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Abstract We present a new stability and convergence analysis for the spatial dis-

cretisation of a time-fractional Fokker–Planck equation in a polyhedral domain, us-

ing continuous, piecewise-linear, finite elements. The forcing may depend on time

as well as on the spatial variables, and the initial data may have low regularity. Our

analysis uses a novel sequence of energy arguments in combination with a generalised

Gronwall inequality. Although this theory covers only the spatial discretisation, we

present numerical experiments with a fully-discrete scheme employing a very small

time step, and observe results consistent with the predicted convergence behaviour.
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convergence analysis
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1 Introduction

We consider the spatial discretisation via Galerkin finite elements of a time-fractional

Fokker–Planck equation [1,13],

∂tu−∇ ·
(

∂ 1−α
t κα∇u−F∂ 1−α

t u
)

= 0 for x ∈ Ω and 0 < t < T , (1)
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with initial condition u(x,0) = u0(x), where ∂t = ∂/∂ t and Ω is a polyhedral domain

in R
d (d ≥ 1). The fractional exponent is restricted to the range 0 < α < 1, κα > 0

is the diffusivity coefficient. In our analysis, we put κα = 1 for convenience, but it

is straight forward to extend our methods to allow for a spatially-varying diffusivity.

The fractional derivative is taken in the Riemann–Liouville sense, that is, ∂ 1−α
t u =

∂tI
α u, where the fractional integration operator I α is defined by

I
α u(t) = ωα ∗ u(t) =

∫ t

0
ωα(t − s)u(s)ds, ωα(t) =

tα−1

Γ (α)
.

Though we impose a homogeneous Dirichlet boundary condition,

u(x, t) = 0 for x ∈ ∂Ω and 0 < t < T , (2)

the proposed stability and errors analysis remain valid for zero-flux boundary condi-

tion, see Remark 1.

The time-space dependent driving force F and it time partial derivative, ∂tF, are

assumed to be in L∞

(

Ω ×(0,T ),Rd
)

. When F is independent of t, the model problem

(1) can be rewritten in the form

I
1−α(∂tu)−∇ ·

(

κα∇u−F(x)u
)

= 0, (3)

where the first term is just the Caputo fractional derivative of order α . For a one- or

two-dimensional spatial domain Ω , numerical methods applicable to (3) have been

widely studied [2–5,7,9–11,14,19–22]. In all of these works, the solution u was as-

sumed to be sufficiently regular, including at t = 0. Although (3) is in many respects

more convenient for constructing and analyzing the accuracy of numerical schemes,

only (1) is physically valid for a time-dependent forcing F [12].

Our earlier paper [15] presented an analysis of the semidiscrete finite element

solution of (1) that is limited to cases in which

1. the solution u is sufficiently regular,

2. the spatial domain Ω is an interval on the real line (that is, d = 1),

3. the fractional exponent is in the range 1/2 < α < 1,

4. the boundary condition is of homogeneous Dirichlet type (2).

By employing a different approach that based on novel energy arguments, we are

able to relax significantly the regularity requirements on u, in addition to permitting

d ≥ 1, 0 < α < 1, and zero-flux (10) as well as Dirichlet boundary conditions. This

new approach leads to an error bound of optimal order in L2(Ω) at each fixed t > 0,

even for non-smooth initial data u0. We consider only continuous piecewise linear

elements and (unlike our earlier paper [15]) do not analyse any time discretisation.

In Section 2, we define the semidiscrete finite element scheme and outline our

main results in the context of our previous work [15]. Section 3 gathers together

some technical estimates involving fractional integrals. Section 4 presents the new

stability result (Theorem 1) and Section 5 the new error bound (Theorem 2). Finally,

in Section 6, we discuss two numerical examples. The first confirms both the conver-

gence rate and the dependence on t predicted by our theory. The second looks briefly

at how the method behaves when u0 is a point mass, and therefore does not even

belong to L2(Ω).
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2 The finite element solution

The continuous solution u : (0,T ] → H1
0 (Ω) of problem (1) subject to the homoge-

neous Dirichlet boundary condition (2), satisfies the weak form,

〈∂tu,v〉+ 〈∂ 1−α
t ∇u,∇v〉− 〈F∂ 1−α

t u,∇v〉= 0 (4)

for all v ∈ H1
0 (Ω), where 〈u,v〉=

∫

Ω uv and 〈u,v〉=
∫

Ω u ·v. Let h denote the maxi-

mum element diameter from a shape-regular triangulation of Ω , and let Sh ⊆ H1
0 (Ω)

denote the usual space of continuous, piecewise-linear functions that vanish on ∂Ω .

The semidiscrete finite element solution uh : [0,T ]→ Sh is then defined by

〈∂tuh,χ〉+ 〈∂ 1−α
t ∇uh,∇χ〉− 〈F∂ 1−α

t uh,∇χ〉= 0 for all χ ∈ Sh, (5)

together with the initial condition uh(0) = u0h, where u0h ∈ Sh is a suitable approxi-

mation to u0.

Previously, for 0 ≤ t ≤ T , we showed [15, Theorems 3.3 and 3.4] that, ‖uh(t)‖ ≤
C‖u0h‖1 and, provided u0h is chosen to be the Ritz projection of u0 onto Sh,

‖uh(t)− u(t)‖ ≤Ch2

(

‖u0‖
2
2 +

∫ t

0
‖u′(s)‖2

2 ds

)1/2

. (6)

Here, ‖v‖=
√

〈v,v〉 denotes the norm in L2(Ω), u′(t) = ∂tu,

‖v‖r = ‖(−∇2)r/2v‖=

( ∞

∑
m=1

λ r
m〈v,ϕm〉

2

)1/2

for r ≥ 0,

and ϕ1, ϕ2, ϕ3, . . . is a complete orthonormal system in L2(Ω) consisting of Dirichlet

eigenfunctions of the Laplacian: 〈ϕm,ϕk〉= δmk and

−∇2ϕm = λmϕm in Ω , with ϕm = 0 on ∂Ω .

The associated function space Ḣr(Ω) = {v ∈ L2(Ω) : ‖v‖r < ∞} is a subspace of

the usual Sobolev space Hr(Ω) for 0 ≤ r ≤ 1; in particular, Ḣ0(Ω) = L2(Ω) and

Ḣ1(Ω) = H1
0 (Ω). Also, Ḣ2(Ω) = H2(Ω)∩ H1

0 (Ω) provided Ω is convex (so the

Poisson problem is H2-regular).

We prove in Theorem 1 a stronger stability estimate,

‖uh(t)‖ ≤C‖u0h‖ for 0 ≤ t ≤ T . (7)

Also, whereas the previous error bound (6) is meaningful only if u0 ∈ Ḣ2(Ω) and

u′ ∈ L2

(

(0,T ), Ḣ2(Ω)
)

, our new error analysis makes a much weaker regularity as-

sumption: for some r in the range 0 ≤ r ≤ 2 there is a constant Kr such that

‖u(t)‖2 + t‖u′(t)‖2 ≤ tα(r−2)/2Kr for 0 < t ≤ T . (8)

When F ≡ 0 and the domain Ω is convex, it is known [16, Theorem 4.4] that such

an estimate holds with Kr =C‖u0‖r in the case of Dirichlet boundary conditions (2).
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Since the term of (1) involving F is of lower order in the spatial variables, we con-

jecture that the same is true for a nonzero (but sufficiently regular) forcing F. In

Theorem 2, we show that if u0h is chosen to be the L2-projection of u0 onto Sh, then

‖uh(t)− u(t)‖ ≤Ctα(r−2)/2h2Kr for 0 ≤ t ≤ T and 0 ≤ r ≤ 2. (9)

For instance, in the worst case when r = 0, the error is O(t−αh2).

Remark 1 If we impose a zero-flux boundary condition,

∂ 1−α
t κα

∂u

∂n
− (F ·n)∂ 1−α

t u = 0 for x ∈ ∂Ω and 0 < t < T , (10)

where n denotes the outward unit normal to Ω , then u : (0,T ]→ H1(Ω) satisfies (4)

for all v ∈ H1(Ω). Likewise, uh is defined as in (5) but the finite element space Sh ⊆
H1(Ω) now consists of all continuous piecewise-linear functions (that is, the ele-

ments of Sh need not vanish on ∂Ω ). The stability estimate (7) remains valid, and the

error bound (9) holds assuming u satisfies (8), where ‖ ·‖2 is now the norm in H2(Ω)
rather than Ḣ2(Ω). Note that for either choice of boundary condition, the variational

equation (5) is equivalent to a system of Volterra integral equations [15, Theorem 3.1]

that admits a unique continuous solution uh : [0,T ] → Sh. Moreover, the methods

of Miller and Feldstein [17, Theorem 1] show that uh is continuously differentiable

on (0,T ]. Finally, notice that in the case of the zero-flux boundary condition (10), the

total mass
∫

Ω u(·, t) within Ω is conserved.

3 Fractional integrals

In this section only, C is an absolute constant. Our analysis of the semidiscrete finite

element solution uh will rely on the following technical lemmas, in which φ and ψ
are suitably regular functions of t > 0 taking values in a Hilbert space.

Lemma 1 If 0 ≤ µ ≤ ν ≤ 1, then

∫ t

0
‖I νφ‖2 ds ≤Ct2(ν−µ)

∫ t

0
‖I µφ‖2 ds.

Proof If µ = ν then there is nothing to prove, so assume µ < ν . In a previous pa-

per [15, Lemma 2.3], we showed that for 0 < α ≤ 1,

∫ T

0
‖I α ψ(t)‖2 dt ≤ ωα+1(T )

∫ T

0
ωα(T − t)

∫ t

0
‖ψ(s)‖2 dsdt,

and the right-hand side is bounded by ωα+1(T )
2
∫ T

0 ‖ψ(s)‖2 ds. Putting ψ = I µ φ
and α = ν − µ , it follows that I α ψ = I νφ and ωα+1(T )≤CT α =CT ν−µ . ⊓⊔

Lemma 2 If 0 < α < 1 and ε > 0, then

∣

∣

∣

∣

∫ t

0
〈φ ,I α ψ〉ds

∣

∣

∣

∣

≤
1

4ε(1−α)2

∫ t

0
〈I α φ ,φ〉ds+ ε

∫ t

0
〈I α ψ ,ψ〉ds, (11)
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∫ t

0
‖I α φ‖2 ds ≤

Ctα

1−α

∫ t

0
〈I α φ ,φ〉ds, (12)

∫ t

0
〈φ ,I α φ〉ds ≤Ctα

∫ t

0
‖φ‖2 ds. (13)

Proof From a result of Mustapha and Schötzau [18, Lemma 3.1(iii)],

∣

∣

∣

∣

∫ t

0
〈φ ,I α ψ〉ds

∣

∣

∣

∣

≤
1

cos(απ/2)

(

∫ t

0
〈φ ,I α φ〉ds

)1/2(∫ t

0
〈ψ ,I α ψ〉ds

)1/2

,

so (11) follows because cos(απ/2) ≥ 1−α . The same paper [18, Lemma 3.1(ii)]

showed that
∫ t

0
〈φ ,I α φ〉ds ≥ cos(πα/2)

∫ t

0
‖I α/2φ‖2 ds, (14)

and by choosing ν = α and µ = α/2 in Lemma 1 have

∫ t

0
‖I α φ‖2 ds ≤Ctα

∫ t

0
‖I α/2φ‖2 ds,

proving (12). Instead choosing ν = α and µ = 0 in Lemma 1 gives

∫ t

0
‖I α φ‖2 ds ≤Ct2α

∫ t

0
‖φ‖2 ds,

so

∫ t

0
〈φ ,I α φ〉ds ≤

(

∫ t

0
‖φ‖2 ds

)1/2(∫ t

0
‖I α φ‖2 ds

)1/2

≤Ctα
∫ t

0
‖φ‖2 ds,

proving (13). ⊓⊔

Lemma 3 If 0 < α < 1, then

∫ t

0
‖I α φ‖2 ≤

Ctα/2

1−α

∫ t

0
ωα/2(t − s)y(s)ds for y(t) =

∫ t

0
〈φ ,I α φ〉ds.

Proof From our earlier paper [15, Lemma 2.3],

∫ T

0
‖I ν ψ(t)‖2 dt ≤ ων+1(T )

∫ T

0
ων(T − t)

∫ t

0
‖ψ(s)‖2 dsdt,

so the result follows by letting ν = α/2 and ψ = I α/2φ , and then using (14). ⊓⊔

Lemma 4 If 0 < α < 1, then

‖φ(t)−φ(0)‖2 ≤
t1−α

(1−α)2

∫ t

0
〈φ ′(s),(I α φ ′)(s)〉ds.

Proof We showed previously [15, Lemma 2.1] that

‖φ(t)−φ(0)‖2 ≤
t1−α

1−α

∫ t

0
‖I α/2φ ′(s)‖2 ds,

so the desired estimate follows from (14) and the inequality cos(απ/2)≥ 1−α . ⊓⊔
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4 Stability

We seek to estimate the finite element solution uh(t) in terms of the initial data u0h.

Throughout, the generic constant C may depend on α , T and the vector norms of

F and F′ = ∂tF in L∞(Ω × (0,T )).
It will be convenient to define

M φ(t) = tφ(t), B1(φ) = I
1(F∂ 1−α

t φ),

B2(φ) = (M −αI )B1(φ), B3(φ) = [M B1(φ)]
′,

(15)

and we will use the elementary identities

MI
α −I

α
M = αI

α+1 (16)

and

(∂ 1−α
t φ)(t) = (I α φ)′ = φ(0)ωα (t)+ (I α φ ′)(t). (17)

Lemma 5 For 0 ≤ t ≤ T ,
∫ t

0
‖B1(φ)‖

2 ds ≤C

∫ t

0
‖I α φ‖2 ds,

∫ t

0
‖B2(φ)‖

2 ds ≤Ct2

∫ t

0
‖I α φ‖2 ds,

∫ t

0
‖B3(φ)‖

2 ds ≤C

∫ t

0

(

‖I α(M φ)′‖2 + ‖I α(M φ)‖2 + ‖I α φ‖2
)

ds.

Proof Integration by parts (in time) shows that

B1(φ) = FI
α φ −I

1(F′
I

α φ), (18)

and our assumptions on F imply

‖FI
α φ‖2 ≤C‖I α φ‖2 and ‖I 1(F′

I
α φ)‖2 ≤Ct

∫ t

0
‖I α φ‖2 ds, (19)

so the first estimate follows at once. The second estimate follows immediately from

the first one and the inequality

‖B2(φ)(s)‖
2 ≤Cs2‖B1(φ)(s)‖

2 +CsI 1(‖B1(φ)‖
2)(s).

With the help of the identities (18) and (16), we find that

M B1(φ) = M
(

FI
α φ −I

1(F′
I

α φ)
)

= F(I α
M φ +αI

α+1φ)−MI
1(F′

I
α φ)

so

B3(φ) = F′(I α
M φ +αI

α+1φ)+F(I α(M φ)′+αI
α φ)

−I
1(F′

I
α φ)−M F′

I
α φ .

Thus,

‖B3(φ)‖
2 ≤C

(

‖I α
M φ‖2 + ‖I α(M φ)′‖2

)

+C(1+ t2)‖I α φ‖2

+Ct

∫ t

0
‖I α φ‖2 ds,

which implies the third estimate. ⊓⊔
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In the next two lemmas, we prove preliminary stability estimates for uh and M uh.

Lemma 6 The finite element solution satisfies, for 0 ≤ t ≤ T ,

∫ t

0

(

〈uh,I
α uh〉+ ‖I α ∇uh‖

2
)

ds ≤Ct1+α‖u0h‖
2

and
∫ t

0
‖I α uh‖

2 ds ≤Ct1+2α‖u0h‖
2.

Proof We integrate (5) in time to obtain

〈uh(t),χ〉+ 〈(I α ∇uh)(t),∇χ〉− 〈B1(uh)(t),∇χ〉= 〈u0h,χ〉 (20)

and then choose χ = I α uh(t) so that

〈uh,I
α uh〉+ ‖I α ∇uh‖

2 = 〈B1(uh),I
α ∇uh〉+ 〈u0h,I

α uh〉

≤ 1
2
‖B1(uh)‖

2 + 1
2
‖I α ∇uh‖

2 + 〈u0h,I
α uh〉.

Therefore, after cancelling the term 1
2
‖I α ∇uh‖

2, integrating in time and applying

Lemma 5, we deduce that

∫ t

0

(

〈uh,I
α uh〉+

1
2
‖I α ∇uh‖

2
)

ds ≤C

∫ t

0
‖I α uh‖

2 ds+

∫ t

0
〈u0h,I

α uh〉ds. (21)

From (11) with φ = u0h and ψ = uh,

∫ t

0
〈u0h,I

α uh〉ds ≤C

∫ t

0
〈u0h,I

α u0h〉ds+
1

2

∫ t

0
〈uh,I

α uh〉ds,

so if we define

y(t) =

∫ t

0

(

〈uh I
α uh〉+ ‖I α ∇uh‖

2
)

ds,

then

y(t)≤C

∫ t

0
〈u0h,I

α u0h〉ds+C

∫ t

0
‖I α uh‖

2 ds for 0 ≤ t ≤ T .

Noting that (I α u0h)(t) = u0hωα+1(t), and applying Lemma 3 with φ = uh, it follows

that

y(t)≤ a(t)+ b(t)

∫ t

0

(t − s)α/2−1

Γ (α/2)
y(s)ds for 0 ≤ t ≤ T , (22)

where

a(t) =Ctα+1‖u0h‖
2 and b(t) =Ctα/2.

Let Eβ (z) = ∑∞
n=0 zn/Γ (1+ nβ ) denote the Mittag–Leffler function. A generalised

Gronwall inequality of Dixon and McKee [6, Theorem 3.1] (also stated in our earlier

paper [15, Lemma 2.6]) then yields

y(t)≤ a(t)Eα/2

(

b(t)tα/2
)

≤Ca(t) for 0 ≤ t ≤ T . (23)

The first estimate of the lemma follows at once, and the second is then a consequence

of (12). ⊓⊔
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Lemma 7 For 0 ≤ t ≤ T ,

∫ t

0

(

〈M uh,I
α
M uh〉+ ‖I α

M ∇uh‖
2
)

ds ≤Ct3+α‖u0h‖
2

and
∫ t

0
‖I α

M uh‖
2 ds ≤Ct3+2α‖u0h‖

2.

Proof We multiply both sides of (20) by t, and then use (16), to obtain

〈M uh,χ〉+ 〈I α
M ∇uh,∇χ〉+α〈I α+1∇uh,∇χ〉

− 〈M B1(uh),∇χ〉= 〈M u0h,χ〉. (24)

By integrating (20) in time, we find that

〈I α+1∇uh,∇χ〉= 〈I 1(u0h − uh),χ〉+ 〈I 1B1(uh),∇χ〉,

and so, noting that I 1u0h = M u0h,

〈M uh,χ〉+ 〈I α
M ∇uh,∇χ〉= 〈B2(uh),∇χ〉+ 〈(1−α)M u0h+αI

1uh,χ〉

≤ 1
2
‖B2(uh)‖

2 + 1
2
‖∇χ‖2 + 〈(1−α)M u0h+αI

1uh,χ〉.

Now choose χ =I αM uh, cancel the term 1
2
‖∇χ‖2 and integrate in time to arrive at

the estimate

∫ t

0

(

〈M uh,I
α
M uh〉+

1
2
‖I α

M ∇uh‖
2
)

ds

≤
1

2

∫ t

0
‖B2(uh)‖

2 ds+

∫ t

0
〈(1−α)M u0h+αI

1uh,I
α
M uh〉ds.

Using (11) twice, with ε = 1/4, we see that the second term on the right-hand side is

bounded by

1

2

∫ t

0
〈M uh,I

α
M uh〉ds+C

∫ t

0
〈M u0h,I

α
M u0h〉ds+C

∫ t

0
〈I 1uh,I

α
I

1uh〉ds

so

∫ t

0

(

〈M uh,I
α
M uh〉+ ‖I α

M ∇uh‖
2
)

ds ≤

∫ t

0
‖B2(uh)‖

2 ds

+C

∫ t

0
〈M u0h,I

α
M u0h〉ds+C

∫ t

0
〈I 1uh,I

α
I

1uh〉ds.

Since I αM u0h = u0hI
α ω2 = u0hωα+2, we have

∫ t

0
〈M u0h,I

α
M u0h〉ds =Ct3+α‖u0h‖

2,

and, using (13) followed by Lemma 1 with ν = 1 and µ = α ,

∫ t

0
〈I 1uh,I

α
I

1uh〉ds ≤Ctα
∫ t

0
‖I 1uh‖

2 ds ≤Ct2−α
∫ t

0
‖I α uh‖

2 ds.
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Thus, by Lemma 5,

∫ t

0

(

〈M uh,I
α
M uh〉+ ‖I α

M ∇uh‖
2
)

ds ≤Ct3+α‖u0h‖
2

+C
(

t2 + t2−α
)

∫ t

0
‖I α uh‖

2 ds,

which, when combined with the second estimate from Lemma 6, proves the first

claim. The second follows at once thanks to (12). ⊓⊔

Next, we show that uh may be replaced with (M uh)
′ in the first estimate of

Lemma 6.

Lemma 8 For 0 ≤ t ≤ T ,

∫ t

0

(

〈(M uh)
′,I α(M uh)

′〉+ ‖I α(M ∇uh)
′‖2

)

ds ≤Ct1+α‖u0h‖
2.

Proof Differentiate (24) to obtain

〈(M uh)
′,χ〉+ 〈∂ 1−α

t M ∇uh,∇χ〉+ 〈αI
α ∇uh −B3(uh),∇χ〉= 〈u0h,χ〉,

and note that

∣

∣〈αI
α ∇uh −B3(uh),∇χ〉

∣

∣≤ 1
2
‖∇χ‖2 + ‖B3(uh)‖

2 +α2‖I α ∇uh‖
2.

We choose χ = ∂ 1−α
t M uh = (I αM uh)

′, and observe that (M uh)(0) = 0 so (17)

implies χ = I α(M uh)
′. Thus,

〈(M uh)
′,I α(M uh)

′〉+ 1
2
‖I α(M ∇uh)

′‖2

≤ 〈u0h,I
α(M uh)

′〉+ ‖B3(uh)‖
2 + ‖I α ∇uh‖

2.

By (11),

∫ t

0
〈u0h,I

α(M uh)
′〉ds ≤

1

2

∫ t

0
〈(M uh)

′,I α(M uh)
′〉ds+C

∫ t

0
〈u0h,I

α u0h〉ds,

so by Lemma 5,

y(t) :=

∫ t

0

(

〈(M uh)
′,I α(M uh)

′〉+ ‖I α(M ∇uh)
′‖2

)

ds ≤C

∫ t

0
〈u0h,I

α u0h〉ds

+C

∫ t

0

(

‖I α ∇uh‖
2 + ‖I α

M uh‖
2 + ‖I α uh‖

2
)

ds+C

∫ t

0
‖I α(M uh)

′‖2 ds.

The first integral on the right-hand side is bounded by Ct1+α‖u0h‖
2, and so is the

second via Lemmas 6 and 7. It follows using Lemma 3 that y(t) satisfies an inequality

of the form (22) with a(t) = Ct1+α‖u0h‖
2 and b(t) = Ctα/2, so (23) holds, proving

the result. ⊓⊔

The stability of uh(t) in L2(Ω) now follows.
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Theorem 1 There is a constant C, depending on α , T and F, such that

‖uh(t)‖ ≤C‖u0h‖ for 0 ≤ t ≤ T.

Proof Using Lemma 4 with φ = M uh, followed by Lemma 8, we obtain

t2‖uh(t)‖
2 = ‖(M uh)(t)‖

2 ≤Ct1−α
∫ t

0

〈

(M uh)
′,I α(M uh)

′
〉

ds ≤Ct2‖u0h‖
2.

⊓⊔

Because some of the estimates of Section 3 break down as α → 1, the same is

true of the stability result above. That is, the proof of Theorem 1 yields a constant C

that tends to infinity as α → 1. However, we can easily prove stability in the limiting

case when α = 1, that is, when (1) reduces to the classical Fokker–Planck equation,

∂tu+∇ · (∇u−Fu) = 0,

and the finite element equation (5) to

〈∂tuh,χ〉+ 〈∇uh,∇χ〉− 〈Fuh,∇χ〉= 0.

5 Error estimate

We now seek to estimate the accuracy of the semidiscrete finite element solution uh.

Recall that the Ritz projection Rhv ∈ Sh of a function v ∈ H1(Ω) is defined by

〈∇Rhv,∇χ〉+ 〈Rhv,χ〉= 〈∇v,∇χ〉+ 〈v,χ〉 for all χ ∈ Sh;

here, the lower-order terms are included to allow for a zero-flux boundary condi-

tion (10), in which case the functions in Sh do not have to vanish on ∂Ω and so

the Poincaré inequality is not applicable. Since the Galerkin finite element method

is quasi-optimal in H1(Ω), we know that ‖v−Rhv‖1 ≤Ch‖v‖2 for v ∈ H2(Ω). As-

suming that Ω is convex, so that the Poisson problem is H2-regular, the usual duality

argument implies that

‖v−Rhv‖ ≤Ch2‖v‖2 for v ∈ H2(Ω). (25)

We now decompose the error into

eh = uh − u = θh −ρh where θh = uh −Rhu and ρh = u−Rhu, (26)

and deduce from (4) and (5) that

〈θ ′
h,χ〉+ 〈∂ 1−α

t ∇θh,∇χ〉− 〈F∂ 1−α
t θh,∇χ〉= 〈ρ ′

h − ∂ 1−α
t ρh,χ〉− 〈F∂ 1−α

t ρh,∇χ〉.
(27)

With this equation, we can use the techniques of Section 4 to estimate θh in terms

of ρh. The next lemma provides our basic estimate for the latter.
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Lemma 9 Let β ≥ 0 and 0 ≤ r ≤ 2. If u has the regularity property (8), then

‖I β ρh‖+ ‖I β (M ρ ′
h)‖ ≤Ctβ+α(r−2)/2h2Kr for 0 < t ≤ T.

Proof For the case β = 0, we see from (25) that

‖ρh(t)‖+ ‖M ρ ′
h(t)‖ ≤Ch2

(

‖u(t)‖2 + t‖u′(t)‖2

)

≤Ctα(r−2)/2h2Kr,

whereas for β > 0,

‖I β ρh(t)‖+ ‖I β (M ρ ′
h)‖ ≤

∫ t

0
ωβ (t − s)

(

‖ρh(s)‖+ s‖ρ ′
h(s)‖

)

ds

≤C

∫ t

0
(t − s)β−1 sα(r−2)/2h2Kr ds,

and the result follows after making the substitution s = ty for 0 ≤ y ≤ 1. ⊓⊔

The proofs of Lemmas 10 and 11 below parallel those of Lemmas 6 and 7 from

Section 4. We let Ph denote L2-projector onto the finite element subspace Sh, that is,

for any v ∈ L2(Ω) we define Phv ∈ Sh by 〈Phv,χ〉= 〈v,χ〉 for all χ ∈ Sh.

Lemma 10 If u0h = Phu0 then, for 0 ≤ t ≤ T and 0 ≤ r ≤ 2,

∫ t

0

(

〈θh,I
α θh〉+ ‖I α ∇θh‖

2
)

ds ≤Ct1+α(r−1)h4K2
r

and
∫ t

0
‖I α θh‖

2 ds ≤Ct1+αrh4K2
r .

Proof We integrate (27) in time to obtain

〈θh,χ〉+ 〈I α ∇θh,∇χ〉− 〈B1(θh),∇χ〉= 〈eh(0),χ〉+ 〈ρ̃h,χ〉− 〈B1(ρh),∇χ〉,
(28)

where ρ̃h = ρh −I α ρh. Our choice of u0h means that 〈eh(0),χ〉 = 0, so by letting

χ = I α θh and recalling the definitions (15), we see that

〈θh,I
α θh〉+ ‖I α ∇θh‖

2 ≤ ‖B1(θh)‖
2 + ‖B1(ρh)‖

2 + 1
2
‖I α ∇θh‖

2 + 〈ρ̃h,I
α θh〉.

Thus, by Lemma 5,

∫ t

0

(

〈θh,I
α θh〉+

1
2
‖I α ∇θh‖

2
)

ds ≤C

∫ t

0
‖I α θh‖

2 ds

+C

∫ t

0
‖I α ρh‖

2 ds+
∫ t

0
〈ρ̃h,I

α θh〉ds.

After applying (11) with φ = ρ̃h and ψ = θh, followed by Lemma 3 with φ = θh, we

see that the function

y(t) =
∫ t

0

(

〈θh,I
α θh〉+ ‖I α ∇θh‖

2
)

ds
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satisfies an inequality of the form (22) with

a(t) =C

∫ t

0
〈ρ̃h,I

α ρ̃h〉ds+C

∫ t

0
‖I α ρh‖

2 ds and b(t) =Ctα/2.

For brevity, put η = h2Kr. By Lemma 9,

∣

∣〈ρ̃h,I
α ρ̃h〉

∣

∣≤Cη2(1+ tα)tα(r−2)/2(1+ tα)tα+α(r−2)/2 ≤Cη2tα(r−1)

and ‖I α ρh‖
2 ≤C

(

ηtα+α(r−2)/2
)2

=Cη2tαr, so a(t)≤Cη2tα(r−1)+1. Thus, the two

estimates follow from (23) followed by (12). ⊓⊔

Lemma 11 If u0h = Phu0 then, for 0 ≤ t ≤ T and 0 ≤ r ≤ 2,

∫ t

0

(

〈M θh,I
α
M θh〉+ ‖I α

M ∇θh‖
2
)

ds ≤Ct3+α(r−1)h4K2
r

and
∫ t

0
‖I α

M θh‖
2 ds ≤Ct3+αrh4K2

r .

Proof We multiply both sides of (28) by t, remembering that 〈eh(0),χ〉= 0, and then

use (16) to obtain

〈M θh,χ〉+ 〈I α
M ∇θh,∇χ〉+α〈I α+1∇θh,∇χ〉− 〈M B1(θh),∇χ〉

= 〈M ρ̃h,χ〉− 〈M B1(ρh),∇χ〉. (29)

By integrating (28), we find that

〈I α+1∇θh,∇χ〉= 〈I 1ρ̃h −I
1θh,χ〉+ 〈I 1B1(θh)−I

1B1(ρh),∇χ〉,

and hence, with B2(φ) defined as before in (15),

〈M θh,χ〉+ 〈I α
M ∇θh,∇χ〉= 〈B2(θh)−B2(ρh),∇χ〉

+ 〈(M −αI
1)ρ̃h +αI

1θh,χ〉.

Now choose χ = I αM θh so that, after cancelling a term 1
2
‖∇χ‖2 and integrating,

∫ t

0

(

〈M θh,I
α
M θh〉+

1
2
‖I α

M ∇θh‖
2
)

ds ≤
1

2

∫ t

0
‖B2(θh)−B2(ρh)‖

2 ds

+

∫ t

0
〈(M −αI

1)ρ̃h +αI
1θh,I

α
M θh〉ds.

Using (11) with ε = 1/4, φ = (M −αI 1)ρ̃h and ψ = M θh, and a second time

with φ = αI 1θh, we see that

∫ t

0

(

〈M θh,I
α
M θh〉+ ‖I α

M ∇θh‖
2
)

ds ≤

∫ t

0
‖B2(θh)−B2(ρh)‖

2 ds

+C

∫ t

0
〈(M −αI

1)ρ̃h,I
α(M −αI

1)ρ̃h〉ds+C

∫ t

0
〈I 1θh,I

α
I

1θh〉ds.
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Lemma 5 implies that

∫ t

0
‖B2(θh)−B2(ρh)‖

2 ds ≤Ct2
∫ t

0

(

‖I α θh‖
2 + ‖I α ρh‖

2
)

ds

and, putting η = h2Kr as before, we find with the help of Lemma 9 that

∫ t

0

∣

∣〈(M −αI
1)ρ̃h,I

α(M −αI
1)ρ̃h〉

∣

∣ ≤Cη2t3+α(r−1).

Using (13), followed by Lemma 1 with ν = 1 and µ = α ,

∫ t

0
〈I 1θh,I

α
I

1θh〉ds ≤Ctα
∫ t

0
‖I 1θh‖

2 ds ≤Ct2−α
∫ t

0
‖I α θh‖

2 ds,

so, recalling that ‖I α ρh‖
2 ≤ Cη2tαr, the first estimate follows by Lemma 10. The

second is then an immediate consequence of (12).

Techniques like those of Lemma 8 and Theorem 1 now yield our error bound.

Theorem 2 If Ω is convex and the solution of the fractional Fokker–Planck equa-

tion (1) has the regularity property (8), then the finite element solution, given by (4),

satisfies

‖uh(t)− u(t)‖ ≤C‖u0h −Phu0‖+Ctα(r−2)/2h2Kr

for 0 < t ≤ T and 0 ≤ r ≤ 2. The constant C may depend on α , T and F.

Proof Suppose in the first instance that u0h = Phu0, as required for Lemmas 10 and

11. Differentiate (29) to obtain

〈(M θh)
′,χ〉+ 〈∂ 1−α

t M ∇θh,∇χ〉+α〈I α ∇θh,∇χ〉

= 〈(M ρ̃h)
′,χ〉+ 〈B3(θh)−B3(ρh),∇χ〉,

where B3(φ) is again defined as in (15). Noting that
∣

∣〈B3(θh)−B3(ρh)−αI
α θh,∇χ〉

∣

∣≤ ‖∇χ‖2 + 1
2

(

‖B3(θh)−B3(ρh)‖
2

+ 1
2
α2‖I α ∇θh‖

2
)

,

we choose χ = ∂ 1−α
t M θh = (I αM θh)

′, and observe that (M θh)(0) = 0 so (17)

implies χ = I α(M θh)
′. Thus, after cancelling ‖∇χ‖2,

〈(M θh)
′,I α(M θh)

′〉 ≤ 〈(M ρ̃h)
′,I α(M θh)

′〉

+ 1
2
‖B3(θh)−B3(ρh)‖

2 + 1
2
α2‖I α ∇θh‖

2.

Integrating in time, and then applying (11) to the first term on the right hand side,

with ε = 1/2, φ = (M ρ̃h)
′ and ψ = (M θh)

′, it follows that

∫ t

0

〈

(M θh)
′,I α(M θh)

′
〉

ds ≤C

∫ t

0

〈

(M ρ̃h)
′,I α(M ρ̃h)

′
〉

ds

+

∫ t

0

(

‖B3(θh)−B3(ρh)‖
2 + ‖I α ∇θh‖

2
)

ds.
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Since, using (16),

(M ρ̃h)
′ =

[

M (ρh −I
α ρh)

]′
= ρh +M ρ ′

h −
[

I
α
M ρh +αI

α+1ρh

]′

= ρh +M ρ ′
h −I

α(M ρh)
′−αI

α ρh

= ρh +M ρ ′
h −I

α
M ρ ′

h − (1+α)I α ρh

we see from (25), (8) and Lemma 9 that ‖(M ρ̃h)
′‖ ≤Cηtα(r−2)/2(1+ tα) where, as

before, η = h2Kr. Consequently,

∫ t

0

〈

(M ρ̃h)
′,I α(M ρ̃h)

′
〉

ds ≤Cη2t1+α(r−1),

and by Lemma 5,

∫ t

0
‖B3(ρh)‖

2 ds ≤C

∫ t

0

(

‖I α(M ρh)
′‖2 + ‖I α(M ρh)‖

2 + ‖I α ρh‖
2
)

ds

≤Cη2
∫ t

0

(

tαr + t2+αr + tαr
)

ds ≤Cη2t1+αr,

showing that

∫ t

0

〈

(M θh)
′,I α(M θh)

′
〉

ds ≤Cη2t1+α(r−1)

+C

∫ t

0

(

‖I α ∇θh‖
2 + ‖I α

M θh‖
2 + ‖I α θh‖

2
)

ds+C

∫ t

0
‖I α(M θh)

′‖2 ds.

Using Lemmas 10 and 11, we find that the second term on the right is bounded by

Ct1+α(r−1)η2. It follows using Lemma 3 that the function

y(t) =
∫ t

0

〈

(M θh)
′,I α(M θh)

′
〉

ds

satisfies an inequality of the form (22) with a(t) = Ct1+α(r−1)η2 and b(t) = Ctα/2.

Therefore, using Lemma 4 with φ = M θh, followed by (23), we have

‖M θh‖
2 ≤Ct1−αy(t)≤Ct1−αa(t)≤Ct2+α(r−2)η2,

which is equivalent to the estimate ‖θh‖≤Ctα(r−2)/2h2Kr. Recalling (26), the desired

error bound in the case u0h = Phu0 follows by the triangle inequality and the case β =
0 of Lemma 9.

The error bound for general u0h now follows from the stability result of Theo-

rem 1. In fact, if u∗h and uh denote the finite element solutions satisfying u∗h(0) =
Phu0 and uh(0) = u0h, then the difference uh − u∗h is the finite element solution with

initial value u0h −Phu0 so

‖uh(t)− u∗h(t)‖ ≤C‖u0h −Phu0‖ for 0 ≤ t ≤ T .

We obtain the desired estimate for ‖uh(t)− u(t)‖ after applying the triangle inequal-

ity, noting that ‖u∗h(t)− u(t)‖ ≤Ctα(r−2)/2h2Kr. ⊓⊔

If r < 2, then the error estimate in the theorem becomes unbounded as t → 0, but

the stability result of Theorem 1 shows that the error must in fact remain bounded.
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6 Numerical examples

We discuss experiments with two problems, using a fully-discrete scheme of implicit

Euler type. For time levels 0 = t0 < t1 < t2 < · · · < tN = T , we denote the nth step

size by kn = tn − tn−1 and the associated subinterval by In = (tn−1, tn), for 1 ≤ n ≤ N.

The maximum step size k = max1≤n≤N kn is sometimes used to label quantities that

depend on the mesh. With any sequence of values V 1, V 2, . . . , V N we associate the

piecewise-constant function V̌ defined by

V̌ (t) =V n for tn−1 < t < tn and n ≥ 1.

Integrating the finite element equation (5) over the nth time interval In gives

〈

uh(tn)− uh(tn−1),χ
〉

+

∫

In

〈

∂ 1−α
t ∇uh,∇χ

〉

dt −

∫

In

〈

F∂ 1−α
t uh,∇χ

〉

dt = 0,

for all χ ∈ Sh, and we approximate uh(tn) by Un
h ∈ Sh satisfying

〈

Un
h −Un−1

h ,χ
〉

+
∫

In

〈

∂ 1−α
t ∇Ǔh,∇χ

〉

dt −
∫

In

〈

F̌∂ 1−α
t Ǔh,∇χ

〉

dt = 0, (30)

for all χ ∈ Sh and for 1 ≤ n ≤ N, with U0
h = u0h. For 1 ≤ p ≤ Qh := dimSh, let xp

denote the pth free node of the spatial mesh, and let φp ∈ Sh denote the pth nodal

basis function, so that φp(xq) = δpq and

Un
h (x) =

Qh

∑
p=1

Un
p φp(x) where Un

p =Un
h (xp)≈ uh(xp, tn)≈ u(xp, tn).

We define Qh ×Qh matrices M and Gn with entries

Mpq = 〈φq,φp〉 and Gn
pq = 〈∇φq,∇φp〉− 〈Fnφq,∇φp〉,

where Fn(x) = F(x, tn), and the Qh-dimensional column vector Un with compo-

nents Un
p . It follows from (30) that

MUn −MUn−1 +
n

∑
j=1

ωn jG
nU j −

n−1

∑
j=1

ωn−1, jG
nU j = 0 for 1 ≤ n ≤ N,

with weights ωn j =
∫

I j
ωα(tn − s)ds for 1 ≤ j ≤ n ≤ N. Thus, at the nth time step we

must solve the linear system

(

M+ωnnGn
)

Un = MUn−1 −
n−1

∑
j=1

(

ωn j −ωn−1, j

)

GnU j.

Although this fully-discrete scheme lacks a theoretical error analysis, we observed

numerically that first-order accuracy in time is achieved, for t bounded away from

zero, if we use a graded mesh of the form

tn = (n/N)γT for 0 ≤ n ≤ N, with γ = 1/α . (31)

Our earlier paper [15, Table 5.3] includes computations with smooth initial data, in

which we observed that the L2 error is O(h2) uniformly for 0 ≤ t ≤ T , consistent with

Theorem 2 when r = 2. Here, we instead focus on the case of non-smooth initial data.
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Fig. 1 The L2-projection Phu0 and the nodal interpolant Ihu0h of the discontinuous initial data (32)

when Qh = 15.

6.1 Dirichlet boundary condition

In our first example, F(x, t) = −x+ sint, T = 1 and Ω = (0,π), with homogeneous

Dirichlet boundary conditions u(0, t) = 0 = u(π , t) and discontinuous initial data

given by

u0(x) =

{

1, x ∈ [π/4,3π/4]

0, x ∈ [0,π/4)∪ (3π/4,1];
(32)

Figure 1 shows u0 and its L2-projection Phu0, as well as the nodal interpolant Ihu0 ∈Sh

defined by

Ihu0(xp) =

{

1, xp ∈ [π/4,3π/4]

0, xp ∈ [0,π/4)∪ (3π/4,1].
(33)

The Dirichlet eigenvalues and orthonormal eigenfunctions of −∇2 =−∂ 2
x are

λm = m2 and ϕm(x) =

(

2

π

)1/2

sin mx for m ∈ {1,2,3, . . .},

so for 0 ≤ r < 1/2 we have

‖u0‖
2
r =

∞

∑
m=1

m2r〈u0,ϕm〉
2 =

4

π

∞

∑
j=1

(2 j− 1)2(r−1) ≤
C

1− 2r
.

If our conjecture that Kr = C‖u0‖r in (8) is valid, then applying Theorem 2 with

r = 1
2
− ε and ε−1 = log(e2 + t−1), so that t−ε ≤ e and 0 < ε < 1/2, gives

‖uh(t)− u(t)‖ ≤C‖u0h −Phu0‖+Ct−3α/4h2
√

log(e2 + t−1) for 0 < t ≤ 1. (34)
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Table 1 Weighted errors (35) and convergence rates (36) for different α , when u0h = Phu0.

Qh α = 0.25 α = 0.50 α = 0.75

7 7.98e-03 7.77e-03 7.84e-03

15 1.96e-03 2.024 1.91e-03 2.024 1.94e-03 2.017

31 4.88e-04 2.008 4.75e-04 2.008 4.82e-04 2.007

63 1.21e-04 2.014 1.18e-04 2.014 1.19e-04 2.015

Table 2 Weighted errors (35) and convergence rates (36) for different α , when u0h = Ihu0 .

Qh α = 0.25 α = 0.50 α = 0.75

7 7.79e-02 7.46e-02 7.27e-02

15 4.04e-02 0.948 3.86e-02 0.950 3.76e-02 0.952

31 2.06e-02 0.973 1.97e-02 0.973 1.91e-02 0.974

63 1.04e-02 0.987 9.93e-03 0.987 9.65e-03 0.987

In our computations, we employed nonuniform time levels given by (31), but a

uniform spatial mesh with h = 1/(Qh + 1). In all cases, Qh + 1 was divisible by 4

so that the points π/4 and 3π/4 (where u0 is discontinuous) coincided with two of

the nodes. We first computed a reference solution Un
ref = Un

h using a fine mesh with

N = 10,000 and Qh = 511. We then computed Un
h for Qh ∈ {7,15,31,63}, again

with N = 10,000. The initial data was chosen as u0h = Phu0 in each case. With such

a small k, the error,

En
h,k = ‖Un

h −Un
ref‖ for 1 ≤ n ≤ N,

was dominated by the influence of the spatial discretisation, and we sought to estimate

the convergence rates σh,k such that

E∗
h,k = max

0≤n≤N

t
3α/4
n En

h,k
√

log(e2 + t−1
n )

≈Chσh,k , (35)

from the relation

σh,k = log2(E
∗
2h,k/E∗

h,k). (36)

Table 1 shows the values of E∗
h,k and σh,k for three different values of α . The computed

values of σh,k are close to 2, as expected from Theorem 2. Figure 2 shows how the

L2-error En
h,k varies with tn for different h when α = 0.75, again keeping N = 10,000.

Due to the log-log scale, the graph of a function proportional to t−3α/4 appears as a

straight line with gradient −3α/4, indicated by the small triangle, and we observe

exactly this behaviour of the error for t close—but not too close—to zero.

Physically, the solution u must be non-negative, but the oscillations in the discrete

initial data Phu0 mean that Un
h (x) was negative for some values of (x, tn) near the

points of discontinuity (π/4,0) and (3π/4,0). It is tempting to choose as the discrete

initial data u0h = Ihu0, the nodal interpolant (33). In this way, U0
h = u0h(x) ≥ 0 for

all x. However, since

〈u0h −Phu0,χ〉= 〈u0h − u0,χ〉 ≤ ‖u0h − u0‖‖χ‖ for all χ ∈ Sh,
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Fig. 2 Plots of the error En
h,k as a function of tn, for α = 0.75 and different choices of Qh. The triangle

indicates the gradient −3α/4 for a function proportional to t−3α/4; cf. (34). Note the logarithmic scales.

by choosing χ = u0h −Phu0 we see that

‖u0h −Phu0‖ ≤ ‖u0h − u0‖=
√

2
3

h when u0h = Ihu0.

Thus, Theorem 2 now yields an error bound of order h+ t−3α/4h2 (ignoring the log

factor), and Table 2 indeed shows only first-order convergence for this choice of

initial data.

At the end of Section 4, we remarked that in our stability estimate the constant

tends to infinity as α approaches 1. Since the finite element method is stable in the

classical case α = 1, we suspect that the dependence of the stability constant on α < 1

is an artefact of the method of proof. To investigate this question numerically, we

computed ‖uh(t)‖ for random initial data, that is, when the value of u0h at each node

was a random number from a uniform distribution in [0,1]. In practice, we did not

observe any deterioration in the stability of the method for α close to 1.

6.2 Zero-flux boundary condition

In our second example,

F(x, t) =−
∂V

∂x
, α = 0.75, T = 20, Ω = (−L,L), L = 4,

where V is a double-well potential perturbed by an oscillation in time,

V (x, t) = 1
4
x4 − 1

2
x2 − xcost. (37)
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Fig. 3 Surface plot of a solution using the potential (37) and imposing the zero-flux boundary condi-

tion (10); the part of the surface where t < 0.005 is omitted.
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Fig. 4 Detail of the surface plot showing the spurious oscillations for (x,t) near the singularity at (0,0).

Gammaitoni et al. [8] used this potential for the classical Fokker–Planck equation

(α = 1) in their study of stochastic resonance. We imposed the zero-flux boundary

condition (10) and chose as the initial data u0(x) = δ (x). The solution u then gives

the probability distribution for a single diffusing particle initially located at x = 0.

Since the Dirac delta functional does not belong to L2(Ω), our stability result (Theo-
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rem 1) does not apply, and Phu0 is not defined. Nevertheless, the functions in Sh are

continuous, so by extending the L2 inner product to a dual pairing we can define the

discrete initial data u0h ∈ Sh by

〈u0h,χ〉= 〈u0,χ〉= 〈δ ,χ〉= χ(0) for all χ ∈ Sh.

Figure 3 shows a surface plot of the numerical solution using N = 4,096 time steps,

now with a stronger mesh grading γ = 2 in (31), and Qh = 65 spatial degrees of

freedom. (Thus the delta function is centred on the node x33 = 0). We cut off the

initial part of the plot where t < 0.005 to avoid the oscillations, shown separately in

Figure 4, which are much larger than was the case for our first example. The total

mass should be constant and we observed in practice that
∫

Ω Un
h = 1 to ten significant

figures, for 0 ≤ n ≤ N.
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