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Abstract. We consider the numerical approximations for a phase field model consisting of
incompressible Navier-Stokes equations with a generalized Navier boundary condition, and the Cahn-
Hilliard equation with a dynamic moving contact line boundary condition. A crucial and challenging
issue for solving this model numerically is the time marching problem, due to the high order, nonlinear
and coupled properties of the system. We solve this issue by developing two linear, second-order
accurate and energy stable schemes based on the projection method for the Navier-Stokes equations,
the invariant energy quadratization for the nonlinear gradient terms in the bulk and boundary, and
a subtle implicit-explicit treatment for the stress and convective terms. The well-posedness of the
semi-discretized system and the unconditional energy stabilities are proved. Various numerical results
based on a spectral-Galerkin spatial discretization are presented to verify the accuracy and efficiency
of the proposed schemes.
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1. Introduction. In this paper, we consider numerical approximations for a
hydrodynamically-coupled phase field model [34,35] with moving contact line (MCL)
boundary conditions. Phase field method is a popular approach that is widely used to
simulate the interfacial dynamics of multiple material components due to its versatility
in modeling as well as numerical simulations. The fluid-fluid interface in this method
is considered as a continuous but steep change of some physical property of two fluid
components, e.g., density or viscosity, etc. An order parameter (phase field variable)
is introduced to label the two fluid components, the interface is then represented by
a thin but smooth transition layer that can remove the singularities in practice. The
standard phase field model for incompressible immiscible fluid mixture is a nonlinear
system that couples the Cahn-Hilliard equation and the Navier-Stokes equations via
convective and stress terms. Once the fluid-fluid interface touches a solid wall, a
MCL problem is induced. This phenomenon exists in many physical and engineering
processes such as wetting, coating, or painting, etc. In this situation, the no-slip
boundary condition for the Navier-Stokes equations is no longer applicable (cf. [6,
7, 32]). Simulations in [22, 23, 49] using molecular dynamics simulations showed that
nearly complete slip happens near the MCL. In the context of phase field method, a set
of accurate boundary conditions for the MCL problem was derived by Qian et. al. in
[34, 35], resulting in a standard two phase model supplemented with a generalized
Navier boundary condition (GNBC) and a dynamic contact line condition (DCLC),
where the nonlinear couplings also show up in the boundary conditions.

Numerically, although the phase field variable is continuous and smooth, the
model is still very stiff since a small dimensionless parameter related to the thick-
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ness of the interface layer, is involved, for which certain numerical methods like fully
implicit or explicit methods for nonlinear terms, need a very small time marching
step size (see the analysis in [11, 42, 54]). Hence a challenging issue for solving the
model is to develop numerically stable methods, namely, to establish efficient numer-
ical schemes that can verify the so-called energy stable property at the discrete level,
irrespective of the coarseness of the discretization. Such a kind of algorithms is usu-
ally called unconditionally energy stable or thermodynamically consistent. Schemes
with this property are specially preferred since it is critical for the numerical schemes
to use larger time steps to capture the correct long time dynamics that can reduce
the time cost in computing. Nonetheless, we need mention a basic fact that a larger
time step will definitely induce larger numerical errors. In other words, schemes with
unconditional energy stability can allow arbitrarily large time step only for the sake
of the stability concern. To measure whether a scheme is reliable or not, the control-
lable accuracy is another important factor in addition to the stability. Therefore, if
one attempts to use a time step as large as possible while maintaining the desirable
accuracy, the only possible choice is to develop more accurate schemes, e.g., second
order energy stable schemes, that is the main focus of this paper.

It is remarkable that, unlike the enormous numerical scheme developments on
the standard phase field model for two phase fluid flows system with easy bound-
ary conditions (without MCLs), e.g., see [10, 20, 21, 26, 27, 30, 48], almost all devel-
oped time marching schemes for solving the model with MCLs are first order, e.g.,
see [1,4,5,12,13,19,29,36,46,62]. More precisely, to the best of the authors’ knowledge,
no schemes can be claimed to posses the following three properties, namely, linear,
unconditionally energy stable and second order accuracy. This is because two addi-
tional numerical difficulties, the discretization of the GNBC and DCLC conditions
on the boundary, emerge besides the regular stiffness issue induced by the nonlin-
ear double well potential in the Cahn-Hilliard equation. At the very least, even for
the Cahn-Hilliard equation, the algorithm design is still challenging. To overcome the
stiffness issue, many efforts had been implemented to remove the time step constraint,
including, e.g., the nonlinear convex splitting approach [9, 39, 47, 52], and the linear
stabilization approach [3, 28, 33, 42–46, 56]. About the pros and cons of these two
methods, we give some detailed discussions in Section 3.

Therefore, the aim of this paper is to develop some more efficient and accurate
schemes for solving the phase-field MCL model proposed in [34,35]. We shall construct
second order time stepping schemes which satisfy a discrete energy law by combining
several successful approaches including the projection method for the Navier-Stokes
equations to decouple the velocity and pressure, the invariant energy quadratization
(IEQ) method (cf. [17, 55, 57, 58, 60]) for nonlinear gradient terms that appear in the
bulk as well as the boundary of the phase field equation, and a subtle implicit-explicit
treatment for the stress and convective terms. At each time step, one can solve a linear
elliptic system for the phase variable and the velocity field, and a Poisson equation for
the pressure. We shall give a rigorous proof of the well-posedness of the linear system
together with numerical results to verify the second order accuracy in time and the
efficiency.

The rest of the paper is organized as follows. In Section 2, we briefly describe the
phase field model with MCL boundary conditions and its associated energy dissipation
law. In Section 3, we present the numerical schemes, and prove the well-posedness of
the semi-discretized linear system and their discrete energy dissipation law rigorously.
In Section 4, we describe the implementation based on a Fourier-Legendre spectral-
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Galerkin spatial discretization. In section 5, we present various numerical examples
to illustrate the accuracy and efficiency of the proposed schemes. Some concluding
remarks are given in Section 6.

2. The phase field MCL model and its energy law. Consider a mixture
of two immiscible, incompressible fluids in a confined domain Ω ⊂ Rd (d = 2, 3) with
matched density and viscosity. We introduce a phase field variable φ(x, t) such that

φ(x, t) =

{
1, fluid I,

−1, fluid II.
(2.1)

We consider the following Ginzburg-Landau free energy for the mixture

Emix(φ) = λ

∫
Ω

(ε
2
|∇φ|2 + F (φ)

)
dx, (2.2)

where λ denotes rescaled characteristic strength of phase mixing energy. The first
gradient term in Emix contributes to the hydro-philic type (tendency of mixing) of
interactions between the materials and the second part, the double well bulk energy
F (φ) = 1

4ε (φ2 − 1)2, represents the hydro-phobic type (tendency of separation) of
interactions. As the consequence of the competition between the two types of interac-
tions, the equilibrium configuration will include a diffusive interface with a thickness
proportional to the parameter ε.

The total bulk energy of the hydrodynamic system is a sum of the kinetic energy
Ek together with the mixing energy Emix:

Ebulk(u, φ) = Ek(u) + Emix(φ) =

∫
Ω

(
1

2
|u|2 + λ

(ε
2
|∇φ|2 + F (φ)

))
dx. (2.3)

Here u is the fluid velocity field, and we assume the fluid density is 1.
The evolution of the phase function is governed by the Cahn-Hilliard equation

φt +∇ · (uφ) = M∆µ, (2.4)

µ = λ (−ε∆φ+ f(φ)) , (2.5)

where µ is the chemical potential, M is a mobility parameter, and f(φ) = F ′(φ) =
1
εφ(φ2 − 1). The momentum equation for the hydrodynamics takes the usual form of
the Navier-Stokes equation as follows (cf. e.g. [21, 27,35,46])

ut + (u · ∇)u− ν∆u +∇p+ φ∇µ = 0, (2.6)

∇ · u = 0, (2.7)

where p is the pressure, ν is the kinetic viscosity of the mixture.
On the boundary Γ, we use the GNBC for the velocity as follows [34,35],

u · n = 0, (2.8)

ν∂nuτ = −ν`(φ)(uτ − uw)− λ

γ
φ̇∇τφ, (2.9)

and together with the DCLC for the phase field variable on the boundary Γ,

∂nµ = 0, (2.10)

ε∂nφ = − 1

γ
φ̇− g(φ), (2.11)
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where φ̇ = φt + uτ · ∇τφ, `(φ) ≥ 0 is a given coefficient function that is the ratio
of domain length to the slip length, γ is a boundary relaxation coefficient, uw is the
wall velocity, uτ is the tangential velocity along the boundary tangential direction τ ,
∇τ = ∇− (n · ∇)n is the gradient along τ , g(φ) = G′(φ) and G(φ) is the interfacial
energy that is defined as

G(φ) = −
√

2

3
cos θs sin

(π
2
φ
)
, (2.12)

where θs is the static contact angle. From (2.8), we have u = uτ on boundary Γ.
We now describe the energy dissipation law for the above model. Here and after,

for any function f, g ∈ L2(Ω), we use (f, g) =
∫

Ω
f(x)g(x)dx to denote the L2 inner

product between functions f(x) and g(x), (f, g)Γ to denote
∫

Γ
f(s)g(s)ds, and ‖f‖2 =

(f, f) and ‖f‖2Γ = (f, f)Γ.
Lemma 2.1. The Navier-Stokes-Cahn-Hilliard (NSCH) system with GNBC and

DCLC ( (2.4)-(2.7) with (2.8)-(2.11)) satisfies the following energy dissipation law

d

dt
E(u, φ) = −ν‖∇u‖2−M‖∇µ‖2−λ

γ
‖φ̇‖2Γ−ν‖

√
`(φ)us‖2Γ−ν (`(φ)us,uw)Γ , (2.13)

where us = u− uw is the velocity slip on boundary Γ, and

E(u, φ) =

∫
Ω

(1

2
|u|2 + λ

(ε
2
|∇φ|2 + F (φ)

))
dx + λ

∫
Γ

G(φ(s))ds. (2.14)

Proof. The theorem is identical to Theorem 1 in [46] if we let L(φ) = −φ̇/γ

3. Numerical schemes. We now construct time marching schemes to solve the
NSCH system (2.4)-(2.5)-(2.6)-(2.7) with boundary conditions of GNBC (2.8)-(2.9)
and DCLC (2.10)-(2.11). With the aim of constructing schemes that are linear, second
order, and unconditionally energy stable, we notice that there are several numerical
challenges, including (i) how to decouple the computations of velocity and pressure;
(ii) how to discretize f(φ); (iii) how to discretize g(φ); and (iv) how to develop proper
discretizations for convective and stress terms.

The first difficulty (i) actually has been well studied during the last forty years,
e.g., the projection type methods are one of the best ways to solve it (cf. the re-
view in [14] and the references therein). The difficulty (ii) is also well studied re-
cently by two class of methods where one is the nonlinear convex splitting method
(cf. e.g. [9, 39, 47, 52]), and the other is the linear stabilization approach(cf. e.g.
[3, 28, 33, 42–46, 56]). The convex splitting approach is energy stable, however, it
produces nonlinear schemes at most cases, thus the implementations are often com-
plicated and the computational costs are high. The linear stabilization approach
introduces purely linear schemes, thus it is easy to implement. But, its stability usu-
ally requests a special property (generalized maximum principle) [42, 53] satisfied by
the classical PDE solution and the numerical solution, that is very hard to prove in
general. Recently, some theoretical progress has been made to overcome this barrier
for first order [25] and second order [24] stabilization methods, using subtle Fourier
analysis. However, to prove the unconditional stability, large stabilization constants
are required. In this paper, we use a newly developed IEQ approach, which has been
successfully applied to solve several gradient flow type models (cf. [17,55,57–61]). Its
idea is to make the free energy quadratic in terms of new variables via the change of
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variables. Then the free energy and the PDE system are transformed into equivalent
forms and thus the nonlinear terms can be treated semi-explicitly.

More precisely, we define two new variables

U = φ2 − 1, W =
√
G(φ) + C, (3.1)

where C is a constant to ensure G(φ) +C be positive, for instance, C =
√

2
3 + η with

any η > 0. Hence we can rewrite the bulk and total free energy as

Ebulk(u, φ, U) =

∫
Ω

(1

2
|u|2 + λ

(ε
2
|∇φ|2 +

1

4ε
U2
))
dx, (3.2)

E(u, φ, U,W ) = Ebulk(u, φ, U) + λ

∫
Γ

W 2ds− λC|Γ|. (3.3)

Thus, we have an equivalent new PDE system as follows

φt +∇ · (uφ) = M∆µ, (3.4)

µ = λ(−ε∆φ+
1

ε
φU), (3.5)

ut + (u · ∇)u− ν∆u +∇p+ φ∇µ = 0, (3.6)

∇ · u = 0, (3.7)

Ut = 2φφt, (3.8)

with the GNBC on Γ as

u · n = 0, (3.9)

ν∂nuτ = −ν`(φ)(uτ − uw)− λ

γ
φ̇∇τφ, (3.10)

and DCLC as

∂nµ = 0, (3.11)

ε∂nφ = − 1

γ
φ̇− Z(φ)W, (3.12)

Wt =
1

2
Z(φ)φt, (3.13)

where Z(φ) = g(φ)/
√
G(φ) + C. The initial conditions read as

φ|t=0 = φ0, u|t=0 = u0, U |t=0 = φ2
0 − 1, W |t=0 =

√
G(φ0) + C. (3.14)

We derive the energy dissipative law for this new system (3.4)-(3.13) as follows.
Theorem 3.1. The NSCH system with GNBC and DCLC (3.4)-(3.13) satisfies

the following energy dissipation law

d

dt
E(u, φ, U,W ) =− ν‖∇u‖2 −M‖∇µ‖2 − λ

γ
‖φ̇‖2Γ − ν‖

√
`(φ)us‖2Γ

− ν (`(φ)us,uw)Γ ,

(3.15)

Proof. By taking the L2 inner product of equation (3.4) with µ, and using bound-
ary conditions (3.9) and (3.11), we get

(φt, µ)− (uφ,∇µ) = −M‖∇µ‖2. (3.16)
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By taking the L2 inner product of equation (3.5) with −φt, we have

− (µ, φt) = λ (ε∂nφ, φt)Γ −
λε

2

d

dt
‖∇φ‖2 − λ

ε
(φU, φt) . (3.17)

By taking the L2 inner product of (3.8) with λ
2εU , we obtain

λ
d

dt

1

4ε
‖U‖2 =

λ

ε
(φφt, U). (3.18)

By taking the L2 inner product of equation (3.6) with u, using the divergence free
condition (3.7), we get

d

dt

1

2
‖u‖2 = −ν‖∇u‖2 + (ν∂nuτ ,uτ )Γ − (φ∇µ,u). (3.19)

By taking the summation of (3.16)-(3.19), we obtain

d

dt
E(u, φ, U) = −ν‖∇u‖2 −M‖∇µ‖2 + (ν∂nu,u)Γ + λ (ε∂nφ, φt)Γ . (3.20)

Then, we use boundary condition (3.10), (3.12) and definition of φ̇, to derive

(ν∂nu,u)Γ = −λ
γ

(
φ̇∇τφ,uτ

)
Γ
− ν (`(φ)us,us + uw)Γ , (3.21)

λ(ε∂nφ, φt)Γ = −λ
γ
‖φ̇‖2Γ +

λ

γ
(φ̇,uτ · ∇τφ)Γ − λ(Z(φ)W,φt)Γ. (3.22)

By taking the L2 inner product of (3.13) with 2λW , we obtain

λ
d

dt
‖W‖2Γ = λ(Z(φ)φt,W )Γ. (3.23)

Summing up (3.20)-(3.23), we get the desired energy law (3.15).
We emphasize that the new transformed system (3.4)-(3.13) is exactly equivalent

to the original system (2.4)-(2.5)-(2.6)-(2.7), (2.8)-(2.9)-(2.10)-(2.11) that can be eas-
ily obtained by integrating (3.8) and (3.13) with respect to the time. Therefore, the
energy law (3.15) for the transformed system is exactly the same as the energy law
(2.14) for the original system for the time-continuous case. We will develop time-
marching schemes for the new transformed system (3.4)-(3.13) that in turn follows
the new energy dissipation law (3.15) instead of the energy law (2.13) for the original
system.

We fix some notations here. We define two Sobolev space H1
c (Ω) = {φ ∈ H1(Ω) :∫

Ω
φ = 0} and Hu(Ω) =

{
u ∈ [H1(Ω)]d : u · n|Γ = 0

}
. Let δt > 0 be a time

step size and set tn = nδt. For any function S(x, t), let Sn denotes the numerical

approximation to S(·, t)|t=tn , and Sn+ 1
2 := Sn+1+Sn

2 , S
n+ 1

2
? := 3

2S
n− 1

2S
n−1, Sn+1

? :=
2Sn − Sn−1, δSn+1 := Sn+1 − Sn, δ2Sn+1 := Sn+1 − 2Sn + Sn−1.

3.1. A Crank-Nicolson scheme. We first construct a linear Crank-Nicolson
scheme (CN) for the system (3.4)-(3.13), as follows.

Scheme 1. Assuming that φn, un, pn, Un, Wn, φn−1, un−1 are given, we
compute φn+1, un+1, pn+1, Un+1, Wn+1 in two steps.

Step 1: We update φn+1, µn+ 1
2 , ũn+1, Un+1,Wn+1 as follows,
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φn+1 − φn

δt
+∇ · (ũn+ 1

2φ
n+ 1

2
? ) = M∆µn+ 1

2 , (3.24)

µn+ 1
2 = λ

(
− ε∆φn+ 1

2 +
1

ε
φ
n+ 1

2
? Un+ 1

2

)
, (3.25)

Un+1 − Un = 2φ
n+ 1

2
? (φn+1 − φn), (3.26)

ũn+1 − un

δt
+B(u

n+ 1
2

? , ũn+ 1
2 )− ν∆ũn+ 1

2 +∇pn + φ
n+ 1

2
? ∇µn+ 1

2 = 0, (3.27)

with the following boundary conditions on Γ,

ũn+1 · n = 0, (3.28)

ν∂nũ
n+ 1

2
τ = −ν`(φn+ 1

2
? )(ũn+ 1

2 − uw)− λ

γ
φ̇n+ 1

2∇τφ
n+ 1

2
? , (3.29)

∂nµ
n+ 1

2 = 0, (3.30)

ε∂nφ
n+ 1

2 = − 1

γ
φ̇n+ 1

2 − Z(φ
n+ 1

2
? )Wn+ 1

2 , (3.31)

Wn+1 −Wn =
1

2
Z(φ

n+ 1
2

? )(φn+1 − φn), (3.32)

where B(u,v) = (u · ∇)v + 1
2 (∇ · u)v, ũn+ 1

2 = ũn+1+un

2 and

φ̇n+ 1
2 =

φn+1 − φn

δt
+ ũn+ 1

2
τ · ∇τφ

n+ 1
2

? . (3.33)

Step 2: We update un+1 and pn+1 as follows,

un+1 − ũn+1

δt
+∇(

pn+1 − pn

2
) = 0, (3.34)

∇ · un+1 = 0, (3.35)

with the boundary condition on Γ,

un+1 · n = 0. (3.36)

Remark 3.1. The computations of (φn+1, µn+ 1
2 , ũn+1) and the pressure pn+1

are totally decoupled via a second order pressure correction scheme [51] and a subtle
implicit-explicit treatment for the stress and convective terms. It is quite an open
problem on how to develop a second order scheme that can decouple the computations
of (φ, µ) from the velocity field u. All decoupled type energy stable schemes were first
order accurate in time (cf. [28, 31, 44–46]). The adopted projection method here was
analyzed in [38] where it is shown (discrete time, continuous space) that the schemes
is second order accurate for velocity in `2(0, T ;L2(Ω)) but only first order accurate for
pressure in `∞(0, T ;L2(Ω)). The loss of accuracy for pressure is due to the artificial
boundary condition (3.34) imposed on pressure [8]. We refer to [14,38] and references
therein for analysis on this type of discretization.

Schemes (3.24)-(3.32) is totally linear since we handle the convective and stress

terms by compositions of implicit and explicit discretization at tn+ 1
2 . Note that the

new variables U and W will not bring up extra computational cost. In fact, we can
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substitute for Un+1 and Wn+1 in (3.25) and (3.31) using (3.26) and (3.32). Thus the
scheme (3.24)-(3.32) can be written as

φn+1 +
δt

2
∇ · (ũn+1φ

n+ 1
2

? )− δtM∆µn+ 1
2 = f1,

− µn+ 1
2 − λε

2
∆φn+1 +

λ

ε
(φ
n+ 1

2
? )2φn+1 = f2,

1

2
ũn+1 +

δt

4
B(u

n+ 1
2

? , ũn+1)− νδt

4
∆un+1 +

δt

2
φ
n+ 1

2
? ∇µn+ 1

2 = f3,

(3.37)

with the following boundary conditions on Γ,

ũn+1 · n = 0,

ν∂nũ
n+1 = −ν`(φn+ 1

2
? )ũn+1 − 2λ

γ
φ̊n+1∇φn+ 1

2
? + g1,

∂nµ
n+ 1

2 = 0,

ε∂nφ
n+1 = − 2

γ
φ̊n+1 − 1

2
Z(φ

n+ 1
2

? )2φn+1 + g2,

(3.38)

where the definition of φ̊n+1 is

φ̊n+1 =
1

δt
φn+1 +

1

2
ũn+1
τ · ∇τφ

n+ 1
2

? , (3.39)

and f1, f2, f3, g1, g2 include only terms from previous time steps. Therefore, we can
solve (3.37)-(3.38) directly. Once we obtain φn+1, µn+ 1

2 , ũn+1, the new variables
Un+1, Wn+1 are updated using (3.26) and (3.32).

Now we study the well-posedness of the semi-discretized system. Define φ̄ =
1
|Ω|
∫

Ω
φdx, µ̄ = 1

|Ω|
∫

Ω
µdx. By integrating (3.24), we find that φ̄n+1 = φ̄n = . . . = φ̄0.

Let φ = φn+1 − φ̄0, µ = µn+ 1
2 − µ̄n+ 1

2 such that φ, µ ∈ H1
c (Ω). Here

µ̄n+ 1
2 =

1

|Ω|

∫
Ω

(−λε
2

∆φn+1 +
λ

ε
(φ
n+ 1

2
? )2φn+1 − f2). (3.40)

Then the weak form for (3.37)-(3.38) can be written as the following system with
unknowns µ, φ ∈ H1

c (Ω), u ∈ Hu(Ω),

(φ,w)− δt

2
(uφ

n+ 1
2

? ,∇w) +Mδt(∇µ,∇w) = (f1, w), (3.41)

−(µ, ψ) +
λε

2
(∇φ,∇ψ) +

λ

ε
((φ

n+ 1
2

? )2φ, ψ)

+
λ

γ
(φ̊, ψ)Γ +

λ

4
(Z(φ

n+ 1
2

? )2φ, ψ)Γ = (f2, ψ) +
λ

2
(g2, ψ)Γ, (3.42)

1

2
(u,v) +

δt

4
(B(u

n+ 1
2

? ,u),v) +
νδt

4
(∇u,∇v) +

δt

2
(φ
n+ 1

2
? ∇µ,v)

+
δtν

4
(`(φ

n+ 1
2

? )u,v)Γ +
λ

2γ
δt(φ̊∇φn+ 1

2
? ,v)Γ = (f3,v) +

δt

4
(g1,v)Γ, (3.43)

for any w,ψ ∈ H1
c (Ω) and v ∈ Hu(Ω), where φ̊ = 1

δtφ+ 1
2uτ · ∇τφ

n+ 1
2

? .
We denote the above linear system (3.41)-(3.43) as

(AX,Y ) = (B,Y ), (3.44)
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where X = (µ, φ,u)T ,Y = (w,ψ,v)T and X,Y ∈ (H1
c , H

1
c , Hu)(Ω).

Theorem 3.2. The linear system (3.41)-(3.43) admits a unique solution (µ, φ,u)
where µ, φ ∈ H1

c (Ω), u ∈ Hu(Ω).
Proof. (i) For any X = (µ, φ,u)T and Y = (w,ψ,v)T with X,Y ∈ (H1

c , H
1
c , Hu)(Ω),

we have

(AX,Y ) ≤ C1(‖φ‖H1 + ‖µ‖H1 + ‖u‖H1)(‖ψ‖H1 + ‖w‖H1 + ‖v‖H1), (3.45)

from the trace theorem, where C1 is a constant depending on δt, ν, M , ε, λ, γ,

‖un+ 1
2

? ‖∞, ‖φn+ 1
2

? ‖∞, ‖Z(φ
n+ 1

2
? )‖∞. Therefore, the bilinear form (AX,Y ) is bounded.

(ii) It is easy to derive that

(AX,X) =
1

2
‖u‖2 +

νδt

4
‖∇u‖2 +

λε

2
‖∇φ‖2 +

λ

ε
‖φn+ 1

2
? φ‖2 +Mδt‖∇µ‖2

+
λδt

γ
‖φ̊‖2Γ +

λ

4
‖Z(φ

n+ 1
2

? )φ‖2Γ +
δt

2
ν‖(`(φn+ 1

2
? ))

1
2uτ‖2Γ

≥C2(‖φ‖2H1 + ‖µ‖2H1 + ‖u‖2H1),

(3.46)

from Poincaré inequality (since
∫

Ω
φdx =

∫
Ω
µdx = 0), where C2 is a constant de-

pending on δt, ν,M, ε, λ. Thus the bilinear form (AX,Y ) is coercive.
Then from the Lax-Milgram theorem, we conclude the linear system (3.44) admits

a unique solution (µ, φ,u) ∈ (H1
c , H

1
c , Hu)(Ω). Namely, the linear system (3.37)-(3.38)

admits a unique solution (µn+ 1
2 , φn+1, ũn+1) in (H1

c , H
1
c , Hu)(Ω).

The stability result of the proposed Crank-Nicolson scheme follows the same lines
as in the derivation of the new PDE energy dissipation law Theorem 3.1, as follows.

Theorem 3.3. The scheme (3.24)-(3.36) is unconditionally energy stable, in the
sense that, it satisfies the following discrete energy dissipation law,

En+1
cn = Encn −Mδt‖∇µn+ 1

2 ‖2 − νδt‖∇ũn+ 1
2 ‖2 − λδt

γ
‖φ̇n+ 1

2 ‖2Γ,

− νδt‖`(φn+ 1
2

? )
1
2 ũn+ 1

2
s ‖2Γ − νδt(`(φ

n+ 1
2

? )ũn+ 1
2

s ,uw)Γ

(3.47)

where ũn+ 1
2

s = ũn+ 1
2 − uw and

Encn = E(un, φn, Un,Wn) +
δt2

8
‖∇pn‖2. (3.48)

Proof. By taking the L2 inner product of (3.24) with δtµn+ 1
2 and performing

integration by parts, we obtain

(φn+1 − φn, µn+ 1
2 )− δt(ũn+ 1

2φ
n+ 1

2
? ,∇µn+ 1

2 ) = −Mδt‖∇µn+ 1
2 ‖2. (3.49)

By taking the L2 inner product of (3.25) with −(φn+1 − φn), we obtain

−(µn+ 1
2 , φn+1 − φn) =λ(ε∂nφ

n+ 1
2 , φn+1 − φn)Γ −

λε

2
(‖∇φn+1‖2 − ‖∇φn‖2)

− λ

ε
(φ
n+ 1

2
? Un+ 1

2 , φn+1 − φn).

(3.50)

By taking the L2 inner product of (3.26) with λ
2εU

n+ 1
2 , we obtain

λ

4ε

(
‖Un+1‖2 − ‖Un‖2

)
=
λ

ε
(φ
n+ 1

2
? (φn+1 − φn), Un+ 1

2 ). (3.51)
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By taking the L2 inner product of (3.27) with δtũn+ 1
2 , we obtain

1

2
‖ũn+1‖2 − 1

2
‖un‖2 + δtν‖∇ũn+ 1

2 ‖2 − δt(ν∂nũn+ 1
2 , ũn+ 1

2 )Γ

+ δt(∇pn, ũn+ 1
2 ) + δt(φ

n+ 1
2

? ∇µn+ 1
2 , ũn+ 1

2 ) = 0.

(3.52)

By taking the L2 inner product of (3.34) with δtun+1 and using the divergence free
condition for un+1 from (3.35), we obtain

1

2
(‖un+1‖2 − ‖ũn+1‖2) +

1

2
‖un+1 − ũn+1‖2 = 0. (3.53)

We further rewrite the projection step (3.34) as

un+1 + un − 2ũn+ 1
2 +

δt

2
∇(pn+1 − pn) = 0. (3.54)

By taking the L2 inner product of the above equation with δt
2 ∇p

n and applying the
divergence free condition for un+1 + un, we obtain

δt2

8
(‖∇pn+1‖2 − ‖∇pn‖2 − ‖∇pn+1 −∇pn‖2) = δt(ũn+ 1

2 ,∇pn). (3.55)

On the other hand, it follows directly from (3.34) that

δt2

8
‖∇(pn+1 − pn)‖2 =

1

2
‖un+1 − ũn+1‖2. (3.56)

Summing up (3.49), (3.50), (3.51), (3.52), (3.53), (3.55) and (3.56), we obtain

λε

2

(
‖∇φn+1‖2 − ‖∇φn‖2

)
+

λ

4ε

(
‖Un+1‖2 − ‖Un‖2

)
+Mδt‖∇µn+ 1

2 ‖2

+
1

2
‖un+1‖2 − 1

2
‖un‖2 + νδt‖∇ũn+ 1

2 ‖2 +
δt2

8
(‖∇pn+1‖2 − ‖∇pn‖2)

− δt(ν∂nũn+ 1
2 , ũn+ 1

2 )Γ − λ(ε∂nφ
n+ 1

2 , φn+1 − φn)Γ = 0.

(3.57)

To deal with the boundary integrals, from (3.29), we derive

−δt(ν∂nũn+ 1
2 , ũn+ 1

2 )Γ =δtν(`(φ
n+ 1

2
? )ũn+ 1

2
s , ũn+ 1

2
s + uw)Γ

+
λδt

γ
(φ̇n+ 1

2∇τφ
n+ 1

2
? , ũn+ 1

2 )Γ.
(3.58)

From (3.31) and the definition of φ̇n+ 1
2 , we obtain

− λ(ε∂nφ
n+ 1

2 , φn+1 − φn)Γ − λ(Z(φ
n+ 1

2
? )Wn+ 1

2 , φn+1 − φn)Γ

=
λδt

γ
‖φ̇n+ 1

2 ‖2Γ −
λδt

γ
(φ̇n+ 1

2 , ũn+ 1
2 · ∇τφ

n+ 1
2

? )Γ.
(3.59)

By taking the L2 inner product of (3.32) with 2λWn+ 1
2 , we obtain

λ(‖Wn+1‖2Γ − ‖Wn‖2Γ) = λ(Z(φ
n+ 1

2
? )(φn+1 − φn),Wn+ 1

2 )Γ. (3.60)
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Finally, we obtain the desired energy law (3.47) by combining (3.57)-(3.60).

The proposed scheme follows the new energy dissipation law (3.15) formally in-
stead of the energy law for the originated system (2.13). In the time-continuous case,
the two energy laws are the same. In the time-discrete case, the discrete energy Encn
(defined in (3.48)) is a second order approximation to the exact energy Etot(u

n, φn)
(defined in (2.14)), since Un+1,Wn+1 are second order approximations to φ2 − 1 and√
G(φ) + C.

Several remarks are in order.

Remark 3.2. The time discretization for the cubic polynomial term f(φ) induced
from the double well potential has been well-studied in a large quantity of literature.
For instance, one popular method to obtain second order time marching schemes is
the convex splitting approach (cf. [17,18]) since there exists a natural convex-concave
decomposition for the double well potential F (φ). For the boundary energy G(φ),
since its second order derivative is bounded, it is natural to use the linear stabiliza-
tion approach, see [12, 13, 46, 62]. Namely, g(φ) is treated explicitly and an extra
linear stabilizer is added to improve the stability. However, it is not easy to design
unconditionally stable second order scheme by linear stabilization.

The IEQ approach provides a novel way to handle both f(φ) and g(φ). Its idea is
very simple but quite different from the traditional time marching schemes like fully
explicit, implicit or other various Taylor expansions to discretize nonlinear potentials.
Through a simple substitution of new variables, the complicated nonlinear potentials
are transformed into quadratic forms. We summarize the great advantages of this
quadratic transformations as follows: (i) this quadratization method works well for
various complex nonlinear terms as long as the corresponding nonlinear potentials
are bounded from below; (ii) the complicated nonlinear potential is transferred to a
quadratic polynomial form which is much easier to handle; (iii) the derivative of the
quadratic polynomial is linear, which provides the fundamental support for lineariza-
tion method; (iv) the quadratic formulation in terms of new variables can automat-
ically maintain this property of positivity (or bounded from below) of the nonlinear
potentials.

Remark 3.3. When the nonlinear potential is a fourth order polynomial, e.g.,
the double well potential, the IEQ we used in (3.1) for φ variable is exactly the same
as the so-called Lagrange multiplier method developed in [16]. We remark that the
idea of Lagrange multiplier method only works well for the fourth order polynomial
potential (φ4). This is because the nonlinear term φ3 (the derivative of φ4) can be
naturally decomposed into a multiplication of two factors: λ(φ)φ that is the Lagrange
multiplier term, and the λ(φ) = φ2 is then defined as the new auxiliary variable U .
However, this method might not succeed for other type potentials. For instance, we
notice the Flory-Huggins potential is widely used in two-phase model, see also [2].
The induced nonlinear term is logarithmic type as ln( φ

1−φ ). If one forcefully rewrites

this term as λ(φ)φ, then λ(φ) = 1
φ ln( φ

1−φ ) that is the definition of the new variable
U . Obviously, such a form is unworkable for algorithms design. Therefore, we can
see that the IEQ approach generalizes the Lagrange multiplier approach which is for
double well potential only, and extends its applicability greatly to a unified framework
for general dissipative stiff systems with high nonlinearity. About the application of
the IEQ approach to handle other type of nonlinear potentials, we refer to the authors’
other work in [17, 55, 57, 58, 60].

Remark 3.4. The IEQ approach is more efficient than the nonlinear approach
like fully implicit or convex splitting. Let us consider the double well potential case,
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e.g., F (φ) = φ4, then IEQ scheme will generate the linear scheme as (φn)2φn+1. The
implicit or convex splitting approach will produces the scheme as (φn+1)3. Therefore,
if the Newton iterative method is applied for this term, at each iteration the nonlinear
convex splitting approach would yield the same linear operator as IEQ approach. Hence
the cost of solving the IEQ scheme is the same as the cost of performing one iteration
of Newton method for the implicit/convex splitting approach, provided that the same
linear solvers are applied.

Remark 3.5. Instead of using U = φ2− 1 as in equation (3.1), one can also use
a more general form U =

√
(φ2 − 1)2 + C with C ≥ 0. All the stability properties still

hold. However the convergence behavior will be different. Our numerical tests show
that the numerical results with C ∼ o(1) perform almost the same as the results using
(3.1). If C is big, for a fixed time step, the magnitude of accuracy result is a little bit
inferior to the case of C = 0, but the accuracy order is still second order. Thus, for
the double-well potential, one can either use U = φ2− 1 or U =

√
(φ2 − 1)2 + C with

C ∼ o(1). But, if the nonlinear potential is not double-well, for instance, the logarith-
mic Flory-Huggins potential, the only choice for the new variable U is

√
G(φ) + C

formally, see [55].

3.2. A backward differentiation scheme. We further develop another linear
scheme based on second order backward differentiation formula(BDF2), that reads as
follows.

Scheme 2. Assuming that (φ,u, p, U,W )n−1 and (φ,u, p, U,W )n are already
known, we compute φn+1,un+1, pn+1, Un+1,Wn+1 from the following second order
temporal semi-discrete system:

Step 1: We update φn+1, ũn+1, Un+1,Wn+1 as follows,

3φn+1 − 4φn + φn−1

2δt
+∇ · (ũn+1φn+1

? ) = M∆µn+1, (3.61)

µn+1 = λ
(
− ε∆φn+1 +

1

ε
φn+1
? Un+1

)
, (3.62)

3Un+1 − 4Un + Un−1 = 2φn+1
? (3φn+1 − 4φn + φn−1), (3.63)

3ũn+1−4un+un−1

2δt
+B(un+1

? , ũn+1)−ν∆ũn+1+∇pn+ φn+1
? ∇µn+1 = 0, (3.64)

with the boundary conditions

ũn+1 · n = 0, (3.65)

ν∂nũ
n+1
τ = −ν`(φn+1

? )(ũn+1 − uw)− λ

γ
φ̇n+1∇τφn+1

? , (3.66)

∂nµ
n+1 = 0, (3.67)

ε∂nφ
n+1 = − 1

γ
φ̇n+1 − Z(φn+1

? )Wn+1, (3.68)

3Wn+1 − 4Wn +Wn−1 =
1

2
Z(φn+1

? )(3φn+1 − 4φn + φn−1), (3.69)

where

φ̇n+1 =
3φn+1 − 4φn + φn−1

2δt
+ ũn+1

τ · ∇τφn+1
? . (3.70)
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Step 2: We update un+1 and pn+1 as follows,

3

2δt

(
un+1 − ũn+1)+∇(pn+1 − pn) = 0, (3.71)

∇ · un+1 = 0, (3.72)

with the boundary condition

un+1 · n = 0 on Γ. (3.73)

Similar to the Crank-Nicolson scheme (3.24)-(3.32), the BDF2 scheme (3.61)-
(3.73) is linear and the new variables U,W do not involve any extra computational
cost.

Theorem 3.4. The weak form of the linear system (3.61)-(3.73) admits a unique
solution (µn+1, φn+1, ũn+1), where µn+1, φn+1 ∈ H1

c (Ω), and ũn+1 ∈ Hu(Ω).
Proof. The proof is similar to Theorem 3.2, thus we omit the details here.
Theorem 3.5. The scheme (3.61)-(3.73) is unconditionally energy stable satis-

fying the following discrete energy dissipation law,

En+1
bdf ≤ E

n
bdf −Mδt‖∇µn+1‖2 − νδt‖∇ũn+1‖2 − λ

γ
δt‖φ̇n+1‖2Γ

− νδt‖`(φn+1
? )

1
2 ũn+1

s ‖2Γ,−νδt(`(φn+1
? )ũn+1

s ,uw)Γ,

(3.74)

where

Enbdf =
1

2
E(un, φn, Un,Wn) +

1

2
E(un+1

? , φn+1
? , Un+1

? ,Wn+1
? ) +

δt2

3
‖∇pn‖2. (3.75)

Proof. By taking the L2 inner product of (3.61) with 2δtµn+1 and performing
integration by parts, we obtain

(3φn+1− 4φn+ φn−1, µn+1)− 2δt(ũn+1φn+1
? ,∇µn+1) = −2Mδt‖∇µn+1‖2. (3.76)

By taking the L2 inner product of (3.62) with −(3φn+1 − 4φn + φn−1), we obtain

− (µn+1, 3φn+1 − 4φn + φn−1)

= −λε
2

(
‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+2

? ‖2 − ‖∇φn+1
? ‖2 + ‖∇δ2φn+1‖2

)
+ λ(ε∂nφ

n+1, 3φn+1 − 4φn + φn−1)Γ −
λ

ε
(φn+1
? Un+1, 3φn+1 − 4φn + φn−1).

(3.77)

By taking the L2 inner product of (3.63) with λ
2εU

n+1, we obtain

λ

4ε

(
‖Un+1‖2 − ‖Un‖2 + ‖Un+2

? ‖2 − ‖Un+1
? ‖2 + ‖δ2Un+1‖2

)
=
λ

ε
(φn+1
? (3φn+1 − 4φn + φn−1), Un+1).

(3.78)

By taking the L2 inner product of (3.64) with 2δtũn+1, we obtain

(3ũn+1− 4un+ un−1, ũn+1) + 2νδt‖∇ũn+1‖2 − 2νδt(∂nũ
n+1, ũn+1)Γ

+ 2δt(∇pn, ũn+1) + 2δt(φn+1
? ∇µn+1, ũn+1) = 0.

(3.79)
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From (3.71), for any function v with ∇ · v = 0, we can derive

(un+1,v) = (ũn+1,v). (3.80)

Then for the first term in (3.79), we have

(3ũn+1− 4un+ un−1, ũn+1)

= (3un+1 − 4un + un−1,un+1) + 3(ũn+1 − un+1, ũn+1 + un+1)

=
1

2

(
‖un+1‖2 − ‖un‖2 + ‖un+2

? ‖2 − ‖un+1
? ‖2 + ‖δ2un+1‖2

)
+ 3(‖ũn+1‖2 − ‖un+1‖2).

(3.81)

For the projection step, we rewrite (3.71) as

3

2δt
un+1 +∇pn+1 =

3

2δt
ũn+1 +∇pn. (3.82)

By squaring both sides of the above equality, we obtain

9

4δt2
‖un+1‖2 + ‖∇pn+1‖2 =

9

4δt2
‖ũn+1‖2 + ‖∇pn‖2 +

3

δt
(ũn+1,∇pn), (3.83)

namely, we have

3

2
(‖un+1‖2 − ‖ũn+1‖2) +

2δt2

3
(‖∇pn+1‖2 − ‖∇pn‖2) = 2δt(ũn+1,∇pn). (3.84)

By taking the L2 inner product of (3.71) with 2δtun+1, we have

3

2
(‖un+1‖2 − ‖ũn+1‖2 + ‖un+1 − ũn+1‖2) = 0. (3.85)

By combining (3.76)-(3.81) and (3.84)-(3.85), we obtain

2Mδt‖∇µn+1‖2 +
3

2
‖un+1 − ũn+1‖2

+
2δt2

3
(‖∇pn+1‖2 − ‖∇pn‖2) + 2νδt‖∇ũn+1‖2

+
λε

2

(
‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+2

? ‖2 − ‖∇φn+1
? ‖2 + ‖∇δ2φn+1‖2

)
+

λ

4ε

(
‖Un+1‖2 − ‖Un‖2 + ‖Un+2

? ‖2 − ‖Un+1
? ‖2 + ‖δ2Un+1‖2

)
+

1

2

(
‖un+1‖2 − ‖un‖2 + ‖un+2

? ‖2 − ‖un+1
? ‖2 + ‖δ2un+1‖2

)
= λ(ε∂nφ

n+1, 3φn+1 − 4φn + φn−1)Γ + 2δt(ν∂nũ
n+1, ũn+1)Γ.

(3.86)

From (3.68), we obtain

− λ
(
ε∂nφ

n+1, 3φn+1− 4φn+ φn−1
)

Γ

= 2δt
λ

γ
‖φ̇n+1‖2Γ − 2δt

λ

γ
(φ̇n+1, ũn+1 · ∇φn+1

? )Γ

+ λ(Z(φn+1
? )Wn+1, 3φn+1− 4φn+ φn−1)Γ.

(3.87)
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From (3.66), we obtain

−ν(∂nũ
n+1, ũn+1)Γ =

λ

γ

(
φ̇n+1∇φn+1

? , ũn+1)
Γ

+ ν‖`(φn+1
? )

1
2 ũn+1

s ‖2Γ + ν
(
`(φn+1

? )ũn+1
s ,uw

)
Γ
.

(3.88)

By taking the L2 inner product of (3.69) with 2λWn+1, we obtain

λ
(
‖Wn+1‖2Γ − ‖Wn‖2Γ + ‖Wn+2

? ‖2Γ − ‖Wn+1
? ‖2Γ + ‖δ2Wn+1‖2Γ

)
= λ

(
Z(φn+1

? )(3Wn+1 − 4Wn +Wn−1),Wn+1
)

Γ
.

(3.89)

By combining (3.86), (3.87)-(3.89), we obtain

2Mδt‖∇µn+1‖2 +
2δt2

3
(‖∇pn+1‖2 − ‖∇pn‖2) + 2νδt‖∇ũn+1‖2

+
λε

2

(
‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+2

? ‖2 − ‖∇φn+1
? ‖2

)
+

λ

4ε

(
‖Un+1‖2 − ‖Un‖2 + ‖Un+2

? ‖2 − ‖Un+1
? ‖2

)
+

1

2

(
‖un+1‖2 − ‖un‖2 + ‖un+2

? ‖2 − ‖un+1
? ‖2

)
+ λ
(
‖Wn+1‖2Γ − ‖Wn‖2Γ + ‖Wn+2

? ‖2Γ − ‖Wn+1
? ‖2Γ

)
+ 2δt

λ

γ
‖φ̇n+1‖2Γ + 2νδt‖(`(φn+1

? ))
1
2 ũn+1

s ‖2Γ − 2νδt(`(φn+1
? )ũn+1

s ,uw)Γ

= −3

2
‖un+1− ũn+1‖2− ‖∇δ2φn+1‖2− ‖δ2Un+1‖2− ‖δ2un+1‖2− ‖δ2Wn+1‖2Γ

≤ 0.

(3.90)

We conclude the theorem.
Remark 3.6. Same to the CN scheme, the BDF2 scheme is only first order

accurate for pressure. As mentioned in Remark 3.1, the loss of accuracy for pressure
is due to the artificial condition

∂np
n+1 = 0, on Γ. (3.91)

imposed on pressure by (3.34)-(3.36) for CN scheme and (3.71)-(3.73) for BDF2
scheme, respectively. The particularly semi-implicit treatment for the phase-field body
force in Navier-Stokes equation allows the pressure in a rotational form pressure-
projection method satisfies an appropriate boundary condition. For example, let’s
replace equation (3.71) with a rotational form (cf. [14, 15, 50])

3

2δt
(un+1 − ũn+1) +∇(pn+1 − pn + ν∇ · ũ) = 0.

Noticing φn+1
? ∂nµ

n+1 = 0 and B(un+1
? , ũn+1) · n = 0 on boundary, using similar

procedure as in [15], we find that p satisfies boundary condition

∂np
n+1 = −ν(∇×∇× un+1) · n, on Γ.

The body force due to phase field does not introduce any trouble because we use the form
φ∇µ instead of −µ∇φ which was frequently used in other literature. Our numerical
results show that the rotational form pressure-projection indeed improve the accuracy
of pressure. But since our focus is not the accuracy of pressure, we will not discuss
this issue in details.
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4. Spatial discretization and implementation. We implement a spectral
Galerkin method for a 2-dimensional rectangular domain Ω = [0, Lx]× [−1, 1] to test
the stability and accuracy of the linear schemes proposed in last section. Note that
any spatial discretization based on weak formulation and Galerkin approximation of
the NSCH coupled system will keep the energy dissipation properties obtained for
the temporal semi-discretized schemes. Thus the finite element or spectral element
methods can be used as well in a similar way.

Now we take the weak form for the Crank-Nicolson scheme (3.41)-(3.43) as an
example to illustrate the spatial discretization, and the BDF2 scheme can be han-
dled similarly. We obtain a Galerkin approximation by providing appropriate finite
dimensional spaces HN

u , H
N
µ , H

N
φ for Hu(Ω), H1

c (Ω), H1
c (Ω) for the velocity field u,

the chemical potential µ and the phase variable φ, correspondingly.

4.1. A spectral Galerkin approximation. We assume the system in x direc-
tion is periodic, only the top and bottom boundaries (y = ±1) take the GNBC and
DCLC. We use Fm := span{Ek(x) = eikx/Lx , |k| 6 m},Pn := span{ϕk : 0 6 k 6 n}
as the basis set for x direction and y direction, correspondingly, where ϕ0(y) = 1,
ϕ1(y) = x, ϕk(y) = Lk(y) − Lk−2(y), for k ≥ 2 and Lk(y) denotes the Legendre
polynomial of degree k. Note that the basis set for y direction is a direct extension
of the nearly orthogonal Legendre bases introduced by Shen [37]. Here we include
constant and linear bases to treat Robin type boundary conditions. The correspond-
ing stiffness matrix is still diagonal and the mass matrix is banded. The number of
degree of freedom (DoF) in x and y direction are nx = 2m + 1 and ny = n + 1.
For given m and n, we take HN

µ = HN
φ = Fm ⊗ Pn as the approximation space

for µ and φ. For the Navier-Stokes equation, the velocity in x-component satisfies
the GNBC, a Robin type boundary condition, while the component in y direction
satisfies the Dirichlet boundary condition. The Robin type boundary condition is
treated naturally in the weak form, the Dirichlet boundary condition is imposed on
the approximation space. So we take the Galerkin approximation space for u as
HN

u = (Fm⊗Pn)× (Fm⊗P 0
n), where P 0

n = span{ϕk, k = 2, .., n}. The approximation
space for pressure is HN

p = Fm ⊗ Pn−2\(E0 ⊗ P0) .

4.2. Solution procedure. The system (3.41)-(3.43) is a linear variable-coefficient
system. The constant-coefficient terms in the system all lead to sparse matrices that
is time independent. However, the variable-coefficient terms lead to time-dependent
dense matrices, thus explicitly building those time-dependent dense matrices are ex-
tremely expensive (Note that, if one use finite element methods, the corresponding
matrices will be sparse but still time-dependent). So we use a conjugate gradient
type solver with preconditioning (PCG), that does not need explicitly building the
matrix. Instead, it only needs a subroutine to calculate the matrix-vector product.
Since the linear system is not symmetric, we use BiCGSTAB method. The precon-
ditioning is also matrix-free. In each iteration, the preconditioning subroutine solve
an approximated system corresponding to the system (3.41)-(3.43) with convection
terms in (3.41) and (3.43) removed and variable coefficients in (3.42) approximated
by constants. see [46,62] for more details about the preconditioning. Its effectiveness
is shown in the next section. The solution procedure for the BDF2 scheme is similar.

It worth to mention that, a new approach called Scalar Auxiliary Variable (SAV)
method is recently introduced by Shen et al. [40, 41]. Its essential idea is quite sim-
ilar to the IEQ type method but extending its applicability to more general cases.
The differences between these two methods are that the bulk energy functional (in-
tegral) is quadratized in the SAV method, but the bulk energy density (integrand) is
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quadratized in the IEQ method. For some particular models like MBE model with-
out slope selections where the nonlinear potential is not bounded from below but the
total energy is, the SAV method can generates unconditionally energy stable schemes
as well. Moreover, the SAV method can get constant-coefficient terms for the gra-
dient flow part. However, when considering the hydrodynamics coupled model, the
variable-coefficient terms in the Navier-Stokes equation and the convection part of
the phase-field equation are still inevitable using both methods.

4.3. The startup step. Both CN and BDF2 schemes need two initial steps to
startup. We can use any first order scheme to calculate φ1,u1, p1, U1,W 1. In our
simulations, We use the first order scheme developed in [46].

5. Numerical results. In this section, we present various numerical experi-
ments to validate the developed CN scheme (3.24)-(3.36) and BDF2 scheme (3.61)-
(3.73), and demonstrate their stability and accuracy.

We examine the accuracy, stability and efficiency of the proposed schemes by
performing a classical shear flow experiment between two parallel plates which move in
opposite directions at a constant speed. If not explicit specified, the model parameters
take default values given below, which is consistent to the benchmark simulation
in [12,13,34,35,46,62].

λ = 20, M = 0.0125, γ = 100, `(φ) = 1/0.19, ν = 1/0.6, ε = 0.05. (5.1)

5.1. Convergence test for space and time. We first test the convergence
in space and time by presenting numerical results for two cases. In case 1, we set
uw = (±0.7, 0), θs = 64◦, where uw is the velocities of upper and bottom plates. the
sign of “±” means the values on top and bottom boundaries have different directions,
i.e., the top plate (y = 1) moves at the speed 0.7 and the bottom plate (y = −1)
moves at the speed −0.7. In case 2, we set uw = (±0.2, 0) and θs = 77.6◦. In both
cases, Lx = 10 and the initial velocity field takes the profile of Couette flow, while
the initial value of φ is given as

φ0(x, y) = tanh
( 1√

2ε

(
0.25Lx − |x− 0.5Lx|

))
. (5.2)

In Fig. 5.1, we plot the contours of the phase variable φ at t = 5 for the two cases,
that are obtained using the BDF2 scheme with nx = 257, ny = 32, and δt = 0.01.
We only show the results of the BDF2 scheme since the CN scheme gives visually
identical results. In Fig. 5.2, we plot the x-component of velocity at lower boundary
y = −1 for two different time steps δt = 0.005 and δt = 0.01 obtained from the BDF2
scheme and CN scheme for the case 2 at t = 10. We observe that the results obtained
by two schemes are almost identical, which means the time step δt = 0.01 is small
enough to provide very accurate results for this test case.

To test the convergence for spatial discretization, we use a very small time step
δt = 0.0005 so that the errors from the temporal discretization are negligible compared
with the spatial discretization errors. Fig. 5.3 (a) shows the convergence in x-direction,
where we fix the number of Legendre modes ny = 64 and vary the number of Fourier
modes nx starting from 41 with the increment 40. The L2 errors of the velocity
field u and phase variable φ are calculated at time T = 1, with a reference solution
obtained using the finest resolution of nx = 511, ny = 64. Similarly, Fig. 5.3 (b) shows
the convergence in y-direction, where we fix the number of Fourier modes nx = 511
for a series of ny starting from 8 with an increment 8. The L2 errors of the velocity
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Fig. 5.1. The contours of phase variable φ at t = 5 that are obtained by the BDF2 scheme
with 257 Fourier modes, 32 Legendre modes and δt = 0.01. (Top) The contour of φ for the case
uw = (±0.7, 0), θs = 64◦; (Bottom) The contour of φ for the case uw = (±0.2, 0), θs = 77.6◦.
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(a) BDF2 scheme.
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Fig. 5.2. The x-component velocity at y = −1, t = 10 using (a) the BDF2 scheme and (b) the
CN scheme with δt = 0.005 and δt = 0.01 for the case θs = 77.6◦,uw = (±0.2, 0).

field u and phase variable φ are again calculated at T = 1 with the reference solution
using the finest resolutions of nx = 511 and ny = 64. We see that the proposed
numerical schemes can achieve spectral accuracy in L2 norm for both velocity and
phase variable.

To test the convergence for temporal discretization, we fix the spatial resolution
as nx = 511, ny = 64 so that the errors from the spatial discretization are negligible
compared to the temporal discretization errors, and perform the refinement test of
the time step for the schemes CN and BDF2. We choose the approximate solution
using the scheme BDF2 with time step size δt = 2.5× 10−4 as the benchmark solution
(approximately the exact solution) for computing errors. In Fig. 5.4, we present the
L2 errors of the velocity field u and the phase field variable φ between the numerical
solution and the exact solution at T = 0.4 with different time step sizes δt = 0.016/2k,
k = 0, 1, . . . , 5. The results obtained by CN and BDF2 schemes are shown together
with the results obtained by the first order linear stabilization scheme (denoted by
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Fig. 5.3. The spatial convergence tests for L2 error of the velocity and phase field variable at
T = 1 using the BDF2 scheme with the time step δt = 0.0005. (a): the L2 error with respect to
number of DoFs in x-direction; (b): the L2 error with respect to the number of DoFs in y-direction.

LSS) proposed in [46] for comparisons. We observe that both CN and BDF2 schemes
are second order accurate for the velocity field u as well as the phase field variable
φ, which provide much more accurate results than that of the first order LSS scheme.
From Fig. 5.4, we also observe that the accuracy of CN scheme is better than the accu-
racy of BDF2 scheme, which is reasonable since CN scheme has a smaller truncation
error.

10
-3

10
-2

t

10
-5

10
-4

10
-3

10
-2

10
-1

E
rr

o
r

LSS scheme

BDF2 scheme

CN scheme

200* t
2

(a) L2 convergence of velocity u.
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(b) L2 convergence of phase variable φ.

Fig. 5.4. The temporal mesh refinement tests for the velocity field u (a) and the phase field
variable φ (b) obtained by CN scheme, BDF2 scheme, and the first order scheme (denoted by LSS)
proposed in [46]. The axes are in loglog scales, a line with slope 2 in black color is plotted to show
the second order convergence of the CN and BDF2 schemes.

5.2. Energy dissipation and volume preservation. For both CN and BDF2
schemes, we test the energy dissipation for the isolated system by setting the wall
velocity uw = 0, and further compare the evolution of the free energy functional for
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four different time step sizes where δt = 0.01, 0.005, 0.002 and 0.0001 for the default
parameters (5.1) until T = 2.5 in Fig. 5.5. For either scheme, we observe that all
energy curves show the decays, that confirm that our algorithms are unconditionally
stable. For smaller time steps of δt = 0.0001, 0.002, 0.005, the three energy curves
coincide very well. But for the larger time step of δt = 0.01, the energy curve is
considerable (but not very far) away from others. This means the time step size has
to be smaller than 0.01 in order to get reasonably good accuracy.
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Fig. 5.5. The discrete energy dissipation of CN (left) and BDF2 (right) schemes for several
time steps. uw = 0 and other parameters are given in (5.1).

To investigate the error introduced by the numerical approximation of (3.8), we
plot the IEQ energy and the original energy for the BDF2 scheme using two larger
time step sizes δt = 0.01 and 0.02 in the left part of Fig. 5.6. We see that the
original energy still have a very good dissipation property, although the differences
between the original energy and the IEQ energy are not very small. To further verify
the convergence of the difference between the original energy and the modified IEQ
energy, we plot in the second part of Fig. 5.6 the quantity ‖U‖2 − ‖φ2 − 1‖2 (which
is the major part of the difference between the original and IEQ energy) at t = 0.4
for both BDF2 scheme and CN scheme using different time steps. A clearly second
order convergence is observed.

In Fig.5.7, we show the time evolution for the volume difference V (t)− V0 where
V (t) =

∫
Ω
φ(x, t)dx and V0 =

∫
Ω
φ0(x)dx for the numerical solutions obtained by the

schemes CN and BDF2, we observe that the volume difference is very close to the
machine precision.

5.3. Efficiency. In Table 5.1 and Table 5.2, we show the number of iterations
needed by the BiCGSTAB solver for the CN and BDF2 schemes. The default param-
eters are nx = 257, ny = 32, δt = 0.01, γ = 500, λ = 12. We vary these parameters
one by one while fixing the rest of them to be default values. In Table 5.1, the number
of iterations are always around O(10) for various grid points and γ, that means the
number of iterations actually does not show any dependence on the number of spatial
grid points and the parameter γ. In Table 5.2, when we vary the time step δt and
parameter λ, we can see that larger values of them can cause significant increase for
the number of iterations. Namely, when δt and λ are larger, the conditional numbers
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Fig. 5.7. Volume conservation property of CN (left) and BDF2 (right) schemes.

of the linear system become worse that is reasonable and can be easily observed from
the form of the linear system (3.37).

nx × ny 129×16 257×32 513×64

CN 8 8.7 9.6

BDF2 8.5 8.5 8.5

γ 100 10 1

CN 7.9 9 9

BDF2 9.1 10.0 10.1

Table 5.1
The average number of the inner iterations for BiCGSTAB with respect to the grid points

nx×ny and the parameter γ. The tolerance is 10−8 for schemes CN and BDF2. The default values
are nx = 257, ny = 32, δt = 0.01, γ = 500, λ = 12.

5.4. Simulation of a drop in shear flow. In this subsection, we simulate the
dynamics of a drop in shear flow using BDF2 scheme. The channel length Lx = 10.
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δt 0.001 0.1 1

CN 3.8 27 68

BDF2 4 27 69.6

λ 1 60 144

CN 5 19.6 35.5

BDF2 5 20.8 42.5

Table 5.2
The average number of the inner iterations for BiCGSTAB with respect to the time step δt and

the parameter λ. The tolerance is 10−8 for both schemes CN and BDF2. The default values are
nx = 257, ny = 32, δt = 0.01, γ = 500, λ = 12.

The wall velocity uw = (±2, 0). All other parameters are given in (5.1).
Fig. 5.8 illustrates the dynamical motions of a drop under shear with an acute

contact angle θs = π/6 until T = 5. Initially, the drop is set in the middle of the
bottom plate, as shown in the first subfigure. As the bottom plate moves, the drop
also moves with the plate but at a much smaller velocity. This means the drop slips
on the bottom plate. As time goes on, the contact region of the drop with the bottom
boundary gets smaller and smaller. It eventually gets off the bottom boundary around
t = 3 and moves toward the center of the channel. We also simulate an obtuse contact
angle θs = 2π/3 case, in which the drop is harder to get off the bottom boundary.
The result is shown in Fig. 5.9.

φ,    t=0

0 2 4 6 8
−1

0

1

φ,    t=1

0 2 4 6 8
−1

0

1

φ,    t=2

0 2 4 6 8
−1

0

1

φ,    t=3

0 2 4 6 8
−1

0

1

φ,    t=4

0 2 4 6 8
−1

0

1

φ,    t=5

0 2 4 6 8
−1

0

1

Fig. 5.8. The dynamical behaviors of a drop in shear flow simulated using the BDF2 scheme.
Snapshots are taken at t = 0, 1, 2, 3, 4, 5. We take the wall velocity uw = (±2, 0) and the static
contact angle θs = π/6.

6. Concluding remarks. By combining the projection method for Navier-
Stokes equations, the IEQ method for the nonlinear bulk and boundary energy gra-
dients, and a subtle explicit-implicit technique for the stress and convective terms,
we have constructed two linear, second order unconditionally stable temporal dis-
cretization schemes for the phase field MCL model. The well-posedness of the semi-
discretized linear systems and their energy stabilities are proved rigorously. Numerical
simulations have also verified both schemes are unconditionally stable and second or-
der accurate, while the CN scheme behaves a little bit better than the BDF2 scheme.
Although we have considered only time discretizations here, the results can carry over
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Fig. 5.9. The dynamical behaviors of a drop in shear flow using the BDF2 scheme. Snapshots
are taken at t = 0, 1, 2, 3, 4, 5. We take the wall velocity uw = (±2, 0) and the static contact angle
θs = 2π/3.

to any consistent finite-dimensional Galerkin (finite element or spectral) approxima-
tions since the proofs are all based on variational formulations with all test functions
in the same space as the trial function.
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