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Abstract

We provide explicit criteria for blow-up solutions of autonomous ordinary differential equa-
tions. Ideas are based on the quasi-homogeneous desingularization (blowing-up) of singulari-
ties and compactifications of phase spaces, which suitably desingularize singularities at infinity.
We derive several type of compactifications and show that dynamics at infinity is qualitatively
independent of the choice of such compactifications. We also show that hyperbolic invariant
sets, such as equilibria and periodic orbits, at infinity induce blow-up solutions with specific
blow-up rates. In particular, blow-up solutions can be described as trajectories on stable man-
ifolds of equilibria at infinity for associated vector fields. Finally, we demonstrate blow-up
solutions of several differential equations.

Keywords: Poincaré compactifications, quasi-homogeneous desingularizations, time-scale desin-
gularizations, stationary and periodic blow-up solutions of ODEs.

AMS subject classifications : 34A26, 34C08, 35B44, 35L67, 58K55

1 Introduction

The blow-up phenomenon, which describes divergence of solutions in finite time, is one of typical
and essential singular behavior in dynamical systems generated by nonlinear differential equations.
There are many mathematical and physical studies of blow-up behaviors, and their concrete be-
havior such as blow-up profile, blow-up rate and blow-up sets are ones of central issues in studies
of blow-up solutions.

The difficulty for studying blow-up solutions is mainly the treatment of infinity from both math-
ematical and numerical viewpoints. Scaling of solutions is often used for detecting the asymptotic
profile of blow-up solutions [5], which is one of the most essential approach of blow-up solutions in
the category of bounded objects.

An alternative way to studying blow-up solutions as those in bounded region is compactification.
This methodology embeds the original phase spaces, which is often the Euclidean spaces, into
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compact manifolds possibly with boundaries, and maps dynamics on the original phase space
to those on compact manifolds. Infinity is then mapped into extra points or the boundary of
compact manifolds. Such a treatment enables us to consider divergent solutions including blow-
up solutions in terms of bounded solutions on compact manifolds. Well-known compactifications
are Bendixson’s one, embedding of Rn into the unit n-sphere Sn ⊂ Rn+1, and Poincaré’s one,
embedding of Rn into the unit upper hemisphere {(x1, · · · , xn+1) | xn+1 > 0,

∑n+1
i=1 x

2
i = 1} (see

e.g., [6]). In [4], Elias and Gingold have discussed an admissible class of compactifications including
the Poincaré compactification, which gives an appropriate correspondence of dynamics between on
the original phase spaces and on compactified manifolds. Such compactifications are recently
applied to validating blow-up solutions of ordinary differential equations (ODEs for short) with
rigorous numerics, a series of techniques so that all numerical errors are included in all numerical
results by, say intervals, and that resulting numerical results contain mathematically rigorous
objects [16]. The result opens the door to studying blow-up solutions as finite-time singularities
from the viewpoint of computer-assisted analysis of dynamical systems.

A typical property of admissible compactifications, as well as well-known Bendixson’s one, is
that all transformations are homogeneous, namely, yi 7→ yi/κ for all i with a positive functional
κ = κ(y). Such a transformation yields the property that dynamics at infinity is dominated by
the highest order term of vector fields, which means that all remaining lower-order terms have no
effects at infinity. This property may drop genuine scaling information of dynamics near infinity.

On the other hand, quasi-homogeneous type compactifications are discussed in e.g., [2, 3], which
aims at studying periodic orbits and dynamics including infinity related to Hilbert’s 16th problem.
The quasi-homogeneous type compactifications are kinds of quasi-homogeneous desingularizations1

near infinity, which effectively desingularize singularities for precise analysis of dynamics around
singularities. However, most of studies using quasi-homogeneous type compactifications have con-
cerned only with desingularized two-dimensional dynamical systems such as Liénard equations, and
the aspect of finite-time singularities or their higher dimensional analogues are not well-considered.

Our main aim here is to describe blow-up behavior of solutions for vector fields including those
which are not necessarily homogeneous near infinity from the viewpoint of dynamical systems. We
treat not only well-known quasi-homogeneous compactifications in e.g., [2, 3] but also a prototype
of the quasi-homogeneous analogue of admissible compactifications in [4], which we shall call quasi-
Poincaré compactifications, and unify the aspect of dynamics at infinity obtained in these individual
compactifications. In other words, we can say that the qualitative information of blow-up behavior
is independent of the choice of compactifications. As primitive results, we state the stationary blow-
up and periodic blow-up under generic assumptions, which corresponds to trajectories on stable
manifolds of equilibria or periodic orbits at infinity for compactified vector fields, respectively.

The rest of this paper is organized as follows. In Section 2, we introduce a new compactification
called quasi-Poincaré compactification with a brief review of quasi-homogeneous desingularizations.
We also review known quasi-homogeneous type compactifications and discuss the correspondence.
In Section 3, we discuss the transformation of dynamics via compactifications. We obtain desin-
gularized vector fields for individual compactifications, and we prove that these vector fields are
topologically equivalent including infinity, which shows that qualitative properties of dynamics at

1 In the terminology of algebraic geometry or ordinary singularity theory of dynamical systems, it is often called
blow-up. However, we shall use the terminology desingularization here to avoid any confusions to blow-up solutions
of differential equations.
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infinity are independent of the choice of certain quasi-homogeneous type compactifications. In
Section 4, we show several generic results for describing blow-up solutions in terms of global tra-
jectories asymptotic to invariant sets at infinity. We see that convergence of trajectories with
exponential rate and the in-phase property for hyperbolic equilibria and periodic orbits at infinity
induce blow-up solutions with specific asymptotic blow-up behavior. Several demonstrations of
our main results with numerical simulations are shown in Sections 5, 6 and 7.

2 Compactifications

In this section, we introduce an alternative compactification of admissible ones discussed in e.g.,
[11, 6, 4]. Our compactification is based on the concept of quasi-homogeneous desingularization of
singularities in dynamical systems generated by vector-valued functions with an appropriate scaling
at infinity. Firstly we briefly review quasi-homogeneous vector fields. Secondly, we introduce
the new compactification called quasi-Poincaré compactification and provide several fundamental
properties. Our compactification is also a higher-dimensional alternative to Poincaré-Lyapunov
discs discussed in e.g., [3, 2].

2.1 Quasi-homogeneous vector fields

Definition 2.1 (Quasi-homogeneous vector fields, cf. [1]). Let f : Rn → R be a smooth function.
Let α1, · · · , αn ≥ 02 with (α1, · · · , αn) 6= (0, · · · , 0) be integers and k ≥ 1. We say that f is a
quasi-homogeneous function of type (α1, · · · , αn) and order k if

f(Rα1x1, · · · , Rαnxn) = Rkf(x1, · · · , xn), ∀x ∈ Rn, R ∈ R.

Next, let X =
∑n
j=1 fj(x) ∂

∂xj
be a smooth vector field. We say that X, or f = (f1, · · · , fn) is

a quasi-homogeneous vector field of type (α1, · · · , αn) and order k + 1 if each component fj is a
homogeneous function of type (α1, · · · , αn) and order k + αj .

For applications to general vector fields, we define the following notion.

Definition 2.2 (Homogeneity index and admissible domain). Let α = (α1, · · · , αn) be a set of
nonnegative integers. Let the index set Iα as Iα = {i ∈ {1, · · · , n} | αi > 0}, which we shall call
the set of homogeneity indices associated with α = (α1, · · · , αn). Let U ⊂ Rn. We say the domain
U ⊂ Rn admissible with respect to the sequence α if

U = {x = (x1, · · · , xn) ∈ Rn | xi ∈ R if i ∈ Iα, (xj1 , · · · , xjn−l) ∈ Ũ},

where {j1, · · · , jn−l} = {1, · · · , n} \ Iα and Ũ is an (n− l)-dimensional open set.

Assumptions in Definition 2.1 indicate Iα 6= ∅. The notion of asymptotic quasi-homogeneity
provides a systematic validity of scalings in many practical applications.

Definition 2.3 (Asymptotically quasi-homogeneous vector fields). Let f = (f1, · · · , fn) : U → Rn
be a smooth function with an admissible domain U ⊂ Rn with respect to α such that f is uniformly

2 Quasi-homogeneity is usually defined with α1, · · · , αn ≥ 1. But the natural extension to the case αi = 0 still
makes sense, and hence we use this generalized one.
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bounded for each xi with i ∈ Iα, where Iα is the set of homogeneity indices associated with α. We
say that X =

∑n
j=1 fj(x) ∂

∂xj
, or simply f is an asymptotically quasi-homogeneous vector field of

type (α1, · · · , αn) and order k + 1 at infinity if

lim
R→+∞

R−(k+αj)
{
fj(R

α1x1, · · · , Rαnxn)−Rk+αj (fα,k)j(x1, · · · , xn)
}

= 0

holds uniformly for (x1, · · · , xn) ∈ U1, where fα,k = ((fα,k)1, · · · , (fα,k)n) is a quasi-homogeneous
vector field of type (α1, · · · , αn) and order k + 1, and

U1 = {x = (x1, · · · , xn) ∈ Rn | (xi1 , · · · , xil) ∈ Sl−1, (xj1 , · · · , xjn−l) ∈ Ũ},

where {i1, · · · , il} = Iα.

2.2 Quasi-Poincaré compactifications

Throughout successive sections, consider the (autonomous) vector field

y′ = f(y), (2.1)

where f : U → Rn be a smooth function with an admissible domain U ⊂ Rn with respect to α.
Throughout our discussions, we assume that f is an asymptotically quasi-homogeneous vector field
of type α = (α1, · · · , αn) and order k + 1 > 1 at infinity.

Definition 2.4 (Quasi-Poincaré compactification). Let a1, · · · , an ≥ 1, and β1, · · · , βn be non-
negative numbers such that {

αiβi ≡ c ∈ N if i ∈ Iα,
βi = 0 otherwise.

(2.2)

Define quasi-Poincaré functionals p(y) and κ(y) as

p(y) = pα,a(y) :=

(∑
i∈Iα

aiy
2βi
i

)1/2c

, κ(y) = κα,a(y) := (1 + pα,a(y)2c)1/2c.

where a in the subscript denotes the dependence on {ai}ni=1. Define the quasi-Poincaré compacti-
fication of type (α1, · · · , αn) as

TqP : Rn → Rn, TqP (y) = x, xi :=
yi

κα,a(y)αi
. (2.3)

Obviously, xi = yi if i 6∈ Iα. We immediately observe that pα,a(x) → 1 as pα,a(y) → ∞, and
vice versa. Therefore, the infinity in the original coordinates corresponds to a point on

E = {x ∈ U | pα,a(x) = 1}.

We shall call the set E the horizon3. If no confusions arise, we drop the subscripts α,a in the
expression of pα,a and κα,a. Note that the quasi-Poincaré functional κ in the x-coordinate is

κ(T−1
qP (x)) =

1−
∑
j∈Iα

ajx
2βj
j

−1/2c

.

3 In the case of Iα = {1, · · · , n}, the set E is often called the equator, in which case E = ∂D.
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Remark 2.5. The simplest choice of the natural number c is the least common multiple of
{αi}i∈Iα . Once we choose such c, we can determine the n-tuples of natural numbers β1, · · · , βn
uniquely. The choice of natural numbers in (2.2) is essential to desingularize vector fields at infinity,
as shown below.

Definition 2.6. We say that a solution orbit y(t) of (2.1) with the maximal existence time (a, b),
possibly a = −∞ and b = +∞, tends to infinity in the direction x∗ ∈ E associated with the
quasi-Poncaré functional p (as t→ a+ 0 or b− 0) if

p(y(t))→∞,
(

y1

κ(y)α1
, · · · , yn

κ(y)αn

)
→ x∗ as t→ a+ 0 or b− 0.

Now compute the Jacobian matrix J of T . Without the loss of generality, by taking permu-
tations of coordinates if necessary, we may assume that Iα = {1, 2, · · · , l}. Direct computations
yield

∂xi
∂yj

=

{
κ−αi

(
δij − κ−1αiyi

∂κ
∂yj

)
j ∈ {1, · · · , l}

δij j ∈ {l + 1, · · · , n}

with the matrix form

J =

(
∂xi
∂yj

)
i,j=1,··· ,n

= Aα
(
In − κ−1yα(∇κ)T

)
,

Aα = diag(κ−α1 , · · · , κ−αl , 1, · · · , 1), yα = (α1y1, · · · , αlyl, 0, · · · , 0)T .

We follow arguments in [4], for any (column) vectors y, z ∈ Rn, to have

(In + βyzT )(In + βyzT ) = I + (β + δ)yzT + βδyzT yzT

= I + (β + δ + βδ〈z, y〉)yzT ,

so I + δyzT = (I + δyzT )−1 if δ = −β/(1 + β〈z, y〉).
In this case, we choose β = −κ−1, y = yα, z = ∇κ and have(

∂yj
∂xi

)
=

(
∂xi
∂yj

)−1

=

(
In −

1

κ− 〈yα,∇κ〉
yα(∇κ)T

)
A−1
α

Now we have

∂κ

∂yj
=

∂

∂yj

(
1 +

l∑
i=1

aiy
2βi
i

) 1
2c

=
βj
c

(
1 +

l∑
i=1

aiy
2βi
i

) 1
2c−1

ajy
2βj−1
j =

βjaj
cκ2c−1

y
2βj−1
j

if j ∈ {1, · · · , l} = Iα. Obviously, ∂κ/∂yj = 0 holds if j ∈ {l + 1, · · · , n} = {1, · · · , n} \ Iα. Hence

κ2c−1 (κ− 〈yα,∇κ〉) = κ2c−1

κ− l∑
j=1

αjyj
βjaj
cκ2c−1

y
2βj−1
j

 =
{

(1 + p(y)2c)− p(y)2c
}
> 0,

which indicates that the transformation TqP as well as T−1
qP are C1 locally bijective including

y = 0. On the other hand, the map TqP maps any one-dimensional curve y = (rα1v1, · · · , rαnvn),
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0 ≤ r < ∞, with some fixed direction v ∈ Rn, into itself. For continuous mappings from R to R,
local bijectivity implies global bijectivity. Consequently, TqP is (globally) bijective.

Summarizing these arguments, we obtain the following proposition.

Proposition 2.7. Let a1, · · · , an ≥ 1 be fixed. Then the associated functional κ = κα,a defining
the quasi-Poincaré compactificaton TqP satisfies the following properties.

1. TqP is a bijection from Rn to D = {x ∈ Rn | x = TqP (y), y ∈ U, p(x) < 1}.

2. We have

(A0) κ(y) > p(y) for all y ∈ Rn,

(A1) κ(y) ∼ p(y) as p(y)→∞4.

(A2) ∇κ(y) = ((∇κ(y))1, · · · , (∇κ(y))n) satisfies

(∇κ(y))i ∼
ai
αi

y2βi−1
i

p(y)2c−1
as p(y)→∞ if i ∈ Iα, (∇κ(y))i ≡ 0 otherwise.

(A3) Letting yα = (α1y1, · · · , αnyn)T for y ∈ Rn, we have 〈yα,∇κ〉 = p(y) < κ(y) holds for
any y ∈ Rn.

3. TqP (Rn) is extended continuously onto D, in particular, onto E.

Proof. 1. See discussions above.
2. (A0) and (A1) follow from the definition. (A2) follows from direct calculations of ∇κ and

(A1). (A3) follows from direct computations.
3. For any sequences {yk}k≥1 which tend to infinity in the direction x∗, the definition limk→∞ TqP (yk) ≡

x∗ makes sense and shows the continuous extension of TqP (Rn) onto D∪{x∗}, since xk ≡ TqP (yk)→
x∗ and p(yk) → ∞ as k → ∞; namely, p(x∗) = 1 and x∗ ∈ D. Since each x∗ ∈ ∂D is an accu-
mulation point, there is a sequence {xj = (xij)

T }j≥1 converging to x∗. Letting yj ≡ (yij)
T with

yij = καixij , i = 1, · · · , n, for such a sequence, {yj}j≥1 tends to infinity in the direction x∗. This
fact shows that TqP (Rn) is extended continuously onto D and completes the proof.

Remark 2.8. Four properties (A0) ∼ (A3) in Proposition 2.7 will play central roles in the theory
of, which will be called, quasi-homogeneous compactifications and associated dynamics. Indeed,
in the case of homogeneous compactifications, namely α1 = · · · = αn = β1 = · · · = βn = 1
and a1 = · · · = an = 1, these conditions describe admissibility of compactifications [4], which play
central roles to dynamics at infinity. The (homogeneous) Poincaré compactification (e.g., [6, 11]) is
the prototype of other admissible compacifications such as parabolic ones (e.g., [4, 16]), and hence
quasi-Poincaré compactifications with Proposition 2.7 will be the prototype of compactifications
with quasi-homogeneous desingularizations.

As the homogeneous version, quasi-Poincaré compactifications have the following geometric
aspect. First, regard the original phase space Rn as the subspace Rn × {1} in Rn+1. For any

4 “F (η) ∼ G(η) as η →∞”denotes that limη→∞ F (η)/G(η) = C 6= 0.
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points M = (y, 1) ∈ Rn×{1}, there is one-to-one correspondence between M and the point on the
quasi-hemisphere

Hα = {(x, ζ) ∈ Rn+1 | ζ > 0, p(x)2c + ζ2c = 1},

as the intersection of H and the curve

Cα : Rn+1 → Rn+1, Cα(y, ζ) = (ζα1y1, · · · , ζαnyn, ζ) (2.4)

with endpoints (0, 0) ∈ Rn+1 and M . The intersection is given by the point Cα(y, ζ) on the curve
Cα satisfying

n∑
i=1

(ζαiaiyi)
2βi + ζ2c = ζ2c

(
n∑
i=1

aiy
2βi
i + 1

)
= 1.

The explicit representation of the point is

x = (ζα1y1, · · · , ζαnyn) ≡
(

y1

κ(y)α1
, · · · , yn

κ(y)αn

)
, ζ =

1

(1 + p(y)2c)1/2c
≡ 1

κ(y)
.

The quasi-Poincaré compactification TqP is thus given by the projection of the above intersection
point onto Rn. This geometric representation of TqP gives its bijectivity stated in Proposition 2.7.

Remark 2.9. In the case of (homogeneous) Poincaré and other admissible, homogeneous compact-
ifications ([4, 6, 11]), the curve Cα is given by the line segment with endpoints (0, 0), (y, 1) ∈ Rn+1.
See Figure 1.

2.3 Directional and intermediate compactifications

There are several other coordinates which are used in preceding works (e.g., [3, 2]) for studying
dynamics at infinity, many of which are considered locally near infinity. In this section, we discuss
such compactifications and compare with quasi-Poincaré compactifications.

Definition 2.10 (Directional compactification). Let the type α = (α1, · · · , αn) ∈ Zn≥0\{(0, · · · , 0)}
be fixed. Define a directional compactification of type α as the transformation Th : (y1, · · · , yn) 7→
(s, θ1, · · · , θn−1) given by

(y1, · · · , yn) =

(
h1(θ1, · · · , θn−1)

sα1
, · · · , hn(θ1, · · · , θn−1)

sαn

)
, (2.5)

where h = (h1, · · · , hn) be functions defined on an (n− 1)-dimensional (not necessarily compact)
smooth manifold M5 parameterized by (θ1, · · · , θn−1) such that

(Dir1) the set E =
⋃
s≥0 ({s} × h(M)) forms a fiber bundle over [0,∞) whose fiber {s} × h(M)

is diffeomorphic to M . Moreover, there is an open set U ⊂ Rn such that Th maps U into⋃
s>0 ({s} × h(M)) diffeomorphically.

(Dir2)
∑
i∈Iα aihi(θ1, · · · , θn−1)2βi ≥ ch > 0 for all θ1, · · · , θn−1;

5 The M is usually assumed to be Rn−1, Sn−1, Tn−1 or an open subset of them.
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(a) (b)

Figure 1: Poincaré and quasi-Poincaré compactifications with type (2, 1)
Both figures describe the slice {y2 = 0} of surfaces (a) : H = {(y1, y2, ζ) | ζ > 0, y2

1 +y2
2 +ζ2 = 1},

and (b) : Hα = {(y1, y2, ζ) | ζ > 0, y2
1 + y4

2 + ζ4 = 1}.
(a) : Poincaré compactification. (b) : Quasi-Poincaré compactification with type (2, 1).
In both figures, the black curves describe the original phase space Rn × {1} ⊂ Rn+1 (straight line)
and the quasi-hemispheres Hα (curve). In the case of (a), the type α is chosen to be (1, 1). Blue
round points show the points in the original phase space and squared points show the intersection
between Hα and the curve Cα defined by (2.4) colored by red. The projection of squared points onto
the original phase space (black straight line) are the images of (quasi-)Poincaré compactifications.

(Dir3) there is a smooth function e such that s = e(y) and that e(y) ∼ κ(y)−1 as s → 0, which
is locally uniform in M ;

(Dir4) the matrix

A = A(θ1, · · · , θn−1) :=


α1h1

∂h1

∂θ1
· · · ∂h1

∂θn−1

α2h2
∂h2

∂θ1
· · · ∂hn

∂θn−1

... · · · · · ·
...

αnhn
∂hn
∂θ1

· · · ∂hn
∂θn−1

 (2.6)

is invertible and smooth on M .

We shall call the hypersurface E = {(s, θ1, · · · , θn−1) | s = 0} the horizon.

The following examples show that several well-known quasi-homogeneous type compactifica-
tions are included in the above notion.

Example 2.11. Compactifications of quasi-homogeneous type for studying dynamics at infinity
are applied to e.g., polynomial Liénard equations of type (m,n) ∈ N2 (e.g., [3, 2]):{

ẋ = y,

ẏ = −(εxm +
∑m−1
k=0 akx

k)− y(xn +
∑n−1
k=0 bkx

k),
(2.7)
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where ε = ±1 if m 6= 2n + 1, and ε ∈ R \ {0} if m = 2n + 1. Dynamics of (2.7) near infinity is
considered via the transformations such as

(x, y) 7→ (s, u), x = ±1/s, y = u/sn+1, (2.8)

which defines the vector field in (s, u)-coordinates. The whole domains of (s, u)-coordinates are
often called Poincaré-Lyapunov disks, or PL-disks for short. Infinity corresponds to {s = 0},
and the other component u locally determines the direction of infinity. The power of s depends
on the choice of type (m,n), which corresponds to the choice of {βi}ni=1 associated with {αi}ni=1

in quasi-Poincaré compactifications. The signature ± in (2.8) corresponds to transformations in
positive or negative x-directions. In other words, the set U in Definition 2.10 is chosen as {x > 0}
or {x < 0} corresponding to the signature in (2.8). This fact indicates that we need multiple
charts on PL-disks for complete studies of dynamics including infinity. On the other hand, quasi-
Poincaré compactifications require only one chart for various treatments; namely, the coordinate
(x1, · · · , xn) in (2.3) determines the global chart on D.

The change of coordinates (2.8) is also regarded as local coordinate system of quasi-Poincaré
compactifications. Indeed, consider the curve Cα ⊂ Rn+1 given in (2.4). To be simplified, assume
that Iα = {1, · · · , n}. Then we obtain a transformation given by

(y1, · · · , yn, κ(y)) =
(
s−α1x1, · · · , s−αi−1xi−1,±s−αi , s−αi+1xi+1, · · · , s−αnxn, s−1

)
, (2.9)

which attains the intersection of Cα and the n-dimensional upper-half hyperplane given by {xi =
±1, s ≥ 0} centered at p ∈ ∂Hα with p = (x, 0) ∈ Rn+1, where xj = ±δij for j = 1, · · · , n. The
upper-half hyperplane is exactly the (upper-half) tangent space TpHα of Hα at p, and hence the
transformation (2.9) provides the local coordinate (x1, · · · , xi−1, s, xi+1, · · · , xn) on TpHα. The
local coordinate can be considered as a higher-dimensional analogue of (2.8).

Example 2.12. Consider the case Iα 6= {1, · · · , n}; namely, αi = 0 for some i. In such a case, the
i-th component of Th should be identity and hence yi is chosen as one of variables θ1, · · · , θn−1.
For example, consider directional compactification of type α = (1, 2, 0) in R3 as in (2.8). Typical
one would be (y1, y2, y3) = (1/s, u/s2, y3), in which case the paraemterization of M = R2 is
(θ1, θ2) = (u, y3) and functions {hi} are given by h1 = 1, h2 = u, h3 = y3. In particular, the
characterization of directional compactifications still makes sense for αi = 0.

Example 2.13. In two-dimensional problems, there is an alternative choice of coordinates using
(1, l)-trigonometric functions, which is often called quasi-polar coordinates. Let Csθ and Snθ (see
e.g. [3, 2] and references therein for detailed properties) be analytic functions given by the solutions
of the following Cauchy problem:

d

dθ
Csθ = −Snθ,

d

dθ
Snθ = Cs2l−1θ,

{
Cs0 = 1

Sn0 = 0
.

These functions satisfy
Cs2lθ + lSn2θ = 1 for all θ, (2.10)

and both Csθ and Snθ are T -periodic with

T = T1,l =
2√
2

∫ 1

0

(1− t)−1/2t(1−2l)/2l.

9



The (1, l)-quasi-polar coordinate (r, θ) is given by

y1 =
Csθ

s
, y2 =

Snθ

sl
, (2.11)

which follows from (2.10) that y2l
1 + ly2

2 = s−2l. In particular, the parameterization surface M is
S1, θ1 = θ, h1 = Csθ and h2 = Snθ. The quasi-polar coordinate (s, θ) makes sense except the
origin (y1, y2) = (0, 0) in the original coordinate. In other words, the set U in Definition 2.10 is
chosen as {(y1, y2) 6= (0, 0)}.

The following compactification is an auxiliary one, which connects dynamics via quasi-Poincaré
and directional compactifications.

Definition 2.14 (Intermediate compactification). Let the type α = (α1, · · · , αn) be fixed so that
αi ≥ 0 and α 6= (0, · · · , 0). Define an intermediate compactification Th,int of type α associated with
the directional compactification Th as the transformation

(y1, · · · , yn) =

(
h1(θ1, · · · , θn−1)

Rα1/2c
, · · · , hn(θ1, · · · , θn−1)

Rαn/2c

)
, (2.12)

where h = (h1, · · · , hn) is the diffeomorphic functions determining Th, such that (Dir1) - (Dir4) in
Definition 2.10 replacing s in (Dir1) and “s = e(y), e(y) ∼ κ(y)−1 ”in (Dir3) by R and “R = e(y),
e(y) ∼ κ(y)−2c ”, respectively, are satisfied.

Observe that the difference between Th and Th,int is only the magnitude in directional variable;
s and R. As seen below, the intermediate compactification induce a trivial equivalence between
dynamical systems via Th and Th,int as well as a nontrivial equivalence between dynamical systems
via TqP and Th,int.

2.4 Correspondence between compactifications

Now we have three types of compactifications. It is desirable that these compactifications are
transformed (at least) homeomorphically so that trajectories of dynamical systems in individual
compactifications correspond homeomorphically. In this section, we discuss relationship between
the above compactifications.

Let TqP be the quasi-Poincaré compactification, Th be the directional compactification and
Th,int be the intermediate compactification associated with Th. Assume that the type α of these
compactifications and a sequence of positive numbers {ai}ni=1 are identical. Then, by definition we
have

yi = κ(y)αixi =
hi(θ1, · · · , θn−1)

sαi
,

to obtain
p(y)2c =

∑
i∈Iα

aiy
2βi
i = κ2c

∑
i∈Iα

aix
2βi
i = s−2c

∑
i∈Iα

h2βi
i

10



in the domain of T−1
h . For s > 0, equivalently, for x with

∑
i∈Iα aix

2βi
i < 1 (from Definition 2.5),(

1−
∑
i∈Iα

aix
2βi
i

)∑
i∈Iα

h2βi
i = s2c

∑
i∈Iα

aix
2βi
i

⇔

(
1−

∑
i∈Iα

aix
2βi
i

)
=

s2c

s2c +
∑
i∈Iα aih

2βi
i

⇔ κ = s−1

(
s2c +

∑
i∈Iα

aih
2βi
i

)1/2c

.

Therefore we obtain

xi =
yi
καi

= hi

(
s2c +

∑
i∈Iα

aih
2βi
i

)−αi/2c
. (2.13)

Similarly, for
∑
i∈Iα aix

2βi
i ∈ (0, 1), we have

hi = sαiκ(y)αixi = (e(y)κ(y))αixi. (2.14)

Since (2.13) is given by the composite TqP ◦T−1
h , TqP is diffeomorphic on Rn and Th is diffeomorphic

on {s > 0}×M , then TqP ◦T−1
h is a diffeomorphism from {s > 0}×M onto TqP ◦T−1

h ({s > 0}×M).

By the assumption
∑
i∈Iα aih

2βi
i ≥ ch > 0, then the expression (2.13) can be continuously

extended on the horizon {s = 0}. Since x = (x1, · · · , xn) in (2.13) is the projection of the
intersection point of the curve connecting the origin (0, · · · , 0) ∈ Rn+1 and

(s, θ1, · · · , θn−1) 7→
(
h1(θ1, · · · , θn−1)

sα1
, · · · , hn(θ1, · · · , θn−1)

sαn
, s

)
and the quasi-hemisphere {p(x)2c + s2c = 1} on Rn, then it is determined uniquely, which implies
that the mapping TqP ◦ T−1

h is injective on {s = 0}.
Similarly, by the definition of e, the term e(y)κ(y) is bounded locally uniformly as p(y)→∞.

Therefore the expression (2.14) can be continuously extended on the horizon {p(x) = 1}.

Proposition 2.15. Let α = (α1, · · · , αn) ∈ Zn≥0 \ {(0, · · · , 0)} be given. Then the change of
coordinate

Ch,int→qP : (R, θ1, · · · , θn−1) 7→ (x1, · · · , xn) (2.15)

is locally diffeomorphic including R = 0, where (x1, · · · , xn) = TqP (y1, · · · , yn) is the coordi-
nate determined by the quasi-Poincaré compactification TqP of type α, and (R, θ1, · · · , θn−1) =
Th,int(y1, · · · , yn) is the coordinate determined by the intermediate compactification Tint of type α.

Proof. First we give the mapping (2.15) explicitly. It immediately holds that

yi =

(
1−

∑
i∈Iα

aix
2βi
i

)−αi/2c
xi = R−αi/2chi(θ1, · · · , θn−1),
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which yields

κ(y)2c =

(
1−

∑
i∈Iα

aix
2βi
i

)−1 ∑
i∈Iα

aix
2βi
i = R−1

∑
i∈Iα

aihi(θ1, · · · , θn−1)2βi .

Let X :=
∑
i∈Iα aix

2βi
i and H =

∑
i∈Iα aihi(θ1, · · · , θn−1)2βi . The above equality yields

X

1−X
= R−1H ⇔ X =

H

R+H
and 1−X =

R

R+H
.

This expression makes sense even for R = 0, equivalently X = 1. Then Ch,int→qP is represented
by

xi =
hi(θ1, · · · , θn−1)

R+H
.

Our claim here is then that the Jacobian matrix of Ch,int→qP is invertible and continuous. Assume
that i ∈ Iα. Direct computations yield

∂xi
∂R

= −αi
2c

(R+H)−
αi
2c−1hi,

∂xi
∂θj

= −∂hi
∂θj

(R+H)−
αi
2c − αi

2c
(R+H)−

αi
2c−1hiH̃j ,

where H̃j =
∑
k∈Iα 2akβkh

2βk−1
k

∂hk
∂θj

. Note that these expressions still make sense for i 6∈ Iα;

namely, αi = 0. Thus the Jacobian matrix JCh,int→qP at (R, θ1, · · · , θn−1) is

JCh,int→qP =


∂x1

∂R
∂x1

∂θ1
· · · ∂x1

∂θn−1
∂x2

∂R
∂x2

∂θ1
· · · ∂x2

∂θn−1

...
...

...
...

∂xn
∂R

∂xn
∂θ1

· · · ∂xn
∂θn−1



= D


−α1

2c (R+H)−1h1 −∂h1

∂θ1
− α1

2c (R+H)−1h1H̃1 · · · − ∂h1

∂θn−1
− α1

2c (R+H)−1h1H̃n−1

−α2

2c (R+H)−1h2 −∂h2

∂θ1
− α2

2c (R+H)−1h2H̃1 · · · − ∂h2

∂θn−1
− α2

2c (R+H)−1h2H̃n−1

...
...

...
...

−αn2c (R+H)−1hn −∂hn∂θ1
− αn

2c (R+H)−1hnH̃1 · · · − ∂hn
∂θn−1

− αn
2c (R+H)−1hnH̃n−1


≡ DÃ,

where

D =


(R+H)−α1/2c 0 · · · 0

0 (R+H)−α2/2c · · · 0
...

...
...

...
0 0 · · · (R+H)−αn/2c

 .

The diagonal matrix D is nonsingular for R ≥ 0, since H ≥ ch > 0 by (Dir2) in Definition 2.10.
It is thus sufficient to show that Ã is invertible and continuous to our claim. The matrix Ã is also
represented as

A = ÃPn−1 · · ·P1P̃ ,
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where A = A(θ1, · · · , θn−1) is the matrix in (2.6) and

(Pk)ij =


1 if i = j

−H̃k if i = 1 and j = k + 1

0 otherwise

and (P̃ )ij = −(2c(R+H)δi1)δij .

All matrices P1, · · · , Pn−1 and P̃ are invertible6, and hence the invertibility of Ã is equivalent to
that of A. By assumption (Dir4) in Definition 2.10, A is invertible and hence the Jacobian matrix
JCh,int→qP is invertible for any points on {R ≥ 0} × M . As a consequence, thank to Inverse
Mapping Theorem, the mapping Ch,int→qP is locally diffeomorphic.

3 Compactifications and dynamics at infinity

Now we have the expression of infinity via several type of compactifications. In this section, we
consider the vector field corresponding to (2.1) in the coordinate of compactified spaces.

3.1 Desingularized vector fields for quasi-Poincaré compactifications

First we calculate the vector field (2.1) after the quasi-Poincaré compactification TqP . Integers
{βi}ni=1 and c in the definition of TqP are assumed to satisfy (2.2). Differentiating x = TqP (y) with
respect to t, we have

x′i = y′i = fi(y) if i 6∈ Iα,

x′i =
( yi
καi

)′
=

y′i
καi
− αiyiκ

αi−1

κ2αi
κ′

=
y′i
καi
− αiyi
καi+1

∑
j∈Iα

βjaj
cκ2c−1

y
2βj−1
j y′j

 =
fi(y)

καi
− αiyi
καi+2c

∑
j∈Iα

aj
αj
y

2βj−1
j fj(y)

 if i ∈ Iα,

Namely,
x′ = Aα

(
f(y)− κ−1〈f,∇κ〉yα

)
(3.1)

with an appropriate permutation of coordinates. We have the one-to-one correspondence of bounded
equilibria, which helps us with detecting dynamics at infinity.

Proposition 3.1. The quasi-Poincaré compactification TqP maps bounded equilibria of (2.1) in
Rn into equilibria of (3.1) in D, and vice versa.

Proof. Suppose that y∗ is an equilibrium of (2.1), i.e., f(y∗) = 0. Then the right-hand side of (3.1)
obviously vanishes at the corresponding x∗.

Conversely, suppose that the right-hand side of (3.1) vanishes at a point x ∈ D, p(x) < 1:
namely,

f(κx)− κ(y)−1〈∇κ, f(κx)〉yα = 0.

6 This transformation is nothing but the Gaussian elimination for the squared matrix Ã.
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Multiplying ∇κ, we have
〈∇κ, f(κx)〉

(
1− κ(y)−1〈∇κ, yα〉

)
= 0.

Due to (A3) in Proposition 2.7-2, we have |κ(y)−1〈∇κ, yα〉| < 1 and hence 〈∇κ, f(κx)〉 = 0. Thus
we have f(y) = f(κx) = 0 by the assumption.

Next we discuss the dynamics at infinity. Denoting

f̃j(x1, · · · , xn) := κ−(k+αj)fj(κ
α1x1, · · · , καnxn), j = 1, · · · , n, (3.2)

we have

x′i = κkf̃i(x) if i 6∈ Iα,

x′i =
κk+αi f̃i(x)

καi
− καixi
βiκαi+2c

∑
j∈Iα

βjaj(κ
αjxj)

2βj−1κk+αj f̃j(x)

 if i ∈ Iα. (3.3)

Since κ → ∞ as p → 1, then the vector field has singularities at infinity, while f̃j(x) themselves
are continuous on D. Nevertheless, the definition of quasi-Poincaré compactification yields the
following observation.

Lemma 3.2. The right-hand side of (3.3) is O(κk) as κ → ∞ no matter whether or not i ∈ Iα.
In other words, the order with respect to κ is independent of components of asymptotically quasi-
homogeneous vector fields.

Proof. The case i 6∈ Iα is obvious. Consider then the case i ∈ Iα.
By definition f̃i is O(1) as κ → ∞, and hence the first term in the right-hand side of (3.3) is

O(κk). Check the second term. Direct calculations yield

καixi
βiκαi+2c

∑
j∈Iα

βjaj(κ
αjxj)

2βj−1κk+αj f̃j(x)

 =
xi

βiκ2c

∑
j∈Iα

βjajκ
αj(2βj−1)+k+αjx

2βj−1
j f̃j(x)


=

xi
βiκ2c

∑
j∈Iα

βjajκ
2αjβj+kx

2βj−1
j f̃j(x)


=
xiκ

k

βi

∑
j∈Iα

βjajx
2βj−1
j f̃j(x)

 ,

where we used the condition αjβj ≡ c for all j from (2.2). Since f̃i is O(1) as κ → ∞, then the
second term in the right-hand side of (3.3) is O(κk) as κ→∞. Summarizing our observations, the
right-hand side of (3.3) is O(κk) as κ→∞.

Remark 3.3. In the case of n = 1, regard the order of quasi-homogeneous functions f as k+ 1 ≡
k + α1 instead of k, which is compatible with the general case containing Iα = {i} for some
i ∈ {1, · · · , n}. In such a case, Lemma 3.2 still holds for n = 1 without any modifications, unlike
the arguments in [4].
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Lemma 3.2 leads to introduce the following transformation of time variable.

Definition 3.4 (Time-variable desingularization). Define the new time variable τ depending on
y by

dτ = κ(y(t))kdt, (3.4)

equivalently,

t− t0 =

∫ τ

τ0

dτ

κ(y(τ))k
,

where τ0 and t0 denote the correspondence of initial times, and y(τ) is the solution trajectory y(t)
under the parameter τ . We shall call (3.4) the desingularization of (3.3) of order k + 1.

The vector field (3.3) is then desingularized in τ -time scale:

ẋi ≡
dxi
dτ

= f̃i −

∑
j∈Iα

βjajx
2βj−1
j f̃j

 xi
βi

= f̃i − αiκαi−1〈∇κ, f̃〉xi ≡ gi(x). (3.5)

In particular, we have the extension of dynamics at infinity.

Proposition 3.5 (Extension of dynamics at infinity). Let τ be the new time variable given by
(3.4). Then the dynamics (2.1) can be extended to the infinity in the sense that the vector field g
in (3.5) is continuous on D, in particular, on E = {p(x) = 1}.

Proof. The component-wise desingularized vector field (3.5) is obviously continuous on D since
this consists of product and sum of continuous functions xi’s and f̃i’s on D.

3.2 Desingularized vector fields for directional compactifications

Next consider the vector field corresponding to (3.5) in the coordinate of directional compactifica-
tion Th. Following (2.5), we have

y′i =


fi(y), if i 6∈ Iα,

−αis−(αi+1)his
′ + s−αi

n−1∑
j=1

∂hi
∂θj

θ′j , if i ∈ Iα,

while its vector- and matrix-form is
y′1
y′2
...
y′n

 =


α1s
−(α1+1)h1 s−α1 ∂h1

∂θ1
· · · s−α1 ∂h1

∂θn−1

α2s
−(α2+1)h2 s−α2 ∂h2

∂θ1
· · · s−α2 ∂h2

∂θn−1

...
...

. . .
...

αns
−(αn+1)hn s−αn ∂hn∂θ1

· · · s−αn ∂hn
∂θn−1




s′

θ′1
...

θ′n−1

 ≡ Ds


s′

θ′1
...

θ′n−1

 . (3.6)

It easily follows that the matrix Ds is written by the following product of matrices:

Ds =


s−α1 0 · · · 0

0 s−α2 · · · 0
...

...
. . .

...
0 0 · · · s−αn



α1h1

∂h1

∂θ1
· · · ∂h1

∂θn−1

α2h2
∂h2

∂θ1
· · · ∂h2

∂θn−1

...
...

. . .
...

αnhn
∂hn
∂θ1

· · · ∂hn
∂θn−1



−s−1 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .
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The middle matrix in the right-hand side is exactly the matrix A(θ1, · · · , θn−1) in Definition 2.5
and hence, by assumption, the matrix A is invertible on M . Let B = B(θ1, · · · , θn−1) be the
inverse of A. Consequently, the matrix Ds is invertible on {s > 0} ×M to obtain

D−1
s =


−s 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

B


sα1 0 · · · 0
0 sα2 · · · 0
...

...
. . .

...
0 0 · · · sαn

 .

Therefore (3.6) in {s > 0} ×M is equivalent to
s′

θ′1
...

θ′n−1

 =


−s 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

B


sα1 0 · · · 0
0 sα2 · · · 0
...

...
. . .

...
0 0 · · · sαn



y′1
y′2
...
y′n

 . (3.7)

Similarly to (3.2), let

f̂j(s, θ1, · · · , θn−1) := sk+αjfj(s
−α1h1, · · · , s−αnhn) with hi = hi(θ1, · · · , θn−1), j = 1, · · · , n.

(3.8)
Then (3.7) is rewritten as 

s′

θ′1
...

θ′n−1

 = s−k


−s 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

B


f̂1

f̂2

...

f̂n

 . (3.9)

The form of f̂i in (3.8) and asymptotic quasi-homogeneity of fi and s-independence of the matrix B
immediately yield the following consequence, which is the directional compactifications’ analogue
of Lemma 3.2.

Lemma 3.6. The right-hand side of (3.9) is O(s−k) as s → 0 no matter whether or not i ∈ Iα.
More precisely, the s-component of (3.9) is O(s−k+1) as s→ 0.

Lemma 3.6 leads to introduce the following transformation of time variable.

Definition 3.7 (Time-variable desingularization (directional compactification version)). Define
the new time variable τd depending on y by

dτd = s(t)−kdt (3.10)

equivalently,

t− t0 =

∫ τ

τ0

s(τd)
kdτd,

where τ0 and t0 denote the correspondence of initial times, and s(τd) is the solution trajectory s(t)
under the parameter τ . We shall call (3.10) the desingularization of (3.9) of order k + 1.
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The vector field (3.9) is then desingularized in τ -time scale:
ds
dτd
dθ1
dτd
...

dθn−1

dτd

 =


−s 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

B


f̂1

f̂2

...

f̂n

 ≡ gd(s, θ1, · · · , θn−1). (3.11)

In particular, we have the extension of dynamics at infinity.

Proposition 3.8 (Extension of dynamics at infinity (directional compactification version)). Let τd
be the new time variable given by (3.10). Then the dynamics (2.1) can be extended to the infinity
in the sense that the vector field gd in (3.11) is continuous on {s ≥ 0} ×M .

The assumption s ∼ κ−1 as s→ 0 in Definition 2.5 ensures that the order of time-scales τ and
τd is identical near infinity.

We can derive the desingularized vector field associated with (2.1) via the intermediate cm-
pactification Th,int in the similar way. Now we have

y′1
y′2
...
y′n

 =


−α1

2cR
−(

α1
2c +1)h1 R−

α1
2c
∂h1

∂θ1
· · · R−

α1
2c

∂h1

∂θn−1

−α2

2cR
−(

α2
2c +1)h2 R−

α2
2c
∂h2

∂θ1
· · · R−

α2
2c

∂h2

∂θn−1

...
...

. . .
...

−αn2c R
−(αn2c +1)hn R−

αn
2c

∂hn
∂θ1

· · · R−
αn
2c

∂hn
∂θn−1




R′

θ′1
...

θ′n−1

 ≡ DR


R′

θ′1
...

θ′n−1

 . (3.12)

It easily follows that the matrix DR is written by the following product of matrices:

DR =


R−

α1
2c 0 · · · 0

0 R−
α2
2c · · · 0

...
...

. . .
...

0 0 · · · R−
αn
2c

A


−R−1 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ,

where A is the matrix A(θ1, · · · , θn−1) given in (2.6). Introducing

f̄j(R, θ1, · · · , θn−1) := R(k+αj)/2cfj(R
−α1/2ch1, · · · , R−αn/2chn) with hi = hi(θ1, · · · , θn−1), j = 1, · · · , n,

(3.13)
the vector field (3.12) is rewritten as

R′

θ′1
...

θ′n−1

 = R−k/2c


−R 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

B


f̄1

f̄2

...
f̄n

 . (3.14)

The form of f̄i in (3.13) and asymptotic quasi-homogeneity of fi and R-independence of the
matrix B immediately yield the following consequence, which is the intermediate compactifications’
analogue of Lemma 3.2.
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Lemma 3.9. The right-hand side of (3.14) is O(R−k/2c) as R → 0 no matter whether or not
i ∈ Iα. More precisely, the R-component of (3.14) is O(R(−k/2c)+1) as R→ 0.

Lemma 3.9 leads to introduce the following transformation of time variable.

Definition 3.10 (Time-variable desingularization (intermediate compactification version)). Define
the new time variable τint by

dτint = R(t)−k/2cdt (3.15)

equivalently,

t− t0 =

∫ τ

τ0

R(τint)
k/2cdτint,

where τ0 and t0 denote the correspondence of initial times, and R(τint) is the solution trajectory
R(t) under the parameter τ . We shall call (3.15) the desingularization of (3.14) of order k + 1.

The vector field (3.14) is then desingularized in τint-time scale:
dR
dτint
dθ1
dτint

...
dθn−1

dτint

 =


−R 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

B


f̄1

f̄2

...
f̄n

 ≡ gint(R, θ1, · · · , θn−1). (3.16)

In particular, we have the extension of dynamics at infinity.

Proposition 3.11 (Extension of dynamics at infinity (intermediate compactification version)).
Let τint be the new time variable given by (3.15). Then the dynamics (2.1) can be extended to the
infinity in the sense that the vector field gint in (3.16) is continuous on {R ≥ 0} ×M .

3.3 Equivalence of desingularized vector fields at infinity

Now we have three kinds of desingularized vector fields: (3.5), (3.11) and (3.16). Here we consider
the equivalence of these vector fields, which will show that qualitative properties of dynamics at
infinity are independent of the choice of compactifications.

Now
dx

dt
= Aα(In − κ−1yα(∇κ)T )f(y) = κkg(x),

d(s, θ)

dt
=


−s 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

B


sα1 0 · · · 0
0 sα2 · · · 0
...

...
. . .

...
0 0 · · · sαn

 f(y) = s−kgd(s, θ)

and

d(R, θ)

dt
=


−R 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

B


Rα1/2c 0 · · · 0

0 Rα2/2c · · · 0
...

...
. . .

...
0 0 · · · Rαn

 f(y) = R−k/2cgint(R, θ).
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The direct calculations indicate that (3.5) and (3.11) are not smoothly equivalent since the change
of coordinate Ch→qP : (s, θ1, · · · , θn−1) 7→ (x1, · · · , xn) is homeomorphic but not diffeomorphic at
{s = 0}.

In what follows, we apply the intermediate compactification Th,int associated with Th to showing
the equivalence of vector fields at infinity. Since the transformation Ch,int→qP is locally diffeomor-
phic by Proposition 2.15, then we have

dx

dt
= (JCh,int→qP )

d(R, θ)

dt
.

The corresponding desingularized vector fields are

dx

dτ
= κ−k(y(t))

dx

dt
and

d(R, θ)

dτint
= Rk/2c

d(R, θ)

dt
,

respectively, and hence we have

dx

dτ
= (κ(y(t))R1/2c)−k(JCh,int→qP )

d(R, θ)

dτint
.

By the property R ∼ κ−2c as p(y) → ∞, as stated in (Dir3) in Definition 2.10, the factor
(κ(y(t))R1/2c)−k is always positive. We then have the following statement.

Proposition 3.12. Let x = TqP (y) be the coordinate in quasi-Poincaré compactifications and
(R, θ) = Th,int(y) be the coordinate in the intermediate compactifications associated with directional

ones Th of the same type α. Then the desingularized vector fields dx
dτ = g(x) and d(R,θ)

dτint
= gint(R, θ)

are topological equivalent on {R ≥ 0} ×M .

Next compare the directional compactification Th and the associated intermediate compactifi-
cation Th,int. The change of coordinate Ch→h,int is obviously given by

(R, θ1, · · · , θn−1) = Ch→h,int(s, θ1, · · · , θn−1) = (s2c, θ1, · · · , θn−1)

and
JCh→h,int(s, θ1, · · · , θn−1) = diag(2cs2c−1, 1, · · · , 1).

and hence

dR

dt
=
d(s2c)

dt
= 2cs2c−1(g̃d(s, θ))s = 2c(g̃d(R, θ))R.

This relationship as well as the monotonicity of function R = s2c in {s ≥ 0} shows that all
trajectories in the (s, θ)-coordinate are mapped one-to-one onto the corresponding ones in the

(R, θ)-coordinates. Since Ch→h,int is homeomorphic in {s ≥ 0}×M , then the vector field d(R,θ)
dτint

=

gint(R, θ) and d(s,θ)
dτd

= gd(s, θ) are topologically equivalent.
Summarizing the above arguments, we have the following result, which implies that the dynam-

ics at infinity is independent of the choice of (quasi-Poincaré and directional) compactifications.

Theorem 3.13. Let x = TqP (y) be the coordinate in quasi-Poincaré compactifications and (s, θ) =
Th(y) be the coordinate in directional compactifications of the same type α. Then the desingularized

vector fields dx
dτ = g(x) and d(s,θ)

dτint
= gint(s, θ) are topological equivalent on {s ≥ 0} ×M .
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3.4 Dynamics at infinity

We have shown that desingularized vector fields associated with (2.1) can be defined including
infinity via quasi-Poincaré, directional and intermediate compactifications and that the qualitative
properties of dynamics for these vector fields are independent of the choice of compactifications
in the sense of topological equivalence. In this section, we discuss dynamics at infinity and cor-
respondence to divergent solutions of (2.1). Here we state a series of notions and results only for
quasi-Poincaré compactifications, as comparison with [4]. Obvious modifications for other com-
pactifications yield the corresponding results.

For quasi-Poincaré compactifications, Proposition 3.5 show that dynamics and invariant sets
at infinity make sense under time-variable desingularizations. For example, “equilibria at infinity”
defined below are well-defined.

Definition 3.14 (Equilibria at infinity). We say that the vector field (2.1) has an equilibrium at
infinity in the direction x∗ if x∗ is an equilibrium of (3.5) on the horizon E .

By using equilibria at infinity, blow-up and grow-up solutions (i.e., divergent solutions with
tmax =∞) are described in terms of asymptotic behavior for desingularized vector fields.

Theorem 3.15 (Divergent solutions and asymptotic behavior). Let y(t) be a solution of (2.1)
with the interval of maximal existence time (a, b), possibly a = −∞ and b = +∞. Assume that y
tends to infinity in the direction x∗ as t→ b− 0 or t→ a+ 0. Then x∗ is an equilibrium of (3.5)
on E.

Proof. The property b = sup{t | y(t) is a solution of (2.1)} corresponds to the property that

sup{τ | x(τ) = T (y(t)) is a solution of (3.5) in the time variable τ} =∞.

Indeed, if not, then τ → τ0 <∞ and limτ→τ0−0 x(τ) = x∗ as t→ b− 0. The condition x(τ) = x∗
is the regular initial condition of (3.5). The vector field (3.5) with the new initial point x(τ) = x∗
thus has a locally unique solution x(τ) in a neighborhood of τ0, which contradicts the maximality
of b. Therefore we know that τ → +∞ as t → b − 0. Since limτ→∞ x(τ) = x∗, then x∗ is an
equilibrium of (3.5) on E . The similar arguments show that t → a + 0 corresponds to τ → −∞
and that the same consequence holds true.

This theorem gives a description of divergent solutions from the viewpoint of dynamical sys-
tems; namely, assuming the C1-smoothness of desingularized vector fields (3.5) on D, divergent
solutions in the direction x∗ correspond to trajectories of (3.5) on the stable manifold W s(x∗)
of the equilibrium x∗. This correspondence opens the door to applications of various results in
dynamical systems to divergent solutions. Before moving to the next section, we gather several
properties of dynamics at infinity, which will be useful to concrete studies.

Theorem 3.16 (Dynamics at infinity). 1. The horizon E is an invariant manifold of (3.5).

2. Dynamics of (3.5) on E are dominated by the following vector field:

ẋi = (f̃α,k)i −

∑
j∈Iα

βjajx
2βj−1(f̃α,k)j

 xi
βi
, i = 1, · · · , n.
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3. Time evolution of 1− p(x)2c in τ -time scale is dominated by

d

dτ
(1− p(x)2c) = −

∑
j∈Iα

βjajx
2βj−1
j f̃j

 (1− p(x)2c).

4. Assume that the vector field f in (2.1) is quasi-homogeneous of type (α1, · · · , αn) and order
k + 1. Then the desingularized vector field g given in (3.5) satisfies

gi((−1)α1x1, · · · , (−1)αnxn) = (−1)k+αigi(x1, · · · , xn). (3.17)

In particular, for any asymptotically quasi-homogeneous vector field f in (2.1) of type (α1, · · · , αn)
and order k + 1, the desingularized vector field g satisfies (3.17) on E.

Proof. 1. We prove that d
dτ p(x)2c = 0 on E = {x ∈ Rn | p(x) = 1}. Direct calculations yield

1

2

d

dτ
p(x)2c =

1

2

d

dτ

∑
j∈Iα

ajx
2βj
j

 =
∑
j∈Iα

βjajx
2βj−1
j

dxj
dτ

=
∑
j∈Iα

βjajx
2βj−1
j

f̃j −
∑
j∈Iα

βiaix
2βi−1
i f̃i

 xj
βj


=
∑
j∈Iα

βjajx
2βj−1
j f̃j −

∑
j∈Iα

ajx
2βj
j

∑
j∈Iα

βiaix
2βi−1
i f̃i


=
∑
j∈Iα

βjajx
2βj−1
j f̃j −

∑
j∈Iα

βiaix
2βi−1
i f̃i

 = 0 since p(x) = 1.

2. It immediately follows from limp(x)→1 f̃(x) = f̃α,k by the asymptotic quasi-homogeneity of
f and (A1) in Proposition 2.7.

3. It immediately follows from calculations in the proof of statement 1.

4. First observe that κ((−1)α1x1, · · · , (−1)αnxn) = κ(x1, · · · , xn). Second, for all i, the func-
tion f̃i is quasi-homogeneous of type (α1, · · · , αn) and order k+αi by assumption. Then, for each
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i, we have

gi((−1)α1x1, · · · , (−1)αnxn) = f̃i((−1)α1x1, · · · , (−1)αnxn)

−

∑
j∈Iα

βjaj((−1)αjxj)
2βj−1f̃j((−1)α1x1, · · · , (−1)αnxn)

 (−1)αixi
βi

= (−1)k+αi f̃i − (−1)αi

∑
j∈Iα

(−1)αjβjajx
2βj−1
j (−1)k+αj f̃j

 xi
βi

= (−1)k+αi f̃i − (−1)k+αi

∑
j∈Iα

βjajx
2βj−1
j f̃j

 xi
βi

= (−1)k+αigi(x1, · · · , xn)

and complete the proof.

Remark 3.17. Theorem 3.16-4 shows that the vector field at infinity is equivariant with respect
to the symmetry ια(x) defined as

(x1, · · · , xn) 7→ ια(x) ≡ ((−1)α1x1, · · · , (−1)αnxn).

on E . In particular, if x ∈ E is an equilibrium of (3.5), then so is ια(x). In the homogeneous case,
the symmetry is just ια(x) = −x, as stated in Proposition 2.6 of [4].

4 Blow-up solutions and their asymptotic behavior

Theorem 3.15 indicates that trajectories for (3.5) tending to equilibria at infinity as τ → ∞ are
divergent solutions of original system (2.1). On the other hand, Theorem 3.15 itself does not
distinguish blow-up solutions from grow-up solutions. Under additional assumptions to equilibria
at infinity, we can characterize blow-up solutions from the viewpoint of dynamical systems. In
this section, we give criteria of blow-ups which are sufficient to apply in the following successive
sections.

As Section 3.4, we only show results for quasi-Poincaré compactifications. Note that all the
following arguments are independent of the choice of coordinates and, thanks to topological equiva-
lence; Theorem 3.13, all statements are also valid for directional and intermediate compactifications
with suitable modifications.

4.1 Stationary blow-up

Blow-up criterion with homogeneous compactification is discussed in [4]. Roughly speaking, pre-
ceding results stated there claim that linearly stable equilibria at infinity induce blow-up solutions.
In general, however, equilibria at infinity may admit unstable directions; namely, the Jacobian
matrix Jg of (3.5) at those points may admit eigenvalues with positive real parts. Global trajec-
tories asymptotic to such equilibria at infinity will be referred to as unstable grow-up or blow-up
solutions. The following theorem is one of our main results, which gives criteria of blow-ups not
only for stable but also unstable blow-up solutions.
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Theorem 4.1 (Stationary blow-up). Assume that (2.1) has an equilibrium at infinity in the di-
rection x∗. Suppose that the desingularized vector field g in (3.5) is C1 on an open set V ⊂ D
with E ⊂ V , and that x∗ is hyperbolic with ns > 0 (resp. nu = n− ns) eigenvalues of Jg(x∗) with
negative (resp. positive) real parts. Then, if the solution y(t) of (2.1) whose image x = TqP (y) is
on W s(x∗) for g, tmax <∞ holds; namely, y(t) is a blow-up solution. Moreover,

p(y(t)) ∼ c(tmax − t)−1/k as t→ tmax,

where k + 1 is the order of asymptotically quasi-homogeneous vector field f . Finally, if the i-th
component (x∗)i of x∗ with i ∈ Iα is not zero, then we also have

yi(t) ∼ c(tmax − t)−αi/k as t→ tmax.

Proof. First note that g as well as the generated flow is assumed to be C1 on V , which indicates
that the vector fields has an extension into a neighborhood of V in Rn. We can choose an open
neighborhood Ṽ of x∗ in Rn and a C1-change of coordinate h : (zu, zs) 7→ x in Ṽ such that
h(0) = x∗ ∈ Rn and that (3.5) in V is mapped into

żu = Λuzu, żs = Λszs, (4.1)

Λu = diag(J(λu1 ;mu
1 ), · · · J(λuku ;mu

ku)), Λs = diag(J(λs1;ms
1), · · · J(λsks ;m

s
ks)),

by Hartman-Grobman’s Theorem, where {λui }
ku
i=1 and {λsi}

ks
i=1 are distinct eigenvalues of Jg(x∗)

with positive and negative real parts, respectively. J(λ; k) denotes the k-dimensional Jordan block
matrix of λ, and {mu

k}
ku
k=1 and {ms

k}
ks
k=1 denote the dimension of Jordan block matrices associated

with {λuk} and {λsk}, respectively. Obviously
∑ku
k=1m

u
k = nu and

∑ks
k=1m

s
k = ns are required.

Note that, if {λui }
nu
i=1 and/or {λui }

nu
i=1 contain complex conjugate eigenvalues, say λui and λui+1 =

λui , then the corresponding diagonal part diag(λui , λ
u
i+1) of Λu is replaced by(

Reλui −Imλui
Imλui Reλui

)
.

A similar replacement is operated to Λs. All arguments below do not change under these replace-
ments.

Our focus here is the stable manifold W s(x∗) of x∗, which is transformed via the conjugacy
h into {zu = 0} ∩ h(V ) ⊂ h(Ṽ ). Solutions on the stable manifold W s(x∗) = W s(h(0)) are thus
written by

zu = 0, zs(τ) = eΛsτzs0,

in the z-coordinate, where (0, zs0) is an initial position of solution, which may be assumed to be in
h(Ṽ ). Consequently, we have

z(τ) = c1τ
ms1−1eReλs1τ (1 + o(1)) as τ →∞

with some constant c1, where 1 = (1, 1, · · · , 1)T ∈ Rn7. Hence, thanks to the conjugacy h = id+ v
with bounded continuous function v,

x(τ)− x∗ = h(z(τ)) = c2τ
ms1−1e−mτ (1 + o(1)) as τ →∞ (4.2)

7 In this estimate, the leading stable eigenvalue λs1 and its multiplicity is essential. Indeed, if λs1 is simple and λs2
is double (with geometric multiplier 1), for example, then the asymptotic behavior of corresponding eigendirections

has the order O(e−λ
s
1τ ) and O(τe−λ

s
2τ ), respectively. However, we immediately have τe−(λs2−λ

s
1)τ → 0 as τ →∞,

since λs2 > λs1, which indicates that τe−λ
s
2τ = o(e−λ

s
1τ ). The asymptotic behavior of trajectories is thus dominated

by decays associated with λs1.
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with −m ≤ Reλs1 < 0 and some constant c2.

Turn to the quantity 1− p2c(x(τ)) for . Near x∗ with p(x∗) = 1,

1− p2c(x(τ)) = 1−
∑
i∈Iα

ai(xi − (x∗)i + (x∗)i)
2βi = 1−

∑
i∈Iα

2βi∑
ki=1

ai2βiCki(x∗)
2βi−ki
i (xi − (x∗)i)

ki

= c3τ
ms1−1e−`τ (1 + o(1)) (4.3)

for some −` ≤ −m < 0, where the terms 1 and
∑
i∈Iα ai(x∗)

2βi
i are cancelled out. Recall that we

have for a certain initial point t0,

t− t0 =

∫ τ

0

dη

κ(y(η))k

=

∫ ∞
0

dη

κ(y(η))k
−
∫ ∞
τ

dη

κ(y(η))k

and the integrals converge due to (4.3)8. In particular, tmax < ∞ holds and the solution is a
blow-up solution. Thus

tmax − t =

∫ ∞
τ

dη

κ(y(η))k
= c4τ

k(ms1−1)/2ce−(k`/2c)τ (1 + o(1)) as τ →∞.

Since dt/dτ > 0 on trajectories on W s(x∗) for (3.5), this relation is then solvable for τ and, together
with (4.3), it yields that

1− p2c(x(τ)) ∼ (tmax − t)2c/k

and

p(y(t)) = p(x(τ))κ(x(τ)) =
p(x(τ))

(1− p(x(τ))2c)1/2c
∼ c(tmax − t)−1/k

as t→ tmax, where c3, c4 and c are certain constants.
It immediately follows from the above asymptotics that, for yi tending to x∗ with (x∗)i 6= 0,

yi(t) = κ(y(t))αixi(τ) ∼ p(y(t))αixi(τ) ∼ c(tmax − t)−αi/k as t→ tmax.

Theorem 4.1 generalizes the result in [4] in the sense that the blow-up criteria are valid even
for quasi-Poincaré compactifications, and that the blow-up behavior is characterized by not only
stable equilibria on E , but also hyperbolic ones. We then have the slogan: hyperbolic equilibria at
infinity induce blow-up solutions under the C1-smoothness of desingularized vector fields on D.

Remark that the non-resonance condition of eigenvalues, which is assumed in [4], is not actually
necessary.

Note that the blow-up rate of each component reflects the type α of asymptotically quasi-
homogeneous vector field f , unlike homogeneous compactifications. In Sections 6 and 7, we observe
various blow-up solutions in concrete systems, some of which involve equilibria at infinity of saddle
type. Such “unstable” blow-up solutions are expected to be the trigger of other singular nature in
systems like singular shock profiles (e.g., [10, 14, 15]).

8 This estimate holds only for trajectories corresponding to those on the stable manifold of x∗.
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Remark 4.2 (Lack of smoothness). In Theorem 4.1, we assumed the C1 smoothness of the
desingularized vector field g on D. In fact, in the case of quasi-Poincaré compactifications, the
vector field g may lose its smoothness on E , even if f is arbitrarily smooth. It is because of the
presence of radicals in (quasi-)Poincaré compactifications. For example, if f is a polynomial vector
field f(y) = (f1(y), · · · , fn(y)) with

fj(y) =

kj∑
i=0

∑
i1,··· ,in≥0,i1+···+in=i

cji1···iny
i1
i · · · y

in
n , cji1···in 6= 0 for some i1, · · · , in with

n∑
l=1

il = kj ,

(4.4)
the loss of smoothness of g may occur. Indeed, the form of f̃ indicate that the desingularized
vector field gi may contain κ−γ for some γ ∈ N. A direct calculation yields

∂κ−γ

∂xj
=

∂

∂xj

(
1−

n∑
i=1

aix
2βi
i

)γ/2c
= −2βjajγ

2c

(
1−

n∑
i=1

aix
2βi
i

)(γ−2c)/2c

x
2βj−1
j with j ∈ Iα,

which is singular on E if γ − 2c < 0. In the case of polynomial vector fields, we have a rough
sufficient condition for C1-extension of g on D, which is stated in Lemma 4.3.

Lemma 4.3. Let f = (f1, · · · , fn) be an asymptotically quasi-homogeneous polynomial vector field
of type α and order k + 1 given in (4.4). Suppose that

cji1···in = 0 for all i1, · · · , in with

n∑
l=1

αil ∈ {k + αj − γ | γ = 1, · · · , 2c− 1} (4.5)

holds for all j = 1, · · · , n. Then the desingularized vector field g in (3.5) is C1 on D.

Proof. Recall that gi = f̃i −
(∑n

j=1 βjajx
2βj−1
j f̃j

)
xi
βi

. The vector field gi is C1 on D if, at least,

all f̃j are C1 on D. Observe that

f̃j(x1, · · · , xn) = κ−(k+αj)fj(α1x1, · · · , αnxn)

= κ−(k+αj)

kj∑
i=0

∑
i1,··· ,in≥0,i1+···+in=i

cji1···inκ
αi1+···+αinxi1i · · ·x

in
n .

From the asymptotical quasi-homogeneity of f ,
∑n
l=1 αil ≤ k + αj . Therefore the κ-term in each

summand has the form

κ
∑n
l=1 αil−(k+αj) =

(
1−

n∑
i=1

aix
2βi
i

)(
∑n
l=1 αil−(k+αj))/2c

Arguments in Remark 4.2 show that the above term is C1 on D if either
∑n
l=1 αil = k + αj or

(k + αj) −
∑n
l=1 αil ≥ 2c holds for all j. Consequently, f̃j is C1 on D if (4.5) holds for all j, and

so is g, which completes the proof.

As for directional compactifications, the desingularized vector field gd is expected to be smooth
including E = {s = 0} if functions {hi} are chosen to be smooth functions, since these compactifi-
cations do not include any radicals of s.
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4.2 Periodic blow-up

Theorem 4.1 shows that trajectories on stable manifolds of hyperbolic equilibria at infinity cor-
respond to blow-up solutions, which are solutions we usually refer to as blow-ups. From the
viewpoint of dynamical systems, one expects that stable manifolds of hyperbolic invariant sets at
infinity also characterize blow-up solutions. The following theorem shows that this expectation is
true for periodic orbits.

Theorem 4.4 (Periodic blow-up). Assume that the desingularized vector field g in (3.5) associated
with (2.1) is C1 on D. Suppose that g admits a periodic orbit γ∗ = {xγ∗(τ)} ⊂ E, with period
T∗ > 0, characterized by a fixed point of the Poincaré map P : ∆ ∩ D → ∆ ∩ D. Let x∗ ∈ ∆ ∩ γ∗;
namely, P (x∗) = x∗. We further assume that all eigenvalues of Jacobian matrix JP (x∗) have
moduli away from 1 (namely, γ∗ is hyperbolic), at least one of which has the modulus less than 1.

Then the solution y(t) of (2.1) whose image x = TqP (y) is on W s(γ∗) for g satisfies tmax <∞;
namely, y(t) is a blow-up solution. Moreover,

p(y(t)) ∼ c(tmax − t)−1/k as t→ tmax,

where k + 1 is the order of asymptotically quasi-homogeneous vector field f . Finally, if the i-th
component (x∗)i of x∗ with i ∈ Iα is not zero, then we also have

yi(t) ∼ c(tmax − t)−αi/kxi(−c′ ln(tmax − t)) as t→ tmax

for some constants c ∈ R and c′ > 0.

Proof. First note that, by Hartman-Grobman’s theorem for hyperbolic periodic orbits (e.g., [7, 12,
13]), the (general C1) flow ϕτ near a hyperbolic periodic orbit γ is topologically conjugate9 to the
following linear bundle (skew-product) flow on the normal bundle Nγ in a neighborhood of γ×{0}:

Ψτ (q, v) = (ϕτ (q), Jϕτ (q)v), q ∈ γ∗, v ∈ Nu
q (γ∗)⊕Ns

q (γ∗),

where Rn = Nu
q (γ∗)⊕Tq(γ∗)⊕Ns

q (γ∗) is the Jϕτ (q(τ))-invariant splitting continuously depending
on q ∈ γ∗. Consider the flow ϕτ of g in (3.5) around γ∗ and associated Ψτ . The stable manifold of
γ∗ × {0} for Ψτ is characterized by

{(q, v) | q ∈ γ∗, v = 0⊕ vs ∈ Nu
q (γ∗)⊕Ns

q (γ∗)}.

Let πγ∗ : Nγ∗ → γ∗ be the natural projection (q, v) 7→ q. Then, for any solution z(τ) ∈ Tγ∗W s(γ∗)
of Ψτ , there is a point qz ∈ γ∗ such that πγ∗(z(0)) = qz. Let πN = id − πγ∗ . Note that the flow
Ψτ is the solution of the system

dq

dτ
= f(q),

dv

dτ
= (πN ◦ Jϕτ (q(τ)))v,

q(τ) ∈ γ∗, v(0) = v0 = 0⊕ v0,s ∈ Nu
q(0)(γ∗)⊕N

s
q(0)(γ∗).

9 For general periodic orbits γ, the Hartman-Grobman’s theorem gives the topological equivalence between
flows, namely, transformations between two flows may permit re-parameterizations of time variable. The re-
parameterizations may change the blow-up time and rate of solutions.
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Note that the splitting
⋃
q∈γ∗(Nu

q (γ∗) ⊕ Ns
q (γ∗)) is Jϕτ (q(τ))-invariant for all τ and that the

coefficient matrix Jϕτ (q(τ)) is T∗-periodic. Thus the Floquet theory indicates that there is a
T∗-periodic nonsingular matrix S(τ) and a matrix R such that

v(τ) = S(τ)eτRv0, Spec(eT∗R) = {λ1, · · · , λn−1}.

Under the change of coordinates, we may assume to express

u(τ) = Q(τ)eτΛu0, eT∗Λ = diag(J(λ1;m1), · · · , J(λk;mk)), 10 (4.6)

with
∑k
j=1mj = n−1. Thus, letting µ∗ a positive number satisfying µ∗ = maxi=1,··· ,n with |λi|<1 |λi|,

we have
|u(τ)| = C1τ

m∗−1eτl(1 + o(1)),

where l ≤ lnµ∗ < 0 and m∗ denotes the maximal dimension of Jordan block matrix of λi’s attaining
µ∗ = |λi|. Let zγ∗(τ) be the solution with πγ∗zγ∗(τ) = qz(τ) ∈ γ∗ and πN zγ∗(τ) ≡ 0 for τ ≥ 0.
Then we have

|z(τ)− zγ∗(τ)| = C2τ
m∗−1eτl(1 + o(1)).

Consequently, via the conjugacy h = id+ v with bounded continuous function v, we have

|x(τ)− xγ∗(τ)| = |h(z(τ)− zγ∗(τ))| = C3τ
m∗−1e−mτ (1 + o(1)) as τ →∞

with −m ≤ l and some constant C3.
Turn to the quantity 1 − p2c(x(τ)). Note that 1 − p2c(x) = |1 − p2c(x)| for any x ∈ D. Near

the periodic orbit γ∗ = {xγ(τ)}, we have

|1− p2c(x(τ))| =

∣∣∣∣∣1−∑
i∈Iα

ai(xi(τ)− xγ,i(τ) + xγ,i(τ))2βi

∣∣∣∣∣
=

∣∣∣∣∣1−∑
i∈Iα

2βi∑
ki=1

ai2βiCkixγ,i(τ)2βi−ki(xi(τ)− xγ,i(τ))ki

∣∣∣∣∣
= C4τ

m∗−1e−`τ (1 + o(1)) (4.7)

for some −` ≤ −m < 0 and a constant C4, where the terms 1 and
∑
i∈Iα aixγ,i(τ)2βi are cancelled

out for all τ . Recall that we have for a certain initial point t0,

t− t0 =

∫ τ

0

dη

κ(y(η))k

=

∫ ∞
0

dη

κ(y(η))k
−
∫ ∞
τ

dη

κ(y(η))k

and the integrals converge due to (4.7). In particular, tmax <∞ holds and the solution is a blow-up
solution. Thus

tmax − t =

∫ ∞
τ

dη

κ(y(η))k
= C5τ

k(m∗−1)/2ce−(k`/2c)τ (1 + o(1)) as τ →∞.

10 This expression is realized by using a nonsingular matrix CR obtaining the Jordan normal form of R and setting
u(τ) = CRv(τ) as well as u0 = CRv0, Q(τ) = CRS(τ). By our assumption of v0, only eigenvalues λi satisfying
|λi| ≤ µ∗ < 1 involves the time evolution of (4.6).
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Since dt/dτ > 0, this relation is then solvable for τ and, together with (4.3), it yields that

1− p2c(x(τ)) ∼ C6(tmax − t)2c/k

and

p(y(t)) = p(x(τ))κ(x(τ)) =
p(x(τ))

(1− p(x(τ))2c)1/2c
∼ c(tmax − t)−1/k (4.8)

as t→ tmax, where C5, C6 and c are certain constants.
It immediately follows from the above asymptotics that, for yi tending to x∗ with (x∗)i 6= 0,

yi(t) = κ(y(t))αixi(τ) ∼ p(y(t))αixi(τ) as t→ tmax.

Now the time-scale desingularization dτ = κ(y(t))kdt indicates

τ = τ0 +

∫ t

t0

κ(y(t̃))kdt̃ ∼ τ0 + c

∫ t

t0

(tmax − t̃)−1dt̃ as t, t0 → tmax

by (A1) in Proposition 2.7 and (4.8). The last integral is−c ln((tmax−t)/(tmax−t0)) = −c′ ln(tmax−
t). Thus we obtain

yi(t) ∼ p(y(t))αixi(τ) ∼ c(tmax − t)−αi/kxi(−c′ ln(tmax − t)) as t→ tmax

and complete the proof.

Remark 4.5. By the In-Phase Property of hyperbolic periodic orbits (e.g., [13]), it further follows
that the blow-up solution y(t) = T−1

qP (x(t)) possesses the following property: there is a point z0 ∈ γ
wth the solution z(τ) of (3.5) such that d(x(τ), z(τ)) → 0 as τ → ∞, in which sense periodic
blow-up solution y(t) behaves in-phase.

In addition to the convergence of norms, the in-phase property of invariant sets at infinity is
required for precise description of blow-up behavior when invariant sets at infinity themselves have
nontrivial behavior. We leave general cases such as non-hyperbolic periodic trajectories or general
invariant sets at infinity to the future works, since they are beyond our current aims.

5 Demonstration 1

In the rest of successive sections, we demonstrate several blow-up solutions as applications of our
arguments. First we go back to the polynomial Liénard equation (2.7). According to e.g. [3],
periodic orbits at infinity can be seen in polynomial Liénard equation{

ẋ = y,

ẏ = −(εxm +
∑m−1
k=0 akx

k)− y(xn +
∑n−1
k=0 bkx

k)
(5.1)

with appropriate degree11, where ε = ±1 if m 6= 2n + 1, and ε ∈ R \ {0} if m = 2n + 1. As an
example, consider (5.1) with the type (2n + 1, n). The aim of this section is to briefly review the
preceding results in a simple case as a nontrivial example generating periodic blow-up solutions.

First we immediately know the following property.

11 Some of periodic orbits at infinity are shown to be hyperbolic. However, there are no arguments from the
viewpoint of blow-up solutions.
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Lemma 5.1. The system (5.1) with m = 2n + 1 is asymptotically quasi-homogeneous with type
(1, n+ 1) and order n+ 1.

The vector field (5.1) thus associates the vector field (3.5) via the quasi-Poincaré compact-
ification of type (1, n + 1) and the time-variable desingularization dτ = κndt. Note that the
correspondence matches the transformation discussed in Section 2.2 in [3].

Arguments in [3] show that, if m = 2n+ 1 and n is even, the system (5.1) possesses limit cycles
at infinity which are repelling. By Theorem 4.4, the limit cycle would induce blow-up solutions in
backward-time flow.

To confirm this observation, consider the following system{
y′1 = y2,

y′2 = −y2n+1
1 − yn1 y2.

(5.2)

Here we use the (1, n+ 1)-polar coordinate (r, θ) given by

y1 =
Csθ

r
, y2 =

Snθ

rn+1
with Cs2n+2θ + (n+ 1)Sn2θ = 1.

We only note that ∫ T

0

CskθSn2θdθ > 0 if k is even. (5.3)

In the coordinate (r, θ), we have

r′ = −r2n+3(y2n+1
1 y′1 + y2y

′
2) = −r2n+3{y2n+1

1 y2 + y2(−y2n+1
1 − yn1 y2)}

= r2n+3yn1 y
2
2 = r−(n−1)CsnθSn2θ,

θ′ = −(n+ 1)rSnθy′1 + rn+1Csθy′2 = −(n+ 1)rSnθy2 + rn+1Csθ(−y2n+1
1 − yn1 y2)

= −(n+ 1)r−nSn2θ + rn+1Csθ(−Cs2n+1θr−(2n+1) − CsnθSnθr−(2n+1))

= −r−n(1 + Csn+1θSnθ).

Using the time-variable desinglarization dτ = r−ndt, we have

dr

dτ
= rCsnθSn2θ,

dθ

dτ
= −(1 + Csn+1θSnθ). (5.4)

Observe that r = 0 satisfies dr/dτ = 0 for any θ. Moreover, |Csn+1θSnθ| ≤ (Cs2(n+1)θ+Sn2θ)1/2 ≤
(Cs2(n+1)θ+(n+1)Sn2θ)1/2 = 1 and, since Cs0 = 1, then dθ/dτ never vanishes. As a consequence,
we have that the horizon {r = 0} is an invariant periodic orbit. Dynamics near {r = 0} is thus
reduced to the following regular system:

dr

dθ
= − CsnθSn2θ

1 + Csn+1θSnθ
r.

Then the Poincaré map P on a section {0 ≤ r ≤ ε, θ = 0} with small ε > 0 is

P (r0) = eα(T )r0, α(T ) = −
∫ T

0

CsnθSn2θ

1 + Csn+1θSnθ
dθ.
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By the fact 0 < C1 ≤ 1 + Csn+1θSnθ ≤ C2 < ∞ for θ ∈ [0, T ] and (5.3), we know α(T ) < 0.
Therefore the limit cycle at infinity {r = 0} is hyperbolic and repelling12. Theorem 4.4 and the
above calculations yield the following result.

Theorem 5.2. Consider (5.2) with the backward-time direction. Assume that n is even. Then
any divergent solution y(t) = (y1(t), y2(t)) is periodic blow-up solution with the blow-up rate{

y1(t) ∼ c1(tmax − t)−1/nx1(−c′ ln(tmax − t)),
y2(t) ∼ c2(tmax − t)−(n+1)/nx2(−c′ ln(tmax − t))

as t→ tmax.

The periodic blow-up behavior with n = 2 is described in Figure 2.

This theorem can be generalized to (5.1) with m = 2n+ 1 and even n by the same arguments
in [3], but we omit the detail.

(a) (b) (c)

Figure 2: Periodic blow-up : a solution of (5.4) with n = 2 in backward-time direction
(a) : a solution of (5.4) with n = 2 in backward-time direction. Coordinate is the orthogonal
(x1, x2)-coordinate with (a1, a2) = (1, 3) instead of polar (r, θ)-coordinate for simple numerical
calculations. The corresponding vector field (in backward-time direction) is

ẋ1 = −x2 − xn+1
1 x2

2, ẋ2 = x2n+1
1 + xn1x2 − (n+ 1)xn1x

3
2.

The initial data is set as (x1, x2) = (0.1, 0.1). (b) : the (t, y1)-plot of solution (a). (c) : the
(t, y2)-plot of solution (a). The solution blows up at tmax ∼ 20.785.

6 Demonstration 2

Next we consider the following system of ODEs:{
u′ = u2 − v,
v′ = 1

3u
3.

(6.1)

12 Although eα(T ) < 1, the variable θ varies in negative direction and hence the stability is totally reverse against
the apparent calculation result.
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The system (6.1) is well-known as the quasi-homogeneous part of traveling wave (viscous shock)
equation derived from the Keyfitz-Kranser model [10, 8], which is the following initial value problem
of the system of conversation laws:

∂u

∂t
+

∂

∂x
(u2 − v) = 0,

∂v

∂t
+

∂

∂x

(
1

3
u3 − u

)
= 0,

(u(x, 0), v(x, 0)) =

{
(uL, vL) x < 0,

(uR, vR) x > 0.
(6.2)

The aim of this section is to discuss the application of quasi-Poincaré compactifications to (6.1)
for observing blow-up solutions and related singularity aspect of solutions with the help of numerical
simulations. We see that quasi-Poincaré compactifications give us comprehensive observations of
blow-up solutions including unstable stationary blow-up solutions.

6.1 Compactification and desingularization

Let f(u, v) = (f1(u, v), f2(u, v)) be f1(u, v) = u2 − v and f2(u, v) = 1
3u

3. Then we immediately
have the following observation.

Lemma 6.1. The vector field f is (asymptotically) quasi-homogeneous of type (1, 2) and order 2.

We apply the quasi-Poincaré compactification of type (1, 2) with a1 = 1, a2 = 2 in Definition
2.4 as follows:

x1 =
u

κ
, x2 =

v

κ2
, κ = κ(u, v) = (1 + u4 + 2v2)1/4, (6.3)

as well as its quasi-polar coordinate representations

u =
Csθ

r
, v =

Snθ

r2
, r = κ−1. (6.4)

Note that this quasi-Poincaré compactification is exactly same as the scaling of solutions near
infinity in [14].

The desingularized vector field of order k + 1 = 2 for (6.1) with orthogonal coordinate (6.3) is
ẋ1 = (x2

1 − x2)− x1

{
x3

1(x2
1 − x2) +

1

3
x3

1x2

}
,

ẋ2 =
1

3
x3

1 − 2x2

{
x3

1(x2
1 − x2) +

1

3
x3

1x2

}
,

˙ =
d

dτ
. (6.5)

Similarly, the desingularized vector field of order k + 1 = 2 for (6.1) with quasi-polar coordinate
(6.4) is 

ṙ = −r
(

Cs5θ − 2

3
Cs3θSnθ

)
,

θ̇ = −2Cs2θSnθ + 2Sn2θ +
1

3
Cs4θ,

˙ =
d

dτd
. (6.6)

We consider all vector fields depending on situations. More precisely, we consider (6.5) for
calculations of equilibria at infinity and numerical simulations of global trajectories, while we
consider (6.6) for calculating eigenvalues of Jacobian matrix at these points.
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6.2 Dynamics at infinity

Here we consider equilibria of (6.5) on the horizon E =
{
p(x) = (1 + x4

1 + 2x2
2)1/4 = 1

}
. They

should satisfy 
(x2

1 − x2)− x1

2

{
2x3

1(x2
1 − x2) +

2

3
x3

1x2

}
= 0,

1

3
x3

1 − x2

{
2x3

1(x2
1 − x2) +

2

3
x3

1x2

}
= 0,

x4
1 + 2x2

2 = 1 (⇔ p(x) = 1).

(6.7)

We immediately know that, if (x1, x2) is an equilibrium at infinity, then x1, x2 6= 0,±1.
We may thus divide the second equation by x3

1 to obtain 1 = 6x2x
2
1 − 4x2

2. We thus have

x2
1 =

1 + 4x2
2

6x2
. (6.8)

Since x2
1 > 0, x2 has to be positive. Moreover, since x2

1 < 1, then x2 also has to satisfy 1+4x2
2 < 6x2.

Thus we have (3−
√

5)/4 < x2 < 1/
√

2.
The first equation of (6.7) is

(x2
1 − x2)−x1

2

{
2x3

1(x2
1 − x2) +

2

3
x3

1x2

}
= 0⇔ (x2

1 − x2)− x4
1(x2

1 − x2)− 1

3
x4

1x2 = 0

⇔ 2x2
2(x2

1 − x2)− 1

3
(1− 2x2

2)x2 = 0 (by x4
1 + 2x2

2 = 1).

We may divide the right-most side by x2 to obtain 6x2
1x2 − 1− 4x2

2 = 0, which is exactly same as
(6.8). We substitute (6.8) into p(x) = 1 to obtain(

1 + 4x2
2

6x2

)2

+ 2x2
2 = 1⇔ (1 + 4x2

2)2 = 36x2
2(1− 2x2

2)

⇔ 1 + 8λ+ 16λ2 = 36λ− 72λ2 (setting λ ≡ x2
2)

⇔ λ =
7± 3

√
3

44

which satisfy λ = x2
2 >

(
3−
√

5

4

)2
 .

Thus we have

x2 =

√
7 + 3

√
3

44
≈ 0.52648388611,

√
7− 3

√
3

44
≈ 0.20247601301 ∈

(
3−
√

5

4
,

1√
2

)
,

as well as

x1 = ± 4

√
15− 3

√
3

22
≈ ±0.81704027943, ± 4

√
15 + 3

√
3

22
≈ ±0.97883950723.

As a consequence, we obtain the following result.
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Lemma 6.2. Equilibria at infinity of (6.1) associated with quasi-Poincaré compactification with
type (1, 2) and order 2 are the following four points:

p±1 =

± 4

√
15 + 3

√
3

22
,

√
7− 3

√
3

44

 , p±2 =

± 4

√
15− 3

√
3

22
,

√
7 + 3

√
3

44

 .

Next we consider the dynamics of (6.5) on E , which is the dynamics on a simple closed curve
(namely, no self-crossing points) with four equilibria. Note that E is an invariant submanifold of
D for (6.5) from Theorem 3.16-1. Dynamics on E behaves monotonously off four equilibria stated
in Lemma 6.2. In particular, the vector field (6.5) at (x1, x2) = (0,±1) is

ẋ1 |(x1,x2)=(0,±1)= ∓1, ẋ2 |(x1,x2)=(0,±1)= 0,

Similarly, we have

ẋ1 |(x1,x2)=(± 4
√

1/2,1/2)
=

1√
2
− 1

3
> 0, ẋ2 |(x1,x2)=(± 4

√
1/2,1/2)

=
±1
4
√

2

(√
2

3
− 1

2

)
< 0.

Consequently, we have the following result, which can be also obtained for quasi-polar coordi-
nates.

Proposition 6.3. There are heteroclinic orbits for (6.5) in E from (i) : p−1 to p+
1 , (ii) : p+

2 to
p+

1 , (iii) p+
2 to p−2 , and (iv) p−1 to p−2 . The closure of these orbits fulfills E.

6.3 Blow-up solutions

We calculate the Jacobian matrix of (6.5) as well as (6.6) at p±i . Both vector fields (6.5) and (6.6)
are C1 on ∂D. According to Theorem 4.1, equilibria at infinity p±i induce blow-up solutions if they
are hyperbolic. We immediately have

Jg(r, θ)|r=0 ≡
∂g(r, θ)

∂(r, θ)
|r=0 =

(
−Cs5θ + 2

3Cs3θSnθ 0
sCsθSnθ 4CsθSn2θ − 2Cs5θ + 8

3Cs3θSnθ

)
. (6.9)

Then the eigenvalues µr and µθ are

µr(θ) = −Cs5θ +
2

3
Cs3θSnθ, µθ(θ) = 4CsθSn2θ − 2Cs5θ +

8

3
Cs3θSnθ,

which describes the stability in the r-direction and the θ-direction, respectively.

• At p+
1 ,

µr = −

(
15 + 3

√
3

22

)3/4
√15 + 3

√
3

22
− 2

3

√
7− 3

√
3

44

 ≈ −0.7719863801113,

µθ = 2

(
15 + 3

√
3

22

)1/4
−4− 3

√
3

11
+

4

3

√
(15 + 3

√
3)(7− 3

√
3)

22 · 44

 ≈ −1.130266505985.
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• At p−1 , µr(p
−
1 ) = −µr(p+

1 ) and µθ(p
−
1 ) = −µθ(p+

1 ) by symmetry.

• At p+
2 ,

µr = −

(
15− 3

√
3

22

)3/4
√15− 3

√
3

22
− 2

3

√
7 + 3

√
3

44

 ≈ −0.1726609270826,

µθ = 2

(
15− 3

√
3

22

)1/4
−4 + 3

√
3

11
+

4

3

√
(15− 3

√
3)(7 + 3

√
3)

22 · 44

 ≈ +0.9434368505431.

• At p−2 , µr(p
−
2 ) = −µr(p+

2 ) and µθ(p
−
2 ) = −µθ(p+

2 ) by symmetry.

That is, p+
1 is a sink, p−1 is a source, and both p±2 are saddles. Hyperbolicity is independent of

the choice of compactifications13. Theorem 4.1 implies that trajectories of (6.1) whose images are
asymptotic to these equilibria in appropriate time directions, which are shown in Figure 3, are
blow-up solutions.

Figure 3: Global trajectories of (6.5) on D
(a) Red : global trajectories through x1 = 0, x2 > 0. (b) Green : global trajectories through
x1 = 0, x2 < 0. (c) Blue : global trajectories connecting p−1 and the origin. (d) Purple : global
trajectories connecting the origin and p+

1 .
All trajectories are computed by using standard Runge-Kutta explicit scheme, not advanced scheme
for hyperbolic systems such as Godunov scheme for systems of conservation laws. Trajectories
(b), (c) and (d) are actually correspond to blow-up solutions, because all equilibria at infinity are
hyperbolic.

13 Indeed, numerical computations for quasi-Poincaré compactifications indicate that these equilibria as those for
(6.5) are hyperbolic and the same stability information as those for (6.6).
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7 Demonstration 3

In this section, consider the Riemann problem of the following system of conservation laws derived
from (simplified) two-phase, one-dimensional imcompressible flow [9]:

βt + (vB1(β))x = 0, vt + (v2B2(β))x = 0 (7.1)

with

(β(x, 0), v(x, 0)) =

{
UL ≡ (βL, vL) x < 0,

UR ≡ (βR, vR) x > 0,
(7.2)

where

B1(β) =
(β − ρ1)(β − ρ2)

β
, B2(β) =

β2 − ρ1ρ2

2β2

and ρ2 > ρ1 are positive constants. Observe that B1(β) < 0 for β ∈ (ρ1, ρ2) and B1(β) > 0 for
0 < β < ρ1, β > ρ2. Note that eigenvalues of the Jacobian matrix of F (U) = (vB1(β), v2B2(β))T

for U = (β, v) is

λ(U) = 2vB2(β)± v
√
B1(β)B′2(β), B′2(β) =

ρ1ρ2

β3

and have nonzero imaginary parts except when β = ρi or v = 0. In particular, if β is in the interior
of physical range ρ1 ≤ β ≤ ρ2, then the system is not strictly hyperbolic, which leads to change
several properties associated with characteristics. Details are stated in [9].

In contrast with (6.2), the variable β is assumed to be bounded for solutions of (7.1) from the
physical viewpoint14 and the applications of full compactifications (namely, nontrivial transforma-
tions for all variable) is not suitable for blow-up behavior. Therefore, when we consider blow-up
solutions of (7.1) with the physical relevance, it is natural to consider the boundary value problem
of ordinary differential equations of the type containing 0:{

β′ = vB1(β)− cβ − c1,
v′ = v2B2(β)− cv − c2,

′ =
d

dζ
, ζ = x− ct, (7.3)

lim
ζ→−∞

(β(ζ), v(ζ)) = (βL, vL), lim
ζ→+∞

(β(ζ), v(ζ)) = (βR, vR),

where c is the speed of traveling waves

c =
vRB1(βR)− vLB1(βL)

βR − βL

and (c1, c2) = (c1L, c2L) or (c1R, c2R) with{
c1L = vLB1(βL)− cβL,
c2L = v2

LB2(βL)− cvL,

{
c1R = vRB1(βR)− cβR,
c2R = v2

RB2(βR)− cvR.

The system (7.3) is actually the traveling wave (viscous shock) equation of (7.1) for (β(t, x), v(t, x)) =

(β̂(ζ), v̂(ζ)). Easy calculations yield the following property.

14 The constraint comes from the fact that β is a linear combination of the volume fractions (the sum of these is
always 1) and the densities of phases (ρ1 and ρ2).
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Lemma 7.1. The vector field in the right-hand side of (7.3) is defined in a neighborhood of
{ρ1 ≤ β ≤ ρ2} × R and asymptotically quasi-homogeneous of type (0, 1) and order 2.

Following Lemma 7.1, we choose the directional compactification T of type (0, 1) : (β, v) 7→
(x1, r) = (β, v−1). Direct calculations yield the following desingularized vector field on {r ≥
0} × {ρ1 ≤ β ≤ ρ2}: 

dx1

dτ
= B1(x1)− cx1r − c1r,

dr

dτ
= −r

{
B2(x1)− cr − c2r2

}
,

(7.4)

where τ is the desingularized time-scale given by dτ = r−1dt. Obviously, (x1, r) = (ρ1, 0) ≡ p1 and
(ρ2, 0) ≡ p2 are equilibria of (7.4) on the horizon E = {r = 0} and the vector field on E \ {p1, p2}
is monotone on each component. In the coordinate (x1, r), the desingularized vector field (7.4) is
C1 locally including E , and hence the Jacobian matrices of (7.4)

Jg(x1, r) =

(
dB1

dx1
− cr −cx1 − c1

−r dB2

dx1
−(B2(x1)− cr − c2r2)− r{−c− 2c2r}

)
at p1 and p2 make sense, which are

Jg(p1) =

(
2ρ21−ρ1(ρ1+ρ2)

ρ21
−cρ1

0 −B2(ρ1)

)
, Jg(p2) =

(
2ρ22−ρ2(ρ1+ρ2)

ρ22
−cρ2

0 −B2(ρ2)

)
and eigenvalues {µ1, µ2} are

µ1(p1) = 2− (ρ1 + ρ2)

ρ1
< 0, µ2(p1) = −1

2

(
1− ρ2

ρ1

)
> 0,

µ1(p2) = 2− (ρ1 + ρ2)

ρ2
> 0, µ2(p2) = −1

2

(
1− ρ1

ρ2

)
< 0.

These results indicate that both p1 and p2 are hyperbolic saddles. Theorem 4.1 thus shows that
trajectories on W s(p2) (in forward time) and Wu(p1) (in backward time) correspond to blow-up
solutions of (7.3). Phase portraits of (7.4) is shown in Figure 4. The equation (7.4) contains the
following sequence of heteroclinic orbits:

W1 : T (UL)→ p2, W2 : p2 → p1, W3 : p1 → T (UR).

8 Conclusion

We have discussed blow-up criteria of differential equations from the viewpoint of dynamical sys-
tems and singularities. As a prototype, we have introduced quasi-Poincaré compactifications, which
is a quasi-homogeneous generalization of (homogeneous) Poincaré compactifications. Comparing
with the other type of compactifications such as Poincaré-Lyapunov (PL-)disks, we have shown
that the qualitative properties of dynamics at infinity are independent of the choice of compact-
ifications, which indicates that we can choose compactifications suitable for our demand (e.g.,
stationary or periodic blow-up solutions, or their numerical simulations).
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Figure 4: The sequence {Wi}3i=1 for (7.4) in the coordinate x = (x1, r)
W1 : a heteroclinic orbit connecting xL = T (UL) = (1.9, 0.25) and p2. Note that xL is a source
equilibrium of (6.1) with (c1, c2) = (c1L, c2L). W2 : a heteroclinic orbit connecting p2 and p1. W3 :
a heteroclinic orbit connecting p1 and xR = T (UR) = (1.5, 0.2). Note that xR is a sink equilibrium
of (7.4) with (c1, c2) = (c1R, c2R).

(a) (b)

Figure 5: Profiles of (β(t, x), v(t, x)) = (β̂
(
x−ct
εr

)
, v̂
(
x−ct
εr

)
) for (7.1) corresponding to {Wi}3i=1

(a) : Profile of β̂(x−ctεr ). (b) : Profile of v̂(x−ctεr ). The factor r stems from the time-scale desingular-
ization dτ = r−1dt. Asymptotic behavior in the outer layer (namely, as x− ct→ ∓∞) corresponds
to W1 and W3, respectively. Signatures of β and v in the inner layer (namely, near Dirac delta
singularity) reflect transition of W2. These profiles transit in the positive x direction with the speed
c ≈ 1.60964912281.
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We have also shown that the time-variable desingularization and hyperbolic invariant sets,
such as equilibria and periodic orbits, at infinity induce blow-up solutions as well as the specific
asymptotic behavior including blow-up rates. These ideas open the door to analysis of blow-ups
and related finite-time singularities from algebraic and geometric viewpoints.

We end our arguments by showing several future prospects of the present discussions.

General quasi-homogeneous compactifications

In the theory of (admissible) homogeneous compactifications [4], the Poincaré compactification is
settled into the central one in the sense that the direction at infinity is distinguished and that the
degeneracy of points at infinity is removed as possible. These compactifications give us global coor-
dinate systems compared with directional compactifications such as PL-disks. On the other hand,
the Poincaré-type compactifications need calculations of radicals, which may break smoothness of
(desingularized) vector fields at infinity, as discussed in Section 4.1. As for homogeneous compact-
ifications, there are several admissible compactifications, such as parabolic compactifications, such
that polynomial vector fields are mapped into rational ones. They overcome all difficulties coming
from radicals appeared in compactifications for studying dynamics, keeping the presence of global
coordinate representations.

With this in mind, it is natural to consider the quasi-homogeneous analogue of general admis-
sible compactifications which avoids difficulties coming from radicals. Various properties which
quasi-Poincaré compactifications possess in the present arguments will be the basis on construct-
ing an admissible class of quasi-homogeneous compactifications. Admissible quasi-homogeneous
compactifications which generalize admissible homogeneous compactifications (e.g., [4]) are our
next focuses for constructing general theory and applications to, say rigorous numerics of blow-up
solutions mentioned below.

General asymptotics of blow-up solutions

Our main theorems in Section 4 show that hyperbolic equilibria and periodic orbits at infinity
admitting nontrivial stable manifolds induce blow-up solutions for original systems. From the
viewpoint of dynamical systems, it is natural to consider blow-up solutions whose asymptotics are
followed by general hyperbolic (or more general) invariant sets at infinity. The key issues for these
results are topological conjugacy of dynamics to linearized systems and in-phase (or shadowing)
property of invariant sets. Various studies of invariant sets at infinity will lead to new direction of
blow-up analysis for differential equations.

Rigorous numerics of blow-up solutions for asymptotically quasi-homogeneous
vector fields

Our present arguments are motivated in rigorous numerics of trajectories in dynamical systems
with certain singularities, such as blow-up solutions, and Riemann solutions admitting singular
shocks in systems of conservation laws (e.g., [15]). Rigorous numerics, mainly based on interval
arithmetic, are ones of numerical computation techniques which encloses all numerical errors such
as truncation or rounding errors with appropriate mathematical estimates. Interval arithmetic
enables us to compute enclosures where mathematically correct objects are contained in the phase
space. These enclosures give explicit error bounds of rigorous solutions.
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Recently, rigorous numerics are applied to validating blow-up solutions of ODEs by the author
and his collaborators [16], which applies (homogeneous) compactifications and Lyapunov functions
to enclose rigorous blow-up times of blow-up solutions. One of directions extending arguments
in [16] is the application of the present theory, which will lead to validate blow-up solutions of
(asymptotically) quasi-homogeneous systems, even for periodic blow-ups and singular shock pro-
files.
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