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Abstract

Assessing whether a given network is typical or atypical for a random-network ensemble (i.e., 

network-ensemble comparison) has widespread applications ranging from null-model selection 

and hypothesis testing to clustering and classifying networks. We develop a framework for 

network-ensemble comparison by subjecting the network to stochastic rewiring. We study two 

rewiring processes—uniform and degree-preserved rewiring—which yield random-network 

ensembles that converge to the Erdős-Rényi and configuration-model ensembles, respectively. We 

study convergence through von Neumann entropy (VNE)—a network summary statistic measuring 

information content based on the spectra of a Laplacian matrix—and develop a perturbation 

analysis for the expected effect of rewiring on VNE. Our analysis yields an estimate for how many 

rewires are required for a given network to resemble a typical network from an ensemble, offering 

a computationally efficient quantity for network-ensemble comparison that does not require 

simulation of the corresponding rewiring process.
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1. Introduction

Numerous social, biological, technological and information systems are naturally manifest 

as networks [57], and common questions about networks are cast explicitly or relate 

implicitly to network models and their corresponding network ensembles—a set of networks 

combined with a sampling probability distribution. The Erdős-Rényi (ER) and configuration 

model random-network ensembles, for example, have provided cornerstones for the 

development of graph theory [14, 17, 26] and are widely used as null models for network-

data analytics including community detection [53, 58] and significance testing of subgraph 

motifs [51]. Moreover, many applications call for the simultaneous study of a set of 

empirical networks, encoded as layers in a multilayer (e.g., multiplex) network [12, 40], 

where it can be beneficial to study them as independent samples from an ensemble [75, 77, 

79].

We pursue here two classes of questions related to network ensembles: network-network 
comparison and network-ensemble comparison. Network-network comparison aims to 

identify a similarity measure between networks, for instance as a means for clustering and 

classifying networks [1, 10, 16, 23, 24, 29, 39, 43, 47, 52, 59, 60, 71, 74]. Closely-related 

questions of network-ensemble comparison aim to assess whether a given network is typical 

or atypical for an ensemble (or to quantify how typical). Such comparison is useful for null-

model selection and hypothesis testing [7, 16, 42, 51]. Understanding if a given network is 

typical for an ensemble is particularly important for modeling dynamics on networks (e.g., 

epidemic spreading [62], social contagions [31], synchronization [68, 72], neuronal 

excitation [44], percolation theory [18, 78], and so on). Specifically, the accuracies of mean 

field theories or other model system reductions to describe the expected dynamics for 

random-network ensembles are related to whether a network is typical or atypical for an 

ensemble [32, 49, 67, 78].

We study network-network and network-ensemble comparisons through von Neumann 

entropy (VNE), a summary statistic that measures a network’s information content based on 

the spectra of its associated Laplacian matrix [15, 61]. VNE-based comparison is closely 

related to the family of network-network comparisons known as spectral comparisons [30], 

which relate networks by some function of the eigenvalues of matrices associated with the 

networks (e.g., adjacency, normalized Laplacian, and unnormalized Laplacian). Our focus 

on VNE is motivated by recent research [23, 24] that used VNE to hierarchically cluster 

layers in multilayer networks. We stress, however, that the mathematical techniques that we 

develop here can be generalized to other summary statistics of networks.

Our main goal is to study VNE for networks undergoing stochastic rewiring. We study two 

rewiring processes—uniform and degree-preserved rewiring—that yield random-network 

ensembles that converge in distribution to the ER and configuration-model ensembles, 

respectively. This convergence follows from studying rewiring as a degree-regular Markov 

chain in which states represent networks and transitions represent stochastic rewiring. 

Indeed, stochastic rewiring is an established approach for Markov chain Monte Carlo 

(MCMC) algorithms for sampling configuration ensembles [11, 28, 50]. Because stochastic 

rewiring is an important generative model for time-varying networks [37], our theory also 
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provides insight about the VNE of time-varying networks. We conduct a perturbation 

analysis for the change in VNE incurred by rewiring a small number of edges. We prove that 

the distribution of network summary statistics (e.g., VNE) for an ensemble of networks 

obtained by rewiring t edges converges as t → ∞ to the appropriate distribution for the 

associated random-network ensemble. Combining these two results, we obtain an 

exponential extrapolation Bα that predicts how many rewires are necessary to modify an 

empirical network so that it resembles a typical network from an ensemble. Importantly, the 

calculation of Bα does not require the full simulation of the stochastic rewiring process, nor 

the calculation of VNE for rewired networks, and is therefore a computationally efficient 

quantity for evaluating network-ensemble comparisons.

The remainder of this paper is organized as follows. In Sec. 2, we provide background 

information. In Sec 3, we present our main mathematical results regarding the VNE of 

networks undergoing stochastic rewiring. In Sec. 4, we present numerical experiments and 

introduce the quantity Bα for network-ensemble comparisons. We provide a discussion in 

Sec. 5.

2. Background Information

We now introduce our mathematical notation and provide background information about the 

Laplacian matrix (Sec. 2.1), VNE (Sec. 2.2), random-network ensembles (Sec. 2.3), and 

Markov-chain theory for stochastic rewiring (Sec. 2.4).

2.1. Laplacian Matrix of a Network

Let G(ℰ, 𝒱) denote a network with set 𝒱 = {1, …, N} containing N = |𝒱| nodes and set 

ℰ ∈ 𝒱 × 𝒱 containing M = |ℰ| edges. We assume the network is simple, unweighted, 

undirected, and that there are no self-edges. The network can be equivalently defined by a 

symmetric adjacency matrix

Ai j = 1, (i, j) ∈ ℰ
0, otherwise. (1)

Note that ∑i j Ai j =2M since each of the M edges gives rise to two nonzero entries in A. We 

define the degree matrix to be D = diag[d1,…, dN], where di = ∑ j Ai j is the degree for each 

node i. The unnormalized Laplacian matrix is given by

L = D − A . (2)

The matrix L, also known as the combinatorial Laplacian, is important in numerous 

applications including graph partitioning [27], spanning tree analysis [48], synchronization 

of nonlinear dynamical systems [63,73,80], diffusion of random walks [14, 45], manifold 

learning [9, 19], and harmonic analysis [20]. In Sec. 3.4, we analyze the expected effect of 

rewiring on VNE, which requires us to first study the expected effect on L. We expect our 
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mathematical results to also potentially benefit these other diverse applications that rely on 

L.

2.2. von Neumann Entropy (VNE)

VNE was introduced by John von Neumann as a measure for quantum information [55] and 

can quantify, for example, the departure of a quantum-mechanical system from its pure state. 

Recently, this formalism has been generalized to study information content in networks.

Definition 1 (von Neumann Entropy of a Network [15])—Let G(ℰ, 𝒱) denote a 

network, L denote its associated unnormalized Laplacian defined by Eq. (2), and ℒ = L/2M, 

where M is the number of undirected edges. The VNE of G(ℰ, 𝒱) is given by

h(G) = − Tr(ℒlog2ℒ) . (3)

Remark 2.1—Since ℒ is positive semi-definite and Tr(ℒ) = ∑idi/2M = 1, h can be 

written in terms of the set {λ1, λ2, …, λN} of eigenvalues of L as

h(G) = − ∑
i = 1

N λi
2M log2

λi
2M (4)

[By convention we define 0 log2(0) = 0]. Note also that because Tr(ℒ) = 1, the variables 

λi/2M may be interpreted as probabilities. It’s worth noting, however, that although ℒ 
shares the mathematical properties of a density matrix (i.e., it’s positive semidefinite and 

Tr(ℒ) = 1), it does not have the same physical meaning as a density matrix in quantum 

mechanics.

Remark 2.2—Recently, Ref. [23] introduced an alternative notion of VNE for networks 

using density matrix ℒ ∝ e−βL for β > 0. They showed this version satisfies the 

subadditivity property, which can be preferable for some applications, but we will not 

consider this version further in the present work.

VNE quantifies the information content of a network through the eigenvalues of its 

associated Laplacian matrix, which are well known to reflect network topology [9, 17, 64, 

80]. In particular, previous research studying a random-network ensemble found VNE to be 

larger for degree-regular networks and smaller for networks with irregular structures such as 

long paths and nontrivial symmetries [61]. VNE has been receiving growing attention for its 

utility for network-network comparison and has been used recently to hierarchically cluster 

layers in multilayer networks [23, 24].

As motivation, we present a numerical experiment illustrating the ability of VNE to 

distinguish between typical and atypical networks in the Erdős-Rényi GN,M ensemble of 

simple random networks (see Definition 2 in Sec. 2.3) with N = 25 and M = 50. We studied 

the probability distribution of VNE across the ensemble, P(N,M) (h), which we estimated by 
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sampling 104 networks from the ensemble. In Fig. 1(a), we plot the observed distribution 

P(N,M) (h). The vertical dashed line indicates the empirical mean and solid lines indicate the 

5% and 95% quantiles. In Fig. 1(b), we provide a scatter plot that indicates for each of these 

networks the maximum degree, minimum degree, and degree variance versus VNE. Note 

that degree heterogeneity negatively correlates with VNE, illustrating that networks with 

small (large) VNE are more (less) degree irregular. In Fig. 1(c), we provide visualizations 

for several networks sampled from GN,M, which are arranged so that their VNEs increase 

from left to right.

The main takeaway from this experiment is that larger VNE can be interpreted to indicate 

decreased ‘irregularity’ in a network. By studying the distribution of VNE for a random-

network ensemble, one can differentiate between networks that are typical (i.e., their VNEs 

are typical and they contain a typical amount of irregular structure) and those that are 

atypical (i.e., their VNEs are in the tails of the distribution P(N,M) (h), with either more or 

less irregularity than is typical). It is worth noting that although this experiment focuses on 

degree heterogeneity, previous research has established a complicated connection between 

Laplacian spectra (and hence VNE) and other sources for structural irregularity including 

subgraph motifs [65, 66], communities [27, 64], manifolds [9, 20], trees/loops [54, 69, 70, 

80], and so on. See [2, 3] for connections between VNE and other information-theoretic 

measures of networks.

2.3. Random-Network Ensembles

We consider two random-network ensembles that have each received considerable attention: 

the ER and configuration model ensembles.

Definition 2 (Erdős-Rényi Ensemble GN,M of Simple Networks [26])—Let 

𝒢N, M = {Gs} denote the set of networks Gs with N nodes and M undirected edges, 

disallowing repeat edges and self-edges. Note that SN, M = |{𝒢N, M} | = ( N(N − 1)/2
M ). Let π 

denote a uniform distribution on 𝒢N, M so that πs = 1/SN,M. The ER randomnetwork 

ensemble is defined by the pair GN, M = (𝒢N, M, π).

The most common approach to sample networks from GN,M involves enumerating the 

potential edges {1, 2, …, ( N
2 )} and choosing M of them uniformly at random. Whenever 

considering ER models, it is typically worth noting that there exists another ER model that is 

closely related, GN,p, in which each pair of nodes is connected by an edge independently 

with probability p ∈ [0,1]. GN,M and GN,p are referred to as the microcanonical and 

canonical ER models, respectively. They have greatly benefited theory development in 

network science and graph theory and are arguably the simplest random-network ensembles. 

Real-world networks, however, are well known to contain a variety of structures not well 

represented by the ER ensembles. In particular, the probability distribution of node degrees 

is binomial for the ER models; however, the degree distributions of empirical networks are 

often much more heavy-tailed (networks with power-law distributions [6] being just one 
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such class). For this reason, there is widespread interest in configuration model random-

network ensembles that allow a priori specification of the degree sequence d = {di}.

Definition 3 (Configuration Ensemble ĜN,d of Simple Networks [8])—Let 

𝒢N, d = {Gs} denote the set of networks Ĝs with N nodes and degree sequence d, disallowing 

repeat edges and self-edges. Note that M = 1
2 ∑idi. Let π denote a uniform distribution on 

𝒢N, d with πs = SN, d
−1  and SN, d = |𝒢N, d|. The configuration ensemble of simple random 

networks is defined by the pair GN, d = (𝒢N, d, π). For further clarity, we use hats on not-

already-accented mathematical objects associated with the configuration ensemble to clearly 

delineate those objects from analogous objects for the ER ensemble.

There are two main classes of algorithms for sampling random networks from 𝒢N, d: 

random-matching methods and Markov chain Monte Carlo (MCMC) methods [11, 50]. The 

random-matching methods involve enumerating the di “stubs” of edges for each node i and 

then randomly matching pairs of stubs of different nodes in a “configuration” of allowable 

network edges [8, 13, 76]. We note that only some degree sequences d are graphical in that 

there exist graphs for such a degree sequence [4]. In contrast, the MCMC methods involve 

taking an initial network and randomizing it via repeated stochastic rewiring, which can be 

studied as a Markov chain in which states represent networks and transitions represent 

rewiring [22,38] (see Fig. 2). In general, there are many choices for how to implement 

stochastic rewiring, which can give rise to various random-network ensembles. We describe 

in the next section an MCMC rewiring process that converges in the limit of many rewires to 

uniform sampling [28] (consistent with Definition 3).

Finally, we note that there exist many other generative models for constructing random 

networks—stochastic block models [64, 75], exponential random graphs [42], and so on (see 

reviews [12, 37, 57] and references therein)—that introduce different constraints aimed 

toward diverse applications.

2.4. Degree-Preserved Rewiring as a Markov Chain on a Set of Networks

We now describe a stochastic rewiring process called double-edge-swap vertexlabeled 
rewiring [28] that can be used for MCMC sampling of the configuration ensemble given by 

Definition 3. Herein, we refer to the process as degree-preserved rewiring. We note that this 

rewiring process has been unknowingly reinvented several times by different researchers 

from different fields, and this work is reviewed and expanded on in [28].

Definition 4 (Degree-Preserved Rewiring [28])—Degree-preserved rewiring is a 

stochastic map TDP:𝒢N, d 𝒢N, d defined by (𝒱, ℰ) (𝒱, ℰ′), where ℰ′ is given by the 

following stochastic process. Choose two unique edges (i,j) and (i′,j′) uniformly at random 

from ℰ. Consider a proposed edge swap in which two edges ℰ(−) = {(i,j), (i′,j′) are removed 

and two new edges ℰ(+) are added, uniformly at random selecting between ℰ(+) = {(i,j′), (i
′,j)} and ℰ(+) = {(i,i′), (j′,j)}. If the proposed new edges ℰ(+) do not give rise to a self edge 
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nor a repeat edge (which are disallowed by 𝒢N, d, then the proposed edge swap is 

implemented, ℰ ↦ (ℰ\ℰ(−))∪ℰ(+). Otherwise, the network is left unchanged, ℰ ↦ ℰ.

Because N and d are invariant under degree-preserved rewiring, iterative rewiring can be 

modeled as a random walk on the set 𝒢N, d = {Gs}, which we enumerate using s ∈ {1,

…,ŜN,d}. We let G(0) ∈ 𝒢N, d denote an original (e.g., empirical) network, G(t) ∈ 𝒢N, d

denote a network after t rewires, πs
(t) denote the probability that Ĝ(t) = Ĝs. Note that πs

(0) = 1

for s such that Ĝ(0) = Ĝs and πs
(0) = 0 otherwise. The evolution of π(t) is given by

πs
(t + 1) = ∑

r
πr

(t)Prs, (5)

where Prs is a transition matrix describing the probability that network Ĝr will become Ĝs 

after a degree-preserved rewire.

Theorem 5 (Markov Chain Convergence for Degree-Preserved Rewiring [28])—
The Markov chain defined by Eq. 5 is ergodic and has uniform stationary distribution

lim
t ∞

πs
(t) = SN, d

−1 . (6)

Proof: The result follows from showing that the Markov chain is connected, aperiodic and 

degree regular [28]. □

Remark 2.3—See [34, 35] for research relating the rate of convergence to properties of the 

set of degrees that is preserved under rewiring.

3. Main Results

Our approach for efficient network-ensemble comparison involves using a perturbation 

analysis of stochastic rewiring processes associated with random-network ensembles. In Sec. 

3.1, we define and analyze a uniform stochastic-rewiring process. In Sec. 3.2, we analyze the 

distributional convergence of network summary statistics (including VNE) for networks 

undergoing stochastic rewiring. In Sec. 3.3, we develop a first-order perturbation analysis for 

the effect of rewiring on VNE. In Sec. 3.4, we study the expected perturbation to VNE and 

the Laplacian matrix under uniform rewiring. In Sec. 3.5, we provide a roadmap for how this 

approach can be extended to other rewiring processes and other summary statistics.

3.1. Convergence of Network Ensembles obtained under Stochastic Rewiring

In this section, we define and study convergence for a sequences {G(t)} of random-network 

ensembles arising from two stochastic rewiring processes. We begin by defining another 

stochastic rewiring process: uniform rewiring.
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Definition 6 (Uniform Rewiring)—Uniform rewiring is a stochastic map 

TU :𝒢N, M 𝒢N, M defined by (𝒱, ℰ) (𝒱, ℰ′), where ℰ′ is given by the following 

stochastic process. Choose uniformly at random an edge (i,j) ∈ ℰ and remove it from ℰ. 

Then choose uniformly at random a new edge (i′, j′) from the N(N − 1)/2 − M + 1 possible 

edges outside of ℰ\(i,j) [that is, allowing re-selection of (i,j)], and add the edge to ℰ. It 

follows that ℰ ↦ (ℰ\(i, j)) ∪ (i′, j′).

Because N and M are invariant under uniform rewiring, iterative uniform rewiring can be 

modeled as a random walk on the set 𝒢N, M = {Gs}, which we enumerate using s ∈ {1, …, 

SN,M}. We let G(t) ∈ 𝒢N, M denote a network after it undergoes t rewires and πs
(t) denote the 

probability that G(t) = Gs. Obviously, πs
(0) = 1 for s such that G(0) = Gs and πs

(0) = 0

otherwise. The evolution of π(t) is given by

πs
(t + 1) = ∑

r
πr

(t)Prs, (7)

where Prs is a transition matrix describing the probability that network Gr will become Gs 

after a uniform rewire.

We identify the following limiting behavior for π(t).

Theorem 7 (Convergence of Uniform Rewiring)—The Markov chain for uniform 

rewiring (7) is ergodic and has uniform stationary distribution

lim
t ∞

πs
(t) = SN, M

−1 . (8)

Proof: See Appendix A. □

We now define a notion of convergence for a sequence {G(t)} of random-network 

ensembles.

Definition 8 (Convergence of Random-Network Ensembles)—Let {G(t)} denote a 

sequence of random-network ensembles in which G(t) = ({Gs}, π(t)). We say that G(t) 

converges to G = ({Gs}, π) iff

G(t) G π(t) π . (9)

We are now ready to describe the convergence of random-network ensembles arising from 

stochastic uniform and degree-preserved rewiring.
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Corollary 9 (ER Ensemble Convergence)—Consider the ensemble of random 

networks G(t) = (𝒢N, M, π(t)) obtained by t uniform rewires of an initial network G(0) ∈ 𝒢N, M. 

The sequence {G(t)} of ensembles converges to the ER ensemble given by Definition 2,

lim
t ∞

G(t) = GN, M . (10)

Proof: The result follows straightforwardly from Theorem 7. □

Corollary 10 (Configuration-Model Ensemble Convergence)—Consider the 

ensemble of random networks G(t) = (𝒢N, d, π(t)) that is obtained by t degree-preserved, 

rewires of an initial network G(0) ∈ 𝒢N, d .. The sequence {Ĝ(t)}, where G(t) = ({Gs}, π(t)), 

converges to the configuration model ensemble given by Definition 3,

lim
t ∞

G(t) = GN, d . (11)

Proof: The result follows straightforwardly from Theorem 5. □

3.2. Distributional Convergence of Network Summary Statistics

We now study the distribution of VNE and other summary statistics for random-network 

ensembles associated with uniform and degree-preserved rewiring.

Theorem 11 (Distributional Convergence of Network Statistics)—Let {π(t)} and 

{π(t)} describe sequences of probability distributions over 𝒢N, M and 𝒢N, d, respectively, for 

the uniform and degree-preserved rewiring processes. Further, let f: {Gs} ↦ ℝ denote any 

scalar-valued function on a network and let

P(t)( f ) = ∑
s = 1

SN, M
πs

(t)δ f (Gs)( f )

P(t)( f ) = ∑
s = 1

SN, d
πs

(t)δ
f (Gs)( f ) (12)

denote the respective distributions of f across the associated random-network ensembles G(t) 

and Ĝ(t). Here, δg(f) is the Dirac delta function with weight concentrated at f = g [i.e., δg(f) 
= δ(f − g)]. The following limits converge in distribution as t → ∞
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P(t)( f ) d
P(N, M)( f )

P(t)( f ) d P(N, d)( f ), (13)

where P(N,M)(f) and P(N, d)( f ) denote the distributions of f (G) for the ER and configuration 

random-network ensembles, respectively.

Proof: We take the limit of both sides of the equations in (12). Because the summations are 

finite, the limits can be taken inside the summation. The equations in (13) follow directly 

from Eqs. (9) and (10). □

Corollary 12 (Distributional Convergence of VNE)—Letting f: {Gs} ↦ ℝ denote 

VNE, h(Gs), given by Definition 1, Eq. (13) implies

P(t)(h) d
P(N, M)(h)

P(t)(h) d P(N, d)(h), (14)

where P(N,M)(h) and P(N, d)( f ) denote the distributions of VNE for the ER and configuration 

random-network ensembles, respectively.

3.3. Perturbation of VNE and Laplacian Matrices

Having characterized the long-time behavior (i.e., after many rewires) of networks subjected 

to uniform and degree-preserving rewiring processes (as well as their associated network 

statistics such as VNE), we now turn our attention to studying the effect on VNE due to a 

small number of rewires. To this end, in this section we develop a first-order perturbation 

analysis for VNE. We begin by presenting a well-known result that describes the first-order 

perturbation of eigenvalues and eigenvectors of a symmetric matrix, which we present for an 

unnormalized Laplacian L.

Theorem 13 (Perturbation of Simple Eigenvalues and their Eigenvectors [5])—
Let L be a symmetric N × N matrix with simple eigenvalues {λi} and normalized 

eigenvectors {υ(j)}. Consider a fixed symmetric perturbation matrix ΔL, and let L(ε) = L + 

εΔL. We denote the eigenvalues and eigenvectors of L(ε) by λn(ε) and υ(n)(ε), respectively, 

for i = 1, 2, …, N. It follows that

λi(ε) = λi + ελi′(0) + 𝒪(ε2),
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υ(i)(ε) = υ(i) + ευ(i)′(0) + 𝒪(ε2), (15)

and the derivatives with respect to ε at ε = 0 are given by

λi′(0) = (υ(i))TΔLυ(i)

υ(i)′(0) = ∑
j ≠ i

(υ( j))TΔLυ(i)

λi − λ j
υ( j) . (16)

Proof: See [5]. □

Remark 3.1—For the unnormalized Laplacian matrix L, λ1(ε) = 0 and υ(1) (ε) = N1/21 for 

all values of ε. Any allowable perturbation matrix ΔL will have the same null space as L, 

span(1), and so λ1′ (0) = 0 and υ′(1)(0) = 0.

Remark 3.2—The first-order approximations in Eq. (15) are accurate when the 

perturbations are small. However, the regime for which this approximation is valid (i.e., how 

small ε needs to be) generally depends on L, ε, and the perturbation ΔL. Accuracy typically 

requires ελi′(0)/λi to be small [80].

We now present a first-order perturbation analysis of the VNE for a network subjected to a 

modification.

Theorem 14 (First-Order Perturbation of VNE)—Let h(0) denote the VNE given by 

Definition 1 for an unnormalized network Laplacian L with simple eigenvalues {λi}, and let 

h(ε) denote the VNE for the network after it undergoes a network modification encoded by 

L(ε) = L + εΔL. We assume the eigenvalues of L(ε) are simple. The first-order expansion in 

ε for the perturbed VNE is

h(ε) = h(0) + εh′(0) + 𝒪(ε2), (17)

where

h′(0) = 1
2M ∑

i
(υ(i))TΔLυ(i) log2

λi
2M + 1

ln(2) . (18)

Proof: See Appendix B □
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Remark 3.3—The Laplacian matrix L for networks consisting of k connected components 

will have K eigenvalues λ1 = λ2 = ⋯ = λk = 0. In this case, as well as other scenarios with 

eigenvalues having multiplicity greater than or equal to two, Eqs. (15)–(18) can be used to 

estimate the perturbation of the remaining simple eigenvalues that have multiplicity one, and 

for which 1
λi − λ j

 is guaranteed to be finite.

Corollary 15 (Edge Perturbation of von Neumann Entropy)—When the network is 

modified by adding (+) or removing (−) an unweighted edge (p,q), the Laplacian 

perturbation matrix takes the form

ΔLi j
(pq) =

±1, (i, j) ∈ {(p, p), (q, q)}
∓1, (i, j) ∈ {(p, q), (q, p)}
0, otherwise,

(19)

and Eq. (18) can be simplified as

h′(0) = − 1
2M ∑

i = 1

N
±(υp

(i) − υq
(i))2 log2

λi
2M + 1

ln(2) , (20)

where ± corresponds to addition and removal, respectively.

Proof: See Appendix C □

Corollary 16 (Edge-Set Perturbation of von Neumann Entropy)—When the 

network is modified by adding a set of edges ℰ+ and removing a set ℰ−, the Laplacian 

perturbation matrix takes the form

ΔLi j
(ℰ+, ℰ−) = ∑

(p, q) ∈ ℰ+
ΔLi j

(pq) − ∑
(p, q) ∈ ℰ−

ΔLi j
(pq), (21)

where ΔLi j
(pq) is given by Eq. (19), and Eq. (18) becomes

h′(0) = − 1
2M ∑

i = 1

N
∑

(p, q) ∈ ℰ+
(υp

(i) − υq
(i))2 − ∑

(p, q) ∈ ℰ−
(υp

(i) − υq
(i))2 × log2

λi
2M + 1

ln(2) .

(22)

Proof: The proof is straightforward using the linearity property of edge additions and 

removals. □
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3.4. Expected Perturbations under Uniform Rewiring

In this section, we describe the expected perturbations due to uniform rewiring. We note that 

solving the expected perturbations under degree-preserved stochastic rewiring is much more 

difficult and is left for future research.

Theorem 17 (Expected Change to the Laplacian under Uniform Rewiring)—
Consider an undirected unweighted network G with N nodes, M edges, adjacency matrix A, 

node degrees {di}, and Laplacian matrix L. The expected change ΔL to L under uniform 

rewiring (see Definition 6) is given by

E[ΔLi j] =

N − 1 − di
N(N − 1)

2 − M + 1
−

di
M i f i = j

Ai j
M −

1 − Ai j
N(N − 1)

2 − M + 1
i f i ≠ j

(23)

Proof: See Appendix D □

Corollary 18 (Expected First-Order Perturbation under Uniform Rewiring)—
Under uniform rewiring (see Definition 6), the expected first-order terms for λi(ε) and υ(i)

(ε) [see Eq. (16)] and h(ε) [see Eq. (18)] are given by

E[λn′ (0)] = (υ(n))TE[ΔL]υ(n) (24)

E[υ(n)′(0)] = ∑
m ≠ n

(υ(m))TE[ΔL]υ(n)

λn − λm
υ(m) (25)

E[h′(0)] = − ∑
n = 1

N (υ(n))TE[ΔL]υ(n)

2M log2
λn

2M + 1
ln(2) , (26)

where E[ΔL] is given by Eq. (23).

Proof: We take the expectation of Eqs. (16) and (18), use the linearity property for 

expectation, and combine these results with Eq. (23). □

3.5. Road Map for Other Rewiring Processes and Other Summary Statistics

The analytical approximations given by Thm. 17 and Corr. 18 could be obtained due to the 

simplicity of uniform rewiring (see Definition 6). However, this is not the case for degree-

preserved rewiring (see Definition 4), for which analytical predictions for E[ΔLij] and E[h
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′(0] are beyond the scope of this paper. A main difficulty stems from the observation that the 

probability of rewiring a given edge (a, b) depends on whether or not it is swapped with 

another edge (c, d). Given a pair of edges, {(a, b), (c, d)}, the probability of swapping {(a, 

b), (c, d)} → {(a, d), (b, c)} or {(a, b), (c, d)} → {(a, c), (b, d)}, or not swapping at all, 

depends on whether or not the edges (a, c), (a, d), (b, c), and (b, d) already exist. Moreover, 

for a given edge (a, b), the expected change E[ΔLab] requires considering the probability of 

swapping with all other edges {(c, d)}, and this pursuit quickly becomes intractable for large 

networks. Developing perturbation theory for degree-preserved rewiring (and other 

stochastic rewiring processes [28]) remains an important direction for future research.

Nevertheless, by iteratively simulating one single rewire, one can still numerically estimate 

E[h′(0)] (or the expected change to other summary statistics) for degree-preserved rewiring 

and other rewiring processes. In the following section, we will make use of these analytical 

and numerical predictions for E[h′(0)] to estimate the number of rewires necessary for 

empirical networks to resemble typical networks from ER and configuration-model network 

ensembles.

4. Numerical Experiments

We now present numerical experiments supporting and demonstrating the utility of our 

results from Sec. 3. In Sec. 4.1, we support our perturbation results describing how network 

modifications affect VNE. In Sec. 4.2, we support our results for the distributional 

convergence of VNE for stochastic uniform and degree-preserved rewiring processes. In 

Sec. 4.3, we highlight an application of our analysis: network-ensemble comparison for 

empirical networks.

4.1. Perturbation Results

We first provide numerical validation for the first-order approximation given by Eq. (17), 

which estimates how a network modification encoded by the perturbed Laplacian matrix ΔL 
affects VNE. We created a random ER network with N = 1000 nodes and M = 50,000 edges, 

and subjected it to iterative uniform rewiring. We denote the original network G(0) and the 

network after t steps of uniform rewiring by G(t), and we use L(t) and ht = h(G(t)) to denote 

the respective Laplacian matrices and VNEs for each t = 0, 1, 2,…. In Fig. 3(a), we compare 

the true values of {ht} of the rewired network with predicted values using the first-order 

approximation given by Eq. (17) for K = 1 trial of uniform rewiring. These are in very good 

agreement for small t. We point out that the first-order approximation is expected to improve 

in accuracy as the eigenvalues {λi} become larger, which typically occurs as N and M 
increase. We note that the first-order approximations described in Sec. 3.3 can become 

inaccurate when N and M are too small.

In the next experiment, we support the results of Sec. 3.4 in which we analyze the expected 

changes E[ΔL] and E[Δh] under uniform rewiring. We created an ER network with N = 100 

nodes and M = 1, 000 edges, and subjected it to K = 10,000 trials of iterative uniform 

rewiring. In Fig. 3(b), we compare the empirical mean E[ΔLi j
(t)] (symbols) to its expectation 

given by Theorem 17 (dashed lines). We make the comparison for three entries: ΔLii for a 
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diagonal entry, ΔLij for an entry in which (i,j) is an edge in G(0), and ΔLij for an entry in 

which (i, j) is not an edge in G(0). Error bars indicate standard error.

4.2. Distributional Convergence of VNE

In Sec. 3.2, we showed that the distribution of VNEs across the ensemble of networks 

obtained after iterative stochastic uniform and degree-preserved rewires converges, 

respectively, to the distribution of VNEs across the ER and configuration random-network 

ensembles. Here, we support this result by studying uniform rewiring for an empirical 

network: an adjacency network of words in the novel David Copperfield by Charles Dickens 

[56]. The network contains N = 112 nodes (which represent the adjectives and nouns with 

highest frequency in the book) and M = 425 edges (which represent a pair of words that 

occur adjacent to one another).

We study how stochastic rewiring affects the VNE of this network by considering the 

distribution P(t)(h) of VNEs across networks G(t) obtained after t rewires. In Fig. 4(a), we 

show by solid curves the empirical distributions P(t)(h) for several values of t ∈ {0, 10, 100, 

1000}. The distributions are estimated using K = 1,000 trials of rewiring for each t. Note that 

at time t = 0, P(0)(h) = δh0
(h) is a Dirac delta function at h0 = h(G(0)) = 6.277. As t increases, 

P(t)(h) widens and shifts to the right and eventually converges to P(N,M)(h), the distribution 

of VNE for the corresponding ER ensemble GN,M (estimated using K = 10,000 sample ER 

networks and shown by the dashed curve).

In Fig. 4(b), we further study the convergence of P(t)(h) → P(N,M)(h) by plotting the 5% 

quantile, mean and 95% quantile of P(t)(h). These respectively converge to the 5% quantile, 

mean and 95% quantile for the distribution P(N,M)(h). The horizontal solid line indicates the 

mean VNE across GN,M given by

h̄(N, M) = ∫
0

∞
hP(N, M)(h′)dh′ . (27)

We define the α-quantile of P(N,M)(h) by

H(N, M)(α) = H such that α = ∫
0

H
P(N, M)(h′)dh′, (28)

and we plot H(N,M)(0.05) and H(N,M) (0.95) by horizontal dashed lines. These quantiles were 

numerically approximated for K = 10,000 sample ER networks. Numerically estimating 

H(N,M)(α) is obviously associated with a computational cost, which depends on the accuracy 

required by the application. We note, however, that any network-ensemble comparison using 

network summary statistics requires knowledge about how the summary statistic varies 

across the network ensemble. This highlights the need for further theory development for the 

distribution of VNE (and other summary statistics) across network ensembles.
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Returning to Fig. 4(b), because h(G(0)) ≐ 6.277 is much smaller than the typical VNE values 

for the ensemble, the empirical network is much more irregular than is typical for the 

ensemble. Moreover, one can observe in Fig. 4(b) that the distribution P(t)(h) obtained after t 
= 1000 uniform rewires closely resembles the distribution P(N,M)(h). We can therefore 

conclude from Fig. 4 that the word-adjacency network is atypical for the ER random-

network ensemble. In the next section, we more rigorously describe how to use the VNE of 

stochastically rewired networks to study and quantify network-ensemble comparisons.

4.3. Network-Ensemble Comparisons for Empirical Networks

Given the convergence P(t)(h) → P(N,M)(h), there are many different ways to define and 

quantify what it means for a network to “resemble a typical network.” For example, one 

could ask how many rewires are necessary for h̄(t)
, the mean VNE of a network obtained 

after t rewires, to be within some range of the ensemble mean, h̄(N, M). Or one could measure 

the smallest t such that h̄(t) ∈ [H(N, M)(α)], H(N,M)(1 − α)] ⊂ ℝ, where H(N,M)(α) is the α-

quantile given by Eq. (28). Another possibility is to ask how many rewires are necessary (on 

average) for ht = h(G(t)) of a rewired network G(t) to first fall within this range—that is, the 

mean hitting time

τα = E min
t

{t:ht ∈ [H(N, M)(α), H(N, M)(1 − α)]} . (29)

Given that a stochastic rewiring process can be modeled as a random walk on a set of 

networks, τα is equivalent to the mean first-passage time for a random walk that starts at 

network G(0) and reaches the subset of networks 

{Gs ∈ 𝒢N, M :h(Gs) ∈ [H(N, M)(α), H(N, M)(1 − α)]}. Unfortunately, these methods are 

computationally expensive in that they require one to simulate t ≫ 1 stochastic rewires 

across K ≫ 1 independent trials of rewiring, all while computing the VNE for the many 

rewired network realizations.

Thus motivated, we propose a computationally efficient technique for network-ensemble 

comparison that does not require computing the VNE of rewired networks. In fact, it avoids 

simulating stochastic rewires altogether. Instead, we introduce a quantity that utilizes our 

first-order perturbation analysis of Sec. 3.4.

Definition 19 (Exponential Extrapolation for α-Quantile Intersect)—Suppose we 

fit an exponential model to ht, which has the following form

h
∼(t) = h̄(N, M) − (h̄(N, M) − h0)exp − E[h′(0)]

h̄(N, M) − h0
t (30)

The model satisfies the conditions that when t = 0 we have h
∼(0) = h0, h

∼′(0) = E[h′(0)], and 

h
∼(t) h̄(N, M) as t → ∞.
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By solving the equation

h
∼(Bα) = H(N, M)(α) (31)

we obtain

Bα = − log h̄(N, M) − H(N, M)(α)
h̄(N, M) − h0

h̄(N, M) − h0
E[h′(0)] (32)

where H(N,M)(α) is given by Eq. (28), h̄(N, M) is given by Eq. (27) and E[h′(0)] is given by 

Eq. (26). Note that for Bα to be properly defined, (h̄(N, M) − H(N, M)(α)) must have the same 

sign as (h̄(N, M) − h0). For example, if h0 < h̄(N, M), then α could be 0.05 but not 0.95.

The quantity Bα is an exponential extrapolation that estimates the number t of uniform 

rewires required to modify a given network so that ht falls between the α and (1 − α) 

quantiles of P(N,M)(h). For example, returning to the experiment described in Sec. 4.2, the 

blue arrow in Fig. 4(b) indicates the initial slope E[h′(0)], and the blue star indicates the 

intersection point (Bα,H(N,M)(α)) for α = 0.05 at which h
∼(Bα) = H(N, M)(α).

We now study network-ensemble comparisons for the empirical networks described in Table 

1. In Fig. 5(a), we compare Bα given by Eq. (32) to the mean first-passage time τα given by 

Eq. (29) for the associated ER ensemble. For each empirical network, we perform K = 10 

independent simulations of repeated uniform rewiring, which we iterate until ht ∈ [H(α), 

H(1 − α)] (the “hitting” criterion). The α-quantiles of P(N,M)(h) are estimated using K = 100 

samples from the ER random-network ensemble. We observe a strong linear correlation 

between Bα and τα. In fact, the results fall along a diagonal line indicating τα = Bα. In Fig. 

5(b), we compare Bα to two other quantities: (i) the difference Δh = h(G(0)) − h̄(N, M) in VNE 

between the original network and the ensemble mean h̄(N, M) as well as (ii) the ratio of Δh to 

the standard deviation σN,M of P(N,M)(h). Interestingly, these two other quantities do not as 

strongly correlate with Bα and τα. Finally, we note that the result for the power grid in Fig. 5 

does not use the first-order approximation for E[h′(0)] given by Eq. (26). We find that it is 

not accurate for this network, and in fact has the wrong sign, which causes the exponential 

extrapolation given by Eq. (30) to diverge rather than converge. (Interestingly, the power 

grid is the only network in Table 1 for which h0 > h̄(N, M) and E[h′(0)] < 0.) Therefore, for 

this network we used a numerical estimate for E[h′(0)] based on the of VNE change (h1 − 

h0) due to a single uniform rewire, which we averaged across 1000 simulations (see 

discussion in Sec. 3.5).

In Fig. 6, we present similar results as those shown in Fig. 5, except we now compare the 

empirical networks from Table 1 to configuration-model ensembles containing networks 

with the same degree sequence. We estimated Ĥ(N,d)(α)—which is given by Eq. (28) under 
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the variable substitution P(N, d)(h) ↦ P(N, M)(h)—by sampling the configuration-model 

ensemble using degree-preserved rewiring. Starting with the associated empirical network, 

we implemented 105 degree-preserved rewires. Then, we implemented 105 additional 

rewires, sampling the network’s VNE every 100 rewires, which allowed us to estimate 

P(N, d)(h) and Ĥ(N,d)(α) using K = 1000 VNE samples. To numerically estimate E[h′(0)] 

(see Sec. 3.5), we simulated 1000 degree-preserved rewires, each time modifying the 

original network by a single rewire, and computed mean difference (h1 − h0) across the 

simulations. Using this estimate for E[h′(0)], we obtained an exponential extrapolation for 

the intersect of ht with Ĥ(N,d)(α) using Eq. (32) with the variable substitutions 

h̄(N, d) ↦ h̄(N, M) and Ĥ(N,d) ↦ H(N,M).

In Fig. 6(A), we compare Bα to an empirical mean hitting time τα given by Eq. (29) under 

the variable substitution Ĥ(N,d) ↦ H(N,M). In Fig. 6(B), we show that Δh = h(G(0)) − h̄(N, d)

and Δh/σN, d, where σN, d is the empirical standard deviation of P(N, d)(h), do not strongly 

correlate with Bα (or τα). It can observed that the empirical networks generally require fewer 

stochastic rewires to obtain typical VNE values for the configuration-model ensembles than 

was required for the ER ensembles (recall Fig. 5). Interestingly, the word-adjacency network 

[56] (see also Fig. 4) is omitted from Fig. 6(A), because it was found to lie within the α = 

0.05 and α = 0.95 quantiles of P(N, d)(h), indicating that it closely resembles a typical 

configuration-model graph according to the VNE statistic.

5. Discussion

We have studied the von Neumann Entropy (VNE) of networks subjected to two stochastic 

rewiring processes: uniform and degree-preserved rewiring. We presented our main 

mathematical results in Sec. 3. First, we proved that the network-ensemble given by 

networks obtained through iterative uniform rewiring converges to the Erdős-Rényi 

ensemble GN,M of simple networks. Next, we proved that the distribution of network 

summary statistics for networks obtained from iterative uniform and degree-preserved 

rewiring converge to their respective distributions associated with the Erdős-Rényi GN,M and 

configuration ĜN,d ensembles (offering insight toward network-ensemble comparisons). We 

also conducted a perturbation analysis for how rewiring affects VNE, offering insight toward 

network-network comparisons. In particular, we obtained a first-order approximation for the 

expected change in VNE after t uniform rewires.

In Sec. 4, we showed that the study of VNE for an empirical network subjected to repeated 

uniform rewires allows one to assess how many rewires are required before the rewired 

networks obtain VNE values that are typical for the GN,M and ĜN,d ensembles. Importantly, 

such a numerical study can be computationally infeasible since it can require simulating 

many steps of rewiring, many independent trials of rewiring, and repeated calculations of 

VNE for the rewired networks. Thus motivated, we introduced a computationally efficient 

quantity Bα to quantify network-ensemble comparisons. It combines our perturbation and 

convergence analyses and is based on an exponential extrapolation for when the VNE of 

rewired networks intersects an α quantile of the VNE distribution P(h) for the appropriate 
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ensemble (see Fig. 4). The quantity Bα is computationally efficient since it does not require 

iteratively rewiring a network nor recomputing VNE for these networks. In the case of 

GN,M, Bα used an analytical approximation for the perturbative influence of uniform 

rewiring on VNE (see Corr. 18). In the case of ĜN,d, Bα required a numerical estimate for 

the perturbative influence of degree-preserved rewiring on VNE, which provides a road map 

for how to extend this methodology for other random-network ensembles [12, 37, 57] and 

other stochastic rewiring processes [28]. Because the approach of linearizing the effect of 

stochastic rewires to estimate network-ensemble comparisons is computationally efficient, 

future work should explore its application to model selection and hypothesis testing [7, 16, 

42, 51].

To our knowledge, this is the first use of VNE for network-ensemble comparison. We have 

focused on VNE due to growing interest in VNE-based network-network comparisons, such 

as clustering network layers in multilayer networks [23, 24]. We point out, however, that our 

mathematical techniques—specifically, the approach of linearizing the effect of rewiring so 

as to obtain an exponential extrapolation Bα—can be extended to study convergence and 

assess network-ensemble comparisons through other network summary statistics (e.g., 

degree distribution, size, clustering coefficient, and so on). For example, it would be 

interesting to extend our work to a complementary definition for VNE that was recently 

introduced [23]. Because one can numerically approximate the linear effect of stochastic 

rewiring on a summary statistic (e.g., see the results in Fig. 6 and discussion in Sec. 3.5), our 

approach should be widely generalizable to other network summary statistics as well as 

vectors of statistics. This approach may shed light toward the relation between different 

summary statistics and identify which ones are more meaningful to different network 

ensembles, whether it’s basic statistics, information-theoretic measures such as VNE (e.g., 

Eq. (3) or otherwise [23]), or some new summary statistic yet to be discovered.

Appendix A. Proof of Theorem 7

Proof

The result follows from showing the Markov chain is connected, aperiodic and degree 

regular.

We first prove the Markov chain described in Eq. (7) corresponds to a connected graph. To 

this end, we will show for any two networks there exists a path—that is, a sequence of edge 

swaps allowed by uniform rewiring—between the two networks. Let Gs = (𝒱, ℰs) ∈ GN, M

and Gr = (𝒱, ℰr) ∈ GN, M and define Δ(s) = ℰs\ℰr and Δ(r)) = ℰr\ ℰs indicate, respectively, the 

set of edges in ℰs and ℰr that are not in the other edge set. Because M = |ℰs| = |ℰr|, it follows 

that T = |Δ(s)| = |Δ(r)|. We enumerate the entries in Δ(s) and Δ(r) as Δ j
(s) and Δ j

(r) for j = {1, …, 

T} and define the family of maps Tr, s
( j) :GN, M ↦ GN, M by (𝒱, ℰ) ↦ (𝒱, (ℰ\Δ j

(s)) ∪ Δ j
(s). It 

follows that
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Tr, s
(1)(Tr, s

(2))(…Tr, s
(T)(Gr))) = Gs . (33)

We can similarly define Ts, t
( j) so that

Ts, r
(1)(Ts, r

(2))(…Ts, r
(T)(Gs))) = Gr . (34)

Next, we prove the graph is degree-regular. Consider a network Gs ∈ 𝒢N, M containing N 

nodes and M edges. It follows that there are M possibilities for edge removal and N(N − 1)/2 

− M + 1 possibilities for new edges to add. (Here, the +1 allows for the removed edge to be 

replaced.) Moreover, for any transition Gs → Gr, there exists a transition Gr → Gs with 

identical rate. Therefore, the Markov chain corresponds to an undirected network in which 

all nodes have degree dU = M(N(N − 1)/2 − M + 1).

Finally, we prove aperiodicity. Because the graph is connected and contains self-edges, the 

Markov chain is aperiodic.

Appendix B. Proof of Theorem 14

Proof

Taylor expansion near ε = 0 gives

h(ε) = h(0) + εh′(0) + 𝒪(ε2) .

Here we show that h′(0) is given by Eq. (18). Using Eq. (4), the VNE entropy of a network 

corresponding to Laplacian matrix L(ε) is given by

h(ε) = − ∑
i

f (λi(ε)), (35)

where

f (x) = x
2M log2

x
2M (36)

has derivative

d f
dx = 1

2M log2
x

2M + 1
log(2) .
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Using the linearity property of differentiation, we express the derivative of h(ε) via partial 

derivatives as

dh
dε = ∑

i

d f
dλ

dλ
dε . (37)

Letting ε = 0, we find

h′(0) = dh(ε)
dε ε = 0

= − ∑
i

λ′(0) 1
2M log2

λi
2M + 1

log(2) . (38)

We substitute λ′(0) = υ(i))TΔLυ(i) from Eq. (16) to obtain Eq. (18). □

Appendix C. Proof of Corollary 15

Proof

For unweighted networks, all non-diagonal entries Lij in are either 0 (if there is no edge) or 

-1 (if there is an edge (i, j) ∈ ℰ). The addition of an edge (p, q) implies Lpq = Lqp = −1, and 

because ∑i Li j = 0 by definition, Lii = ∑ j ≠ i Li j and any perturbation of off-diagonal 

elements must be reflected in the diagonal elements. Consideration of an edge removal leads 

to an analogous result, albeit with an opposite sign, and therefore ΔL must be of the form 

given by Eq. (19). It is straightforward to show

(υ(n))TΔL(pq)υ(n) = (υp
(n) − υq

(m))2 . (39)

We substitute this result into Eq. (18) to obtain Eq. (20). □

Appendix D. Proof of Theorem 17

Proof

The process of randomly rewiring an edge (p, q) to (r, s) can be decomposed into two steps. 

The first step is removing an edge (p, q) from the original graph G(0), resulting in an 

intermediate graph G(1). The second step is adding an edge (r, s) to the graph G(1), resulting 

in the rewired graph G(2). Let L(0) denote the Laplacian matrix of the original graph G(0), 

L(1) denote the Laplacian matrix of the intermediate graph G(1), and L(2) denote the 

Laplacian matrix of the rewired graph G(2), then we have L(1) = L(0) + ΔL(0), L(2) = L(1) + 

ΔL(1). In terms of our previous notations, we have

L = L(0), L′ = L(2), ΔL = ΔL(0) + ΔL(1) (40)
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D.1. Removing an edge

Since removing an edge (p, q) means Apq and Aqp change from 1 to 0, the elements of ΔLi j
(0)

are given by

ΔLi j
(0) =

−1 if i = j ∈ {p, q}
1 if i ∈ {p, q} and
0 otherwise.

j ∈ {p, q}\i (41)

Using that edges are removed uniformly at random, the expected values of {ΔLi j
(0)} are given 

by

E[ΔLi j
(0)] = P(p = i or q = i) × ( − 1) if i = j

P((p = i and q = j) or (p = j and q = i)) × 1 if i ≠ j
(42)

Since there are M edges in total, and we can only remove an edge when Aij = Aji = 1, we can 

write down the probabilities as

P(p = i or q = i) =
di
M (43)

and

P((p = i and q = j) or (p = j and q = i)) =
Ai j
M . (44)

We substitute these probabilities into Eq. (42) to obtain

E[ΔLi j
(0)] =

−
di
M if i = j

Ai j
M if i ≠ j

(45)

D.2. Adding an edge

Since adding an edge (r, s) means Ars and Asr change from 0 to 1, the elements {ΔLi j
(1)} are 

given by

ΔLi j
(1) = {

1 if i = j ∈ {r, s}
−1 if i ∈ {r, s} and j ∈ {r, s}\i
0 otherwise,

(46)
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which have the expectations

E[ΔLi j
(1)] = P(r = i or s = i) × 1 if i = j

P((r = i and s = j) or (r = j and s = i)) × − 1 if i ≠ j . (47)

Since there are N(N − 1)
2  possible edges in total for a graph with N nodes, and we can only 

add an edge when Aij = Aji = 0, and {i, j} ≠ {p, q}. Therefore, there are R = N(N − 1)
2 − M + 1

possible edges to add, yielding the probabilities

P(r = i or s = i) =
N − 1 − di

R (48)

and

P((r = i and s = j) or (r = j and s = i)) =
1 − Ai j

R . (49)

We substitute these probabilities into Eq. (47) to obtain

E[ΔLi j
(1)] =

N − 1 − di
R if i = j

−
1 − Ai j

R if i ≠ j .
(50)

D.3. Rewiring an edge

By the linearity of expectation, we have

E[ΔL] = E[ΔL(0)] + E[ΔL(1)] . (51)

We substitute Eqs. 45 and 50 into 51 to obtain

E[ΔLi j] =

N − 1 − di
N(N − 1)

2 − M + 1
−

di
M if i = j

Ai j
M −

1 − Ai j
N(N − 1)

2 − M + 1
if i ≠ j .

(52)
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Fig. 1. 
Network-ensemble comparison with von Neumann Entropy (VNE) distinguishes typical and 

atypical networks according to their ‘irregularity’. (a) Empirical distribution P(N,M) (h) of 

VNE for 104 networks sampled from an Erdős-Rényi (ER) random-network ensemble GN,M 

with N = 25 nodes and M = 50 undirected edges. (b) Degree heterogeneity negatively 

correlates with VNE. (c) Example networks sampled from GN,M are arranged according to 

VNE.
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Fig. 2. 
Networks {G(t)} obtained after t stochastic rewires of an original network G(0) are modeled 

by a random walk on a set of networks {Gs}. Letting πs
(t) denote the probability that G(t) = 

Gs and P(t)(h) denote the probability that h(G(t)) = h, we will study the evolution of π(t) and 

P(t)(h) using Markov chains.
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Fig. 3. 
(a) True values of VNE, h(G(t)), for a network subjected to t uniform rewires compared to 

the first-order approximation given by Theorem 14, which uses the known perturbation of 

the Laplacian matrix, ΔL. (b) Comparison of the observed mean E[ΔLi j
(t)] (symbols) to its 

expectation given by Theorem 17 (dashed lines) for three entries: a diagonal entry ΔLii and 

two entries that correspond to the absence and presence, respectively, of an edge (i, j) in 

network G(0). Error bars indicate standard error across K = 10,000 trials of uniform rewiring.
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Fig. 4. 
Evolution of empirical distribution P(t)(h) of VNE for a word-adjacency network [56] 

subjected to stochastic uniform rewiring. (a) We compare P(t)(h) for t ∈ {0, 10, 100, 1000} 

to an empirical VNE distribution P(N,M)(h) for the ER randomnetwork ensemble with 

identical N and M. As t → ∞, P(t)(h) evolves from a Dirac delta function δh0
(h) at t = 0 to 

P(N,M)(h). (b) We compare the 5% quantile, mean, and 95% quantile for P(t)(h) to those of 

P(N,M)(h) (horizontal lines). The blue arrow indicates the slope E[h′(0)] which we 

approximate by Eq. (26). The blue star indicates the intersection between the α = 5% 

quantile of P(N,M)(h) and an extrapolation that has initial slope E[h′(0)] and converges to the 

mean h̄(N, M) of P(N,M)(h) such that the difference exponentially decays. In Sec. 4.3, we 

define an efficient quantity for network-ensemble comparison, Bα, based on this exponential 

extrapolation.
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Fig. 5. 
Network-ensemble comparisons for the empirical networks in Table 1 and the associated ER 

ensembles. (a) Observed mean hitting times τα given by Eq. (29) strongly correlate with the 

exponential extrapolation Bα given by Eq. (32) (shown with α = 0.05). (b) We compare Bα 

to the difference Δh = h(G(0)) − h̄(N, M) between the VNE of the empirical networks, h(G(0)), 

and the mean VNE across the appropriate ER ensembles, h̄(N, M) (blue symbols, left vertical 

axis) as well as to the ratio of Δh. to the standard deviation σN,M of P(N,M)(h) (red symbols, 

right vertical axis).
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Fig. 6. 
Network-ensemble comparisons for the empirical networks in Table 1 and the configuration 

model. (a) Observed mean hitting times τα strongly correlate with the exponential 

extrapolation Bα given by Eq. (32) (shown with α = 0.05), which uses a numerical estimate 

for E[h′(0)]. (b) Comparison of Bα to Δh = h(G(0)) − h̄(N, d) (blue symbols, left vertical axis) 

and to the ratio of Δh/σN, d (red symbols, right vertical axis), where σN, d is the standard 

deviation of P(N, d)(h).
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Table 1

Empirical networks studied in Fig. 5.

Network N M Reference

dolphin social network 62 159 [46]

Les Misérables characters 77 254 [41]

word adjacency in David Copperfield 112 425 [56]

jazz collaborations 198 2742 [33]

C. elegans neuronal network 297 2148 [82]

C. elegans metabolic network 453 2025 [25]

world airport network 500 2980 [21]

Caltech Facebook network 762 16651 [81]

university email messages 1133 5451 [36]

U. S. power grid 4941 6594 [82]
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