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Abstract. In this paper, we are concerned with the problem of creating flattening maps of simply-
connected open surfaces in R3. Using a natural principle of density diffusion in physics, we propose
an effective algorithm for computing density-equalizing flattening maps with any prescribed density
distribution. By varying the initial density distribution, a large variety of mappings with different
properties can be achieved. For instance, area-preserving parameterizations of simply-connected open
surfaces can be easily computed. Experimental results are presented to demonstrate the effectiveness
of our proposed method. Applications to data visualization and surface remeshing are explored.
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1. Introduction. The problem of producing maps has been tackled by scientists
and cartographers for centuries. A classical map-making problem is to flatten the globe
onto a plane. Numerous methods have been proposed, each aiming to preserve different
geometric quantities. For instance, the Mercator projection produces a conformal
planar map of the globe: angles and small objects are preserved but the area near the
poles is seriously distorted.

One problem in computer graphics closely related to cartogram production is
surface parameterization, which refers to the process of mapping a complicated surface
to a simpler domain. With the advancement of the computer technology, three-
dimensional (3D) graphics have become widespread in recent decades. To create
realistic textures on 3D shapes, one common approach is to parameterize the 3D
shapes onto R2. The texture can be designed on R2 and then be mapped back onto
the 3D shapes. Again, different criteria of distortion minimization have led to the
invention of a large number of parameterization algorithms.

Gastner and Newman [1] proposed an algorithm for producing density-equalizing
cartograms based on the diffusion equation. Specifically, given a map and certain
data defined on each part of the map (such as the population at different regions),
the algorithm deforms the map such that the density, defined by the population
per unit area, becomes a constant all over the deformed map. The diffusion-based
cartogram generation approach has been widely used for data visualization. For
instance, Dorling [2] applied this approach to visualize sociological data such as the
global population, the income and the age-of-death at different regions. Colizza et al. [3]
constructed a geographical representation of disease evolution in the United States for
an epidemics using this cartogram generation algorithm. Wake and Vredenburg [4]
visualized global amphibian species diversity using the method. Other applications
include the visualization of the democracies and autocracies of different countries [5],
the race/ethnicity distribution of Twitter users in the United States [6], the rate of
obesity for individuals in Canada [7], and the world citation network [8].

Inspired by the above approach, we develop an efficient finite-element algorithm
for computing density-equalizing flattening maps of simply-connected open surfaces in
R3 onto R2. Given a simply-connected open triangulated surface and certain quantities
defined on all triangle elements of the surface, we first flatten the surface onto R2
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by a natural flattening map. Then, the flattened surface is deformed according to
the given quantities using a fast iterative scheme. Furthermore, by altering the input
quantities defined on the triangle elements, flattening maps with different properties
can be achieved. For instance, area-preserving parameterizations of simply-connected
open surfaces can be easily obtained.

1.1. Contribution. The contribution of our work for computing density-equalizing
flattening maps of simply-connected open surfaces is as follows.

(i) Our approach is applicable to a wider class of surfaces when compared to the
previous approach by Gastner and Newman [1]. The previous approach [1] works
for two-dimensional (2D) domains while ours works for simply-connected open
surfaces in R3.

(ii) We propose a linear formulation for computing a boundary-aware convex flat-
tening map of simply-connected open surfaces. The flattening map effectively
preserves the curvature of the input surface boundary and serves as a good initial
mapping for the subsequent density-equalizing process.

(iii) We propose a new scheme for constructing an auxiliary region for the density
diffusion. When compared to the previous approach [1], which makes use of
a regular rectangular grid for constructing the auxiliary region, our approach
produces a more adaptive auxiliary region that requires fewer points and hence
reduces the computational cost.

(iv) We propose a finite-element iterative scheme for solving the density-diffusion
problem without introducing the Fourier space as in the previous approach [1].
The scheme accelerates the computation for density-equalizing maps, with the
accuracy well-preserved.

(v) Our proposed algorithm can be used for a wide range of applications, including
the computation of area-preserving parameterizations, data visualization, and
surface remeshing.

1.2. Organization of the paper. In Section 2, we review the previous works
on cartogram generation and surface parameterization. The physical principle of
density-equalization is outlined in Section 3. In Section 4, we describe our proposed
method for achieving density-equalizing flattening maps of simply-connected open
surfaces. Experimental results are presented in Section 5 for analyzing our proposed
algorithm. In Section 6, we discuss two applications of our algorithm. In Section 7,
we conclude this paper with a discussion on the limitation of our current approach
and possible future works.

2. Previous work. The problem of map generation has been studied by cartog-
raphers, geographers and scientists for centuries. Readers are referred to Dorling [9]
for a short survey of pre-existing cartogram production methods. Edelsbrunner and
Waupotitsch [10] proposed a combinatorial approach to construct homeomorphisms
with prescribed area distortion for cartogram generation. Keim et al. [11] developed the
Cartodraw algorithm for producing contiguous cartograms. Gastner and Newman [1]
proposed a cartogram production algorithm based on density diffusion. Keim et al. [12]
proposed to use medial-axis-based transformations for making cartograms.

In this work, cartogram generation is shown to be closely related to surface
parameterization. For surface parameterization, a large variety of algorithms have
been proposed by different research groups. There are two major classes of surface
parameterization algorithms, namely conformal parameterization and authalic pa-
rameterization. Conformal parameterization aims to preserve the angles and hence
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the infinitesimal shapes of the surfaces while sacrificing the area ratios. By contrast,
authalic parameterization aims to preserve the area measure of the surfaces while
neglecting angular distortions. For the existing parameterization algorithms, we refer
the readers to the comprehensive surveys [13, 14, 15]. We highlight the works on
surface parameterization in the recent decade. For conformal parameterization, recent
advances include the discrete Ricci flow method [16, 17, 18] and the quasi-conformal
composition [19, 20, 21, 22, 23]. For area-preserving parameterization, the state-of-
the-art approaches are mainly based on Lie advection of differential 2-forms [24] and
optimal mass transport [25, 26]. Recently, Nadeem et al. [27] proposed an algorithm
for achieving spherical parameterization with controllable area distortion.

3. Background. Our work aims to produce flattening maps based on a physical
principle of diffusion. The diffusion-based method for producing cartogram proposed
by Gastner and Newman [1] is outlined as follows. For the rest of the paper, we
denote the method by Gastner and Newman [1] as GN. Given a planar map and a
quantity called the population defined on every part of the map, let ρ be the density
field defined by the quantity per unit area. The map can be deformed by equalizing
the density field ρ using the advection equation

∂ρ

∂t
= −∇ · j (3.1)

where the flux is given by Fick’s law,

j = −∇ρ. (3.2)

This yields the diffusion equation

∂ρ

∂t
= ∆ρ. (3.3)

Since time can be rescaled in the subsequent analysis, the diffusion constant in Fick’s
law is set to 1. Any tracers that are being carried by this density flux will move with
velocity

v(r, t) =
j

ρ
= −∇ρ

ρ
. (3.4)

If (3.3) is solved to steady state, and the map is deformed according to the velocity
field in (3.4), then the final state of the map will have equalized density. To track the
deformation of the map, Gastner and Newman introduce tracers r(t) that follow the
velocity field according to

r(t) = r(0) +

∫ t

0

v(r, τ)dτ. (3.5)

In other words, taking t → ∞, the above displacement r(t) produces a map that
achieves equalized density per unit area. To avoid infinite expansion of the map, GN
proposed to construct a large rectangular auxiliary region, called the sea, surrounding
the region of interest. By defining the density at the sea to be the average density of
the region of interest, it can be ensured that the area of the deformed map is as same
as that of the initial map. In GN, the above procedures were developed using finite
difference grids and the above equations were solved in Fourier space.
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There is room for improvement of the abovementioned approach in two major
aspects. First, the above 2D finite difference approach works for planar domains but
not for general simply-connected open surfaces in R3. Second, the large rectangular sea
and the large number of grid points may cause long computational time. In this work,
an algorithm that further enhances the abovementioned approach in the two aspects is
proposed. The details of our proposed algorithm in described in the following section.

4. Our proposed method. We now describe our method for computing density-
equalizing maps of simply-connected open surfaces in R3. Let S be a simply-connected
open surface in R3 and ρ be a prescribed density distribution. Our goal is to compute
a flattening map f : S → R2 such that the Jacobian Jf satisfies

Jf ∝ ρ. (4.1)

In other words, the final density per unit area in the flattening map becomes a constant.
Our proposed algorithm primarily consists of three steps, described in Secs. 4.1,

4.2, and 4.3. We remark that if the input surface is planar, the first step can be
skipped. In the following discussions, S is discretized as a triangular mesh (V, E ,F)
where V is the vertex set, E is the edge set and F is the triangular face set. ρ is
discretized as ρF on every triangle element T ⊂ F .

4.1. Initialization: Fast curvature-based flattening map. To compute the
density-equalization process, the first step is to flatten S onto R2. To minimize the
discrepancy between the surface and the flattening result, it is desirable that the
outline of the flattening result is similar to the surface boundary. We first simplify
the problem by considering only the curve flattening problem of the surface boundary.
Then, we construct a surface flattening map based on the curve flattening result.

4.1.1. Curvature-based flattening of the surface boundary. Let γ be the
boundary of the given surface S. Note that γ is a simple closed curve in R3 and hence
we can write it as an arc-length parameterized curve γ = γ(t) : [0, lγ ]→ R3, where lγ is
the total arc length of γ. Our goal is to flatten γ onto R2 using a map ϕ : [0, lγ ]→ R2

and then obtain the entire flattening map of the surface S. For γ, we can compute two
quantities: the curvature κγ and the torsion τγ . Note that the curvature κγ measures
the deviation of γ from a straight line, and the torsion τγ measures the deviation of γ
from a planar curve. We have the following important theorem.

Theorem 4.1 (Fundamental theorem of space curves [28]). The curve γ is
completely determined (up to rigid motion) by its curvature κγ and its torsion τγ .

Motivated by the above theorem, we consider mapping γ to ϕ(γ) such that
κγ ≈ κϕ(γ) and τϕ(γ) = 0. In other words, we project γ onto the space of planar convex
curves such that the curvature is preserved as much as possible. By Frenet–Serret
formulas [28],

T′(s) = κγ(s)‖γ′(s)‖N(s) (4.2)

where T and N are respectively the unit tangent and unit normal of γ. It follows that

κγ(s) =
‖T′(s)‖
‖γ′(s)‖

. (4.3)

After obtaining κγ , our goal is to construct a projection of γ onto the space of planar
simple convex closed curves. Note that for any simple closed planar curve C ⊂ R2, the
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total signed curvature of C is a constant [28]:∫
C
kC(s)ds = 2π. (4.4)

Now, to construct a closed planar curve ϕ with total arclength same as γ, we set the
target signed curvature k to be

k(s) =
2πκγ(s)∫
γ
κγ(t)dt

≥ 0. (4.5)

Then, consider the curve

ϕ(s) =

(∫ s

0

cos θ(u)du,

∫ s

0

sin θ(u)du

)
, (4.6)

where

θ(u) =

∫ u

0

k(t)dt. (4.7)

It is easy to check that

ϕ′(s) = (cos θ(s), sin θ(s)) (4.8)

and hence ϕ is an arclength parameterized curve. Moreover, we have

kϕ(s) = θ′(s) = k(s) ≥ 0. (4.9)

However, it should be noted that ϕ may be a closed curve. In other words, there may
be a small gap between ϕ(0) and ϕ(lγ) with 0 ≤ ‖ϕ(lγ)− ϕ(0)‖ � L, where L is the
total arclength of ϕ. To enforce that ϕ is closed, we consider updating it by

ϕ(s)← ϕ(s)− s

lγ
(ϕ(lγ)− ϕ(0)) . (4.10)

In fact, ϕ becomes a simple closed convex plane curve under this adjustment. The
proof is provided in the appendix.

The algorithm is summarized in Algorithm 1. After obtaining the simple closed
convex plane curve ϕ, we can use it as a convex boundary constraint and compute a
map φ : S → R2 as an initial flattening map of the entire surface S. Two methods for
surface flattening are suggested below.

4.1.2. Curvature-based Tutte flattening map. One way to construct a bi-
jective planar map φ is the graph embedding method of Tutte [29]. To give an overview
of the method, we first introduce the concept of adjacency matrix. The adjacency
matrix M is a |V| × |V| matrix defined by

Mij =

{
1 if [i, j] ∈ E ,
0 otherwise.

(4.11)

In other words, the adjacency matrix only takes the combinatorial information of the
input triangular mesh into account and neglects the geometry of it. It was proved
by Tutte [29] that there exists a bijective map φ between any simply-connected open
triangulated surface S in R3 and any convex polygon P on C with the aid of the
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Algorithm 1: Curvature-based curve flattening

Input: The boundary γ of a simply-connected open surface S in R3.
Output: A curvature-based flattened curve ϕ.

1 Let γ = {vj}bj=1 be the boundary vertices of S in anti-clockwise order.

Compute the curvature κ = ‖T′‖
‖γ′‖ ;

2 Rescale κ by κ← 2πκ∫
γ
κ(s)ds

;

3 Obtain the flattened curve ϕ(s) =
(∫ s

0
cos θ(u)du,

∫ s
0

sin θ(u)du
)
, where

θ(u) =
∫ u

0
κ(t)dt;

4 Adjust the map by ϕ(s)← ϕ(s)− s
lγ

(ϕ(lγ)− ϕ(0));

adjacency matrix. More explicitly, by representing φ as a complex column vector with
length |V|, φ can be obtained by solving the complex linear system{

MTutteφ(v) = 0 if v ∈ S \ ∂S,
φ(∂S) = ∂P,

(4.12)

where

MTutte
ij =


Mij if [xi, xj ] ∈ E ,
−
∑
t 6=iMit if j = i,

0 otherwise.
(4.13)

Here the boundary mapping φ : ∂S → ∂P can be any bijective map. Using our
curvature-based flattened curve ϕ as the convex boundary constraint, a bijective Tutte
flattening map φ : S → P can be easily obtained as described in Algorithm 2.

Algorithm 2: Curvature-based Tutte flattening map

Input: A simply-connected open surface S in R3.
Output: A curvature-based flattening map φ : S → R2.

1 Let γ = {vj}bj=1 be the boundary vertices of S. Compute the curvature-based

curve flattening ϕ : γ → C;

2 Compute the adjacency matrix M with Mij =

{
1 if [i, j] ∈ E
0 otherwise

;

3 Solve the linear system

{
MTutteφ(v) = 0 if v ∈ S \ ∂S,
φ(vj) = ϕ(vj) for all {vj}bj=1,

and obtain the

desired map φ;

4.1.3. Curvature-based locally authalic flattening map. By changing the
matrix MTutte in the above method, another way to construct φ can be obtained.
Desbrun et al. [30] proposed a mapping scheme by minimizing the quadratic Chi
energy

Eχ(φ) =
∑

j∈N(i)

cot γij + cot δij
|xi − xj |2

|φ(xi)− φ(xj)|2, (4.14)

where γij and δij are the two angles at xj as illustrated in Figure 4.1. The minimization
of the Chi energy aims to find a locally authalic mapping φ : S → R2 that preserves
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Fig. 4.1. The angles γij and δij in the locally authalic Chi energy.

the local 1-ring area at every vertex as much as possible. The associated authalic
matrix of this energy is given by

Mχ
ij =


cot γij+cot δij
|xi−xj |2 if [xi, xj ] ∈ E ,

−
∑
t 6=iM

χ
it if j = i,

0 otherwise.

(4.15)

Now consider replacing MTutte in the Tutte flattening algorithm by Mχ and solve
for a new flattening map. It is noteworthy that the minimizer of the Chi energy is not
a globally optimal area-preserving mapping. Nevertheless, it serves as a reasonably
good and simple initialization for our density-equalization problem. More explicitly,
using our curvature-based boundary constraint, φ can be obtained by solving the
following complex linear system{

Mχφ(v) = 0 if v ∈ S \ ∂S,
φ(∂S) = ϕ.

(4.16)

The curvature-based locally authalic flattening map is summarized in Algorithm 3.

Algorithm 3: Curvature-based locally authalic flattening map

Input: A simply-connected open surface S in R3.
Output: A curvature-based locally authalic flattening map φ : S → R2.

1 Let γ = {vj}bj=1 be the boundary vertices of S. Compute the curvature-based

curve flattening ϕ : γ → C;

2 Compute the authalic matrix Mχ
ij =


cot γij+cot δij
|xi−xj |2 if [xi, xj ] ∈ E ,

−
∑
t 6=iM

χ
it if j = i,

0 otherwise

;

3 Solve the linear system

{
Mχφ(v) = 0 if v ∈ S \ ∂S,
φ(vj) = ϕ(vj) for all {vj}bj=1,

and obtain the

desired map φ;

We remark that both of the two curvature-based flattening algorithms above are
a good choice of initialization for our problem for the following reasons:

(i) The boundary is flattened as a convex closed planar curve. The convex boundary
constraint leads to a bijective flattening map of the surface using our proposed
algorithm.
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Fig. 4.2. Illustration of our algorithm for constructing the sea. Left: the initial flattening map.
We put it inside the unit circle and fill up the gap with uniformly distributed points, and then reflect
the entire region along the circle to construct the sea. Right: the sea constructed (in cyan) and the
initial flattening map (in yellow).

(ii) The computation of the flattening maps is highly efficient. Both algorithms only
involve solving one complex linear system without any iterative procedures.

(iii) Unlike other conventional parameterizations such as conformal parameterizations,
our curvature-based flattening maps result in a relatively uniform distribution of
vertices on C and avoid shrinking particular regions. The diffusion process can
then be more accurately executed.

4.2. Construction of sea via reflection. In the diffusion-based approach of
GN, one important step is to set up a sea surrounding the area of interest. Setting
the initial density at the sea as the mean density ensures a proper deformation of
the area of interest, and avoids arbitrary expansion of the region under the diffusion
process. In this work, we propose a new method for the construction of such a sea for
the diffusion.

If the simply-connected open surface S is not planar, then the abovementioned
curvature-based flattening methods give us an initial flattening map r0 = φ(S) in R2.
If S is initially planar, we skip the above step and set r0 = S. In other words, we treat
S itself as the initial flattening map.

Now, we shrink the initial map r0 and place it inside the unit circle S1 := {z ∈
C : |z| = 1}. Note that there will be certain gaps between the shrunk map and the
circular boundary. Denote the edge length of the shrunk flattening map by l. We fill
up the gaps using uniformly distributed points with distance l. This process results
in an even distribution of points all over the unit disk D := {z ∈ C : |z| ≤ 1}. We
then triangulate the new points using the Delaunay triangulation. This gives us a
triangulation DT of the unit disk.

Next, we aim to construct a sea surrounding the unit disk in a natural way.
Consider the reflection mapping g : D→ C \ D defined by

g(z) =
1

z̄
. (4.17)

It is easy to observe that g is bijective. In the discrete case, the above map sends
the triangulated unit disk DT to a large polygonal region R in C with the region of
D punctured. We now glue DT and g(DT ) along the circular boundary ∂DT . More
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explicitly, denote the glued mesh by S̃ = (Ṽ, Ẽ , F̃). We have

Ṽ = {z}z∈DT ∪
{

1

z̄

}
z∈DT \∂(DT )

, (4.18)

F̃ = F ∪
{[

1

z̄i
,

1

z̄j
,

1

z̄k

]
: [zi, zj , zk] ∈ F

}
, (4.19)

and

Ẽ = {[zi, zj ] : [zi, zj ] is an edge of a face T ∈ F̃}. (4.20)

To get rid of the extremely large triangles at the outermost part of the glued mesh, we
perform a simple truncation by removing the part far away from the unit disk D. In
practice, we remove all vertices and faces of S̃ outside {z : |z| > 5}. Finally, we rescale
the glued mesh to restore the size of the flattening map. By an abuse of notation, we
continue using r0 to represent the entire region.

Now we have constructed a natural complement surrounding our region of interest
in r0. We proceed to set up the density distribution at the complement part. As
suggested in GN, the density at the complement part should equal the mean density
at the interior part. For every face T ∈ F̃ \ F , we set

ρF̃ (T ) = meanT ′∈Fρ
F (T ′). (4.21)

This completes our construction of the sea. The above procedures are summarized in
Algorithm 4. An graphical illustration of the construction is shown in Figure 4.2.

Algorithm 4: Construction of sea via reflection.

Input: An initial flattening map r0.
Output: An updated map r0 with a sea surrounding the original domain.

1 Shrink r0 to sit inside the unit circle S1;
2 Fill up the gaps between the unit circle and the shrunk map by uniformly

distributed points with distance l, where l is the average edge length of r0.;
3 Perform a constrained Delaunay triangulation that triangulates the unit disk

with the newly added points. The connectivity of r0 is kept unchanged;

4 Apply the reflection map g(z) = 1
z to the triangulated unit disk DT ;

5 Glue DT and g(DT ). Update r0 by the glued result;
6 Remove all vertices and faces of r0 outside {z : |z| > 5};
7 Rescale r0 to restore the size of the flattening map;

We now highlight the advantages of our construction of sea. One advantage of
our construction is that the mesh size of the constructed sea is adaptive. Unlike
the approach in GN, which used an uniform finite difference grid for the sea, our
construction produces a natural distribution of points at the sea that avoids redundant
computation.

More specifically, let z1, z2 be two points at the interior of the unit disk D. It can
be observed that under the reflection z 7→ 1

z , we have∣∣∣∣ 1

z1
− 1

z2

∣∣∣∣ =
|z1 − z2|
|z1z2|

=
|z1 − z2|
|z1z2|

. (4.22)



10 Gary P. T. Choi and Chris H. Rycroft

Fig. 4.3. Left: the vertex area A(i) of a vertex i. Right: the two angles αij and βij opposite to
the edge [i, j].

This implies that if z1, z2 are located near the origin, the distance between the reflected
points 1

z1
and 1

z2
will satisfy ∣∣∣∣ 1

z1
− 1

z2

∣∣∣∣� |z1 − z2|, (4.23)

since |z1z2| � 1. On the other hand, if z1, z2 are located near the unit circle S1, we
have ∣∣∣∣ 1

z1
− 1

z2

∣∣∣∣ ≈ |z1 − z2|, (4.24)

since |z1z2| ≈ 1.
One important consequence of the above observation is that the outermost region

of the sea, which stays far away from the region of interest, consists of the coarsest
triangulations. By contrast, the innermost region of the sea closest to the unit circle
has the densest triangulations. This natural transition of mesh sparsity of the sea
helps reducing the number of points needed for the subsequent computation without
affecting the accuracy of the result.

Another advantage of our construction is the improvement on the shape of the sea.
In GN, a rectangular sea is used for the finite difference framework. The four corner
regions are usually unimportant for the subsequent deformation and hence a large
amount of spaces and computational efforts are wasted. By contrast, our reflection-
based framework can easily overcome the above drawback. In our construction of the
sea, the reflection together with the truncation produces a sea with a more regular
shape. This utilizes the use of every point at the sea and prevents any redundant
computations.

Finally, note that the sea is constructed simply for the diffusion process and we
are only interested in the interior region. In the following discussions, by an abuse of
notation, we continue using the alphabets V, F without tilde whenever referring to
the discrete mesh structure.

4.3. Iterative scheme for producing density-equalizing maps. Given any
simply-connected open triangular mesh, the curvature-based flattening method pro-
duces a flattened map in R2. Suppose we are given a population on each triangle
element of the mesh. Define the density ρ on each triangle element of the flattened
map by Given population

Area of the triangle . As introduced before, after constructing the adaptive sea
surrounding the map, we extend the density ρ to the whole domain by setting ρ at
the sea to be the mean density at the original flattened map. In this subsection, we
develop an iterative scheme for deforming the flattened map based on density diffusion.
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To solve the diffusion equation on triangular meshes, one important issue is to
discretize the Laplacian. Let u : V → R be a function. To compute the Laplacian of u
at every vertex i, we make use of the cotangent Laplacian formulation [31]

∆u(i) =
1

2A(i)

∑
j∈N (i)

(cotαij + cotβij) (u(j)− u(i)), (4.25)

where A(i) is the vertex area of the vertex i, and αij and βij are the two angles
opposite to the edge [i, j]. More specifically,

A(i) =
1

3

∑
T∈{T∈F :i is a vertex of the triangle T}

Area(T ). (4.26)

It is easy to observe that ∑
i∈V

A(i) =
∑
T∈F

Area(T ). (4.27)

This shows that the vertex area is a good discretization of the total surface area at
the vertex set. The graphical illustrations of A(i) and αij , βij are given in Figure 4.3.

Note that the density ρ is originally defined on the triangular faces while the
above |V| × |V| Laplacian is only applicable for vertices. To handle this discrepancy,
we develop a natural transition between the value of ρ on triangular faces and that on
vertices. Let ρF and ρV be respectively the value of ρ on faces and that on vertices in
the form of column vectors. Given ρV on the vertices, the discretization ρF on the
triangular faces can be obtained by considering

ρF = MVFρV , (4.28)

where MVF is a |F| × |V| transition matrix defined by

MVFij :=

{
1
3 if the i-th triangle contains the j-th vertex,
0 otherwise.

(4.29)

Similarly, given ρF on the triangular faces, the discretization ρV on the vertices can
be obtained by

ρV = MFVρF , (4.30)

where MFV is a |V| × |F| transition matrix. This time, we denote

M̃FVij :=

{
1 if the j-th triangle contains the i-th vertex,
0 otherwise,

(4.31)

and define

MFV :=


M̃FV1,: /‖M̃FV1,: ‖0
M̃FV2,: /‖M̃FV2,: ‖0

...

M̃FV|F|,:/‖M̃
FV
|F|,:‖0

 . (4.32)
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It is easy to check that

MFVMVF = |F|, (4.33)

and

MVFMFV = |V|. (4.34)

Therefore, the two operators MFV and MVF are consistent with each other.
After discretizing the Laplacian, we propose the following semi-discrete backward

Euler method for solving the diffusion equation (3.3):

ρVn − ρVn−1

δt
= ∆n−1ρ

V
n . (4.35)

Here ρVn is the value of ρ on the vertices at the n-th iteration, ∆n is the cotangent
Laplacian of the deformed map rn, and δt is the time step for the iterations. By a
simple rearrangement, the above equation is equivalent to

ρVn = (I − δt∆n−1)−1ρVn−1. (4.36)

Note that the above semi-discrete backward Euler method is unconditionally stable
and ensures the convergence of our algorithm. Also, the cotangent Laplacian ∆n is
a symmetric positive definite matrix and hence (4.36) can be efficiently solved by
numerical solvers.

After discretizing the diffusion equation, we consider the production of the induced
vector field. We first need to discrete the gradient operator ∇. Consider the face-based
discretization (∇ρ)Fn (T ) defined on every triangle element T = [i, j, k] at the n-th
iteration. Note that (∇ρ)Fn (T ) should satisfy

〈(∇ρ)Fn (T ), ejk〉 = ρVn (k)− ρVn (j),
〈(∇ρ)Fn (T ), eki〉 = ρVn (i)− ρVn (k),
〈(∇ρ)Fn (T ), eij〉 = ρVn (j)− ρVn (i),
〈(∇ρ)Fn (T ), N〉 = 0,

(4.37)

where eij = [i, j], ejk = [j, k], eki = [k, i] are the three directed edges of T in the form
of vectors, and N is a unit normal vector of T . Since

ejk + eki + eij = 0, (4.38)

the third equation in (4.37) automatically follows from the first two equations. Note
that (4.37) can be solved analytically with the solution

(∇ρ)Fn (T ) = − 1

2Area(T )
N ×

(
ρVn (i)ejk + ρVn (j)eki + ρVn (k)eij

)
. (4.39)

This gives us an accurate approximation of the gradient operator on triangulated
surfaces.

Note that the above approximation is developed on the triangle elements but not
on the vertices. For the face-to-vertex conversion, we again make use of a matrix
multiplication. Note that the previously developed matrices MFV and MVF are
purely combinatorial as the directions are not important in their uses. By contrast, the
directions are important for computing the gradient operator. Therefore, we need to
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take the geometry of the mesh into account in designing the conversion matrix for the
gradient operator. To emphasize the weight of different directions in the conversion,
we use the triangle area as a weight function. More specifically, we denote

W̃FVij =

{
Area(Tj) if the j-th triangle Tj contains the i-th vertex,
0 otherwise.

(4.40)

Then we can define

WFV :=


W̃FV1,: /‖W̃FV1,: ‖1
W̃FV2,: /‖W̃WV2,: ‖1

...

W̃FV|F|,:/‖W̃
FV
|F|,:‖1

 . (4.41)

With this weighted face-to-vertex conversion matrix, we have

(∇ρ)Vn := WFV(∇ρ)Fn . (4.42)

With all differential operators discretized, we are now ready to introduce our iterative
scheme for computing density-equalizing maps. In each iteration, we update the
density by solving (4.36) and compute the induced gradient (∇ρ)Vn based on the
abovementioned procedures. Then, we deform the map by

rn = rn−1 + δt(∇ρ)Vn . (4.43)

For the stopping criterion, we consider the quantity
sd(ρFn )

mean(ρFn )
. Note that the

standard deviation sd(ρFn ) measures the dispersion of the updated density ρFn , and we
normalize it using mean(ρFn ) to remove the effect of arbitrary scaling of ρFn . Also, it

is easy to note that
sd(ρFn )

mean(ρFn )
= 0 if and only if the density is completely equalized.

Hence, this normalized quantity can be used for determining the convergence of the
iterative algorithm. Finally, we rescale the mapping result so that the total area of S
is preserved under our density-equalizing mapping algorithm.

We remark that the step size δt affects the convergence rate of the algorithm.
By dimensional analysis on the diffusion equation (3.3), an appropriate dimension
of δt would be L2. Also, note that δt should be independent to the magnitude of ρ.
Therefore, a reasonable choice of δt is

δt = min

{
min(ρF0 )

mean(ρF0 )
,

mean(ρF0 )

max(ρF0 )

}
×Area(S). (4.44)

The first term is a dimensionless quantity that takes extreme relative density ratios
into account, and the second term is a natural quantity with dimension L2. Algorithm
5 summarizes our proposed method for producing density-equalizing maps of simply-
connected open surfaces.

4.4. The choice of population and its effects. Before ending this section,
we discuss the choice of the initial population and its effect on the final result obtained
by our algorithm. Some choices and the corresponding effects are listed below:

(i) If we set a relatively high population at a certain region of the input surface, the
population will cause an expansion during the density-equalization. The region
will be magnified in the final density-equalizing mapping result.



14 Gary P. T. Choi and Chris H. Rycroft

Algorithm 5: Density-equalizing map for simply-connected open surfaces

Input: A simply-connected open triangulated surface S, a population on each
triangle, and a stopping parameter ε.

Output: A density-equalizing flattening map f : S → R2.

1 if S is planar then
2 Set r0 = S ;
3 else
4 Compute a curvature-based flattening map φ : S → C using Algorithm 2 or

Algorithm 3. Denote r0 = φ(S);

5 Define the density ρF0 = Given population
Area of the triangle on each triangle of r0;

6 Update r0 with an adaptive sea constructed using Algorithm 4;

7 Extend ρF0 to the whole domain by setting ρF0 at the sea to be the mean of the

original ρF0 ;

8 Compute ρV0 = MFVρF0 ;

9 Set δt = min
{

min(ρF0 )

mean(ρF0 )
,

mean(ρF0 )

max(ρF0 )

}
×Area(S);

10 Set n = 0;
11 repeat
12 Update n = n+ 1;

13 Solve ρVn = (I − δt∆n−1)−1ρVn−1;
14 Compute the face-based discrete gradient

(∇ρ)Fn (T ) = − 1
2Area(T )N ×

(
ρVn (i)ejk + ρVn (j)eki + ρVn (k)eij

)
;

15 Perform the conversion (∇ρ)Vn = WFV(∇ρ)Fn ;

16 Update rn = rn−1 + δt(∇ρ)Vn ;

17 Compute ρFn = MVFρVn ;

18 until
sd(ρFn )

mean(ρFn )
< ε;

19 Obtain f(S) = rn × Area(r0)
Area(rn) ;

(ii) Similarly, if we set a relatively low population at a certain region of the input
surface, the region will shrink in the final density-equalizing mapping result.

(iii) If we set the population to be the area of every triangle element of the input
surface, the resulting density-equalizing map will be an area-preserving planar
parameterization of the input surface as we have

Initial area

Final area
=

Given population

Final area
= Density = Constant. (4.45)

Examples are given in Section 5 to illustrate the effect of different input populations.

5. Experimental results. In this section, we demonstrate the effectiveness of
our proposed algorithm using various experiments. Our algorithms are implemented in
MATLAB. The linear systems in our algorithm are solved using the backslash operator
in MATLAB. All experiments are performed on a PC with Intel i7-6700K CPU and
16 GB RAM. All surfaces are discretized in the form of triangular meshes. In all
experiments, the stopping parameter ε is set to be 10−3. Some of the surface meshes
are adapted from the AIM@SHAPE Shape Repository [32].
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Fig. 5.1. Density-equalization on a square. Top left: the initial shape colored with a given
population distribution. Top right: the density-equalizing map colored with the final area of each

triangle element. Bottom left: the values of
sd(ρFn )

mean(ρFn )
. Bottom middle: the histogram of the initial

density Given population
Initial area

on each triangle element. Bottom right: the histogram of the final density
Given population

Final area
on each triangle element.

5.1. Examples of density-equalizing maps produced by our algorithm.
We begin with two synthetic examples of regular polygons on R2. Figures 5.1 and 5.2
respectively show a square and a hexagon with a given population on every triangle
element, and the density-equalizing results obtained by our proposed algorithm. In
both examples the final densities Given population

Final area highly concentrate at 1, meaning that

the densities are well equalized. Also, the plots of the quantity
sd(ρFn )

mean(ρFn )
show that

iterative scheme converges rapidly.

We then consider a synthetic example of a surface in R3 with Gaussian shape. The
domain of the shape is [0, 1]× [0, 1] and the population is set to be 2.2−|x|− |y|, where
(x, y) are the x- and y-coordinates of the centroid of each triangle element. Algorithm
2 is used for the initialization of the density-equalization algorithm. Figure 5.3 shows
the initial surface and the mapping result obtained by our density-equalizing mapping
algorithm. The plots indicate that the density is well equalized by our algorithm.

We consider another synthetic example of a surface with multiple peaks in R3. This
time, we set the population as the area of each triangle element on the initial surface.
In other words, our proposed algorithm should result in an area-preserving flattening
map. Again, Algorithm 2 is used for the initialization of the density-equalization
algorithm. Figure 5.4 shows the initial surface and the mapping result obtained by our
density-equalizing mapping algorithm. The flattening map effectively preserves the
area ratios. We compare our density-equalizing mapping result with the state-of-the-art
conformal parameterization algorithms [30, 23]. Figure 5.5 shows the parameterization
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Fig. 5.2. Density-equalization on a hexagon. Top left: the initial shape colored with a given
population distribution. Top right: the density-equalizing map colored with the final area of each

triangle element. Bottom left: the values of
sd(ρFn )

mean(ρFn )
. Bottom middle: the histogram of the initial

density Given population
Initial area

on each triangle element. Bottom right: the histogram of the final density
Given population

Final area
on each triangle element.

results, whereby the peaks are substantially shrunk for conformal parameterizations,
and the boundary of the free-boundary conformal parameterization is significantly
different from that of the original surface. By contrast, the peaks are flattened without
being shrunk under our proposed algorithm.

Now consider computing the area-preserving mapping for a real surface mesh of a
lion face in R3 using our algorithm. Again, we set the population as the area of each
triangle element on the initial surface for achieving an area-preserving parameterization.
Algorithm 3 is used for the initialization step of our density-equalizing mapping
algorithm. Figure 5.6 shows the initial surface and the mapping result obtained by our
density-equalizing mapping algorithm. For better visualization, we color the meshes
with the mean curvature of the input lion face. The locally authalic initialization
does not preserve the global area ratio; in particular, the nose of the lion is shrunk.
By contrast, the final density-equalizing flattening map effectively preserves the area
ratios.

In addition, our algorithm can produce density-equalizing flattening maps with
different effects by changing the input population. Figure 5.7 shows two examples
with different input populations. For the Niccolò da Uzzano model, we set the input
population to be the area of each triangle element on the mesh except the eyes, and
the population at the eyes to be 2 times the area of the triangles there. For the Max
Planck model, we set the input population to be the area of each triangle element on
the mesh except the nose, and the population at the nose to be 1.5 times the area of
the triangles there. It can be observed that the resulting density-equalizing maps are
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Fig. 5.3. Density-equalizing map for a surface in R3 with Gaussian shape. Top left: the
initial shape colored with a given population distribution. Top middle: the curvature-based Tutte
flattening initialization colored with the area of each flattened triangle element. Top right: the
final density-equalizing map colored with the final area of each triangle element. Bottom right: the

values of
sd(ρFn )

mean(ρFn )
. Bottom middle: the histogram of the density Given population

Initial flattened area
on each flattened

triangle element after the Tutte flattening initialization. Bottom right: the histogram of the density
Given population

Final area
on each triangle element of the final result.

Fig. 5.4. Area-preserving parameterization of a surface with multiple peaks in R3. Top left: the
initial shape colored with the initial area of each triangle element. Top middle: the curvature-based
Tutte flattening initialization colored with the area of each flattened triangle element. Top right: the
final density-equalizing map colored with the final area of each triangle element. Bottom right: the

values of
sd(ρFn )

mean(ρFn )
. Bottom middle: the histogram of the density Initial area

Initial flattened area
on each flattened

triangle element after the Tutte flattening initialization. Bottom right: the histogram of the density
Initial area
Final area

on each triangle element of the final result.
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Fig. 5.5. Comparison of different parameterization schemes for a surface with multiple peaks
in R3 shown in Figure 5.4. Left: The area-preserving parameterization by our method. Middle:
The free-boundary conformal parameterization by Desbrun et al. [30]. Right: The disk conformal
parameterization by Choi and Lui [23].

Fig. 5.6. Area-preserving parameterization of a lion face in R3. Top left: the initial shape. Top
middle: the curvature-based locally authalic flattening initialization. Top right: the final density-

equalizing map. Bottom left: the values of
sd(ρFn )

mean(ρFn )
. Bottom middle: the histogram of the density

Initial area
Initial flattened area

on each flattened triangle element after the flattening initialization. Bottom right:

the histogram of the density Initial area
Final area

on each triangle element of the final result.

respectively with the eyes and the nose magnified.

5.2. Numerical results of our algorithm. For a quantitative analysis, Table
5.1 lists the detailed statistics of the performance of our algorithm on a number of
simply-connected open meshes. From the time spent and the number of iterations
needed, it can be observed that the convergence of our proposed algorithm is fast. Also,
the median and the inter-quartile range of the density show that the density is well
equalized under our algorithm. The experiments reflect the efficiency and accuracy of
our proposed algorithm.

We are also interested in analyzing the difference in the performance of our
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Fig. 5.7. Density-equalizing flattening maps with different effects obtained by our proposed
algorithm. Left: the Niccolò da Uzzano model and the density-equalizing flattening map with the eyes
magnified. Right: the Max Planck model and the density-equalizing flattening map with the nose
magnified.

Fig. 5.8. The density-equalizing maps produced by our proposed algorithm and GN with various
input population functions. Each column shows a set of experimental results color-coded by the input
population function as described in Table 5.2. Top row: the results by GN. Bottom row: the results
by our method. It can be observed that our method produces results as accurate as those by GN.

algorithm and GN with implementation available online [33]. Recall that GN works on
finite difference grids. Therefore, for a fair comparison, we deploy the two methods on a
100× 100 square grid {(x, y) ∈ Z2 : 0 ≤ x, y ≤ 99} and compare the results. Following
the suggestion by GN, the dimension of the sea is set to be two times the linear
extent of the square grid in running GN. Various initial populations are tested for the
computation of density-equalizing maps. Figure 5.8 shows several density-equalizing
mapping results produced by the two methods. The statistics of the experiments are
recorded in Table 5.2. With the accuracy well preserved, our method demonstrates an
improvement on the computational time by over 60% when compared to GN.

We make a remark about the deformation of the sea under the density-equalizing
process. Let r be the displacement of every point at the sea from the origin before
the deformation, and ∆r = rfinal − r be the change in displacement of the point under
the density-equalizing process. Figure 5.9 shows several log–log plots of ∆r against
r outside the unit circle. We observe that ∆r and r are related by the relationship
∆r ∝ r−2 at the outer part of the sea. This suggests that setting a coarser sea at the
outermost part does not affect the accuracy of the density-equalizing map.
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Surface
No. of

triangles
Time
(s)

No. of
iterations

Median
of

density

IQR of
density

Square 10368 0.9858 5 1.0126 0.0799

Hexagon 6144 0.4394 5 1.0227 0.0556

Gaussian 10368 0.8667 4 1.0070 0.0307

Peaks 4108 0.2323 4 1.0024 0.1325

Lion 33369 2.4075 5 1.0220 0.1277

Niccolò da
Uzzano

25900 3.0077 8 1.0305 0.0823

Max
Planck

26452 3.2395 11 1.0252 0.0633

Human
face

6912 1.2356 6 1.0084 0.0571

US Map
(Romney)

46587 10.8280 3 1.0027 0.0146

US Map
(Obama)

46587 12.8330 4 0.9998 0.0147

US Map
(Trump)

46587 12.5154 4 1.0024 0.0176

US Map
(Clinton)

46587 12.8733 4 1.0003 0.0248

Table 5.1
The performance of our algorithm. For each surface, we record the number of triangle elements,

the time taken (in seconds) for the entire density-equalization algorithm (including the computation of
initial map and the construction of sea), the number of iterations taken in the iterative scheme, and

the median and interquartile range of the density defined on each triangle element by Given population
Final area

.

Input population
Time by
GN (s)

Time by
our

method (s)

Map
difference

5 + (x−x̄)+(y−ȳ)
50

4.843 1.753 0.0009

1 + e−
(x−x̄)2+(y−ȳ)2

1000 4.452 1.501 0.0015

2.5 + sin π(x−x̄)
25

4.959 1.776 0.0013

1.5 + sin π(x−x̄)
25 sin π(y−ȳ)

25
4.592 1.488 0.0026

Table 5.2
Comparing the performance of our algorithm and GN deployed on a 100× 100 square mesh with

various input population functions. Here, the map difference is given by mean
(

|zprev−zours|
side length of square

)
,

where zprev and zours are respectively the complex coordinates of the density-equalizing mapping
results by GN and our method. x̄ and ȳ are the mean of the x-coordinates and the y-coordinates of
the square.

6. Applications. Our proposed density-equalizing mapping algorithm is useful
for various applications. In this section, we discuss two applications of our algorithm.

6.1. Data visualization. Similar to GN, our density-equalizing mapping algo-
rithm can be used for data visualization. We consider visualizing the percentage of
popular vote for the Republican party and the Democratic party in each state in the
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Fig. 5.9. The log–log plot of the displacement of the sea under our density-equalizing algorithm.
To study the effect at the outer sea, only the region outside the unit circle is considered. The x-axis
represents the logarithm of the displacement of every point at the sea from the origin. The y-axis
represents the logarithm of the change in the displacement under the density-equalizing map. Each
cross represents a point at the sea, and the red line is the least-squares line. Left: the square example.
Middle: the hexagon example. Right: the human face example.

Fig. 6.1. Percentage of popular vote in each state visualized on density-equalizing US maps
(only including the contiguous 48 states). The triangulations are set to be transparent for enhancing
the visual quality.

2012 and 2016 US presidential elections. To visualize the data, we set the population on
each state on a triangulated US map as the percentage of popular vote obtained by the
two parties and run our proposed algorithm. Figure 6.1 shows the density-equalizing
results. It can be observed that for the Republican party, the east coast and west coast
are significantly shrunk. This reflects the relatively low percentage of popular vote
obtained at those regions. By contrast, for the Democratic party, the east coast and
west coast are significantly enlarged under the density-equalization, which reflects the
relative high percentage of popular vote there. Some differences between the 2012 and
the 2016 results can also be observed. For instance, the area of California becomes
more extreme on the density-equalizing maps in 2016 when compared to those in 2012.
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Fig. 6.2. Remeshing a human face. Top left: the original human face. Top middle: the remeshing
result via our parameterization. Top right: the remeshing result via the free-boundary conformal
parameterization by Desbrun et al. [30]. Bottom left: the density-equalizing parameterization by our
algorithm. Bottom right: the free-boundary conformal parameterization by Desbrun et al. [30].

For Trump, California has further shrunk on the map while for Clinton, it has further
expanded on the map. Another example is West Virginia. It can be observed that the
area of it has decreased in the map for Clinton when compared to that for Obama,
while the area has increased in the map for Trump when compared to that for Romney.
This example of US presidential election shows the usefulness of our density-equalizing
mapping algorithm in data visualization.

6.2. Adaptive surface remeshing. Note that the input population affects the
size of different regions in the resulting density-equalizing map. Specifically, a higher
population leads to a magnification and a lower population leads to a shrinkage. Using
this property of the density-equalizing map, we can perform adaptive surface remeshing
easily.

Let S be a surface to be remeshed. Given a population, we first compute the
density-equalizing map f : S → C. Now consider a set of uniformly distributed points
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P on the density-equalizing map. We triangulate the set of points and denote the
triangulation by T . Then, using the inverse mapping f−1, we can interpolate P onto
S. The mesh (f−1(P), T ) gives a remeshed representation of the surface S.

Now, to increase the level of details at a region of S, we can set a larger population
at there in running our density-equalizing mapping algorithm. Since the region is
enlarged in the mapping result and P is uniformly distributed, more points will lie
on that part and hence the inverse mapping will map more points back onto that
particular region of S. This completes our adaptive surface remeshing scheme.

Figure 6.2 shows an example of remeshing a triangulated human face using the
abovementioned scheme. We set the population to be the triangle area of the original
mesh in running our algorithm. To highlight the advantage of the use of our density-
equalizing map, we compare the remeshing result with that obtained via a conventional
free-boundary conformal parameterization method [30]. The eyes and the nose of
the human face are enlarged in our density-equalizing mapping result, while such
features are shrunk in the conformal parameterization because of the preservation of
conformality. This difference causes significantly different remeshing results. Also,
note that the representation of the nose is poor in the remeshing result via conformal
parameterization. By contrast, the remeshing result via our density-equalizing mapping
algorithm is with a more balanced distribution of points. This example demonstrates
the strength of our algorithm in surface remeshing.

7. Discussion. In this work, we have proposed an efficient algorithm for com-
puting density-equalizing flattening maps of simply-connected open surfaces in R3.
When compared to GN, our method is particularly well suited to planar domains with
complex geometry because of the use of triangular meshes. With this advantage, our
method can possibly lead to a wider range of applications of density-equalizing maps
in data visualization. Our method is also well suited for handling disk-like surfaces in
R3 such as human faces. This suggests a new approach for adaptive surface remeshing
via density-equalizing maps. When compared to the existing parameterization-based
remeshing approaches, our method can easily control the remeshing quality at different
regions of the surfaces by changing the population at those regions.

Since the density diffusion process is solved on a triangular mesh, the triangle
quality affects the accuracy of the discretization and hence the final density-equalization
result. If the triangular mesh consists of highly irregular triangle elements, the ultimate
density distribution may not be optimal even after the algorithm converges. Also,
since the discretization is based on the triangles for every step in our algorithm, if the
input population is too extreme or highly discontinuous, the triangles may become
highly irregular at a certain step and affects the accuracy of the subsequent results. In
other words, triangle meshes with moderate triangle quality and input population are
desired. Besides, for surfaces in R3 with a highly tubular shape and with the boundary
lying at one end, the flattening step may causes extremely squeezed regions on the
planar domain. In this case, the accuracy of the subsequent computations for density
equalization may be affected.

Our current work primarily focuses on simply-connected surfaces in R3, but it can
be naturally extended to general surfaces. For instance, density-equalizing maps of
multiply-connected surfaces can be computed by filling up the holes and treating them
as the sea in our proposed algorithm. Similarly, density-equalizing maps of multiple
disconnected surfaces can be handled with the aid of a large sea.
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Appendix. We prove that the curvature-based curve flattening step in Sec. 4.1
produces a simple closed convex curve.

Proposition 7.1. Let ϕ : [0, lγ ] → R2 be the arclength parameterized curve
defined as in Sec. 4.1. Consider the new curve Φ : [0, lγ ]→ R2 defined by

Φ(s) = ϕ(s)− s

lγ
(ϕ(lγ)− ϕ(0)) . (7.1)

Φ is a simple closed convex curve.
Proof. It is easy to note that Φ(0) = ϕ(0) = Φ(lγ) and hence Φ is closed. Since ϕ

is an arclength parameterized curve, for any 0 ≤ a < b ≤ lγ , we have

‖ϕ(b)− ϕ(a)‖ ≤
∫ b

a

‖ϕ′(s)‖ds = b− a, (7.2)

where the equality holds if and only if ϕ([a, b]) is a straight line. In particular, since γ
is the boundary of the original simply-connected open surface, by our construction of
ϕ, we have ‖ϕ(lγ)− ϕ(0)‖ � lγ .

We now prove that the signed curvature of Φ, denoted by kΦ, is non-negative for
all s ∈ [0, lγ ]. Denote ϕ(s) = (x(s), y(s)) and Φ(s) = (X(s), Y (s)). We have

Φ′ = (X ′, Y ′)

=

(
x′(s)− 1

lγ
(x(lγ)− x(0)) , y′(s)− 1

lγ
(y(lγ)− y(0))

)
=

(
cos θ(s)− 1

lγ
(x(lγ)− x(0)) , sin θ(s)− 1

lγ
(y(lγ)− y(0))

) (7.3)

and

Φ′′ = (X ′′, Y ′′) = (x′′, y′′) = (−kϕ(s) sin θ(s), kϕ(s) cos θ(s)) . (7.4)

Hence, we have

X ′Y ′′ −X ′′Y ′ = kϕ(s)

(
1− (x(lγ)− x(0)) cos θ(s)− (y(lγ)− y(0)) sin θ(s)

lγ

)
. (7.5)

Now recall that by (4.5), kϕ(s) ≥ 0 for all s. Also, we have

http://visionair.ge.imati.cnr.it/ontologies/shapes/
http://www-personal.umich.edu/~mejn/cart/
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(x(lγ)− x(0)) cos θ(s)− (y(lγ)− y(0)) sin θ(s)

≤
√

(x(lγ)− x(0))
2

+ (y(lγ)− y(0))
2
√

cos2 θ(s) + sin2 θ(s)

=

√
(x(lγ)− x(0))

2
+ (y(lγ)− y(0))

2

= ‖ϕ(lγ)− ϕ(0)‖
≤lγ .

(7.6)

Here, the first inequality follows from the Cauchy–Schwarz inequality, and the second
inequality follows from (7.2). Therefore, we have

1− (x(lγ)− x(0)) cos θ(s)− (y(lγ)− y(0)) sin θ(s)

lγ
≥ 0 for all s ∈ [0, lγ ], (7.7)

and it follows that

kΦ(s) =
X ′Y ′′ −X ′′Y ′

(X ′2 + Y ′2)3/2
≥ 0 for all s ∈ [0, lγ ]. (7.8)

We proceed to show that Φ is simple. Note that since Φ is a closed plane curve,
the total curvature of Φ should satisfy∫ lϕ

0

kΦ(s)ds = 2πnΦ, (7.9)

where nΦ is the turning number of Φ. From the above results, we have

2πnΦ =

∫ lϕ

0

kϕ(s)
(

1− (x(lγ)−x(0)) cos θ(s)−(y(lγ)−y(0)) sin θ(s)
lγ

)
(X ′2 + Y ′2)3/2

ds

≤

(∫ lϕ

0

kϕ(s)ds

)
max
s∈[0,lγ ]

∣∣∣∣∣∣
(

1− (x(lγ)−x(0)) cos θ(s)−(y(lγ)−y(0)) sin θ(s)
lγ

)
(X ′2 + Y ′2)3/2

∣∣∣∣∣∣
= 2π max

s∈[0,lγ ]

 1− (x(lγ)−x(0)) cos θ−(y(lγ)−y(0)) sin θ
lγ(

1 +
(x(lγ)−x(0))2+(y(lγ)−y(0))2

lγ
− 2((x(lγ)−x(0)) cos θ+(y(lγ)−y(0)) sin θ)

lγ

)3/2

 .

(7.10)

Substituting A =
x(lγ)−x(0)

lγ
and B =

y(lγ)−y(0)
lγ

, the above equation becomes

2π max
s∈[0,lγ ]

(
1−A cos θ(s) +B sin θ(s)

(1 +A2 +B2 − 2A cos θ(s)− 2B sin θ(s))
3/2

)

=2π max
s∈[0,lγ ]

(
1− C cos(θ(s) + η)

(1 + C2 − 2C cos(θ(s)− η)))
3/2

)
,

(7.11)

where C =
√
A2 +B2 =

‖ϕ(lγ)−ϕ(0)‖
lγ

� 1 and η = tan−1 B
A = tan−1 y(lγ)−y(0)

x(lγ)−x(0) . Hence,

it is easy to see that

max
s∈[0,lγ ]

(
1− C cos(θ(s) + η)

(1 + C2 − 2C cos(θ(s)− η)))
3/2

)
≤ 1 + C

(1− C)
3 < 2. (7.12)
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This implies that

2πnΦ < 4π ⇒ nΦ < 2. (7.13)

It follows that nΦ = 1 and hence Φ is simple. Finally, note that a simple closed curve
is convex if and only if its signed curvature does not change sign [34]. From (7.8), we
conclude that Φ is a simple closed convex curve.


