be given as in Algorithm 1. Then, there exists b > 0
such that

‖∂F(xn+1, xn, An+1, δ
σ
n+1)‖− ≤

b

2

(
‖xn+1 − xn‖2 + ‖xn − xn−1‖2

)
,

which verifies Condition (H2) with F as in (16), dn = ‖xn − xn−1‖2, bn ≡ 1, I = {1, 2}, θ1 = θ2 = 1
2 , and

εn ≡ 0.

Proof. Thanks to summation rule of the limiting subdifferential for the sum of (x, y,A, δ) 7→ h(x) and the
smooth function (x, y,A, δ) 7→ δ‖xn+1−xn‖2A, we can compute the limiting subdifferential by estimating the
partial derivatives. We obtain

∂xF(x, y,A, δ) = ∂h(x) + 2δA(x− y) , ∂yF(x, y,A, δ) = ∇yF(x, y,A, δ) = −2AδA(x− y) (19)

∂AF(x, y,A, δ) = ∇AF(x, y,A, δ) = δ(x− y)⊗ (x− y) , ∂δF(x, y,A, δ) = ∇δF(x, y,A, δ) = ‖x− y‖2A .
(20)

In order to verify (H2), let Fn+1 := F(xn+1, xn, An+1, δ
σ
n+1) and we use ‖wn+1‖2 ≤ ‖wn+1

x ‖2 + ‖wn+1
y ‖2 +

‖wn+1
A ‖2 + ‖wn+1

δ ‖2 where wn+1 ∈ ∂Fn+1 with block coordinates wn+1
x ∈ ∂xFn+1, wn+1

y = ∇yFn+1,

wn+1
A = ∇AFn+1, and wn+1

δ = ∇δFn+1. We obtain the relative error bound (H2) using Lemma 15,
An+1 � id, boundedness of δσn+1, and the fact that for a sequence rn → 0 for some n0 ∈ N it holds that
r2
n ≤ rn for all n ≥ n0. In detail, we use

‖wn+1
A ‖2 ≤ δσn+1

∑
i,j

|xn+1
i −xni | · |xn+1

j −xnj | ≤ c
∑
i,j

|xn+1
j −xnj | ≤ cc′

∑
i

‖xn+1−xn‖2 ≤ cc′c′′‖xn+1−xn‖2 ,

where c is the maximal (over the coordinates i) bound for the converging sequences |xn+1
i − xni | → 0 as

n → ∞, the dimensionally dependent constant c′ =
√
N provides the norm equivalence of ‖ · ‖1 and ‖ · ‖2,

and c′′ = N simplifies the summation.

The next proposition shows that converging subsequences of the sequence generated by Algorithm 1
always F-converge to the limit point, i.e. ω(x0, u0) = ωF (x0, u0) is automatically satisfied, which implies
(H3) when the algorithm generates a bounded sequence.

Proposition 17. Let the variables and parameters be given as in Algorithm 1. Then, any convergent
subsequence ((xnj+1, xnj , Anj , δ

σ
nj ))j∈N actually F-converges to a point (x∗, x∗, A∗, δ

σ
∗ ), which verifies Con-

dition (H3) for a bounded sequence ((xn, un))n∈N with F as in (16).

Proof. Let (xnj+1, xnj , Anj , δ
σ
nj ) be a subsequence converging to some (x∗, x∗, A∗, δ

σ
∗ ).

The continuity statement follows (Qn(xn+1;xn) ≤ Qn(x;xn) for all x ∈ RN from (9)) from

g(xnj+1) +
〈
∇f(xnj ), xnj+1 − xnj

〉
+

1

2αnj
‖xnj+1 − ynj‖2Anj

≤ g(x∗) + 〈∇f(xnj ), x∗ − xnj 〉+
1

2αnj
‖x∗ − ynj‖2Anj .

Due to Lemma 5(iii) ‖xnj+1 − xnj‖ → 0, hence ‖ynj − xnj‖ → 0, which shows that ynj → x∗, as j → ∞.
Moreover, since f is continuously differentiable, ∇f(xnj ) converges as j →∞, hence it is bounded. Therefore
considering the limit superior of j → ∞ of both sides of the inequality shows that lim supj→∞ g(xnj+1) ≤
g(x∗), which combined with the lower semi-continuity of g implies limj→∞ g(xnj+1) = g(x∗), and thus the
statement follows, since f is continuously differentiabe.

Using the results that we just derived, we can prove convergence of the variable metric iPiano method
(Algorithm 1) to a critical point. Unlike the abstract convergence theorems in [5, 23, 48], the finite length
property is derived for the coordinates from a subspace only, which allows for a lot of flexibility. Critical
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points are characterized in the proof of Proposition 16 (see (19)), where zero in the partial subdifferential
(actually the partial derivative) with respect to y, A, or δ implies x = y without imposing conditions on the
δ- or A-coordinate. Thus, we have

0 ∈ ∂F(x, y,A, δ)⇔
(

0 ∈ ∂h(x)× 0y × 0A × 0δ and x = y
)
⇔
(

0 ∈ ∂h(x) and x = y
)
,

where we indicate the size of the zero variables by the respective coordinate variable. As a consequence,
0 ∈ F(x∗, x∗, δ, A)⇔ 0 ∈ ∂h(x∗). These considerations lead to the following convergence theorem.

Theorem 18. Suppose F in (16), (8) is a proper lower semi-continuous Kurdyka– Lojasiewicz function
that is bounded from below. Let (xn)n∈N be generated by Algorithm 1 and bounded with valid variables and
parameters as in the description of this algorithm. Then, the sequence (xn)n∈N satisfies

∞∑
k=0

‖xk+1 − xk‖2 < +∞ , (21)

and (xn)n∈N converges to a critical point of (8).

Proof. Verify the condition in Assumption H and apply Theorem 10. Set dn = ‖xn−xn−1‖2, an = γnς(An),
bn ≡ 1, εn ≡ 0, I = {1, 2}, θ1 = θ2 = 1

2 then (H1), (H2), and (H3) are proved in Propositions 14, 16, and 17,
and (H4), (H5) are immediate from the bounds on the parameters.

Remark 5. Thanks to [8, 9] the KL property holds for proper lower semi-continuous functions that are defin-
able in an o-minimal structure, e.g., semi-algrabraic functions. Since o-minimal structures are stable under
various operations, F is a KL function if h is definable in an o-minimal structure. Therefore, Theorem 18
can be applied to, for instance, a proper lower semi-continuous semi-algebraic function h in (8).

5 Block coordinate variable metric iPiano

We consider a structured nonsmooth, nonconvex optimization problem with a proper lower semi-continuous
extended valued function h : RN → R, N ≥ 1, that is bounded from below by some value h > −∞:

min
x∈RN

h(x) , h(x) := f(x1,x2, . . . ,xJ) +

J∑
i=1

gi(xi) , (22)

where the N dimensions are partitioned into J blocks of (possibly different dimensions) (N1, . . . , NJ), i.e.,
x ∈ RN can be decomposed as x = (x1, . . . ,xJ). The function f : RN → R is assumed to be block C1-
smooth (possibly nonconvex) with block Lipschitz continuous gradient on dom g1 × dom g2 × . . . × dom gJ ,
i.e., xi 7→ ∇xif(x1, . . . ,xi, . . . ,xJ) is Lipschitz continuous. Further, let the function gi : RNi → R be simple
(possibly nonsmooth and nonconvex) and prox-bounded.

Working with block algorithms can be simplified by an appropriate notation, which we introduce now.
We denote by xi := (x1, . . . ,xi−1,xi+1, . . . ,xJ) the vector containing all blocks but the ith one.

Algorithm 2 is a straightforward extension of Algorithm 1 to problems of class (22) with a block coordinate
structure. In each iteration, the algorithm applies one iteration of iPiano to the problem restricted to a certain
block. The formulation of the algorithm allows blocks to be updated in an almost arbitrary order. In the
end, the only restriction is that each block must be updated infinitely often, which is a more flexible rule
than in [50].

We seek for a critical point x∗ ∈ domh of h, which in this case is characterized by

−∇f(x) ∈ ∂g1(x1)× ∂g2(x2)× . . .× ∂gJ(xJ) .

In fact if we apply Algorithm 2 to (8) from the preceding section (i.e. J = 1), we recover the variable metric
iPiano algorithm (Algorithm 1). For βn,i = 0 for all n ∈ N and i ∈ {1, . . . , J}, the algorithm is known as
Block Coordinate Variable Metric Forward-Backward (BC-VMFB) algorithm [19]. If, additionally An,i = id
for all n and i, the algorithm is referred to as Proximal Alternating Linearized Minimization (PALM) [12].
An inertial block coordinate version (without variable metric) is proposed in [50] as iPALM.
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Algorithm 2. Block coordinate variable metric iPiano

• Parameter: Let for all i ∈ {1, . . . , J}

– (αn,i)n∈N be a sequence of positive step size parameters,

– (βn,i)n∈N be a sequence of non-negative parameters, and

– (An,i)n∈N be a sequence of matrices An,i∈ S++(Ni) such that An,i� id and infn,i ς(An,i) > 0.

– Let σi = 1 if gi is semi-convex and σi = 0 otherwise.

• Initialization: Choose a starting point x0 ∈ domh and set x−1 = x0.

• Iterations (n ≥ 0): Update: Select jn ∈ {1, . . . , J} and compute

ynjn = xnjn + βn,jn(xnjn − xn−1
jn

)

xn+1
jn
∈ arg min

x∈RNjn
Qjn(x; xnjn)

arg min
x∈RNjn

Qjn(x; xnjn) := gjn(x) +
〈
∇xjn f(xn), x− xnjn

〉
+

1

2αn,jn
‖x− ynjn‖

2
An,jn

xn+1

jn
= xn

jn

xn
jn

= xn−1

jn
,

(23)

where Ln > σmn is determined such that

f(xn+1) ≤ f(xn) +
〈
∇xjn f(xn),xn+1

jn
− xnjn

〉
+
Ln
2
‖xn+1

jn
− xnjn‖

2
An,jn

(24)

holds and αn,jn , βn,jn with infn,j αn,j > 0 are chosen such that

δ
σjn
n,jn

:=
1

2

(
1 + σjn − βn,jn

αn,jn
− (Ln − σjnmn)

)
and γn,jn := δ

σjn
n,jn
− βn,jn

2αn,jn
(25)

satisfy
inf
n,j

γn,j > 0 and δ
σjn
n+1,jn

‖xn+1
jn
− xnjn‖

2
An+1,jn

≤ δσjnn,jn
‖xn+1

jn
− xnjn‖

2
An,jn

, (26)

where mn ∈ R denotes the semi-convexity modulus of gjn w.r.t. Ajn ∈ S++(Njn) (if σjn = 1).
Set An+1,jn

= An,jn , δ
σjn
n+1,jn

= δ
σjn
n,jn

.

Verification of Assumption H. In order to prove convergence of this algorithm, we can make use of the
results of the preceding section for the variable metric iPiano algorithm. We consider a function

F : RN × RN × RN1×N1 × . . .× RNJ×NJ × RJ → R (27)

given by (set A := (A1, . . . , AJ), Ai ∈ RNi×Ni , ∆ := (δ1, . . . , δJ))

F(x,y,A,∆) = H∆,A(x,y) := h(x) +

J∑
i=1

δi‖xi − yi‖2Ai .

Theorem 19. Suppose F in (27), (22) is a proper lower semi-continuous Kurdyka– Lojasiewicz function (e.g.
h is semi-algebraic; cf. Remark 5) that is bounded from below. Let (xn)n∈N be generated by Algorithm 2 and
bounded with valid variables and parameters as in the description of this algorithm. Assume that each block
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coordinate is updated after a finite number of n′ ∈ N steps. Then, the sequence (xn)n∈N satisfies

∞∑
k=0

‖xk+1 − xk‖2 < +∞ , (28)

and (xn)n∈N converges to a critical point of (22).

Proof. As the nth iteration of Algorithm 2 reads exactly the same as in Algorithm 1 but applied to the block
coordinate jn only, we can directly apply Propositions 14, and obtain

H(∆σ
n,An)(x

n+1,xn) ≤ H(δσn,An)(x
n,xn−1)− γn,jnς(An,jn)‖xnjn − xn−1

nj ‖
2
2 ,

and the function H is monotonically decreasing along the iterations, i.e., the parameters in the algorithm
are chosen such that one step on an arbitrary block decreases the value of H unless the block coordinate is
already stationary.

Since the non-smooth part of the optimization problem (22) is additively separated the estimation of the
subdifferential is easy as it reduces to the Cartesian product of the subdifferential with respect to each block.
Therefore, Proposition 16 can be used analogously to deduce

‖∂F(xn+1,yn+1,An+1,∆n+1)‖− ≤
b

2

(
‖xn+1

jn
− xnjn‖

2
2 + ‖xnjn − xn−1

jn
‖22
)
.

Under the assumption that each block is updated at least after n′ iterations, also the continuity results
from Proposition 17 can be transferred easily to the setting of Algorithm 2, i.e., we can conclude that any
convergent subsequence of block coordinates actually F-converges to the limit point (limk→∞ gi(x

nk
i ) =

gi(x
∗
i ) for each block i ∈ {1, . . . , J} and f is continuous anyway).

Therefore, the conditions in Assumption H are verified by dn = ‖xnjn − xn−1
jn
‖2, an = γn,jnς(An,jn),

un = (∆σ
n,An), bn ≡ 1, εn ≡ 0, I = {1, 2}, and θ1 = θ2 = 1

2 . (H4) is also satisfied because of the finite
repetition of the updates, and (H5) is clearly satisfied.

6 Numerical application

6.1 A Mumford–Shah-like problem

The continuous Mumford–Shah problem is given formally by

min
w,Γ

λ

2

∫
Ω

|w − I|2 dx+

∫
ΩrΓ

|∇w|2 dx+ γ|Γ| , (29)

where w : Ω → R is an image on the image domain Ω ⊂ R2 and I : Ω → R is a given noisy image, |Γ|
measures the length of the jump set Γ. Intuitively, a solution w must be smooth except on a possible jump
set Γ, and approximate I. The positive parameters λ and γ steer the importance of each term. In order to
solve the problem, the jump set Γ needs to represented with a mathematical object that is amenable for a
numerical implementation.

Therefore, we consider the well-known Ambrosio–Tortorelli approximation [2] given by

min
w,z

λ

2

∫
Ω

|w − I|2 dx+

∫
Ω

z2|∇w|2 dx+ γ

∫
Ω

ε|∇z|2 +
(z − 1)2

4ε
dx , (30)

where ε > 0 is a fixed parameter and z : Ω→ [0, 1] is a (soft) edge indicator function, also called a phase-field.
The last integral is shown to Gamma-converge to the length of the jump set of (29) as ε→ 0.

In this section, we solve a slight variation of this problem. Instead of an image denoising model we
are interested in an inpainting problem (as shown in Figure 2), which is usually more difficult. In image
inpainting, the true information about the original image is only given on a subset [c = 1] of the image
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(a) original image I (b) mask c (90% unknown) (c) inpainting w using (31) (d) linear diffusion inpainting

Figure 2: Example for image inpainting/compression. The gray values of the original image (a) are stored only at
the mask points (b), where known values are black [c = 1] and unknown ones are white [c = 0]. Based on 10% known
gray values the original image is reconstructed in (c) with the Ambrosio–Tortorelli inpainting (31) that we evaluate
algorithmically in this paper, and in (d) with a simple linear diffusion model [43] which arises as a special case of
(31) when the edge set z is fixed to 1 everywhere on the image domain Ω.

domain (black pixels in Figure 2(b)), where c : Ω → {0, 1}—the original image I is unknown on [c = 0]
(white part Figure 2(b)). In [24], the idea of image inpainting is pushed to a limit and used for PDE-
based image compression, i.e., the inpainting mask [c = 1] is a small subset of Ω. Usually a simple PDE is
used for reconstructing the original image based on its gray values given only on mask points, for instance
linear diffusion in [43] (result given in Figure 2(d)). When the inpainting mask is optimized, linear diffusion
based inpainting is shown to be competetive with JPEG and sometimes with JPEG2000. Therefore using
a more general inpainting model combined with an optimized inpainting mask is expected to improve this
performance. We consider the model

min
w,z

∫
Ω

z2|∇w|2 dx+ γ

∫
Ω

ε|∇z|2 +
(z − 1)2

4ε
dx

s.t. w(x) = I(x) , ∀x ∈ [c = 1] ,

(31)

which extends the linear diffusion model by optimizing for an additional edge set z. The linear diffusion
model is recovered when fixing z = 1 on Ω. Since we want to evaluate our algorithms, we neglect the
development made for finding an optimal inpainting mask and generate the mask by randomly selecting 10%
as known pixels.

From now on, we discretize the problem and with a slight abuse of notation. We use the same symbols
to denote the discrete counterparts of the above introduced variables: I ∈ RN is the (vectorized3) original
image, c ∈ RN is the (inpainting) mask, w ∈ RN is the optimization variable (representing a vectorized
image), and z ∈ [0, 1]N represents the jump (or edge) set of (29). The continuous gradient ∇ is replaced by
a discrete derivative operator D ∈ R2N×N that implements forward differences in horizontal D1 ∈ RN×N
and vertical direction D2 ∈ RN×N with homogeneous boundary conditions, i.e., forward differences across
the image boundary are set to 0. Our discretized model of (31) reads

min
w,z

1

2
‖diag(z)(D1w)‖22 +

1

2
‖ diag(z)(D2w)‖22 +

γε

2
‖Dz‖22 +

γ

4ε
‖z − 1‖22

s.t. wi = Ii , ∀i ∈ {1, . . . , N} with ci = 1 ,

(32)

where diag : RN → RN×N puts a vector on the diagonal of a matrix. Figure 4 shows the input data, the

3The columns of the image are stacked to a long vector.
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reconstructed image, and the reconstructed edge set, for ε = 0.1 and γ = 1/400 and the number of pixel
N = 551 · 414 = 228114.

In the following, we evaluate several algorithms that use a variable metric. Let

g1(w) := δX(w) with X := {w ∈ RN |wi = Ii if ci = 1} , g2(z) :=
γ

4ε
‖z − 1‖22

f(w, z) :=
1

2

(
‖ diag(z)(D1w)‖22 + ‖ diag(z)(D2w)‖22 + γε‖Dz‖22

)
.

We can apply iPiano to (8) with x = (w, z) and g(x) = (g1(w), g2(z)), or block coordinate iPiano to (22)
with x1 = w and x2 = z.

In order to determine a suitable metric, we first compute the derivatives of f

∇wf(w, z) =
(
D>1 diag(z2)D1 +D>2 diag(z2)D2

)
w

∇zf(w, z) =
(
diag((D1w)2) + diag((D2w)2) + γεD>D

)
z ,

where the squares are to be understood coordinate-wise. A feasible metric for block coordinate variable
metric iPiano (BC-VM-iPiano) must satisfy (24). Therefore, for the w-update step (z is fixed), we require
An,w (the metric w.r.t. the block of w coordinates) to satisfy

〈∇wf(w, z)−∇wf(w′, z)−An,w(w − w′), w − w′〉 ≤ 0

for all w,w′, which is achieved, for example, by a diagonal matrix An,w given by

(An,w)i,i =

N∑
j=1

|
(
D>1 diag(z2)D1 +D>2 diag(z2)D2

)
i,j
| (33)

for all i ∈ {1, . . . , N}. In order to avoid numerical problems, we add a small numerical constant 10−9 to the
diagonal of An,w. For the z-update (w is fixed), analogously, we require An,z (the metric w.r.t. the block of
z coordinates) to satisfy

〈∇wf(w, z)−∇wf(w, z′)−An,z(z − z′), z − z′〉 ≤ 0

for all z, z′, which is achieved, for example, by a diagonal matrix An,z given by

(An,z)i,i =

N∑
j=1

|
(
diag((D1w)2) + diag((D2w)2) + γεD>D

)
i,j
| (34)

for all i ∈ {1, . . . , N}. Note that compared to (24) the metric contains the scaling Ln,w and Ln,z, respectively.
For constant step size schemes (An,w = An,z = id) we use Lw ≤ 8 and4 Lz ≤ 2 + 8γε.

Besides BC-VM-iPiano, we test forward–backward splitting (FB) with constant step size scheme α =
2/max(Lw, Lz), block coordinate forward–backward splitting (BC-FB) with step sizes αw = 2/Lw and αz =
2/Lz (this method is also known as PALM [12]), variable metric forward–backward splitting (BC-FB) with
the metric (33) and (34) as a composed diagonal matrix, block coordinate variable metric forward–backward
splitting (BC-VM-FB) with the metric (33) and (34), iPiano (iPiano) with constant step size scheme α =
2(1−β)/max(Lw, Lz), block coordinate iPiano (BC-iPiano) with constant step size scheme αw = 2(1−β)/Lw
and αz = 2(1 − β)/Lz, variable metric iPiano (VM-iPiano) with the metric (33) and (34) as a composed
diagonal matrix, and block coordinate variable metric iPiano (BC-VM-iPiano) with the metric (33) and (34).
For all methods that incorporate an inertial parameter, it is set to β = 0.7.

The metric that is used for BC-FB and VM-iPiano is actually not feasible, as (33) and (34) are not sufficient
to guarantee that the metric induces a quadratic majorizer to the function f (cf. (10)). The gradient is not

4Note that I is normalized to [0, 1] and, thus, we observed that w stays in [0, 1] too. Therefore (D1w)2i is in [0, 1].
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Figure 3: Number of iterations vs. relative objective value for solving (32). The performance is significantly improved
for methods that take a variable metric into account. Intuitively, this means that the coordinates of the optimization
variable are irregularly scaled along the iterations. The variable metric version of iPiano shows the best performance.

linear with respect to both coordinates. The gradient is linear only if one coordinate is fixed. Nevertheless,
in our practical experiments, the methods converged. In future work, we want to analyze if this inaccuracy
can be compensated by making use of relative error conditions, which are not yet incorporated into the
algorithms.

We solve problem (32) with all methods up to 1000 iterations and define E∗ as the minimal objective
value that is achieved among all methods. Let E0 be the initial value. Figure 3 plots the decrease of the
relative objective value (En − E∗)/(E0 − E∗) along the iterations n on a logarithmic scale on both axes.

The performance of FB and iPiano are nearly identical as they do not explore the different scaling
of w- and z-coordinates, unlike BC-FB and BC-iPiano. As both block coordinates seem to “live” on a
different scale, block coordinate methods are favorable. However, as the immense performance speed up
of the variable metric methods shows the irregular scaling happens to be present also among different w-
coordinates, respectively, z-coordinates. Throughout the experiments, we have noticed that optimization
problems where regularization (like smoothness between pixels) is important, inertial methods seem to
perform slightly better in general. For this experiment variable metric iPiano shows the best performance
and sets the value for E∗, the lowest objective value among all methods after 1000 iterations. Note that the
computational cost per iterations is nearly the same for all methods.

7 Conclusion

In this paper, we presented a convergence analysis for abstract inexact generalized descent methods based
on the KL-inequality that unifies and generalizes the analysis in Attouch et al. [5], Frankel et al. [23],
Ochs et al. [48], Bolte and Pauwels [11], and several other more explicit algorithms. The novel convergence
theorem allows for more flexibility in the design of algorithms. More in detail, algorithms that imply a
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(a) input to model (32) (b) inpainting w using (32) (c) edges z using (32)

Figure 4: Solution to Problem 32. (a) shows the inpainting mask from Figure 2(b) weighted with the gray values
from Figure 2(a). (b) shows the solution image w and (c) the solution edge set z of (32). Although the model is
non-convex, visually all algorithms resulted in a similar solution. Figure 3 shows that the final objective values differ.

descent on a proper lower semi-continuous parametric function and satisfy a certain flexible relative error
condition are considered. The parametric function can be seen as an objective function that may vary along
the iterations. The gained flexibility is used to formulate a variable metric version of iPiano (an inertial
forward–backward splitting-like method). Moreover, thanks to usage of a generic distance measure in the
abstract convergence theorem, we obtain a block coordinate variable metric version of iPiano almost for free.
Finally, the algorithms are shown to perform well on the practical problem of image compression using a
Mumford–Shah-like regularization.

As future work, we will investigate whether the gained flexibility can be used, for example, to prove the
convergence of (inertial) Bregman proximal descent methods with Bregman functions that are not required
to be strongly convex or to have a Lipschitz continuous gradient.

A Appendix

A.1 Relation to algorithms with analogue convergence guarantees

In recent works, the convergence analysis of algorithms for non-smooth non-convex optimization problems
often follows the lines of the proof methodology suggested in [12], i.e., the convergence is explicitly verified,
although it suffices to verify the abstract conditions in [5]. In the following, for several such algorithms,
the relation to the abstract conditions in [5, 23, 48] and Assumption H is shown. For [35, 37, 40], the
generalizations of our paper are necessary to cast them into the abstract framework. Note that we do not
provide an exhaustive list of examples. Most of the algorithms mentioned in the introduction fall into our
unifying abstract setting.

Relation to PALM [12]. In [12], the general proof methodology is introduced. Thanks to a uniformization
result of the KL-inequality, which we also use in this paper (see Lemma 4), the convergence proof was
simplified compared to [5]. [12, Lemma 3(i)] verifies (ABS13-H1), [12, Lemma 4] shows (ABS13-H2), and
[12, Lemma 5(i)] contains the continuity statement (ABS13-H3).

Relation to [15]. An inertial algorithm for the sum of two non-convex functions was proposed in this
paper. The setting is slightly more general than [48] as the non-smooth part of the objective is allowed to be
non-convex. The proximal subproblems are formulated with respect to Bregman distances that are required
to be strongly convex and with Lipschitz continuous gradient, which provides a lower and upper bound in
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the Euclidean metric for the Bregman distance terms. The proof of convergence is, hence, analogue to [48].
However, unlike in [48], the sufficient decrease condition uses dn = ‖xn+1 − xn‖2 instead of ‖xn − xn−1‖2.
Both conditions obviously fall into the more general set of conditions in Assumption H. The conditions in
Assumption H are verified in [15, (H1)–(H3) on page 13] in analogy to (OCBP14-H1)–(OCBP14-H3) for
which we provide the details in Section 3.1.

Relation to [35]. A Douglas–Rachford splitting algorithm for solving non-smooth non-convex problems
of the form

min
x∈RN

f(x) + g(x) , (35)

where f has Lipschitz continuous gradient and g is proper lower semi-continuous, is proposed. The algorithm
generates sequences (xn)n∈N, (yn)n∈N, and (zn)n∈N according to the following update scheme: (γ > 0)

yn+1 ∈ argmin
y

f(y) +
1

2γ
‖y − xn‖22

zn+1 ∈ argmin
z

g(z) +
1

2γ
‖2yn+1 − xn − z‖22

xn+1 = xn + (zn+1 − yn+1)

The global convergence of the whole sequence ((yn, zn, xn))n∈N is shown in [35, Theorem 2] for certain values
of γ > 0, and is based on a descent property of the merit function

Dγ(y, z, x) := f(y) + g(z)− 1

2γ
‖y − z‖22 + 〈x− y, z − y〉 .

During the proof, which they tailored to their method, the abstract conditions in Assumption H are verified.
(H1) is verified in [35, Eq. (23)] with some constant a > 0 for the function Dγ using dn := ‖yn+1 − yn‖2

Dγ(yn+1, zn+1, xn+1) + a‖yn+1 − yn‖22 ≤ Dγ(yn, zn, xn) ,

(H2) is established in [35, Eq. (28)] for some b > 0,

dist(0, ∂Dγ(yn, zn, xn)) ≤ b‖yn+1 − yn‖2 ,

using I := {0}, θ0 = 1, bn ≡ 1, εn ≡ 0, and (H3) is proved by assuming the existence of a cluster point
and the Dγ-attentive convergence from [35, Eq. (25)–(27)]. The distance condition (H4) is asserted by [35,
Eq. (22),(10)] and the relation in the x-update step. (H5) is obviously satisfied, since we are in a setting
with constant parameters. Therefore, we can apply our Theorem 10 to prove the same convergence results
as in [35, Theorem 2]: (yn)n∈N converges and, using the same equations that realize the distance condition,
convergence of (zn)n∈N and (xn)n∈N can be concluded.

Relation to [37]. In a similar way to [35], the proximal ADMM proposed in [37] can be cast into our
framework. The goal is to solve the following problem:

min
x∈RN

h(x) + P (Mx) ,

with a linear mappingM, a proper lower semi-continuous function P , and a twice continuously differentiable
function h with bounded Hessian. The sufficient decrease condition is proved for the Lagrange function

Lβ(x, y, z) = h(x) + P (y)− 〈z,Mx− y〉+
β

2
‖Mx− y‖22

in [37, Eq. (36)] with dn := ‖xn+1 − xn‖2, and some a > 0. Different from the analysis in [35], where the
relative error condition is explicit, it is implicit in [37]. The condition (H2) is verified in [37, Eq. (35)] for
some b > 0, bn ≡ 1, εn ≡ 0, I = {1} and θ1 = 1. The condition (H3) is proved in [37, Theorem 2(i)]. The
distance condition (H4) follows directly from [37, Eq. (14),(15)], and (H5) is again obviously satisfied.
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Relation to [40]. A very general multi-step forward–backward scheme is proposed to solve problems of
the setting of (35). The main update step is a forward–backward step, executed at an extrapolated point
with gradient direction evaluated at another extrapolated point. Both of these extrapolations allow for a
linear combination (possibly different ones) of finitely many preceding step directions. Global convergence
and a finite length property are proved in [40, Theorem 2.2] explicitly for this algorithm for the sequence
(xn)n∈N and (zn)n∈N with zn = (xn, xn−1, . . . , xn−s+1) for some s ∈ N. The statements that establishes the
conditions in Assumption H are collected in [40, (R.1)–(R.3)] in the supplementary material. The proof idea
follows the concepts of the proof of iPiano [48]. The arising Lyapunov function and the product space is
naturally generalized to the number of terms used in the linear combinations of the extrapolations.
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