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Abstract. We consider a system of two reaction-diffusion-advection equa-

tions describing the one dimensional directed motion of particles with super-
imposed diffusion and mutual alignment. For this system we show the existence

of traveling wave solutions for weak diffusion by singular perturbation tech-

niques and provide evidence for their existence also for stronger diffusion. We
discuss different types of wave fronts and their composition to more complex

patterns and illustrate their emergence from generic initial data by simula-

tions. We also investigate the dependence of the wave velocities on the model
parameters.

1. Introduction

Traveling waves in reaction-diffusion systems have been investigated for a long
time, and applications to biological contexts are abundant in the literature (cf.
[15], [17], and references therein). However, our principal motivating biological sys-
tem, the cytoskeleton of motile cells, is not adequately described by pure reaction-
diffusion equations since the advective effects of actin flow play a crucial role. A
comprehensive reaction-diffusion-advection model for the actin cytoskeleton of a
motile cell was established in [4] and analyzed in [5]. In the present paper, we inves-
tigate a simpler, prototypical reduced system that isolates features which seem es-
sential for hyperbolic-parabolic systems with reaction such as the cell motion model
of [4], notably regarding the formation, propagation, and interaction of waves.

To obtain the ‘reduced model’ and enable both analytical access and more re-
liable simulation, we have on the one hand chosen a comparatively low overall
complexity and on the other hand explicitly introduced features that, from the
perspective of the cell motion problem, correspond to the (reasonable) assumptions
that the filaments are short and capable of aligning each other. The resulting sys-
tem resembles previous models for directed diffusive particle flow (e.g.,[7] without
diffusion, [8], more recently [10], [18]), and has a cross advection structure making
it, in our opinion, worthy of attention in its own right. We shall see that it ex-
hibits a surprisingly rich dynamic behavior, which renders it interesting also from
an intrinsically mathematical point of view.

We employ geometric singular perturbation theory (established in [2], [14], sum-
marized in [6]) to find traveling wave solutions to this model. In section 3, the
traveling wave problem is formulated and for slow diffusion of filaments is observed
to be a singular perturbation of the purely hyperbolic limit problem. The existence
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of ‘polarization waves’ for small diffusion is then deduced from the existence of trav-
eling fronts in the hyperbolic limit using geometric singular perturbation theory.
Possible velocities for monotone polarization waves are discussed by linearization
about the asymptotic states. We also find ‘inversion waves’. These do not exist
in the hyperbolic limit system, but are a distinguishing feature of the full problem
with diffusion. Their emergence and properties are discussed in section 4. In sec-
tion 5 we present wave patterns emerging in simulations of the full PDE system.
These are composed of several simple waves discussed in sections 3 and 4, and we
investigate the dependence of the wave speeds on the model parameters. Finally,
we summarize the results and relate them to experimentally observed actin waves
in 6. We also comment on the interpretation of the traveling wave solutions in
connection with shock-like waves found in [5].

2. Formulation of the model

With the goal of understanding the motion of actin filaments in a model for the
cytoskeleton proposed in [4], we consider a collection of particles moving in one
space dimension with fixed velocity v either to the left or to the right. Denoting
their densities by ur and ul, for right and left moving filaments, respectively, this
reads

∂tur(t, x) + v∂xur(t, x) = 0(1a)

∂tul(t, x)− v∂xul(t, x) = 0.(1b)

These equations are strongly simplified versions of the equations describing the
densities of actin filaments as established in [4]. This cytoskeleton model comprised
of hyperbolic and parabolic equations was observed to exhibit shock-like solutions
in [5]. As these came as a surprise we decoupled the hyperbolic equations for the
motion of filaments from the polymerization dynamics and thus arrived at (1a).

Rewriting this system in terms of total particle density u := ur + ul and the
difference w := ur − ul of right and left oriented particles – we will call w the
polarization – we can rewrite this into

∂tu+ ∂xw = 0 ∂tw + ∂xu = 0

where we have chosen the velocity to be 1 by implicitly rescaling space and time.
As one of the assumptions used on the way from the original cytoskeleton model

to (1a) was the shortness of the filaments it makes sense to assume them to undergo
slow diffusion and being capable of aligning one another:

∂tu+ ∂xw = ε∂xxu(2a)

∂tw + ∂xu = ε∂xxw + f(u,w)(2b)

where the slowness of the diffusion is reflected by assuming the diffusion coefficient
ε to be small. The alignment term f accounts for the ability of filaments to turn
around those which come from the opposite direction. We shall assume that the
majority will be able to turn around the minority more effectively than vice versa
and thus f(u,w) ≥ 0 if 0 ≤ w ≤ u and f(u,w) ≤ 0 if 0 ≥ w ≥ −u. It should be
noted that the only nonlinear term in (2) is the alignment term while both diffusion
and cross advection are purely linear.

Given a fixed total particle density, the dependence of the alignment term on the
polarization will take the form of the force derived from a bistable potential with
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stable equilibria at w = ±u and an unstable equilibrium at w = 0 as exemplarily
given by

(3) f(u,w) = αf0(u,w) := αw

(
1− w2

u2

)
exp

[
−β2u2

]
where the exponential term accounts for a crowding effect which makes the align-
ment increasingly more difficult when the density becomes too large. A more de-
tailed derivation of system (2) and possible other alignment terms f is found in
[3].

The model contains the two parameters ε and α denoting the strengths of diffu-
sion and alignment respectively. By rescaling both time and space by α,

t̃ = αt, x̃ = αx

we arrive at the rescaled problem

∂t̃ũ+ ∂x̃w̃ = αε∂x̃x̃ũ(4a)

∂t̃w̃ + ∂x̃ũ = αε∂x̃x̃w̃ + f0(ũ, w̃)(4b)

depending only on the single parameter a := αε as rescaled diffusion coefficient. In
what follows we shall work with this rescaled reaction-diffusion-advection system
and omit the tilde over the variables.

3. Polarization waves

3.1. Existence of polarization waves. Looking for traveling wave solutions to
problem (4) we describe putative wave profiles at wave speed c by

U(ξ) = u(t, x) and W (ξ) = w(t, x) with ξ = x− ct

and obtain the following system of ordinary differential equations

−cU ′(ξ) +W ′(ξ) = aU ′′(ξ)(5a)

−cW ′(ξ) + U ′(ξ) = aW ′′(ξ) + f0(U,W )(5b)

as traveling wave problem.
As a toy model let us start with the purely hyperbolic system without diffusion

(that is, a = 0), which via W ′ = cU ′ can be written as

(6) U ′ =
1

1− c2
f0(U,W ), W ′ =

c

1− c2
f0(U,W ).

That immediately shows that the wave speed c should be different from the intrinsic
velocity ±1 of the particles. As the set of equilibria consists of three rays in the
W -U -plane and all trajectories are straight lines with slope c−1 we can easily sketch
possible orbits corresponding to the wave fronts (cf. Figure 1) and also calculate
the relative values of the asymptotic states.

More precisely, whenever the wave velocity is non-zero and different from the
particle velocity, c 6= ±1, we conclude the existence of orbits connecting the central
equilibrium W = 0 with any of the outer equilibria W = ±U . If |c| approaches
one, the equation tells us that apart from the equilibria the rate of change W ′ of
the polarization becomes very large so that we can only expect shocks, or rather
contact discontinuities (see, e.g., [12]), to move with speed ±1.

Introducing now a small diffusion coefficient amounts to a singular perturbation
to this simple problem which we shall check to be the normally hyperbolic limit of
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Figure 1. Sketch of the
equilibria (gray lines) for

the hyperbolic limit system
(a = 0) and possible hetero-
clinic orbits connecting them
in the upper W -U half plane.

Note that going through all
of the sketched orbits we
obtain a pattern of waves
with the same asymptotic

state as ξ → −∞
and ξ → ∞, respectively.

the full problem as a = αε decreases to zero. To see this we observe that for the
full problem we can write the traveling wave equations as first order system

U ′(ξ) := Z(ξ)(7a)

W ′(ξ) := V (ξ)(7b)

aZ ′(ξ) = V (ξ)− cZ(ξ)(7c)

a V ′(ξ) = Z(ξ)− c V (ξ)− f0(U(ξ), W (ξ)).(7d)

which is defined in the half space H = {U > 0} ⊂ R4 and for all a ∈ R though we
only consider a ≥ 0. The physically meaningful region is the invariant domain

M =
{

(U,W,Z, V ) ∈ R4 | U > 0, |W | < U
}
⊂ H.

We should emphasize that in what follows we view (7) as autonomous dynamical
system with the traveling wave variable ξ playing the role of time (not to be confused
with physical time). This allows us to use the language from [6] dealing with
singular perturbation problems in terms of multiple time scales. The terms fast,
slow and others we will use are thus borrowed from the theory of dynamical systems
and refer to ξ as “time”.

As reduced system (or slow subsystem) for the fast-slow system (7) we recover
the traveling wave equation (6) for the hyperbolic system (with a = 0) acting on
the critical manifold

S =

{
(U,W,Z, V ) ∈ H | Z =

1

1− c2
f0(U,W ), V =

c

1− c2
f0(U,W ) ≡ cZ

}
.

Note that S is parametrized as graph of the function

h : {(U,W ) ⊂ R2 | U > 0} → R2, (U,W ) 7→ f0(U,W )

1− c2
(1, c)

and thus equation (6) makes sense on S by applying it to the arguments of h.
Rewriting (7) in the new fast time variable τ = a−1ξ yields the fast system

(8)

U ′(τ) = aZ(τ) =: G1(U,W,Z, V )
W ′(τ) = a V (τ) =: G2(U,W,Z, V )
Z ′(τ) = V (τ)− cZ(τ) =: F1(U,W,Z, V )
V ′(τ) = Z(τ)− c V (τ)− f0(U(τ), W (τ)) =: F2(U,W,Z, V )

which is reduced to a two dimensional, linear, constant coefficient layer problem
(fast subsystem) upon setting a = 0 and prescribing any constant U = Ū > 0 and
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W = W̄ . The eigenvalues of this subsystem’s coefficient matrix

(9)
∂(F1, F2)

∂(Z, V )
=

(
−c 1
1 −c

)
are − c± 1,

which means that as τ → ∞, the solution to the layer problem approaches the
unique equilibrium

(10) Z = Z∞ =
f̄

1− c2
, V = V∞ =

cf̄

1− c2

whenever c > 1. These values are 0 if and only if f̄ := f0(Ū , W̄ ) = 0, which reminds
us of the fact that the zeros of f0 are equilibria of the full system (5). Moreover,
both eigenvalues are real and different from 0 whenever c 6= ±1, and since they
are independent of (W̄ , Ū), we conclude that the invariant manifold S is normally
hyperbolic. More precisely, it is attracting if c > 1, repelling if c < −1, and of
saddle type if |c| < 1.

W

Figure 2. Right: Slow flow on the critical manifold in W -U -Z-
space (the V direction being suppressed) for c = 1.8. Two sample
heteroclinic orbits from the outer equilibria W = ±U to the central
equilibrium W = 0 (at U1 = 0.6) and the Z = 0-plane are shown
as well. Left: The same flow and trajectories projected to the
W -U -plane (compare Figure 1).

From the projection of the slow flow on the W -U -plane it is obvious that given
c /∈ {0,±1}, there are one-parameter families of heteroclinic orbits for the slow flow
which foliate the critical manifold S. As Figure 2 makes apparent, these orbits
lie in the intersection of the critical manifold with one of the invariant hyperplanes
aZ+cU−W = C1, and the condition c /∈ {0,±1} ensures that the lines of equilibria
are transversal to these hyperplanes. Rather than by C1, the families of orbits are
best parametrized by the U -value U1 of their end point (U =U1,W =Z = V = 0)
located on the U -axis, and each of these trajectories is given as the curve ξ 7→
(U(ξ),W (ξ), h(U(ξ),W (ξ))) with ξ 7→ (U(ξ),W (ξ)) being one of the heteroclinic
orbits for (6) (see Figure 1).

The geometric singular perturbation theory developed by Fenichel in [2], refined
by Szmolyan in [14] (and exquisitely presented in [6]) now ensures the existence
of similar (families of) trajectories for the full model (5) if the diffusion coefficient
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is sufficiently small, where the necessary smallness may depend on the wave speed
and the alignment term. We can therefore formulate the following theorem.

Theorem 3.1. Fix a wave speed c different from ±1 and 0 and a value U1 > 0.
Then, there exists a0(c) > 0 such that for any a ∈ (0, a0(c)) the system (4) admits
traveling wave solutions with velocity c connecting the steady states

(i) W = 0 to W = U for c < −1
(ii) W = U to W = 0 for −1 < c < 0

(iii) W = 0 to W = −U for 0 < c < 1 and
(iv) W = −U to W = 0 for c > 1

where the steady state W = 0 is to be understood as (U,W ) = (U1, 0).

Proof. The hyperbolicity of S and the heteroclinic orbits for the slow flow have
already been discussed. The only point to be resolved is the fact that S is in fact
not a smooth manifold due to the singularity at the origin. However, having fixed
any value U1 and a velocity c we only require a compact subset

C := {(U,W,Z, V ) ∈ S | U ∈ [m,M ],−U − δ < W < U + δ}

with appropriately chosen positive constants m, M , and δ such that the equilibria
to be connected by the slow flow lie in the interior of C.

The heteroclinic orbits of system (7) obtained as perturbations of those for the
slow flow on S then correspond to traveling wave solutions of (4). �

We shall denote the traveling waves obtained in Theorem 3.1 connecting a totally
polarized state W = ±U and the non-polarized state W = 0 as (de)polarization
waves. Fast polarization waves with |c| > 1, traveling faster than the individual
particles, are characterized by a wave profile running through the medium and
converting the symmetric, non-polarized state to a fully polarized state. To the
contrary, the slow depolarization waves have a velocity smaller than the particle
velocity and convert a fully polarized state into the symmetric state W = 0.

Returning to the fast subsystem

Z ′ = V − cZ, V ′ = Z − cV − f̄(11)

we recall that the eigenvalues of the coefficient matrix are −c± 1, meaning that for
|c| < 1 the solution becomes unbounded as τ becomes large (positive or negative)
for generic initial conditions.

3.2. Velocity of polarization waves. We shall now find admissible velocities
for (de)polarization waves by assuming the wave profiles to be monotone. To this
end, we will find necessary conditions for the existence of monotone wave fronts for
finite a > 0 by linearizing the system (5) of ordinary differential equations around
its equilibria and checking the eigenvalues of the linearization for being real.

Before writing the traveling wave equations as first order system we now integrate
the equation for U once to find the first integral aU ′ + cU −W and restrict the
system to the invariant hyperplane aZ + cU − W = C1. Keeping this time the
constant of integration C1 and replacing Z = 1

a (C1 − cU +W ) yields

(12)
U ′ = − c

aU + 1
aW +C1

a
W ′ = V
V ′ = − c

a2U + 1
a2W − c

aV +C1

a2 −
1
af0(U,W )
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We should note that the intersection of these invariant hyperplanes with the slow
manifold Sa are just the perturbations of the leafs of the foliation we alluded to
in preparation to Theorem 3.1. We therefore find the same types of heteroclinic
orbits in each of these hyperplanes, and we will presently parametrize them by the
U -value U1 = 1

cC1 at their intersection with the U -axis.
Possible asymptotic states to be connected, or equilibria, are the same as for

system (7) and are given by the zeroes of f . They shall be denoted by (U1,W1 =0),
(U2,W2 =−U2), and (U3,W3 =U3), where we skipped the trivial variables V =Z=0
and only kept the physical ones, U and W . The relative values of the Ui belonging to
one heteroclinic orbit are fixed by the requirement that any two connected equilibria
must belong to the same invariant hyperplane. The physical meaning behind this
fact is simply mass conservation. A traveling wave front moving to the right at
speed c > 1 and connecting, say, a fully right polarized state U =W =U3 to the
non-polarized state (U=U1,W =0) swallows particles at rate c−1

2 U1 right oriented

particles and c+1
2 U1 left oriented ones, together cU1. At its rear, it leaves (c− 1)U3

right oriented ones behind. This balance determines the relation U3 = c
c+1U1 for

this particular type of waves.
Having restricted the system to a three dimensional hyperplane, we can now ask

for the type of the three equilibria which, c being different from 0 and ±1, certainly
have stable and unstable manifolds of total dimension three. The linearization of
(12) at the equilibrium point (U,W, V ) = (Ui,Wi, 0) reads

(13)

 (U − Ui)′
(W −Wi)

′

V ′

 =

 − c
a

1
a 0

0 0 1
− c
a2 −

1
afU

1
a2 −

1
afW − c

a

 U − Ui
W −Wi

V


with the abbreviations fU = ∂Uf0|(Ui,Wi) and fW = ∂W f0|(Ui,Wi). The eigenvalues
are the solutions of the characteristic equation (matrix scaled by a factor of a)

(14) λ(λ+ c)2 + (afW − 1)(λ+ c) + c+ afU = 0.

The partial derivatives are calculated to be

(15) fU =

{
0 at W = 0

±2e−β
2U2

at W = ±U
and fW =

{
e−β

2U2

at W = 0

−2e−β
2U2

at W = ±U

The fully polarized states W = ±U turn out to be saddle points for arbitrary
values of the wave speed c /∈ {−1, 0, 1} and the parameter a > 0. More precisely,
the eigenvalues (scaled by a factor of a−1) turn out to be

λ1 = 1− c, λ2/3 = −1

2

(
1 + c±

√
(1 + c)2 + 8a e−β

2U2
2

)
at W3 = U3 > 0, and

λ1 = −(1 + c), λ2/3 =
1

2

(
1− c±

√
(1− c)2 + 8a e−β

2U2
3

)
at W2 = −U2 < 0. In both cases, λ2/3 are of opposite sign, and the sign of λ1 is
determined only by c. In particular, the eigenvalues of the linearization are real at
the outer equilibria and oscillations are not to be expected. A necessary condition
for the existence of monotone wave fronts connecting any of the fully polarized
states and the non-polarized one can thus only be obtained from the linearization
at the latter where nonreal eigenvalues are possible.
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Figure 3. Behavior
of the linearization

about the non-polarized
steady state W = 0

depending on the pa-

rameter a e−β
2U2

1 (ab-
breviated as a in the
figure) and the wave
speed c. In the dark

region, all eigenvalues
are real, in the light

region, there is a pair
of complex con-

jugate eigenvalues. a

c

The characteristic equation (14) atW = 0 may be explicitely solved for the scaled
eigenvalues aλ but the expressions are rather long and hard to analyze. However,
we can check for the eigenvalues being real by plotting the region where the sum
|Imλ1| + |Imλ2| + |Imλ3| is zero. The result is shown in Figure 3, and we observe
that for any given c 6= ±1 there is an a0(|c|) > 0 (depending also on the U -value of
the point where we linearize) such that for any a < a0(|c|) the eigenvalues are real.

From the singular perturbation argument we already knew that starting from the
c-axis, except from c = ±1, and moving to the right in the diagram the behavior of
the equilibria remains the same as for the purely hyperbolic limit system as long as
a is sufficiently small. Figuratively, only the hyperbolic directions of the fast flow
are adjoined to the slow subsystem . Figure 4 now illustrates what it means for a
to be small for given c, and it should not be surprising that the range of admissible
a increases as c moves away from ±1.

Remark. The dependence on U1 arises from the crowding term in the alignment
function f0. If we neglect crowding by assuming a dilute regime (U � 1

β ), this

term may be neglected and we only deal with the parameters c and a. In any case,
the dependence of a0 on U does not at all hurt the validity of the result since the
exponential term is bounded by 1.

As everything is symmetric with respect to reflection at x = 0 (which simply
means interchanging left and right) we turn our attention to the upper region in
Figure 4 where the wave speed is positive. Let us now fix a and U1 and discuss the
behavior depending on c. We find two critical velocities c∗ > 1 and c∗ < 1, both

depending on the parameter a e−β
2U2

1 . For wave speeds c ∈ (c∗(a), c∗(a)) we cannot
expect monotone wave fronts with the non-polarized equilibrium as asymptotic
state since in that parameter region, trajectories spiral into this equilibrium (or out
of it). However, for sufficiently (depending on a) large velocities c we have a node
which may be connected to any of the outer saddle points by a heteroclinic orbit
corresponding to a monotone polarization wave.

Observe moreover, that for a = 2(1 − c2) > 0 (cf. the curve ĉ(a) in Figure
4), there is a pair of purely imaginary eigenvalues ±(1 − c2)ı = ±aı2 . This switch
extends to the perturbed system (a > 0) the stability change of the critical manifold
at c = 1.
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++-

-+-

0+-

Figure 4. Bifurcation diagram for the ODE system (12), with the

type of equilibria sketched versus a e−β
2U2

1 and wave speed c. Indi-
cated in each region are the signs of real parts of the eigenvalues of
the linearization about the equilibria. Pairs of signs in parentheses
indicate pairs of complex conjugate eigenvalues. In regions II and
III, oscillations and therefore no monotone wave fronts are to be

expected. Clearly, we are only interested in the case a e−β
2U2

1 > 0

Summarizing the results of this section, we conclude with the following prediction
which types of polarization waves we might possibly expect to find in simulations
of the full problem (2).
Prediction. Given the constant of integration C1 = cU1 we find the following
possible combinations of asymptotic states and expected wave fronts depending on
the wave speed c:

(i) fast wave fronts with c ≥ c∗ > 1 connecting either of the states

U3 =W3 =U1c/(c− 1) or U2 =−W2 =U1c/(c+ 1) to (U=U1,W =0)

if c ≥ c∗(a),
(ii) slow wave fronts with 0 < c ≤ c∗ < 1 connecting the state

(U=U1,W =0) to U2 =−W2 =U1c/(c+ 1)

if and only if c ≤ c∗(a),

and the mirror images of these fronts for negative velocities.
We should remark that we give no proof of the stability of any of these waves as

solutions of the PDE system (2). However, we will see in section 5 that only the
fast polarization waves are observed in simulations which leads to the conjecture
that the slow depolarization waves are unstable.

4. Inversion waves

Having found that given the parameter a, monotone (de)- polarization waves
can only exist for a limited range of wave velocities, we may ask whether there
might be other wave types with velocity c∗ < |c| < c∗. Natural candidates are
polarization inverting waves, or inversion waves for short, connecting two fully
aligned states W =U and W =−U which amount to wave fronts running through
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the fully polarized medium and inverting its polarization from fully right aligned
to fully left aligned or vice versa.

The existence of inversion waves connecting two totally aligned states could
not be predicted by the perturbation theory employed in the previous section.
However, we may illustrate their emergence by sketching the trajectories of the
three dimensional system (12) for different wave velocities. For this sake we solve
this system of ordinary differential equations for suitable initial conditions close to
the saddle point (U3,W3 =U3) and observe its evolution along the saddle’s unstable
manifold which for the leading fronts runs into the central node at (U1, 0), where
U1 and U3 satisfy relation (c− 1)U3 =cU1.

Figure 5. Left : Heteroclinic orbits starting at the state (U3, U3)
(on the right orange ray, selected according to the chosen speed c)
entering into the central steady state (U1 = 1, 0) or vanishing off
to infinity (green trajectory). The heteroclinic orbit corresponding
to an inversion wave lies between the hardly distinguishable green
and red trajectory and cannot be shown as it is not generic. The
velocities c are (in ascending order of the starting point value U3):
c = c∗ ≈ 1.6,
c = 1.3, c = 1.25, c = 1.2162466
c = 1.2162465 (slightly smaller than speed of the inversion wave).
Right : zoom to central and left equilibrium. Notice the sharp
distinction between the red and the green trajectory.

In Figure 5 we see trajectories corresponding to monotone wave fronts for c ≥
c∗(a) as predicted from the linearization. Decreasing the velocity, the orbits start
spiraling into the central steady state (U1, 0) although this spiraling is barely visible
for c only slightly smaller than c∗.

Decreasing c further towards 1 leads to increasing oscillations until the trajec-
tories become so large as to hit the opposite equilibrium (U2,W2 =−U2) and do
not return towards the central equilibrium. Now the (one dimensional) unstable
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manifold of the first saddle point lies in the (two dimensional) stable manifold of the
second one and we obtain a heteroclinic orbit connecting these two saddle points.
That happens for precisely one wave speed c > 1 which we cannot determine ana-
lytically but observe as the speed of the inversion waves in the simulations.

A further decrease of the wave speed makes the unstable manifold of the first
saddle point lie on the other side of the stable manifold of the second one, and
the trajectory now approaches this second point (U2,W2 =−U2) but then quickly
vanishes off to infinity, which obviously does not make sense as a solution of the
system of partial differential equations. That means that we should not expect
wave front solutions for these smaller velocities.

5. Wave patterns emerging in simulations

So far we have discussed the possible monotone wave patterns without knowing
which of them are stable and can be expected to be observed as asymptotic solutions
of problem (2) for generic initial conditions. We therefore try to find traveling wave
solutions in simulations of the full model (2) on a large domain.

5.1. Types of wave observed in simulations. Let us consider two types of
initial data which both turn out to give rise to solutions consisting of different wave
fronts traveling at specific speeds. Typical examples for the data and resulting wave
patterns are shown in Figure 6. The initial data are constructed by locally removing
or adding some particles compared to the homogeneous non-polarized state u ≡ u0,
w ≡ 0. It should be noted that the spatial scale for the initial data is strongly
zoomed, meaning that the total initial deviation from the homogeneous state is
small. Still, the pronounced wave patterns seen in the right panel of 6 emerge from
these localized inhomogeneities. Since in the resulting patterns the leading wave
fronts are faster than the trailing ones, the peaks get wider as time proceeds.

The next observation to report is that we indeed find some of the wave fronts
predicted in the previous sections. Most prominently, depending on the initial
conditions we find different types of fast polarization waves with velocities |c| > 1,
namely those connecting any of the two fully polarized states W = ±U to the
non-polarized state W = 0. Moreover, the precise relation between the plateau
values Ui at the asymptotic states and the wave speeds c are as predicted at the
end of subsection 3.2. We recall that this relation can also be inferred from mass
conservation for the particles.

In addition, we also observe inversion waves connecting the two totally aligned
states to one another. These are the second edges of the wave patterns in the
two-front solutions in the top panel of Figure 6.

Moreover, we observe additional patterns which we shall call diffusion fronts.
They connect the trivial state W =U=0 emerging in the center of the domain with
one of the totally aligned states. It shall be noted that they are just solutions of
the pure diffusion-advection equation

∂tur/l ± ∂xur/l=a∂xxur/l

since the alignment term vanishes identically along these profiles. In the U -W
plane, these diffusion profiles simply correspond to orbits along the lines W = ±U .

The orbits in the phase space of (12) corresponding to the wave pattern in the
top panel of Figure 6 are sketched in Figure 7. Note that the diffusion profiles
at the rear of the outward moving wave trains in Figure 6 are represented by the
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Figure 6. Typical patterns (right) emerging from symmetric ini-
tial conditions (left). Removing some particles of either orienta-
tion from the non-polarized state (top) results in solutions with
two wave fronts followed by one diffusion front for each direction.
Adding some particles (bottom) results in a single wave front fol-
lowed by a diffusion front in each direction. The arrows designate
the velocity of the respective fronts.

straight lines connecting the outermost points with the origin in Figure 7 while the
entire depletion zone in the center is captured by the origin.

5.2. Observed wave velocities depending on the parameters. Concerning
the observed velocities we note that we find as polarization waves precisely those
with critical velocity c∗ as determined by the linearization, to be seen in Figure 8.
This behavior is known from simple reaction-diffusion equations as the Fisher-KPP
equation where precisely those wave fronts with critical velocity are shown to be
stable (cf. [17]). In particular, the velocity of these waves indeed only depends on
the product a = αε rather than on both parameters individually.

The slower inversion waves arising in the two-front patterns have a velocity c̃ ∈
(1, c∗). In that case, the relation between wave speed and value of the asymptotic
states U2 = W2 and U3 = −W3 reads

(16) U3 =
c̃− 1

c̃+ 1
U2.

As with c∗, the velocity c̃ only depends on the product a and can be accurately
predicted by simulations of system (5) of ordinary differential equations. We obtain
c̃ as that velocity at which the trajectories in 5 switch from spiraling into the central
focus to vanishing of towards infinity. The values shown in Figure 8 are obtained
by this method which yields more accurate values than the simulation of the PDE
system and subsequent measurement of the velocity as displacement of the front
divided by the time elapsed.

For the wave speeds of the single-front solutions sketched in Figure 6 we observe
precisely the same values as for the leading fronts of two-front patterns. This fits
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Figure 7. Illustration of the U -W -W ′ phase space trajectories
corresponding to a wave pattern as emerging in the top panel of
Figure 6. Corresponding to the plateau values in Figure 6 from left
to right are the states 1 (asymptotic state U = W = 1), 2 (small
hump, only right moving particles), 3 (large hump, fully polarized
to the left), 4 (central region devoid of particles), 5 (large hump,
only right moving particles), 6 (small hump, fully left polarized),
and 7 (asymptotic non-polarized state again). The diffusion pro-
files between the states 3, 4, and 5 are shown as yellow straight lines
on the rays U = ±W,W ′ = 0 (projected into the W ′ = 0 plane).
The purple and blue trajectories correspond to polarization waves
whereas inversion waves are depicted in orange and green.

perfectly well with the theory since the linearization leading to the prediction in
subsection 3.2 does not distinguish between these patterns.

Finally, the velocities for the trailing fronts always lie between the particle veloc-
ity 1 and the critical velocity c∗. They are also monotonically increasing functions
of the product αε but do not satisfy any obvious relationship with c∗.

6. Conclusion and discussion

Considering a model for the directed flow of particles undergoing diffusion and
mutual alignment that was motivated by a model for actin filaments in the cy-
toskeleton of motile cells we found several types of traveling wave solutions. Starting
from the easily accessible hyperbolic limit system without diffusion we analytically
showed the existence of wave fronts moving at any non-zero velocity different from
the particle velocity if the diffusion coefficient is sufficiently small.

Numerical simulations showed that the wave fronts moving at some critical veloc-
ity c∗ determined from the linearization of the system do really emerge from rather
arbitrary initial data and thus appear to be stable. Moreover, we found another
type of wave fronts traveling at smaller velocities which were neither predicted by
the linearization of the equations nor by the singular perturbation theory. However,
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Figure 8. Observed wave speeds in simulations at the leading po-
larization (full symbols) and trailing inversion fronts (hollow sym-
bols) for two-front solutions depending on α for different values of
ε (left) without exponential crowding (β = 0). Note the perfect
agreement of the measured velocities with c∗ (lines) predicted from
the linearization. Right : Values of c∗ obtained from the lineariza-
tion (solid line) and from the simulation of system (5)(circles) and
velocities of the inversion waves (c̃, stars) computed from simula-
tions of system (5) plotted against

√
αε.

a closer examination of the system of ordinary differential equations describing the
wave shapes showed how these fronts emerge as trajectories connecting two saddle
points.

Of particular interest are those wave patterns emerging from initial perturbations
of the homogeneous non-polarized state with some additional particles added for
either direction. The resulting solution was comprised of two humps of particles
moving outward from the center at the critical velocity specified above, growing in
width so that their rear flank moves at the particle velocity 1, and leaving behind
a central region devoid of any particles. This emergence of multiple wave fronts of
different velocities has been known for a long time (e.g., [11]) but it is remarkable
that complicated patterns of this type are observed in a rather minimal system of
two equations.

We now return to the motivation for the proposed model – the investigation of
a system of equations describing the movement of polymerizing and depolymer-
izing actin filaments. The traveling wave solutions we found may be interpreted
as polymerization fronts as observed in, e.g., [16]. As traveling waves describing
a persistently moving cell are among the most interesting solutions regarding cell
motility (e.g., [9, 1]), this strongly suggests further investigation of possible align-
ment mechansims to be incorporated in the original cytoskeleton model in [4]. The
shock-like solutions observed for this model in [5] were not easily understood in
the context of the hyperbolic-parabolic system. However, in terms of a more com-
prehensive model it may be expected to find them explained as reminiscent of the
traveling wave solutions found here, if we recall that the filaments in the original
model were not assumed to be short and therefore, their diffusion was neglected.
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