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A GEOMETRIC DESCRIPTION OF THE SETS OF PALINDROMIC
AND ALTERNATING MATRIX PENCILS WITH BOUNDED RANK∗

FERNANDO DE TERÁN†

Abstract. The sets of n × n >-palindromic, >-antipalindromic, >-even, and >-odd matrix
pencils with rank at most r < n are algebraic subsets of the set of n × n matrix pencils. In this
paper, we determine their dimension and we prove that they are all irreducible. This is in contrast
with the nonstructured case, since it is known that the set of n × n matrix pencils with rank at
most r < n is an algebraic set with r + 1 irreducible components. We also show that these sets of
structured pencils with bounded rank are the closure of the congruence orbit of a certain structured
pencil given in canonical form. This allows us to determine the generic canonical form of a structured
n× n matrix pencil with rank at most r, for any of the previous structures.
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1. Introduction. Structured matrix pencils arise in several problems of applied
mathematics, either as modeling physical systems by themselves or as a tool to com-
pute the relevant information in the analysis of other higher-order systems by lin-
earization (see, for instance, [22] and the references therein). Some of the structures
appearing most frequently in applications are the skew-symmetric, the >-palindromic
(or >-antipalindromic), and the >-alternating structures (see section 2 for the def-
inition of these structures). Among the sets of n × n structured matrix pencils, an
important class from the point of view of applications is the class of low-rank pencils.
In this paper, low-rank means essentially rank-deficient, that is, we are interested in
n× n pencils with rank r and r < n. Low-rank pencils arise when modeling systems
that depend on many parameters, but only a few of them are modified (or perturbed),
regardless of the size (in norm) of the modification. Some particular settings where
low-rank pencils arise include dissipative dynamical systems [2, sect. 1.2], network
analysis in electrical engineering [27], or multibody system simulation [18].

Therefore, low-rank matrix pencils naturally arise associated with low-rank per-
turbations, a subject which has attracted the attention of researchers in the recent
years [1, 2, 4, 7, 9, 24, 25]. In a similar way as the understanding of the underlying
geometry of the set of matrix pencils is helpful to analyze the change of the scalar
spectral information under small perturbations [16, 17], the analysis of the geometry
of low-rank matrix pencils may be helpful in the explanation of the change of the
spectral information under low-rank perturbations. To be more precise, the scalar
spectral information (partial multiplicities and minimal indices) comprises the invari-
ants of matrix pencils under strict equivalence transformations. Two matrix pencils
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A0 +λA1 and B0 +λB1 are said to be strictly equivalent if there exist two nonsingular
matrices V,W such that V (A0 +λA1)W = B0 +λB1. Then, all matrix pencils having
the same scalar spectral information lie in the strict equivalence orbit of a given pencil
A0+λA1. As a consequence, the knowledge of the geometry of matrix pencils, in terms
of the inclusion relationships between the closures of strict equivalence orbits, may
allow to explain the changes in the spectral information due to small perturbations.
This is translated to the set of low-rank matrix pencils and low-rank perturbations.

A description of the set of low-rank pencils (nonstructured) was provided in [4],
where it was proved that the set of m × n matrix pencils with rank at most r <
min{m,n} is an algebraic set with r+1 irreducible components, which are the closures
of the equivalence orbits of some specific pencils given in Kronecker canonical form (a
similar description has been recently obtained in [11, Thm. 3.2] for the set of m× n
matrix polynomials with grade d and rank at most r). Another description of the set
of m×n matrix pencils with rank at most r < min{m,n} was presented in the recent
papers [7, 8]. In [7, Lemma 3.1], the authors provide a decomposition of the set of
n×n matrix pencils with rank at most r as the union of r+ 1 sets consisting of sums
of r rank-1 pencils in such a way that some of the column vectors of this sum are
constant vectors, and the remaining ones are allowed to have degree 1 (though in [7]
it is only stated for square pencils, such a decomposition is valid also for rectangular
m×n pencils with rank r < min{m,n}). Then, it was proved in [8] that each of these
sets corresponds to each of the irreducible components of the algebraic set of matrix
pencils with rank at most r, which results in a more constructible description of these
irreducible components.

If we restrict ourselves to structured pencils and, accordingly, to structured per-
turbations, some remarkable differences arise. The restrictions imposed by the struc-
ture may lead to a different generic behavior under low-rank perturbations [10]. This
is just an indication that the analysis of the set of structured low-rank pencils deserves
some special attention. In the recent years, some effort has been devoted to analyze
and describe the geometry of structured matrix pencils. In particular, the set of skew-
symmetric pencils was studied in detail in [13, 14], and the set of symmetric pencils
was analyzed in [15]. However, no special attention has been paid so far to the set of
structured matrix pencils with bounded rank. To our knowledge, the only reference
on this is the recent work [12]. In that paper, the authors describe the generic scalar
spectral information of skew-symmetric matrix polynomials with bounded rank using
orbit closures. This includes the case of skew-symmetric matrix pencils. The main
results in the present work are the counterpart of those in [12], but for >-palindromic,
>-antipalindromic, and >-alternating matrix pencils, instead of skew-symmetric ones.

The set of n× n structured matrix pencils with rank at most r < n, denoted by
Sr, for any of the structures in Table 2.1, is an algebraic subset of the set of pencils
A0 + λA1, which can be identified with C2n2

(by considering a pencil A0 + λA1 as a
pair (A0, A1)). To see this, notice that Sr is defined as the intersection of two algebraic
sets. The first one is the set defined by the specific structure, and the second one is the
set defined by the low-rank condition. Both them are algebraic sets because they can
be defined in terms of multivariable polynomials in the entries of the pencil; in other
words, in terms of multivariable polynomials with 2n2 variables (the n2 coordinates
of A0 and the n2 coordinates of A1). For the second set, these polynomials are all the
(r + 1) × (r + 1) minors of general n × n pencils. For the first set, the polynomials
depend on the structure. For instance, for the >-palindromic structure, they are
[A0]ij − [A1]ji, for 1 ≤ i, j ≤ n. The goal of this paper is to analyze the geometry of
Sr and, in particular, to answer the following questions:
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Q1: Which are the irreducible components of Sr?
Q2: Which is the dimension of Sr?
One of the motivations to address questions Q1 and Q2 is to answer the following

question: Given r < n, which is the most likely Kronecker canonical form for struc-
tured n×n pencils with rank at most r? This question is interesting in the context of
low-rank perturbations, when one is interested in describing the most likely (generic)
change of the Kronecker canonical form due to low-rank perturbations. In particular,
for the unstructured case, as mentioned above, the set of n × n pencils with rank at
most r < n is decomposed into r + 1 sets in [7] (which coincide with the irreducible
components of the algebraic set of n × n pencils with rank at most r < n [8]). This
allowed one to analyze the generic change of the Kronecker canonical form of matrix
pencils after low-rank perturbations by looking at the behavior when perturbing with
pencils in each of these r + 1 sets.

We provide answers to questions Q1 and Q2 and, as a consequence, we determine
the most likely (generic) canonical form under congruence of structured matrix pencils
with bounded rank, for any of the structures in Table 2.1. Two matrix pencils A0+λA1

and B0 + λB1 are said to be congruent if there is some invertible matrix P such that
B0 + λB1 = P (A0 + λA1)P>. This relation preserves any of the previous structures;
that is, if one of A0 +λA1 or B0 +λB1 satisfies any of these structures, then the other
one does as well. This is no longer true if we replace congruence by strict equivalence,
which is the natural relation for unstructured matrix pencils. This is the reason for
considering the more restrictive relation of congruence, instead of strict equivalence,
in this work. The most remarkable difference with the unstructured case regarding
Q1 is that, while the set of n × n pencils (nonstructured) with rank at most r < n
has, as mentioned, r + 1 different irreducible components, the set Sr is irreducible,
so it has only one irreducible component, for any of the structures S in Table 2.1.
And regarding the generic canonical form, while in the unstructured case there is no
a generic canonical form for n×n pencils with rank at most r, in the structured case
there is such a generic canonical form.

The paper is organized as follows. In section 2 we introduce the basic notation
and definitions used in the paper. In section 3 we present a couple of results which are
key in the proof of the main results of the paper. These results are provided in section
4. In particular, Theorem 4.1 shows that the set of n× n >-palindromic pencils with
rank at most r < n is an irreducible algebraic set, and provides a description of this
set as the closure of the congruence orbit of certain pencil given in canonical form.
This is, precisely, the generic canonical form for >-palindromic pencils with rank at
most r, as stated in Corollary 4.3. Similar results are presented in Theorem 4.2 for the
>-antipalindromic structure, and in Theorems 4.5 and 4.6 for the >-even and >-odd
structures, respectively. In section 4.3 we compare our results on the dimension of
the sets of structured pencils with bounded rank with the dimension of the set of
arbitrary n × n structured pencils (that is, when r = n, which allows for full-rank
pencils), and also with the set of unstructured pencils. We conclude in section 5 with
a summary of the main contributions of the paper and some indications on further
research on the topic.

2. Basic definitions and notation. Throughout the paper we use the following
notation. The symbol Ik (or just I, when the size is clear by the context) denotes
the k × k identity matrix. By ej we denote the jth canonical vector, that is the
jth column of the identity matrix, where the size of this matrix depends on the
context. The notation A> stands for the transpose of the matrix A. The set of vector
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Table 2.1
Structured pencils and notation for the sets of structured pencils with rank ≤ r.

Structure set S Definition
A0 + λA1 ∈ S

Notation
{A0 + λA1 ∈ S : rank(A0 + λA1) ≤ r}

>-palindromic A>1 = A0 Palr
>-antipalindromic A>1 = −A0 Apalr

>-even A>0 = A0,A>1 = −A1 Evenr

>-odd A>0 = −A0,A>1 = A1 Oddr

polynomials with n coordinates (that is, vectors whose n coordinates are polynomials
in the variable λ) is denoted by C[λ]n. Given a vector v(λ) ∈ C[λ]n, we denote by deg v
the maximum degree of its coordinates. A matrix pencil is a matrix polynomial with
degree 1. In other words, a matrix pencil is of the form A0+λA1, with A0, A1 ∈ Cm×n.
Since we deal only with structured pencils, which must be square, we only consider
the case m = n. The reversal of A0 + λA1 is the pencil rev(A0 + λA1) := A1 + λA0.
The rank of a matrix pencil A0 + λA1 is the order of the largest nonidentically zero
minor (considered as a scalar polynomial in λ). In other words, it is the rank of
A0 + λA1 viewed as a matrix in the field of rational functions in the variable λ. This
is sometimes referred to in the literature as the normal rank (see, for instance, [17]).

We deal with the set of n × n structured matrix pencils A0 + λA1 having any
of the structures indicated in Table 2.1, and with rank at most r < n. This table
includes also the abbreviations used in the paper for each of the sets of low-rank
structured matrix pencils. The >-even and >-odd structures are both gathered under
the common denomination >-alternating.

The canonical form under strict equivalence of matrix pencils is the Kronecker
canonical form (KCF), which consists of a direct sum of certain (canonical) blocks
[19, Ch. XII, sect. 4]. When the pencil enjoys some particular structure, like the ones
in Table 2.1, this structure is translated into the KCF in terms of some restrictions
in the number and sizes of certain types of blocks. However, the strict equivalence
transformations that lead to the KCF do not necessarily preserve the structure. More-
over, the KCF does not fulfill any of the structures in Table 2.1 for general structured
pencils. Nonetheless, an equivalent canonical form to the KCF can be achieved using
structure-preserving transformations. In particular, for the structures in Table 2.1,
these are congruence transformations. In other words, given any pencil S(λ) fulfilling
any of the structures in Table 2.1, there is a nonsingular matrix V such that V S(λ)V >

is in some appropriate canonical form, which depends on the particular structure, and
that displays the information contained in the KCF. We will recall later in this sec-
tion the canonical form for the >-palindromic structure, which is the only one we
need in this paper. For the remaining structures, we refer the reader to [2] and the
references therein (see also [23, Cor. 4.3] for the >-alternating structure). All these
canonical forms are, like the KCF, a direct sum of canonical blocks, including some
of the following ones.

A right singular block of order α is the α× (α+ 1) matrix pencil:

Lα(λ) :=

 λ 1
. . .

. . .

λ 1


α×(α+1)

.
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From this block we construct the following four kinds of blocks of size (2α+1)×(2α+1),
which appear in the canonical form for structured matrix pencils:

M ]
α(λ) :=

[
0 Lα(λ)

revLα(λ)> 0

]
(2α+1)×(2α+1)

,

M−]α (λ) :=

[
0 Lα(λ)

− revLα(λ)> 0

]
(2α+1)×(2α+1)

,

M [
α(λ) :=

[
0 Lα(λ)

Lα(−λ)> 0

]
(2α+1)×(2α+1)

,

M−[α (λ) :=

[
0 Lα(λ)

−Lα(−λ)> 0

]
(2α+1)×(2α+1)

.

More precisely, the >-palindromic canonical form contains blocks of type M ]
α(λ), the

>-antipalindromic canonical form contains blocks of type M−]α (λ), the >-even canoni-
cal form contains blocks of type M [

α(λ), and the >-odd canonical form contains blocks
of type M−[α (λ). These are the blocks associated to the singular spectral structure.
The canonical forms contain also a direct sum of blocks that comprise the regular
spectral structure, and which are built up from Jordan blocks associated with finite
and infinite eigenvalues. A Jordan block of order k associated with the eigenvalue λ0
is the following block with size k × k:

Jk(λ0) =


λ0 1

. . .
. . .

λ0 1
λ0


k×k

.

Now we are in the position to state the canonical form for congruence of >-palindromic
matrix pencils. Such a canonical form can be found in [29], but we are using here a
different notation. For more details on this canonical form we refer the reader to [3].

Theorem 2.1. (Canonical form of >-palindromic pencils). Any >-palindromic
matrix pencil L(λ) is congruent to a direct sum of blocks of the following types:

(i) Blocks of type M ]
α(λ).

(ii) Palindromic pairs of Jordan-like blocks with even size associated with λ0 = −1:[
0 λIβ + Jβ(1)

Iβ + λJβ(1)> 0

]
,

with β an even number.
(iii) Palindromic pairs of Jordan-like blocks with odd size associated with λ0 = 1:[

0 λIγ + Jγ(−1)
Iγ + λJγ(−1)> 0

]
,

with γ an odd number.
(iv) Palindromic pairs of Jordan-like blocks associated with −λ0 and −1/λ0

(λ0 6= ±1):

(2.1)

[
0 λIδ + Jδ(λ0)

Iδ + λJδ(λ0)> 0

]
.
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(v) Palindromic Jordan-like blocks with even size associated with λ0 = 1:

(2.2)



λ− 1
λ− 1 1

. .
.

. .
.

λ− 1 1
1− λ λ+ 1

1− λ λ

. .
.

. .
.

1− λ λ


(2ε)×(2ε)

.

(vi) Palindromic Jordan-like blocks with odd size associated with λ0 = −1:

(2.3)



λ+ 1

. .
.

1

λ+ 1 . .
.

λ+ 1 1
1 + λ λ

. .
.

. .
.

1 + λ λ


(2η+1)×(2η+1)

.

The number of blocks of each type and their particular sizes uniquely depend on
L(λ) and determine its >-palindromic canonical form.

The >-palindromic canonical form in Theorem 2.1 is closely related to the canon-
ical form for congruence (CFC) of matrices, so that there is a one-to-one correspon-
dence between blocks in these canonical forms [3, Thm. 4]. The only relevant cor-
respondence in our developments is the one between so-called type 0 blocks, which
are Jordan blocks associated with λ0 = 0 (see [3, Thm. 3]), and blocks of type (i) in
Theorem 2.1. More precisely, for each block J2α+1(0) in the CFC of a matrix A there
is a block M ]

α(λ) in the >-palindromic canonical form of A+ λA>, and vice versa [3,
Thm. 4-(ii)]. This correspondence will be used in the proof of Theorem 4.1.

Another relevant notion in this paper is the orbit under congruence of a matrix
pencil L(λ), which is defined as

Oc(L) = {V >L(λ)V : V nonsingular}.

The closure of this orbit, denoted by Oc(L), is the closure in the standard topology,
which is the same as the closure in the Zariski topology [26, Thm. 2.33].

Definition 2.2. Let Sr be the set of n × n structured matrix pencils with rank
at most r, with S being any of the structures in Table 2.1. We say that a particular
matrix KS(λ) given in structured canonical form is the generic canonical form in Sr if
there is a dense open set of n× n matrix pencils in Sr which are congruent to KS(λ).

In other words, KS(λ) is the generic canonical form in Sr if Oc(KS) = Sr, since
Oc(KS) is an open set in its closure [21, p. 60].

3. Preliminary results. We first present a decomposition of a given n× n >-
palindromic matrix pencil with rank at most r as the sum of r rank-1 pencils. This
decomposition provides us a constructive way to describe the set of >-palindromic
pencils with bounded rank.
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Theorem 3.1. (Rank-1 decomposition for >-palindromic pencils). If E(λ) is a
>-palindromic n× n matrix pencil with rankE = r ≤ n, then it can be written as

(3.1) E(λ) =


v1w

>
1 + · · ·+ vr/2w

>
r/2

+(revw1)v>1 + · · ·+ (revwr/2)v>r/2 if r is even,

(1 + λ)uu> + v1w
>
1 + · · ·+ v(r−1)/2w

>
(r−1)/2

+(revw1)v>1 + · · ·+ (revw(r−1)/2)v>(r−1)/2 if r is odd,

where u, v1, . . . , vbr/2c ∈ Cn and w1, . . . , wbr/2c ∈ C[λ]n with degwi ≤ 1, for i =
1, . . . , br/2c.

Proof. Let us asume that the result is true for any >-palindromic pencil being
in >-palindromic canonical form as in Theorem 2.1. Let E(λ) be an arbitrary >-
palindromic pencil. By Theorem 2.1, there is some invertible matrix P such that
PE(λ)P> = KE(λ), with KE(λ) being in >-palindromic canonical form. Then KE(λ)
is of the form (3.1). Now, by setting

ṽi = P−1vi, w̃i = P−1wi, ũ = P−1u,

with vi, wi, u as in (3.1), we arrive at a decomposition like (3.1) for E(λ), with ṽi, w̃i,
and ũ instead of vi, wi, u, respectively (note that, since P−1 is invertible, rev(P−1v) =
P−1 rev v and deg(P−1v) = deg v, for any v ∈ C[λ]n).

Therefore, we may assume that E(λ) is given in >-palindromic canonical form.
Then, it is a direct sum of blocks of types (i)–(vi) in Theorem 2.1. We are going to
show that each of these blocks can be decomposed as a sum of rank-1 pencils in such a
way that the whole direct sum is of the form (3.1). Let us show such a decomposition
for each type of canonical blocks.

• A block of type (i) can be written as

M ]
α(λ) = e1(λeα+1 + eα+2)> + · · ·+ eα(λe2α + e2α+1)>

+(eα+1 + λeα+1)e>1 + · · ·+ (e2α + λe2α+1)e>α .

• A block of type (iv) like (2.1) can be written as

e1((λ+ λ0)eδ+1 + eδ+2)> + · · ·+ eδ−1((λ+ λ0)e2δ−1 + e2δ)
>

+eδ((λ+ λ0)e2δ)
> + (1 + λλ0)eδ+1 + λeδ+2)e>1 + · · ·

+((1 + λλ0)e2δ+1 + λe2δ)e
>
δ−1 + ((1 + λλ0)e2δ)e

>
δ .

• A block of type (v) like (2.2) can be decomposed as

e2ε((1− λ)e1 + λe2)> + · · ·+ eε+2((1− λ)eε−1 + λeε)
>

+eε+1((1− λ)eε + λeε+1)>

+((λ− 1)e1 + e2)e>2ε + · · ·+ ((λ− 1)eε−1 + eε)e
>
ε+2

+((λ− 1)eε + eε+1)e>ε+1.

• A block of type (vi) like (2.3) can be decomposed as

e2η+1((1 + λ)e1 + λe2)> + · · ·+ eη+2((1 + λ)eη + λeη+1)>

+((λ+ 1)e1 + e2)e>2η+1 + · · ·+ ((λ+ 1)eη + eη+1)e>η+2

+(λ+ 1)eη+1e
>
η+1.

• For blocks of types (ii) and (iii) the decomposition is similar to the one for
blocks of type (iv), replacing λ0 = ±1 and δ by either β or γ.
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Now, joining up in a direct sum all blocks in the >-palindromic canonical form of
E(λ), and padding up with zeroes in all canonical vectors, for each block in the pre-
vious rank-1 decompositions, in all positions corresponding to the remaining blocks,
we end up with a rank-1 decomposition of the form

v1w
>
1 + · · ·+ vsw

>
s + (revw1)v>1 + · · ·+ (revws)v

>
s + (1 + λ)(u1u

>
1 + · · ·+ utu

>
t ),

with 2s+ t = r, since the rank of E(λ) is the sum of the ranks of all canonical blocks.
The summands of the form (1+λ)uiu

>
i in the previos decomposition come from blocks

of type (vi). Given a pair of vectors u, ũ ∈ Cn, we can write

(1 + λ)
(
uu> + ũũ>

)
= vw> + (revw)v>,

with v = u+ iũ, w = 1+λ
2 (u− iũ) (where i denotes the imaginary unit). Therefore, if r

is even, we can gather these summands in couples to get a decomposition like that in
the first expression of (3.1). However, when r is odd, one of the summands remains
unpaired, and we arrive at the second expression in (3.1). This proves the result.

The following result, which is closely connected to Theorem 3.1, deals with the
set of n×n matrices that can be decomposed as a sum of rank-1 matrices in a specific
way. It will be key in computing the dimension of the set of >-palindromic pencils
with bounded rank, which will be key in turn in the proof of Theorem 4.1.

Proposition 3.2. Let s, n be two integers with 0 < s ≤ n. Let us define the
following sets of n× n matrices with complex entries:

Ms =

{
u1v
>
1 + · · ·+ usv

>
s + w1u

>
1 + · · ·+ wsu

>
s :

ui, vi, wi ∈ Cn,
for i = 1, . . . , s

}
and(3.2)

Ns=

{
uu> + u1v

>
1 + · · ·+ usv

>
s + w1u

>
1 + · · ·+ wsu

>
s :

u, ui, vi, wi ∈ Cn,
for i = 1, . . . , s

}
.(3.3)

If Ms and N s denote the closure of Ms and Ns in the Zariski topology, then
(a) dimMs := dimMs ≤ s(3n− 2s),
(b) dimNs := dimN s ≤ s(3n− 2s− 1) + n.

Proof. Let us define the maps

Φ1 : Csn × Csn × Csn −→ Cn×n

(u1, . . . , us; v1, . . . , vs;w1, . . . , ws) 7→ u1v
>
1 + · · ·+ usv

>
s

+w1u
>
1 + · · ·+ wsu

>
s ,

and

Φ2 : Cn × Csn × Csn × Csn −→ Cn×n

(u;u1, . . . , us; v1, . . . , vs;w1, . . . , ws) 7→ uu> + u1v
>
1 + · · ·+ usv

>
s

+w1u
>
1 + · · ·+ wsu

>
s .

The setsMs and Ns are the images of, respectively, Φ1 and Φ2, and these images
are constructible sets (see, for instance, [28, p. 366]). In particular, they are open
dense subsets in their (Zariski) closure. Since Ms and N s are algebraic sets, their
dimension is the dimension of the tangent space at a general point (namely, in an open
dense subset). Then, the dimension of Ms and N s is determined by the dimension
of the tangent space at a general point ofMs and Ns, respectively. In particular, we
identify dimMs := dimMs and dimNs := dimN s.
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Now, we look at the tangent space of eachMs and N∫ at a general point. Let us
first consider the set Ms. The tangent space is spanned by the 3sn vectors obtained
by taking partial derivatives in Φ1, namely the following 3sn matrices with size n×n:

(3.4)

ejv
>
i + wie

>
j , i = 1, . . . , s, j = 1, . . . , n,

uie
>
j , i = 1, . . . , s, j = 1, . . . , n,

eju
>
i , i = 1, . . . , s, j = 1, . . . , n.

Let us write the matrices in (3.4) as vectors in Cn2

using the vec operator [20,
Def. 4.2.9], so that they become

(3.5)
vi ⊗ ej + ej ⊗ wi, i = 1, . . . s, j = 1, . . . , n,

ej ⊗ ui, i = 1, . . . , s, j = 1, . . . , n,
ui ⊗ ej , i = 1, . . . , s, j = 1, . . . , n,

where ⊗ denotes the Kronecker product [20, Def. 4.2.1]. We are going to see that
the set of vectors (3.4) contains at least 2s2 linearly dependent vectors. A null linear
combination of the vectors in (3.5) can be written as
(3.6)∑

i,j

[xji(vi ⊗ ej + ej ⊗ wi) + yji(ej ⊗ ui) + zji(ui ⊗ ej)] = M

 vec(X)
vec(Y )
vec(Z)

 = 0,

with X = [xij ], Y = [yij ], Z = [zij ], for 1 ≤ i ≤ s, 1 ≤ j ≤ n, and M =[
M1 M2 M3

]
, where M1 contains all columns of the form vi ⊗ ej + ej ⊗ wi,

M2 contains all columns of the form ej ⊗ui, and M3 contains all columns of the form
ui ⊗ ej in the left-hand side of (3.6), and they all are ordered in the lexicographic
order of the pairs (i, j).

The left-hand side of (3.6) can be written as

s∑
i=1

vi ⊗
 n∑
j=1

xjiej

+

 n∑
j=1

xjiej

⊗ wi+
 s∑
j=1

yjiej

⊗ ui+ui ⊗
 n∑
j=1

zjiej

 .
If we denote the columns of X,Y, and Z, respectively, by

xi := ColiX =
∑n
j=1 xjiej , i = 1, . . . , s,

yi := ColiY =
∑n
j=1 yjiej , i = 1, . . . , s,

zi := ColiZ =
∑n
j=1 zjiej , i = 1, . . . , s,

then (3.6) can be written as

(3.7)

s∑
i=1

[vi ⊗ xi + xi ⊗ wi + yi ⊗ ui + ui ⊗ zi] = 0.

Now, we can construct 2s2 different solutions to (3.6) as follows. Given a pair (i0, j0)
with 1 ≤ i0, j0 ≤ s, we set

(3.8)
s1(i0, j0) = es+i0 ⊗ uj0 − e2s+j0 ⊗ ui0 and
s2(i0, j0) = ei0 ⊗ uj0 − es+j0 ⊗ vi0 − e2s+j0 ⊗ wi0 ,

where the canonical vectors in (3.8) belong to C3s. It is straightforward to check that,
for a fixed pair (i0, j0) with 1 ≤ i0, j0 ≤ s, the vector s1(i0, j0) corresponds to replacing
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yi0 = uj0 , zj0 = −ui0 , and the remaining vectors xi = yi = zi = 0 in (3.7). Similarly,
the vector s2(i0, j0) corresponds to replacing xi0 = uj0 , yj0 = −vi0 , zj0 = −wi0 , and
the remaining vectors xi = yi = zi = 0 in (3.7). Then, s1(i0, j0) and s2(i0, j0) give
2s2 different solutions of (3.6) for general vectors ui, vi, wi. Now, let us prove that,
for general vectors ui, vi, wi, these solutions are linearly independent.

Let us asume that there is a null linear combination of the solutions

(3.9)
s∑

i,j=1

αijs1(i, j) +
s∑

i,j=1

βijs2(i, j) = 0,

with αij , βij ∈ C, where we have replaced (i0, j0) by (i, j) for simplicity. Then,
replacing (3.8) into this expression, we arrive at

(3.10)
s∑

i,j=1

αij(es+i⊗uj−e2s+j⊗ui)+
s∑

i,j=1

βij(ei⊗uj−es+j⊗vi−e2s+j⊗wi) = 0.

Looking at the summands in the left-hand side of (3.10) whose first vector in the
Kronecker product is of the form ek, for 1 ≤ k ≤ s, and equating to zero, we arrive at

(3.11)

β11u1 + · · ·+ β1sus = 0,
...

...
βs1u1 + · · ·+ βssus = 0.

For a general point in Palr, the set {u1, . . . , us} is linearly independent, since s ≤ n,
by hypothesis. Therefore, (3.11) implies that βij = 0, for all 1 ≤ i, j ≤ s. Now,
looking at the summands in (3.10) whose first vector in the Kronecker product is of
the form ek, with s+ 1 ≤ k ≤ 2s, and equating to zero, we arrive at

(3.12)

α11u1 + · · ·+ α1sus = 0,
...

...
αs1u1 + · · ·+ αssus = 0.

Again, the set {u1, . . . , us} is linearly independent for a general point in Palr, so (3.12)
implies that αij = 0, for all 1 ≤ i, j ≤ s. Therefore, the only null linear combination
(3.9) for a general point in Palr is the one with αij = βij = 0, for all 1 ≤ i, j ≤ s,
which implies that s1(i, j) and s2(i, j), for 1 ≤ i, j ≤ s, are linearly independent, as
wanted. As a consequence, dimMs ≤ 3ns− 2s2 = s(3n− 2s), as claimed.

Now, let us address the proof for the set N∫ . The tangent space at a general
point is the linear space spanned by the following 3sn+ n vectors, obtained from the
partial derivatives of Φ2:

ejv
>
i + wie

>
j , i = 1, . . . , s, j = 1, . . . , n,

uie
>
j , i = 1, . . . , s, j = 1, . . . , n,

eju
>
i , i = 1, . . . , s, j = 1, . . . , n,

eju
> + ue>j , j = 1, . . . , n,

and, applying again the vec operator, these vectors become

(3.13)

vi ⊗ ej + ej ⊗ wi, i = 1, . . . , s, j = 1, . . . , n,
ej ⊗ ui, i = 1, . . . , s, j = 1, . . . , n,
ui ⊗ ej , i = 1, . . . , s, j = 1, . . . , n,

u⊗ ej + ej ⊗ u, j = 1, . . . , n.
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A null linear combination of the vectors in (3.13) is of the form

(3.14)∑
i,j

[xji(vi ⊗ ej + ej ⊗ wi) + yji(ej ⊗ ui) + zji(ui ⊗ ej) + tj(u⊗ ej + ej ⊗ u)]

= M̃


vec(X)
vec(Y )
vec(Z)
vec(T )

 = 0,

with X = [xij ], Y = [yij ], Z = [zij ], T = [ti], for 1 ≤ i ≤ s, 1 ≤ j ≤ n, and M =[
M1 M2 M3 M4

]
, where M1 contains all columns of the form vi⊗ ej + ej ⊗wi,

M2 contains all columns of the form ej ⊗ ui, M3 contains all columns of the form
ui ⊗ ej , and M4 contains all columns of the form u ⊗ ei + ei ⊗ u in the left-hand
side of (3.14), and they all are ordered in the lexicographic order of the pairs (i, j).
With the same notation xi, yi, zi for the columns of X,Y, Z as before, together with
t =

∑n
j=1 tjej , (3.14) is equivalent to

(3.15)
s∑
i=1

[vi ⊗ xi + xi ⊗ wi + yi ⊗ ui + ui ⊗ zi] + u⊗ t+ t⊗ u = 0.

Now, for each (i0, j0), with 1 ≤ i0, j0 ≤ s, we define s1(i0, j0) and s2(i0, j0) as in (3.8),
with the only difference that now the canonical vectors belong to C3s+1. We also set,
for each 1 ≤ i0 ≤ s,

(3.16) s3(i0) = −es+i0 ⊗ ui0 − e2s+i0 ⊗ ui0 + e3s+1 ⊗ ui0 ,

where, again, the canonical vectors in (3.16) belong to C3s+1. The vectors (3.8) are
solutions of (3.15), for the same reason as in the preceding case. The n vectors s3(i)
in (3.16) correspond to replacing yi0 = zi0 = −ui0 , t = ui0 , and xi, yi, zi = 0, for
i 6= i0 in (3.14). Then, s3(i) is also a solution of (3.15), for 1 ≤ i ≤ s. It remains to
prove that s1(i, j), s2(i, j), and s3(i) are linearly independent for a general vector in
Palr. This follows similar arguments to the ones for Ms. In particular, if

(3.17)
s∑

i,j=1

αijs1(i, j) +
s∑

i,j=1

βijs2(i, j) +
s∑
i=1

γis3(i) = 0

is a null linear combination of s1(i, j), s2(i, j), and s3(i), then replacing (3.8) and
(3.16) in (3.17) we arrive at

(3.18)
s∑

i,j=1

αij(es+i ⊗ ui − e2s+j ⊗ uj) +
s∑

i,j=1

βij(ei ⊗ uj − es+j ⊗ vi − e2s+j ⊗ wi)

+
s∑
i=1

γi(−es+i ⊗ ui − e2s+i ⊗ ui + e3s+1 ⊗ ui) = 0.

Looking at the summands whose first term in the Kronecker product is of the form
e3s+1 we arrive at γ1u1+ · · ·+γsus = 0, and this implies, provided that {u1, . . . , us} is
linearly independent, that γ1 = · · · = γs = 0. Then, looking again at the terms whose
first vector in the Kronecker product is of the form ek, with 1 ≤ k ≤ s, we conclude
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that, as long as {u1, . . . , us} is linearly independent, βij = 0, for all 1 ≤ i, j ≤ s.
Finally, looking at the terms whose first vector in the Kronecker product is of the
form ek, with s + 1 ≤ k ≤ 2s, we get αij = 0, for all 1 ≤ i, j ≤ s. This implies
that the 2s2 + s solutions s1(i, j), s2(i, j), and s3(j) are linearly independent, so
dimNs ≤ 3sn+ n− 2s2 − s = s(3n− 2s− 1) + n, as wanted.

4. Main results. The main results in sections 4.1 and 4.2 are the analogues
of those in the recent paper [12], for skew-symmetric matrix pencils. The proof for
the skew-symmetric structure in that paper is based on the fact that a given skew-
symmetric pencil S1(λ) is in the closure of the congruence orbit of another skew-
symmetric pencil S2(λ) if and only if S1(λ) is in the closure of the strict equivalence
orbit of S2(λ). In other words, if there is a sequence of pencils strictly equivalent
to S2(λ) which converges to S1(λ), then there is also a sequence of pencils which are
congruent to S2(λ) and that converges to S1(λ). This is a very strong result from [13],
and it is not yet known whether an analogous result is true or not for >-palindromic or
>-alternating structures.Therefore, a relevant part of the proof of Theorem 4.1, which
is the main result in section 4.1, follows a completely different technique compared to
the ones in [12], relying on Proposition 3.2.

We analyze separately the following structures: (i) >-palindromic and >-anti-
palindromic structures (section 4.1), and (ii) >-alternating structures (section 4.2).
The >-palindromic and >-antipalindromic structures are related to each other by the
elementary change of variables λ 7→ −λ, so the results for one of these structures are
directly extended to the other one. Similarly, the >-even and >-odd structures are
related by reversing the order of the coefficients A0 and A1, so it is again enough to
analyze just one of them. The >-palindromic and the >-alternating structures are
also related by particular cases of Möbus transformations (know as Cayley transfor-
mations). Using these transformations, the results for >-palindromic pencils can be
easily translated to >-alternating pencils as well.

4.1. >-palindromic and >-antipalindromic pencils. Our main results in
this section show that the sets of >-palindromic and >-antipalindromic matrix pencils
with bounded (defficient) rank are irreducible, and provide the dimension of these
sets. They also provide the generic canonical form of these pencils. We start with the
>-palindromic structure.

Theorem 4.1. (The set of >-palindromic pencils with bounded rank). Let r be
an integer with 0 ≤ r < n. The set Palr is an irreducible algebraic set with dimension

dim Palr =


r

2
· (3n− r) if r is even,

r − 1

2
· (3n− r) + n if r is odd.

Moreover, if r is even, then Palr is the closure of the congruence orbit of the pencil

(4.1) Ke
P (λ) := diag(

s︷ ︸︸ ︷
M ]
α+1(λ), . . . ,M ]

α+1(λ),

n−r−s︷ ︸︸ ︷
M ]
α(λ), . . . ,M ]

α(λ)),

where r/2 = (n− r)α + s is the Euclidean division of r/2 by n− r. If r is odd, then
Palr is the closure of the congruence orbit of

(4.2) Ko
P (λ) := diag(1 + λ,Ke

P (λ)),

with Ke
P (λ) as in (4.1), but now (r− 1)/2 = (n− r)α+ s is the Euclidean division of

(r − 1)/2 by n− r.
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Proof. Let us first consider the case r even. The codimension of the orbit of
Ke
P (λ) in (4.1) can be computed using the formula in [6, Thm. 2] and the relationship

between KCF(A+λA>) and the CFC of A provided in [3, Thm. 4] (see the paragraph
right after Theorem 2.1). In particular, if Ke

P (λ) = A+ λA>, then

CFC(A) = diag(J2α+3(0), . . . , J2α+3(0)︸ ︷︷ ︸
s

, J2α+1(0), . . . , J2α+1(0)︸ ︷︷ ︸
n−r−s

).

Now, applying [6, Thm. 2], the codimension of Ke
P (λ) is cKe

P
= c0+c00. The quantity

c0 is the “codimension” of individual blocks Jk(0), and is obtained by adding up dk/2e,
for each block Jk(0), whereas c00 is due to the “interactions” between two different
blocks, taking each pair (Jk(0), J`(0)) with k ≤ ` only once, and is equal to (a) k if k
is even, (b) ` if k is odd and k 6= `, and (c) k + 1 if k is odd and k = `. In particular,
for the blocks in CFC(A) above,

(4.3) c0 =
s∑
i=1

⌈
2α+ 3

2

⌉
+
n−r−s∑
i=1

⌈
2α+ 1

2

⌉
= s(α+ 2) + (n− r− s)(α+ 1) = n− r

2

and

(4.4) c00 =

(
s
2

)
(2α+ 4) +

(
n− r − s

2

)
(2α+ 2) + s(n− r − s)(2α+ 1).

After some manipulations in (4.4) we arrive at

c00 = (n− r − 1)
(
n− r

2

)
.

Now, adding up, we get cKe
P

= c0 + c00 = (n− r/2)(n− r). Then, the dimension
of the congruence orbit of Ke

P (λ) is

dimOc(Ke
P ) = n2 − cKe

P
=
r

2
(3n− r).

Now, since Oc(Ke
P ) ⊆ Palr and Palr is an algebraic (hence closed) set, it follows that

Oc(Ke
P ) ⊆ Palr. In order to prove that the inclusion is an identity, it suffices to see

that the dimension of Palr is, at most, r
2 (3n− r), and that Palr is irreducible.

By decomposing wi = wi0 + λwi1 in (3.1), for i = 1, . . . , r/2, any >-palindromic
pencil L(λ) with rank at most r can be written as

L(λ) = v1w
>
10 + · · ·+ vr/2w

>
r/2,0 + w11v

>
1 + · · ·+ wr/2,1v

>
r/2

+λ(w10v
>
1 + · · ·+ wr/2,0v

>
r/2 + v1w

>
11 + · · ·+ vr/2w

>
r/2,1).

Then, the pencil L(λ) is uniquely determined by its trailing coefficient. In other
words, the set Palr is in one-to-one correspondence with the set of matrices that can
be written in the form u1v

>
1 + · · ·+ur/2v

>
r/2 +w1u

>
1 + · · ·+wr/2u

>
r/2. Proposition 3.2

(a) with s = r/2 guarantees that the dimension of this set is at most r
2 (3n− r).

To prove that Palr is irreducible we proceed as follows. Palr is the image of the
following (polynomial) map:

Φ : C 3rn
2 −→ Cn×n × Cn×n

(v1, . . . , vr/2;
w10, . . . , wr/2,0;
w11, . . . , wr/2,1)

7→
(v1w

>
10 + · · ·+ vr/2w

>
r/2,0 + w11v

>
1 + · · ·+ wr/2,1v

>
r/2,

w10v
>
1 + · · ·+ wr/2,0v

>
r/2 + v1w

>
11 + · · ·+ vr/2w

>
r/2,1).
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Then, assume Palr = Φ(C 3rn
2 ) = X ∪ Y , with X,Y being algebraic sets, which is

equivalent to C 3rn
2 = Φ−1(X) ∪ Φ−1(Y ). In general, if Φ is a polynomial map and

Z is an algebraic set, then Φ−1(Z) is an algebraic set as well (to see this, just notice
that Φ−1(Z) is the set of common zeroes of p1 ◦ Φ, . . . , pm ◦ Φ, where Z is defined as
the set of common zeroes of the multivariable polynomials p1, . . . , pm). Then, both

Φ−1(X) and Φ−1(Y ) are algebraic sets and, since C 3rn
2 is irreducible, this implies that

either C 3rn
2 = Φ−1(X) or C 3rn

2 = Φ−1(Y ), which in turn implies either Φ(C 3rn
2 ) = X

or Φ(C 3rn
2 ) = Y . As a consequence, Φ(C 3rn

2 ) = Palr is irreducible, and the proof for
the case r even is complete.

Now, let us consider the case r odd. In this case (see [3, Thm. 4] or the paragraph
right after Theorem 2.1),

CFC(A) = diag(J2α+3(0), . . . , J2α+3(0)︸ ︷︷ ︸
s

, J2α+1(0), . . . , J2α+1(0)︸ ︷︷ ︸
n−r−s

, 1).

Therefore, the codimension of Oc(Ko
P ) is cKo

P
= c0 + c00 + c01, with c0 and c00 as in

(4.3) and (4.4), respectively. The term c01 is due to the presence of the last block
equal to 1 in CFC(A), which is a so-called type I block [3, Thm. 3]. For a given matrix
A, the term c01 is equal to the product of the number of type 0 blocks in CFC(A)
(that is, blocks of the form Jk(0)) and the sum of the sizes of all type I blocks in
CFC(A) (see [6, Thm. 2]). In the case of A above, it is equal to c01 = n − r . Now,
however, c0 = n − (r + 1)/2, and with similar manipulations as for the r even case,
we can get c00 = (n− r − 1) (n− (r + 1)/2). Adding up,

cKo
P

= c0 + c00 + c01 = (n− r)
(
n− r − 1

2

)
.

Then, the dimension of the congruence orbit of Ko
P (λ) is

dimOc(Ko
P ) = n2 − cKo

P
=
r − 1

2
· (3n− r) + n.

Again, it remains to prove that the dimension of Palr is, at most,
r − 1

2
·(3n−r)+n and

that Palr is irreducible. Writing again wi = wi0+λwi1 in (3.1), for i = 1, . . . , (r−1)/2,
any >-palindromic matrix pencil L(λ) with rank at most r can be written as

L(λ) = uu> + v10w
>
10 + · · ·+ vr/2w

>
r/2,0 + w11v

>
1 + · · ·+ wr/2,1v

>
r/2

+λ(w10v
>
1 + · · ·+ wr/2,0v

>
r/2 + v1w

>
11 + · · ·+ vr/2w

>
r/2,1).

As before, the pencil L(λ) is uniquely determined by its trailing coefficient. In other
words, the set Palr is in one-to-one correspondence with the set of matrices that can be
written in the form uu>+u1v

>
1 +· · ·+u(r−1)/2v>(r−1)/2+w1u

>
1 +· · ·+w(r−1)/2u

>
(r−1)/2.

Proposition 3.2 (b) with s = (r− 1)/2 guarantees that the dimension of this set is at
most r−1

2 (3n− r) + n, as wanted.
The proof of the irreducibility of Palr in this case follows the same arguments as

for the r even case.

Now we state the counterpart of Theorem 4.1 for >-antipalindromic pencils.

Theorem 4.2. (The set of >-antipalindromic pencils with bounded rank). Let
r be an integer with 0 ≤ r < n. The set Apalr is an irreducible algebraic set with
dimension
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dim Apalr =


r

2
· (3n− r) if r is even,

r − 1

2
· (3n− r) + n if r is odd.

Moreover, if r is even, then Apalr is the closure of the congruence orbit of the pencil

(4.5) Ke
A(λ) := diag(

s︷ ︸︸ ︷
M−]α+1(λ), . . . ,M−]α+1(λ),

n−r−s︷ ︸︸ ︷
M−]α (λ), . . . ,M−]α (λ)),

where r/2 = (n− r)α + s is the Euclidean division of r/2 by n− r. If r is odd, then
Apalr is the closure of the congruence orbit of

(4.6) Ko
A(λ) := diag(1− λ,Ke

A(λ)),

with Ke
A(λ) as in (4.5), but now (r− 1)/2 = (n− r)α+ s is the Euclidean division of

(r − 1)/2 by n− r.
Proof. The result is an immediate consequence of Theorem 4.1, since a matrix

pencil P (λ) is >-antipalindromic if and only if P (−λ) is >-palindromic.

Theorems 4.1 and 4.2 give the generic canonical form of >-palindromic and >-
antipalindromic n× n pencils with rank at most r.

Corollary 4.3. (Generic canonical form of>-palindromic and>-antipalindromic
pencils with bounded rank). Let 0 ≤ r < n. The generic canonical structure of n× n
>-palindromic (respectively, >-antipalindromic) n×n matrix pencils with rank at most
r is (4.1) (resp., (4.5)) if r is even, and (4.2) (resp., (4.6)) if r is odd.

We have seen in the proof of Theorem 4.1 that the set Palr can be identified with
the setMr/2 in (3.2) if r is even, or N(r−1)/2 in (3.3) if r is odd. The only restriction
for r here is that r < n, which is equivalent to s < n/2. Then Theorem 4.1 allows
us to conclude that, provided that s < n/2, the bounds obtained in Proposition 3.2
(a)–(b) are the dimensions of the sets Ms and Ns.

Corollary 4.4. If Ms and Ns are as in (3.2) and (3.3), respectively, and s <
n/2, then

(a) dimMs = dimMs = s(3n− 2s) and
(b) dimNs = dimN s = s(3n− 2s− 1) + n.

4.2. >-alternating pencils. Here we provide the counterpart of Theorems 4.1
and 4.2 for >-alternating pencils.

Theorem 4.5. (The set of>-even pencils with bounded rank). Let r be an integer
with 0 ≤ r < n. The set Evenr is an irreducible algebraic set with dimension

dim Evenr =


r

2
· (3n− r) if r is even,

r − 1

2
· (3n− r) + n if r is odd.

Moreover, if r is even, then Evenr is the closure of the congruence orbit of

(4.7) Ke
E(λ) := diag(

s︷ ︸︸ ︷
M [
α+1(λ), . . . ,M [

α+1(λ),

n−r−s︷ ︸︸ ︷
M [
α(λ), . . . ,M [

α(λ)),
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where r
2 = (n − r)α + s is the Euclidean division of r/2 by n − r. If r is odd, then

Evenr is the closure of the congruence orbit of

(4.8) Ko
E(λ) := diag(1,Ke

E(λ)),

with Ke
E(λ) as in (4.7), but now r−1

2 = (n − r)α + s is the Euclidean division of
(r − 1)/2 by n− r.

Proof. Let C+1 and C−1 be the Cayley transforms in the set of matrix polynomials
defined by

(4.9) C−1(Q)(λ) = (1 + λ)Q

(
λ− 1

1 + λ

)
and C+1(Q)(λ) = (1− λ)Q

(
1 + λ

1− λ

)
,

where Q(λ) is any matrix polynomial (see [22]). It is straightforward to see that
C+1(Ke

E) = Ke
P and C+1(Ko

E) = Ko
P , with Ke

P and Ko
P being as in (4.1) and (4.2),

respectively. Note that for a given pencil A0 + λA1 we have

C−1(A0 +λA1) = A0−A1 +λ(A0 +A1), C+1(A0 +λA1) = A0 +A1 +λ(A1−A0).

In particular, P (λ) is >-palindromic if and only if C+1(P ) is >-even (see also [22,
Thm. 2.7]). From the definition of C+1 and C−1 is clear that both maps preserve the
rank, that is rank C+1(A0 + λA1) = rank C−1(A0 + λA1) = rankA0 + λA1, for any
matrix pencil A0 + λA1. Moreover, C−1(C+1)(A0 + λA1) = 2(A0 + λA1). Therefore,
C+1 : Palr −→ Evenr is an isomorphism of algebraic sets [30, definition on p. 29]. As
a consequence, dim Palr = dim Evenr [30, Cor. 2, Chap. II, sect. 1.3, p. 88] and
Evenr is an irreducible algebraic set.

It is also immediate by definition of C+1 that C+1(Oc(Ke
E)) = Oc(Ke

P ) and
C+1(Oc(Ko

E)) = Oc(Ko
P ). Since C+1 is an isomorphism, dim C+1(Oc(Ke

E)) =
dimOc(Ke

P ) and dim C+1(Oc(Ko
E)) = dimOc(Ko

P ). Therefore, Theorem 4.1 implies
that the dimensions of Oc(Ko

E) and Oc(Ke
E) are as claimed in the statement.

Since Oc(Ke
E) ⊆ Evenr and Oc(Ko

E) ⊆ Evenr, and both Oc(Ke
E) and Oc(Ke

E)
have the same dimension as Evenr, depending on whether r is even or odd, the result
for the >-even structure follows.

Theorem 4.6. (The set of >-odd pencils with bounded rank). Let r be an integer
with 0 ≤ r < n. The set Oddr is an irreducible algebraic set with dimension

dim Oddr =


r

2
· (3n− r) if r is even,

r − 1

2
· (3n− r) + n if r is odd.

Moreover, if r is even, then Oddr is the closure of the congruence orbit of

(4.10) Ke
O(λ) := diag(

s︷ ︸︸ ︷
M−[α+1(λ), . . . ,M−[α+1(λ),

n−r−s︷ ︸︸ ︷
M−[α (λ), . . . ,M−[α (λ)),

where r
2 = (n − r)α + s is the Euclidean division of r/2 by n − r. If r is odd, then

Oddr is the closure of the congruence orbit of

(4.11) Ko
O(λ) := diag(λ,Ke

O(λ)),

with Ke
O(λ) as in (4.10), but now r−1

2 = (n − r)α + s is the Euclidean division of
(r − 1)/2 by n− r.
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Proof. The result is an immediate consequence of Theorem 4.5, since a matrix
pencil A0 + λA1 is >-odd if and only if its reversal A1 + λA0 is >-even.

As for the previous structures, Theorems 4.5 and 4.6 give the generic canonical
form of >-alternating n× n pencils with rank at most r.

Corollary 4.7. (Generic canonical form of >-alternating pencils with bounded
rank). Let 0 ≤ r < n. The generic canonical structure of n× n >-even (respectively,
>-odd) n × n matrix pencils with rank at most r is (4.7) (resp., (4.10)) if r is even,
and (4.8) (resp., (4.11)) if r is odd.

4.3. Connection with the full-rank and nonstructured cases. The case
n = r, where the matrix pencils are allowed to be of full rank, deserves some comment.
In this case, the generic canonical form for pencils enjoying any of the structures
considered in the paper does not contain singular blocks at all. The generic canonical
form of n× n >-palindromic pencils can be found in [6, Thm. 6]. For the remaining
structures, the canonical form can be obtained by applying either the transformation
λ 7→ −λ (for the >-antipalindromic structure, as in the proof of Theorem 4.2), the
Cayley transformations C+1 and C−1 (for the >-even structure, as in the proof of
Theorem 4.5), or these Cayley maps followed by reverting the coefficients A0 and A1

(for the >-odd structure, as in the proof of Theorem 4.6). We note that, though
Theorem 6 in [6] is stated for strict equivalence (in terms of the KCF) instead of
congruence, the generic canonical form (for congruence) can be obtained from that

one by gathering each couple of blocks (λ+µi)⊕ (λ+1/µi) in the form
[

0 λ+µi

1+λµi 0

]
.

As a consequence, the generic canonical form in the full-rank case has nothing to
do with the generic canonical forms obtained in (4.1)–(4.2), (4.5)–(4.8), and (4.10)–
(4.11) for rank-defficient cases. Despite this fact, the formulas for the dimension of
Palr, Apalr, Evenr, and Oddr in Theorems 4.1, 4.2, 4.5, and 4.6, are still valid for
r = n. To see this, note that by replacing r = n in these formulas we end up, in all
cases, with n2, which is the dimension of the set of structred n×n pencils, for any of
the structures considered.

It is also interesting to compare the results on the dimension of sets of low-rank
structured pencils with the case of nonstructured pencils. If we denote by Pr the set
of (unstructured) n×n matrix pencils with rank at most r, then, as mentioned before,
we have

dim Paln = dim Apaln = dim Evenn = dim Oddn =
1

2
dimPn = n2.

One may wonder whether these identities are still true or not for r < n. The answer
is given in the following corollary.

Corollary 4.8. The following identities hold, for r ≤ n:

dim Palr = dim Apalr = dim Evenr = dim Oddr

=

{
1
2 dimPr if r is even,
1
2 dimPr − 1

2 (n− r) if r is odd.

Proof. The result is a direct consequence of the first claim in Theorems 4.1, 4.2,
4.5, and 4.6, together with the fact that dimPr = r(3n− r) [5, Thm. 3.3].

The identity for the case r odd in Corollary 4.8 may be surprising when com-
pared with the case r even. However, the differences between these two cases can be
explained by looking at the generic forms provided in (4.1)–(4.2), (4.5)–(4.6) (for the
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palindromic structures) and (4.7)–(4.8), (4.10)–(4.11) (for the alternating structures).
More precisely, in the case r odd, the generic canonical form contains some regular
part in all structures, whereas in the case r even it consists entirely of singular blocks.
The presence of such regular part imposes some additional restrictions which should
lead one to expect some differences in the dimension count. Nonetheless, a full ex-
planation of these particular differences would require one to analyze more in detail
the algebraic restrictions imposed by the presence of these blocks, something which
is beyond the scope of this paper.

5. Conclusions and future work. We have proved that the algebraic sets of
>-palindromic, >-antipalindromic, >-even, and >-odd matrix pencils with rank at
most r < n are irreducible algebraic sets. This is in stark contrast with the case
of n × n unstructured matrix pencils with rank at most r, which is an algebraic
set with r + 1 irreducible components. We have described these sets of structured
matrix pencils with bounded rank as the closures of the congruence orbit of a certain
structured pencil given in canonical form. As a consequence, we have determined
the generic canonical form of structured pencils with rank at most r, for any of the
previous structures. We have also computed the dimension of each of these sets.

A natural continuation of this work is to address the same questions for other
structures arising usually in applications, like the Hermitian, skew-Hermitian, ∗-
palindromic, ∗-antipalindromic, or ∗-alternating structures. The sets of n × n struc-
tured pencils satisfying any of these structures are not algebraic sets over C, but over
R, and for this reason we have not considered them here. Moreover, the description
of low-rank pencils with these structures provided in [10] as a sum of rank-1 pencils
suggests that the treatment of these structures deserves some additional effort.

Another possible line of research is to extend the results in the paper to matrix
polynomials of higher degree. There are some recent contributions in this direction.
In [11] the authors have described the generic scalar spectral information of arbitrary
(nonstructured) matrix polynomials with bounded rank and fixed degree, and in [12]
they have obtained an analogous description for the set of skew-symmetric matrix
polynomials with bounded rank and fixed degree.
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