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SINGULAR FIOs IN SAR IMAGING, II: TRANSMITTER AND
RECEIVER AT DIFFERENT SPEEDS∗

G. AMBARTSOUMIAN†, R. FELEA‡ , V. P. KRISHNAN§ , C. J. NOLAN¶, AND E. T.

QUINTO‖

Abstract. In this article, we consider two bistatic cases arising in synthetic aperture radar
imaging: when the transmitter and receiver are both moving with different speeds along a single line
parallel to the ground in the same direction or in the opposite directions. In both cases, we classify the
forward operator F as a Fourier integral operator with fold/blowdown singularities. Next we analyze
the normal operator F∗F in both cases (where F∗ is the L2-adjoint of F). When the transmitter
and receiver move in the same direction, we prove that F∗F belongs to a class of operators associated
to two cleanly intersecting Lagrangians, Ip,l(∆, C1). When they move in opposite directions, F∗F

is a sum of such operators. In both cases artifacts appear and we show that they are, in general, as
strong as the bona-fide part of the image. Moreover, we demonstrate that as soon as the source and
receiver start to move in opposite directions, there is an interesting bifurcation in the type of artifact
that appears in the image.

Key words. Singular Fourier integral operators; Elliptical Radon transforms; Synthetic Aper-
ture Radar; Fold and Blowdown singularities

AMS subject classifications. Primary 35S30, 35R30; Secondary 50J40

1. Introduction. Synthetic Aperture Radar (SAR) is a high-resolution imaging
technology that uses antennas on moving platforms to send electromagnetic waves to
objects of interest and measures the scattered echoes. These are then processed to
form an image of the objects. For a good overview of SAR imaging, especially from a
mathematical point of view, we refer the reader to [6, 7]. In monostatic SAR imaging,
the moving transmitter also acts as a receiver, whereas in bistatic SAR imaging, the
transmitter and receiver are located on different platforms.

Our focus in this article is on a bistatic SAR imaging setup, where the transmitter
and receiver move along a straight line parallel to the ground, in the same direction
or in the opposite directions, and with different speeds (see (2.1)). Here and in the
rest of the article we assume that the ground is represented by a plane. The SAR
imaging task is then mathematically equivalent to recovering the ground reflectivity
function V from the measured data FV for a certain period of time along each point
of the receiver trajectory. Since exact reconstruction of V from FV is an extremely
difficult task, a reasonable compromise (acceptable in practice for most applications)
is to find the singularities of V from FV . In particular, this will allow to see the edges
(and hence shapes) of the objects on the ground. Unfortunately even that simpler
task may not be completely accomplishable, since in certain setups FV may not have
enough information for correct recovery of singularities of V . In these cases, the best
possible reconstruction of V may miss certain parts of the original singularities, or
have added “fake” singularities, called artifacts.

In this article, the reconstructed images, including artifacts, are analyzed using
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the calculus of singular Fourier integral operators (FIOs). The forward operator F
which maps singularities in the scene to those in the data is an FIO. It is conventional
to reconstruct the image of an object by using the backprojection operator, F∗ applied
to the data FV . We study the normal operator F∗F and the artifacts which appear
by using this method.

The current article is a continuation of our prior work [2], where, motivated by
certain multiple scattering scenarios, we considered the case when the transmitter and
receiver move at equal speeds away from a common midpoint along a straight line.
The main result of that article made precise the added singularities and their strengths
(in comparison to the true singularities) when reconstruction is done using the back-
projection method mentioned above. We showed that the backprojection method
introduces three additional singularities for each true singularity with potentially no
way of avoiding them if the transmitter and receiver are assumed omnidirectional.
One of our main motivations in studying the case of different speeds for the transmit-
ter and receiver was to remove some of these artifacts. However, when the transmitter
and receiver move away from each other, the backprojection method still introduces
additional artifacts, which in the limiting case (when the speeds are equal) gives the
artifacts considered in [2].

The microlocal analysis of the normal operator in the study of generalized Radon
transforms and in imaging problems has a long history. Guillemin and Sternberg
were the first to study integral geometry problems from the FIO and microlocal anal-
ysis point of view, and made fundamental contributions [21, 20]. Later, paired La-
grangian calculus introduced by Melrose-Uhlmann [27] and Guillemin-Uhlmann [22],
and also studied in Antoniano-Uhlmann [4] was used by Greenleaf-Uhlmann in sev-
eral of their highly influential works on the study of generalized Radon transforms
[17, 18]. Microlocal techniques have also been very useful in the context of seismic
imaging [5, 31, 38, 29, 37, 8, 12]), in sonar imaging see [11, 13, 33]), in X-ray To-
mography; in addition to works mentioned above also see [32, 24, 15, 14, 16]), and in
tensor tomography [34, 35, 39].

The microlocal analysis of linearized SAR imaging operators (both monostatic
and bistatic) was done in [30, 40, 10, 2, 36]. Bistatic SAR imaging problems, due
to the fact that the transmitter and receiver are spatially separated, naturally lead
to the study of elliptical Radon transforms, which are also of independent interest.
These have been studied in the literature as well [3, 1, 28].

The article is organized as follows: In Section 2 we state the main facts and re-
sults: the positions of the transmitter and receiver that we consider (2.1), the forward
operator F (2.2), the canonical relation of F and the properties of the projections
from its canonical relation (πL and πR) (Theorems 2.1 and 2.4). Then, we describe
the composition calculus results (Theorems 2.2 and 2.6).

In Section 3 we recall briefly the definition of the fold/blowdown singularities
and the properties of the Ip,l classes we need in this article, and Section 4 briefly
summarizes the main result of [2].

In Section 5 we consider the case when the transmitter and receiver are moving
in the same direction along a line parallel to the ground. We show that the normal
operator F∗F has a distribution kernel belonging to the paired Lagrangian distri-
bution class I2m,0(∆, C1) where ∆ is the diagonal relation and C1 is the graph of a
simple reflection map about the x-axis. This result is valid even if the transmitter is
stationary, for example, when the transmitter is a fixed radio tower and the receiver
is a drone.

In Section 6 we consider the case when the transmitter and receiver move in
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opposite directions along the line, and the analysis becomes considerably more com-
plicated. To distinguish this case from the case in Section 5, we denote the forward
operator by G. First of all, the projections drop rank by one along two smooth disjoint
hypersurfaces Σ1 ∪ Σ2. Then, Theorem 2.6 shows that the backprojection adds two
sets of artifacts and the normal operator G∗G is a sum of operators belonging to Ip,l

classes: I2m,0(∆, C1) + I2m,0(∆, C2) + I2m,0(C1, C2), where C1 causes the same arti-
fact which appears for α ≥ 0 in Section 5 and C2 is a two-sided fold (Def. 3.2). Finally,
in section 6.4 we consider spotlighting, in which certain portions of the ground are
selectively illuminated. In this case, we show that the normal operator G∗G belongs
to I2m,0(∆, C2) where C2 is a two-sided fold canonical relation (see Theorem 6.8).

In Appendix A, we prove Theorem 2.2 using the iterated regularity method and
in Appendix B, we give a geometric explanation of the points we cannot image in the
case considered in Section 6.

In all these situations, we show that additional artifacts (coming from C1 and C2)
could be just as strong as the bona-fide part of the image, in other words, singularities
related to ∆. In this article, for F∗F ∈ Ip,l(∆, C), the strength of the artifact (C)
means the order of F∗F on C \ ∆. We find the order of F∗F on both ∆ \ C and
C \∆ and, if they are the same, then we conclude that in general, the artifact is as
strong (see Remarks 2.3 and 2.7).

An obvious but perhaps important observation that follows from the results of this
paper is that if one has a choice of having the source and receiver platforms moving in
the same or opposite directions along the same straight line, then it is highly preferable
to have them move in the same direction in order to avoid additional set of artifacts,
other than the usual left-right ambiguities.

2. Statements of the main results.

2.1. The linearized scattering model. For simplicity, we assume that both
the transmitter and receiver are at the same height h > 0 above the ground at all
times and that the transmitter and receiver move at constant but different speeds
along a line parallel to the x axis. Let

(2.1) γT (s) = (αs, 0, h) γR(s) = (s, 0, h)

for s ∈ (0,∞) be the trajectories of the transmitter and receiver respectively.
The case α = −1 corresponds to the common midpoint problem, which was fully

analyzed in [2]. Therefore we will assume α 6= −1. We also assume α 6= 1, since
α = 1 corresponds to the monostatic case (where the same device serves as both a
transmitter and a receiver) and has also been fully analyzed in earlier works [30, 10].

We are aware that there are other cases for the transmitter and receiver to be
considered, like moving along parallel lines at different heights or along skew lines at
different speeds or along intersecting lines in a plane parallel to the ground. At this
point we can only say that in those cases the left-right ambiguity which appears in
the case considered in this article will, in general, be lost. However, we will limit the
analysis of F and F∗F only to the case mentioned in (2.1) since it is already leads
to interesting analysis. We point out that, in practice, the flight paths can be more
complicated because of turbulence and other factors.

The linearized model for the scattered signal we will use in this article is

∫
e
−iω

(

t− 1

c0
R(s,x)

)

a0(s, x, ω)V (x)dxdω



4 AMBARTSOUMIAN, FELEA, KRISHNAN, NOLAN, AND QUINTO

for (s, t) ∈ (0,∞) × (0,∞), where V (x) = V (x1, x2) is the function modeling the
object on the ground, and

R(s, x) = ‖γT (s)− x‖+ ‖x− γR(s)‖

is the bistatic distance–the sum of the distance from the transmitter to the scatterer
and from the scatterer to the receiver, c0 is the speed of electromagnetic wave in
free-space and the amplitude term a0 is given by

a0(s, x, ω) =
ω2p(ω)

16π2 ‖γT (s)− x‖ ‖γR(s)− x‖ .

This function includes terms that take into account the transmitted waveform and
geometric spreading factors.

From now on, we denote the (s, t) space by Y = (0,∞)2 and the (x1, x2) space
by X = R

2.
For simplicity, we will assume that c0 = 1. Because the ellipsoidal wavefronts do

not meet the ground for

t <
√
(α− 1)2s2 + 4h2,

there is no signal for such t. As we will see, our method cannot image the point on
the ground directly “between” the transmitter and receiver (see the proof of Theorem
2.1 in Section 5). Given transmitter and receiver positions αs and s respectively, such

a point on the ground has coordinates
(

(α+1)s
2 , 0

)
. Note that this point on the x-axis

corresponds to t =
√
(α− 1)2s2 + 4h2. For these two reasons, we multiply a0 by a

cutoff function f that is zero in a neighborhood of

{
(s, t) : s > 0, 0 < t ≤

√
(α− 1)2s2 + 4h2

}
.

In addition, to be able to compose our forward operator and its adjoint, we further
assume that f is compactly supported and equal to 1 in a neighborhood of a suitably
large compact subset of

{(s, t) : s > 0,
√
(α− 1)2s2 + 4h2 < t <∞}.

We let f · a0 = a, and this gives us the data

(2.2) FV (s, t) :=

∫
e−iω(t−‖x−γT (s)‖−‖x−γR(s)‖)a(s, t, x, ω)V (x)dxdω.

We require additional cutoffs for our analysis to work for the case of α < 0 (see
Remarks 2.5 and 6.3).

Throughout the article we use the following notation

(2.3)
A = A(s, x) = ‖x− γT (s)‖ =

√
(x1 − αs)2 + x22 + h2

B = B(s, x) = ‖x− γR(s)‖ =
√
(x1 − s)2 + x22 + h2.

and we define the ellipse

(2.4) E(s, t) =
{
x ∈ R

2 : A(s, x) + B(s, x) = t
}
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We assume that the amplitude function a ∈ S2, that is, it satisfies the following
estimate: For every compact K ⊂ Y ×X and for every non-negative integer δ and for
every 2-index β = (β1, β2) and λ, there is a constant c such that

(2.5) |∂δω∂β1

s ∂β2

t ∂λxa(s, t, x, ω)| ≤ c(1 + |ω|)2−δ.

This assumption is satisfied if the transmitted waveform from the antenna is approxi-
mately a Dirac delta distribution. The qualitative features predicted by the approach
based on microlocal analysis are consistent with practical reconstructions, including
for example, the well-known right-left ambiguity artifact in low-frequency SAR images
[7].

2.2. Transmitter and receiver moving in the same direction: α ≥ 0. The
case α ≥ 0 corresponds to the situation when the transmitter and receiver are traveling
in the same direction along a line parallel to the ground or when the transmitter is
stationary (α = 0) on that line. For α ≥ 0, we refer to the forward operator by F .
We show that for the case α ≥ 0, the operator F in (2.2) is a FIO of order 3

2 and
study the properties of the natural projection maps from the canonical relation of F .
We have the following results.

Theorem 2.1. Let F be the operator in (2.2) for α ≥ 0.
1. F is an FIO of order 3/2.
2. The canonical relation CF ⊂ T ∗Y \ 0× T ∗X \ 0 associated to F is given by

(2.6)

CF =

{(
s, t,−ω

(
x1 − αs

A
α+

x1 − s

B

)
, ω;

x1, x2, ω

(
x1 − αs

A
+
x1 − s

B

)
, ω
(x2
A

+
x2
B

))

: ω 6= 0, t = A+B

}
.

where A = A(s, x) and B = B(s, x) are defined in (2.3). Furthermore,
(s, x1, x2, ω) is a global parameterization of CF .

3. Denote the left and right projections from CF to T ∗Y \ 0 and T ∗X \ 0 by πL
and πR respectively. Then πL and πR drop rank simply by one on the set

(2.7) Σ1 = {(s, x1, x2, ω) ∈ CF : x2 = 0} .

4. πL has a fold singularity along Σ1 and πR has a blowdown singularity along
Σ1 (see Def. 3.1).

We next analyze the imaging operator F∗F .

Theorem 2.2. Let F be as in Theorem 2.1. Then F∗F ∈ I3,0(∆, C1), where

(2.8) C1 = {(x1, x2, ξ1, ξ2;x1,−x2, ξ1,−ξ2) : (x, ξ) ∈ T ∗X \ 0}

which is the graph of χ1(x, ξ) = (x1,−x2, ξ1,−ξ2).
remark 2.3. Since F∗F ∈ I3,0(∆, C1), using the properties of the Ip,l classes

[22], we have that microlocally away from C1, F∗F is in I3(∆ \C1) and microlocally
away from ∆, F∗F ∈ I3(C1 \∆). This means that F∗F has the same order on both
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∆ \ C1 and C1 \∆ which implies that the artifacts caused by C1 \∆ will, in general,
have the same order as the reconstruction of the singularities in V that cause them
(see the comments below Def. 3.6). However, more complicated behavior can occur
including smoothing or cancellation of artifacts.

2.3. Transmitter and receiver moving in opposite directions: α < 0.
When α < 0, the transmitter and receiver travel away from each other, and we refer
to the forward operator by G.

2.3.1. Further preliminary modifications of the scattered data. In the
case when α < 0, we further modify the operator FV considered in Section 2.1.

Our method cannot image a neighborhood of two points on the ground for a
given transmitter and receiver positions in addition to the points muted by the cutoff
function f in Section 2.1. Therefore we modify or pre-process the receiver data further
such that the contribution to it from a neighborhood of these two points is 0. The
two points on the x1-axis that we would like to avoid are of the form

(
x±1 , 0

)
, where

x+1 =
2αs

α+ 1
+

√
−α (α− 1)2

(α+ 1)2
s2 − h2,(2.9)

x−1 =
2αs

α+ 1
−
√

−α (α− 1)2

(α + 1)2
s2 − h2(2.10)

as explained in Remark 2.5. We define a smooth mute function g(s, t) that is iden-
tically 0 if the ellipse E(s, t) is near one of the points (x±1 , 0); for each s, the corre-
sponding values of t are

(2.11) t±s = A
(
s, (x±1 , 0)

)
+B

(
s, (x±1 , 0)

)

where A and B are given by (2.3). The points t±s are given explicitly in Appendix B.
With the function g, we modify F in (2.2) by replacing a by g · a and call it a

again. Throughout this section, corresponding to the case α < 0, we will designate
the operator as G. That is, we have

(2.12) GV (s, t) :=

∫
e−iω(t−‖x−γT (s)‖−‖x−γR(s)‖)a(s, t, x, ω)V (x)dxdω,

where a takes into account the cutoff functions f in Section 2.1 and the function g
defined in the last paragraph.

Theorem 2.4. Let G be the operator given in (2.12) for α < 0. Then
1. G is an FIO of order 3

2
2. The canonical relation CG associated to G is given by (2.6) with global param-

eterization (s, x1, x2, ω).
3. The left and right projections πL and πR respectively from CG drop rank simply

by one on the set Σ = Σ1 ∪Σ2 where Σ1 is given by (2.7) and

Σ2 =

{
(s, x, ω) ∈ CG :

α

A2
+

1

B2
= 0, x2 6= 0

}
(2.13)

=

{
(s, x, ω) ∈ CG :

(
x1 −

2αs

α+ 1

)2

+ x22 = −αs2 (α− 1)2

(α+ 1)2
− h2, x2 6= 0

}(2.14)
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4. πL has a fold singularity along Σ (see Def. 3.1).
5. πR has a blowdown singularity along Σ1 and a fold singularity along Σ2 (see

Def. 3.1).

For convenience, we denote, for each s, the projection of the part of Σ2 above
s to R

2 (the projection to the base of πR
(
Σ2

∣∣
s

)
) by Σ2,X(s), and this is the circle

described in (2.14) and in Appendix B. It can be written

(2.15) Σ2,X(s) =

{
x :

α

A2(s, x)
+

1

B2(s, x)
= 0, x2 6= 0

}
.

remark 2.5. From Equation (2.14) we have that Σ2,X(s) is a circle of radius√
−αs2 (α−1)2

(α+1)2 − h2 and centered at (2αs/(α+ 1), 0).

Now we can explain why we need to cutoff the data for ellipses near the two
points given by (2.9)-(2.10). Since πR(Σ1) intersects πR(Σ2) above these two points,
πR drops rank by two above these points. So, we mute data near (s, t±s ) given by
(2.11). We will precisely describe this mute, g in Remark 6.3.

We now analyze the imaging operator G∗G. Unlike the case α ≥ 0, this case is
more complicated and we consider several restricted transforms.

Theorem 2.6. Let α ≤ 0 and α 6= −1. Let G be the operator in (2.12) and let

(2.16) s0 =
h(α+ 1)√−α(α− 1)

Then the following hold:
1. Let O1 = {(s, t) : 0 < s < s0 and 0 < t < ∞} and let r1 be a smooth cutoff

function that is compactly supported in O1. Consider the operator G defined in
(2.12) with the amplitude function a replaced by r1 ·a. Then G∗G ∈ I3,0(∆, C1)
where C1 is defined in (2.8).

2. Let O2 = {(s, t) : s0 < s <∞ and t−s < t < t+s } where t±s is defined in (2.11).
Let r2 be a smooth cutoff function and compactly supported in O2. Consider
the operator G defined in (2.12) with the amplitude function a replaced by
r2 · a. Then G∗G ∈ I3,0(∆, C1) + I3,0(∆, C2) + I3,0(C1, C2) where C2 is a
two-sided fold given by (6.1).

3. Let O3 = {(s, t) : s0 < s <∞ and t < t−s or t > t+s } with t±s defined in (2.11).
Let r3 be a smooth cutoff function compactly supported in O3. Consider the
operator G defined in (2.12) with the amplitude function a replaced by r3 · a.
Then G∗G ∈ I3,0(∆, C1).

remark 2.7. Using the properties of the Ip,l classes for case 2 of the theorem,

G∗G ∈ I3,0(∆, C1) + I3,0(∆, C2) + I3,0(C1, C2)

implies that artifacts in the reconstruction could show up because of C1 (reflection
in the x1 axis) and because of C2 (a 2-sided fold). Furthermore, from the discussion
below Definition 3.7, we have that G∗G ∈ I3(Ci\∆), i = 1, 2, G∗G ∈ I3(Ci\Cj), i, j =
1, 2, i 6= j and G∗G ∈ I3(∆ \Ci), i = 1, 2 and thus these artifacts could be, in general,
as strong as the bona-fide part of the image (corresponding to I3(∆)).

3. Preliminaries: Singularities and Ip,l classes. Here we introduce the
classes of distributions and singular FIO we will use to analyze the forward oper-
ators F and G and the normal operators F∗F and G∗G.
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Definition 3.1. [19] Let M and N be manifolds of dimension n and let f :M →
N be C∞. Define Σ = {m ∈M : det(df)m = 0}.

1. f drops rank by one simply on Σ if for each m0 ∈ Σ,
rank (df)m0

= n− 1 and d(det(df)m0
) 6= 0.

2. f has a Whitney fold along Σ if f is a local diffeomorphism away from Σ
and f drops rank by one simply on Σ, so that Σ is a smooth hypersurface and
ker (df)m0

6⊂ Tm0
Σ for every m0 ∈ Σ.

3. f is a blowdown along Σ if f is a local diffeomorphism away from Σ and
f drops rank by one simply on Σ, so that Σ is a smooth hypersurface and
ker(df)m0

⊂ Tm0
(Σ) for every m0 ∈ Σ.

Definition 3.2 ([26]). A smooth canonical relation C for which both projections
πL and πR have only (Whitney) fold singularities, is called a two-sided fold or a
folding canonical relation.

This notion was first introduced by Melrose and Taylor [26], who showed the
existence of a normal form in T ∗

R
n × T ∗

R
n.

Theorem 3.3 ([26]). If dim X = n dim Y = n and C ⊂ (T ∗X\0)×(T ∗Y \0) is
a two-sided fold, then microlocally there are homogeneous canonical transformations,
χ1 : T ∗X → T ∗

R
n and χ2 : T ∗Y → T ∗

R
n, such that (χ1 × χ2)(C) ⊆ C0, near ξ2 6= 0

where, C0 = N∗{x2 − y2 = (x1 − y1)
3; xi = yi, 3 ≤ i ≤ n}.

We now define Ip,l classes. They were first introduced by Melrose and Uhlmann
[27], Guillemin and Uhlmann [22] and Greenleaf and Uhlmann [18] and they have
been used in the study of SAR imaging [30, 10, 25, 2].

Definition 3.4. Two submanifolds M and N intersect cleanly if M ∩ N is a
smooth submanifold and T (M ∩N) = TM ∩ TN .

Consider two spaces X and Y and let Λ0 and Λ1 and Λ̃0 and Λ̃1 be Lagrangian
submanifolds of the product space T ∗X×T ∗Y . If they intersect cleanly, (Λ̃0, Λ̃1) and
(Λ0,Λ1) are equivalent in the sense that there is, microlocally, a canonical transfor-
mation χ which maps (Λ0,Λ1) into (Λ̃0, Λ̃1) and χ(Λ0 ∩ Λ1) = (Λ̃0 ∩ Λ̃1). This leads
us to the following model case.

Example. Let Λ̃0 = ∆T∗Rn = {(x, ξ;x, ξ) : x ∈ R
n, ξ ∈ R

n \ 0} be the diagonal
in T ∗

R
n × T ∗

R
n and let Λ̃1 = {(x′, xn, ξ′, 0;x′, yn, ξ′, 0) : x′ ∈ R

n−1, ξ′ ∈ R
n−1 \ 0}.

Then, Λ̃0 intersects Λ̃1 cleanly in codimension 1.

Now we define the class of product-type symbols Sp,l(m,n, k).

Definition 3.5. Sp,l(m,n, k) is the set of all functions a(z; ξ, σ) ∈ C∞(Rm ×
(Rn \ 0)× R

k) such that for every K ⊂ R
m and every α ∈ Z

m
+ , β ∈ Z

n
+, δ ∈ Z

k
+ there

is cK,α,β such that

|∂αz ∂βξ ∂δσa(z, ξ, σ)| ≤ cK,α,β(1 + |ξ|)p−|β|(1 + |σ|)l−|δ|

for all (z, ξ, τ) ∈ K × (Rn \ 0)× R
k.

Since any two sets of cleanly intersecting Lagrangians are equivalent, we first
define Ip,l classes for the case in Example 1.

Definition 3.6 ([22]). Let Ip,l(Λ̃0, Λ̃1) be the set of all distributions u such that
u = u1 + u2 with u1 ∈ C∞

0 and

u2(x, y) =

∫
ei((x

′−y′)·ξ′+(xn−yn−s)·ξn+s·σ)a(x, y, s; ξ, σ)dξdσds
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with a ∈ Sp′,l′ where p′ = p− n
2 + 1

2 and l′ = l − 1
2 .

This allows us to define the Ip,l(Λ0,Λ1) class for any two cleanly intersecting La-
grangians in codimension 1 using the microlocal equivalence with the case in Example
1.

Definition 3.7. [22] Let Ip,l(Λ0,Λ1) be the set of all distributions u such that
u = u1+u2+

∑
vi where u1 ∈ Ip+l(Λ0 \Λ1), u2 ∈ Ip(Λ1 \Λ0), the sum

∑
vi is locally

finite and vi = Awi where A is a zero order FIO associated to χ−1, the canonical
transformation from above, and wi ∈ Ip,l(Λ̃0, Λ̃1).

This class of distributions is invariant under FIOs associated to canonical trans-
formations which map the pair (Λ0,Λ1) to itself, whilst also preserving the intersec-
tion. By definition, F ∈ Ip,l(Λ0,Λ1) if its Schwartz kernel belongs to Ip,l(Λ0,Λ1).
If F ∈ Ip,l(Λ0,Λ1) then F ∈ Ip+l(Λ0 \ Λ1) and F ∈ Ip(Λ1 \ Λ0) [22]. Here by
F ∈ Ip+l(Λ0 \ Λ1), we mean that the Schwartz kernel of F belongs to Ip+l(Λ0) mi-
crolocally away from Λ1.

To show that a distribution belongs to Ip,l class we use the iterated regularity
property:

Theorem 3.8 ([18, Proposition 1.35]). If u ∈ D′(X × Y ) then u ∈ Ip,l(Λ0,Λ1)
if there is an s0 ∈ R such that for all first order pseudodifferential operators Pi with
principal symbols vanishing on Λ0 ∪ Λ1, we have P1P2 . . . Pru ∈ Hs0

loc.

In section 6, we will use the following theorem.

Theorem 3.9 ([10, 29]). If F is a FIO of order m whose canonical relation is a
two-sided fold then F ∗F ∈ I2m,0(∆, C̃) where C̃ is another two-sided fold.

4. Summary of the main result for the case α = −1. Recall that in the
statement of Theorem 2.6, we assumed that α 6= −1. In fact, as already mentioned in
the introduction, the case when α = −1 in the context of Theorem 2.6 was analyzed
in our earlier paper [2], and the results obtained in this work can be considered as a
bifurcation of the singularities that appear for the case when −1 6= α < 0, as α → −1.
With this is mind, we state the main result obtained in [2], and briefly explain how
our earlier result fits into the framework of the current article.

Let T denote the operator

(4.1) T V (s, t) :=

∫
e−iω(t−‖x−γT (s)‖−‖x−γR(s)‖)a(s, t, x, ω)V (x)dxdω,

where

γT (s) =
√
(x1 + s)2 + x22 + h2 and γR(s) =

√
(x1 − s)2 + x22 + h2.

Theorem 4.1. [2] Let T be the operator in (4.1). Then the normal operator T ∗T
can be decomposed as a sum:

T ∗T ∈ I2m,0(∆,Λ1) + I2m,0(∆,Λ2) + I2m,0(Λ1,Λ3) + I2m,0(Λ2,Λ3).

Here Λ1,Λ2 and Λ3 denote the additional singularities (artifacts) caused due to re-
flection about the x1 axis, reflection about the x2 axis and rotation by π about the
origin, respectively. In other words, Λ1 is the same as the one defined in (2.8) and Λ2

and Λ3 are defined as:

Λ2 = {(x1, x2, ξ1, ξ2;−x1, x2,−ξ1, ξ2) : (x, ξ) ∈ T ∗X \ 0}
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and

Λ3 = {(x1, x2, ξ1, ξ2;−x1,−x2,−ξ1,−ξ2) : (x, ξ) ∈ T ∗X \ 0}.

The theorem above is a limiting case of the result in Theorem 2.6, and in the
limit, there is a bifurcation of the singularities, due to the presence of 4 Lagrangians
in the result above compared to 3 in Theorem 2.6. From (2.13), we see that when
α = −1, the circle given by the equation

α

A2
+

1

B2
= 0

becomes the straight line x1 = 0 regardless of the value s, and as noted in Remark 2.3
of [2], the canonical relation associated to the operator T is a 4-1 relation due to the
symmetries with respect to both the x1 and x2 axes. When α 6= −1, the additional
symmetry (about the x2 axis) in the canonical relation of T is broken. This was one
of our main motivations for the results in this paper.

5. Analysis of the operator F and the imaging operator F∗F for α ≥ 0.
In this section, we prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. We first prove that

ϕ := −ω
(
t−

√
(x1 − αs)2 + x22 + h2 −

√
(x1 − s)2 + x22 + h2

)

is a non-degenerate phase function. We have that ϕ is a phase function in the sense of
Hörmander [23] because ∇xϕ 6= 0 at points where the amplitude of the operator F is
elliptic. The differential ∇xϕ vanishes at a point on the ground directly “between” the

source and receiver and this point is given by
(

(α+1)s
2 , 0

)
. However, in a neighborhood

of such points the amplitude a vanishes due to the cutoff function f in the definition
of F given in (2.2). Also we have that ∇s,tϕ is nowhere 0 since ω 6= 0. The same
reason that ∇xϕ is non-vanishing at points where the amplitude a is elliptic also gives
that ϕ is non-degenerate. Since a satisfies an amplitude estimate, F is an FIO [9].
Finally since a is of order 2, the order of the FIO is 3/2 [9, Definition 3.2.2]. By
definition [23, Equation (3.1.2)]

CF =
{
(s, t, ∂s,tϕ(x, s, t, ω)); (x,−∂xϕ(x, s, t)); ∂ωϕ(x, s, t, ω) = 0

}
.

This establishes (2.6). Furthermore, it is easy to see that (x1, x2, s, ω) is a global
parametrization of CF .

Now we prove the claims about the canonical left and right projections from CF ,
the final parts of Theorem 2.1. In the parameterization of CF , we have

πL(x1, x2, s, ω) =

(
s, A+B,−

(
x1 − αs

A
α+

x1 − s

B

)
ω,−ω

)

and the derivative is

(dπL) =











0 0 1 0
x1−αs

A
+ x1−s

B

x2

A
+ x2

B
∗ 0

−ω
(

x2

2
+h2

A3 α+
x2

2
+h2

B3

)

ω
(

α(x1−αs)x2

A3 + (x1−s)x2

B3

)

∗ ∗

0 0 0 −1











.
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Then

(5.1) det (dπL) = −ωx2
(
α

A2
+

1

B2

)(
1 +

(γT − x) · (γR − x)

AB

)
.

The third term would be zero when the unit vectors (γT (s)− x)/A and (γR(s)−
x)/B point in opposite directions, but this cannot happen since the transmitter and
receiver are above the plane of the Earth. Also since α > 0,

(
α
A2 + 1

B2

)
6= 0. Hence,

this determinant vanishes to first order when x2 = 0. This corresponds to Σ1 given
in (2.7).

On Σ1 the kernel of (dπL) is spanned by ∂
∂x2

6⊂ TΣ1. So πL has a fold singularity
along Σ1.

Similarly, we have,

πR(x1, x2, s, ω) =

(
x1, x2,−

(
x1 − αs

A
+
x1 − s

B

)
ω,−

(x2
A

+
x2
B

)
ω

)
.

Then

(dπR) =




1 0 0 0
0 1 0 0

∗ ∗ ω(
x2

2
+h2

A3 α+
x2

2
+h2

B3 ) −(x1−αs
A + x1−s

B )

∗ ∗ −ω( (x1−αs)x2

A3 α+ (x1−s)x2

B3 ) −(x2

A + x2

B )




has the same determinant as (dπL).Therefore πR drops rank simply by one on Σ1.
On Σ1, the kernel of πR is spanned by ∂

∂ω and ∂
∂s which are tangent to Σ1. Thus πR

has a blowdown singularity along Σ1.

Next we analyze the imaging operator F∗F . We have the following integral
representation for F∗F :

F∗FV (x) =

∫
eiφ̃(x,s,t,ω,ω̃,y)a(s, t, x, ω)a(s, t, y, ω̃)V (y)dsdtdωdω̃dy,

where

φ̃ =
(
ω (t− (‖x− γT (s)‖+ ‖x− γR(s)‖))

− ω̃ (t− (‖y − γT (s)‖+ ‖y − γR(s)‖))
)

After an application of the method of stationary phase in t and ω̃, the Schwartz kernel
of this operator becomes

(5.2) K(x, y) =

∫
eiΦ(y,s,x,ω)ã(y, s, x, ω) dsdω.

where

(5.3)
Φ(y, s, x, ω) =ω

(
‖y − γT (s)‖+ ‖y − γR(s)‖
− (‖x− γT (s)‖+ ‖x− γR(s)‖)

)
.

Note that ã ∈ S4 since we have assumed that a ∈ S2.

Proposition 5.1. Let α ≥ 0. The wavefront relation of the kernel K of F∗F
satisfies

WF ′(K) ⊂ ∆ ∪C1,

where ∆ is the diagonal in T ∗X × T ∗X, and C1 is given by (2.8). We have that ∆
and C1 intersect cleanly in codimension 2 in ∆ or C1.
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Proof. Let (s, t, σ, τ ; y, η) ∈ CF . Then we have

(5.4)

t =
√
(y1 − αs)2 + y22 + h2 +

√
(y1 − s)2 + y22 + h2

σ = τ

(
y1 − αs√

(y1 − αs)2 + y22 + h2
α+

y1 − s√
(y1 − s)2 + y22 + h2

)

η1 = τ

(
y1 − αs√

(y1 − αs)2 + y22 + h2
+

y1 − s√
(y1 − s)2 + y22 + h2

)

η2 = τ

(
y2√

(y1 − αs)2 + y22 + h2
+

y2√
(y1 − s)2 + y22 + h2

)

and (x, ξ; s, t, σ, τ) ∈ Ct implies

t =
√
(x1 − αs)2 + x22 + h2 +

√
(x1 − s)2 + x22 + h2

σ = τ

(
x1 − αs√

(x1 − αs)2 + x22 + h2
α+

x1 − s√
(x1 − s)2 + x22 + h2

)

ξ1 = τ

(
x1 − αs√

(x1 − αs)2 + x22 + h2
+

x1 − s√
(x1 − s)2 + x22 + h2

)
(5.5)

ξ2 = τ

(
x2√

(x1 − αs)2 + x22 + h2
+

x2√
(x1 − s)2 + x22 + h2

)

From the first two relations in (5.4) and (5.5), we have

(5.6)

√
(y1 − αs)2 + y22 + h2 +

√
(y1 − s)2 + y22 + h2

=
√
(x1 − αs)2 + x22 + h2 +

√
(x1 − s)2 + x22 + h2

and

(5.7)

y1 − αs√
(y1 − αs)2 + y22 + h2

α+
y1 − s√

(y1 − s)2 + y22 + h2

=
x1 − αs√

(x1 − αs)2 + x22 + h2
α+

x1 − s√
(x1 − s)2 + x22 + h2

.

We will use prolate spheroidal coordinates with foci γR(s) and γT (s) to solve for
x and y. We let

x1 = 1+α
2 s+ 1−α

2 s cosh ρ cosφ y1 = 1+α
2 s+ 1−α

2 s cosh ρ′ cosφ′

x2 = 1−α
2 s sinh ρ sinφ cos θ y2 = 1−α

2 s sinh ρ′ sinφ′ cos θ′

x3 = h+ 1−α
2 s sinh ρ sinφ sin θ y3 = h+ 1−α

2 s sinh ρ′ sinφ′ sin θ′
(5.8)

with ρ and ρ′ positive, φ and φ′ in the interval [0, π] and θ and θ′ in [0, 2π]. In this
case x3 = 0 and we use it to solve for h. Hence

A2 = (x1 − αs)2 + x22 + h2 =
(1 − α)2

4
s2(cosh ρ+ cosφ)2
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and

B2 = (x1 − s)2 + x22 + h2 =
(1− α)2

4
s2(cosh ρ− cosφ)2.

Noting that s > 0 and cosh ρ ± cosφ > 0, the first relation given by (5.6) in these
coordinates becomes

s(cosh ρ− cosφ) + s(cosh ρ+ cosφ) = s(cosh ρ′ − cosφ′) + s(cosh ρ′ + cosφ′)

from which we get
cosh ρ = cosh ρ′ ⇒ ρ = ρ′.

The second relation, given by (5.7), becomes

cosh ρ cos φ− 1

cosh ρ− cosφ
+ α

cosh ρ cos φ+ 1

cosh ρ+ cos φ
=

cosh ρ cos φ′
− 1

cosh ρ− cosφ′
+ α

cosh ρ cosφ′ + 1

cosh ρ+ cos φ′

After simplification we get

(5.9)
(cosφ− cosφ′)[(α+ 1)(cosh2 ρ+ cosφ cosφ′)

− (α− 1) cosh ρ(cosφ+ cosφ′)] = 0

which implies either that

(5.10) cosφ = cosφ′ which implies φ = φ′

(since we can assume φ ∈ [π, 2π] for points on the ground) or that

(5.11) (α+1)(cosh2 ρ+cosφ cosφ′)− (α− 1) cosh ρ(cosφ+cosφ′) = 0 =
α

AÃ
+

1

BB̃

where Ã and B̃ are defined as in (2.3) but evaluated at (s, y) and the third term in
the equality is equivalent to the first term.

We consider Conditions (5.10) and (5.11) separately. First, assume Condition
(5.10) holds. Then we have φ = φ′. In this case,

cos θ = ±
√
1− h2

s2 sinh2 ρ sin2 φ
= ± cos θ′

and note that x3 = 0 implies that sinφ 6= 0. We also remark that it is enough to
consider cos θ = cos θ′ as no additional relations are introduced by considering cos θ =
− cos θ′ over the relations we now address. Now we go back to x and y coordinates.
If θ = θ′ then x1 = y1, x2 = y2, ξi = ηi for i = 1, 2. In this case, the composition,
Ct
F ◦ CF ⊂ ∆ = {(x, ξ;x, ξ)}. If θ′ = π− θ then x1 = y1, −x2 = y2, ξ1 = η1,−ξ2 = η2.

For these points the composition, Ct
F ◦ CF is a subset of C1 in (2.8). Note that (5.11)

has no solutions for α ≥ 0. The statements about clean intersection are the same as
the one given in [2]. This concludes the proof of Proposition 5.1.

Proof of Theorem 2.2. We will use the iterated regularity method (Theorem 3.8)
to show that the kernel of F∗F ∈ I3,0(∆, C1). We consider the generators of the ideal
of functions that vanish on ∆ ∪ C1 [10]. These are given by

(5.12)

p̃1 = x1 − y1, p̃2 = x22 − y22 , p̃3 = ξ1 − η1,

p̃4 = (x2 − y2)(ξ2 + η2), p̃5 = (x2 + y2)(ξ2 − η2),

p̃6 = ξ22 − η22 .
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We show in Appendix A that each p̃i can be expressed as sums of products of ∂ωΦ and
∂sΦ with smooth functions. Let pi = qip̃i, for 1 ≤ i ≤ 6, where q1, q2 are homogeneous
of degree 1 in (ξ, η), q3, q4 and q5 are homogeneous of degree 0 in (ξ, η) and q6 is
homogeneous of degree −1 in (ξ, η). Let Pi be pseudodifferential operators with
principal symbols pi for 1 ≤ i ≤ 6. The p̃i and arguments using iterated regularity
are similar to those used in [10, Thm. 1.6] and in [25, Thm. 4.3].

We use the same arguments as in [2] to show that the orders p, l from Ip,l(∆, C1)
are p = 3 and l = 0.

6. Analysis of the forward operator G and the imaging operator G∗G
for α < 0. In this section, we analyze the operator G in (2.12). In [2] we analyzed
the case α = −1. For the case with α < 0, we make another simplification:

Assume α < −1.

If α ∈ (−1, 0), then we can reduce it to the case α < −1 by using the diffeomorphisms
(x1, x2) 7→ (−x1, x2) and (s, t) 7→ (s/|α|, t).

We first prove Theorem 2.4.

Proof of Theorem 2.4. In the proof of this theorem, most of the statements are
already proved in Theorem 2.1. We just prove the statements regarding the properties
of the projection maps πL and πR. Recall from the proof of Theorem 2.1 that

dπL =




0 0 1 0
x1−αs

A + x1−s
B

x2

A + x2

B ∗ 0

−ω
(

x2

2
+h2

A3 α+
x2

2
+h2

B3

)
ω
(

α(x1−αs)x2

A3 + (x1−s)x2

B3

)
∗ ∗

0 0 0 1




and

det dπL = ωx2

(
α

A2
+

1

B2

)(
1 +

(γT − x) · (γR − x)

AB

)

Clearly this determinant drops rank when the first term, x2 = 0. This corresponds
to Σ1 given by (2.7).

The determinant also drops rank when the second term is zero, which can occur
when α < 0; this corresponds to Σ2 given by (2.13). Note that πL drops rank by 2 at
the intersection points of Σ1 and Σ2 (where x2 = 0) but we exclude them using the
cutoff function g described preceding (2.11).

On Σ2, using the first, second, and fourth row of dπL, the kernel is ∂
∂x1

−
x1−αs

A
+

x1−s

B

x2(
1

A
+ 1

B
)

∂
∂x2

which applied to Σ2 gives us 2s(α−1)

(α+1)( 1

A
+ 1

B
)
(αA − 1

B ). We have that

s 6= 0 and α+ 1 6= 0. If α
A − 1

B = 0 then using α
A2 + 1

B2 = 0 we get α(α+1)
A2 = 0 which

is a contradiction. Thus ker (dπL) 6⊂ TΣ2 which implies that πL has a fold singularity
along Σ2.

Similarly,

dπR =




1 0 0 0
0 1 0 0

∗ ∗ −ω(x
2

2
+h2

A3 α+
x2

2
+h2

B3 ) (x1−αs
A + x1−s

B )

∗ ∗ ω( (x1−αs)x2

A3 α+ (x1−s)x2

B3 ) (x2

A + x2

B )
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has the same determinant up to sign and so πR drops rank by one on Σ. On Σ2, using

the last row of dπR, the kernel is ∂
∂s − ω

x1−αs

A3
α+

x1−s

B3

1

A
+ 1

B

∂
∂ω which applied to Σ2 gives

2α(s − 2x1

α+1 ). If s = 2x1

α+1 then from α
A2 + 1

B2 = 0 we obtain s2(α−1
2 )2 + x22 + h2 = 0

which is a contradiction. Hence ker (dπR) 6⊂ TΣ2 which implies that πR has a fold
singularity along Σ2 as well. This completes the proof of Theorem 2.4.

Proposition 6.1. For α < 0, the wavefront relation of the kernel K of G∗G
satisfies,

WF ′(K) ⊂ ∆ ∪ C1 ∪ C2,

where ∆ is the diagonal in T ∗X × T ∗X, C1 is given by (2.8) and C2 is defined as

(6.1)

C2 =
{
(x, ξ; y, ξ′) : ∃(s, t), (x, ξ) ∈ N∗(E(s, t)), (y, ξ′) ∈ N∗(E(s, t)),

α

AÃ
+

1

BB̃
= 0, (x2, y2) 6= (0, 0)

}
,

where A = A(s, x) and Ã = A(s, y), B = B(s, x) and B̃ = B(s, y) and E(s, t) is
given by (2.4). Furthermore, ∆ and C1 intersect cleanly in codimension 2, ∆ and C2

intersect cleanly in codimension 1, C2 and C1 intersect cleanly in codimension 1, and
∆ ∩C1 ∩ C2 = ∅.

Proof. In fact, this proposition is already proved in Proposition 5.1. Here, unlike
the situation in Proposition 5.1, there is a nontrivial contribution to the wavefront of
the composition from (5.11). Hence for α < 0, we have that

WF ′(K) ⊂ ∆ ∪ C1 ∪ C2,

To show that no point in C2 has x2 = 0 = y2, one uses (5.11) and that x3 = 0 = y3 in
(5.8). Finally, note that ∆ ∩ C1 ∩ C2 = ∅ since we exclude the points of intersection
of Σ1 and Σ2 due to the cutoff function g defined in Section 2.3. One can show that
C2 is an immersed conic Lagrangian manifold that is a two-sided fold using Definition
3.2 and the proof of Theorem 6.7 part (b)).

Using Def. 3.4 and the calculations above, one can also show that these manifolds
intersect in the following ways:
(a) ∆ intersects C1 cleanly in codimension 2,

∆ ∩ C1 = {(x, ξ;x, ξ) ∈ ∆ : x2 = 0 = ξ2} .

This is part of Proposition 5.1 in [2].
(b) ∆ intersects C2 cleanly in codimension 1,

∆ ∩ C2 =

{
(x, ξ;x, ξ) ∈ ∆ :

α

A2
+

1

B2
= 0

}

= {(x, ξ; y, η) ∈ C2 : x1 = y1, x2 = y2}.
Note that the condition that x1 = y1 in C2 implies x2 = ±y2 and so the condition
x2 = y2 does not increase the codimension of the intersection. Using [26], one can
show the intersection is clean.

(c) C1 intersects C2 cleanly in codimension 1,

C1 ∩C2 =

{
(x, ξ; y, η) ∈ C1 :

α

AÃ
+

1

BB̃
= 0

}
.

Using [26], one can show the intersection is clean.
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(d) ∆ ∩ C1 ∩ C2 = ∅ since we exclude the points of intersection of Σ1 and Σ2.
This completes the proof of the proposition.

For the rest of the proof, we focus on C2. Let β =
√−α, then β > 1. Let

(x, ξ, y, ξ′) ∈ C2. then, by (6.1) there is an (s, t) such that x and y are both in E(s, t)
and

βB

A
=

Ã

βB̃

where A, Ã, B, B̃ are given below (6.1). Therefore, if (x, ξ, y, ξ′) ∈ C2 then
(6.2)

∃(s, t) ∈ (0,∞)2, ∃k ∈ (0,∞), x, y ∈ E(s, t)
βB(s, x)

A(s, x)
= k,

βB(s, y)

A(s, y)
=

1

k
.

A calculation shows that if k 6= β then

(6.3)
βB(s, x)

A(s, x)
= k ⇔

(
x1 −

β2s(1 + k2)

β2 − k2

)2

+ x22 =
β2s2k2(β2 + 1)2

(β2 − k2)2
− h2

If k = β, then βB/A = k is the equation of a vertical line with x1 intercept (1−β2)s/2.

We first use this characterization of C2 to prove Statements (1) and (3) of Theorem
2.6. As already mentioned, the diagonal relation ∆ and C1 given by (2.8) intersect
cleanly in codimension 2 on either submanifold. Hence there is a well-defined Ip,l

class associated to ∆ and C1.

6.1. Proof of Theorem 2.6, Statement (1). Recall from statement (1) of
this theorem that the function r1 is a cutoff function compactly supported in

(6.4) O1 = {(s, t) : 0 < s < s0 and 0 < t <∞}

where s0 (see (2.16)) can be written in terms of β as

(6.5) s0 :=
h(β2 − 1)

β(β2 + 1)
.

We show that for (s, t) ∈ O1, there are no x and y satisfying (6.2). Therefore,
C2 ∩WF ′(K1) = ∅ where K1 is the Schwartz kernel of G∗r1G.

So, assume for some (s, t) ∈ O1 (6.2) holds. Then, the right-hand side of (6.3)
can be estimated by

β2s2k2(β2 + 1)2

(β2 − k2)2
− h2 < h2

(
(β2 − 1)2k2 − (β2 − k2)2

(β2 − k2)2

)
= h2

(
(k2 − 1)(β4 − k2)

(β2 − k2)2

)
.

Since β > 1, if 0 < k ≤ 1, this calculation and (6.3) shows that βB
A = k has no

solution. Therefore there are no solutions to (6.2) if 0 < k ≤ 1. Now assume for some

k > 1, βB(s,x)
A(s,x) = k, then for (6.2) to have a solution that means that there must be a

point y ∈ E(s, t) with βB(s,y)
A(s,y) = 1/k. However, this is impossible since 0 < 1/k ≤ 1.

This shows that for (s, t) ∈ O1, there is no solution to (6.2).
Now following the proof of Theorem 2.2, we achieve the result of Statement (1).
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6.2. Proof of Theorem 2.6, Statement (3). Recall that the cutoff function
r3(s, t) is compactly supported in

(6.6) O3 =
{
(s, t) : s0 < s <∞ and t < t−s or t > t+s

}

where t±s is defined in (2.11). The operator we analyze in this part of the proof is
G∗r3G.

We define the following set

(6.7) C(s, k) :=

{
x :

βB(s, x)

A(s, x)
= k

}
.

Note that C(s, 1) = Σ2,X(s), C(s, β) is the vertical line x1 = (1+α)s/2 = (1−β2)s/2,
and if k is small enough, C(s, k) = ∅. By (6.3), when k 6= β and C(s, k) 6= ∅ then

C(s, k) is the circle centered at
(

β2s(1+k2)
β2−k2 , 0

)
and of radius

(6.8) r(s, k) :=

√
β2s2k2(β2 + 1)2

(β2 − k2)2
− h2.

Let (s, t) ∈ O3. If there were a solution (x, y) to (6.2) for some k, then x ∈
E(s, t)∩C(s, k) (as βB/A = k on C(s, k)) and y ∈ E(s, t)∩C(s, 1/k). If t > t+s then
the ellipse E(s, t) encloses Σ2,X(s) by a calculation. Therefore, by the final statement
of Lemma 6.2, E(s, t) meets no circle C(s, k) for k ∈ (0, 1] and so there is no solution
to (6.2). Now, if t < t−s then the ellipse E(s, t) is enclosed by Σ2,X(s) and, by the
final statement of Lemma 6.2, E(s, t) meets no C(s, k) for k ∈ (1,∞) and so there
is no solution to (6.2) in this case, too. Therefore, C2 ∩WF ′(K3) = ∅ where K3 is
the Schwartz kernel of G∗r3G. Now proceeding as in the proof of Theorem 2.2, we
complete the proof of Statement (3) of Theorem 2.6.

The rest of this section is devoted to the proof of Statement (2) of Theorem 2.6.

6.3. Proof of Theorem 2.6, Statement (2). The reconstruction operator
we consider in statement (2) of Theorem 2.6 is G∗r2G where the mute r2 has compact
support in

(6.9) O2 = {(s, t) : s0 < s <∞ and t−s < t < t+s }

where t±s is defined in (2.11) and where s0 is defined by (6.5).
Recall that the canonical relation of G drops rank on the union of two sets, Σ1 and

Σ2. Accordingly, we decompose G into components such that the canonical relation
of each component is either supported near a subset of the union of these two sets,
one of these two sets or away from both these sets. To do this, we define several cutoff
functions.

6.3.1. The primary cutoff functions ψ1 and ψ2. The cutoff ψ1(x) will be
equal to 1 near the x1-axis and zero away from it, and ψ2(s, x) will be equal to one
near Σ2,X(s) and equal to zero away from it as in Figure 1.

To define these functions precisely, we need to set up some preliminary relations.
Because the mute function r2 is zero near s0 and has compact support, there is an
s1 > s0 such that r2 is zero for s ≤ s1 and all t. Because the radius r(s1, 1) > 0 and
the function r is continuous, there is a k1 ∈ (0, 1) such that r(s1, k1) > 0. Since r (see
(6.8)) is an increasing function in s and k separately, we can choose ǫ > 0 such that

(6.10) r(s, k) ≥ r(s1, k1) > 12ǫ for k ≥ k1, and s ≥ s1.
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( ) 

( ) 

Fig. 1. Picture of supp(ψ1) and supp(ψ2). Note that the middle circle is Σ2,X(s) and the

circles are not exactly concentric.

Without loss of generality, we can assume

(6.11) ǫ <
min(β − 1, 1− k1, 1/4)

6
.

Now, let ψ1 be an infinitely differentiable function defined as follows:

(6.12) ψ1(x) =

{
1, |x2| < ǫ

0, |x2| > 2ǫ

and we extend this function smoothly between 0 and 1.
For s > s0, let k0(s) be defined by

(6.13) r(s, k0(s)) = 0.

Note that k0(s) can be explicitly calculated using (6.8). So, if k > k0(s), C(s, k) is
a nontrivial circle. Finally, note that if s ≥ s1, then k1 > k0(s); this is true because
r(s, k1) ≥ r(s1, k1) > 0 for such s.

To define ψ2 we first prove a lemma about the circles C(s, k).

Lemma 6.2. Let s ≥ s1.
1. If k > β then C(s, k) is to the left of the vertical line C(s, β) which is to the

left of C(s, ℓ) for any ℓ ∈ (k0(s), β).
2. If k0(s) < j < k < β then C(s, j) is contained inside C(s, k), and these circles

do not intersect.
3. For any δ ∈ (0, 6ǫ),

{
x :

∣∣∣∣
βB(s, x)

A(s, x)

∣∣∣∣ < δ

}
=
⋃

k∈I

C(s, k)

is an open set containing Σ2,X(s) = C(s, 1).

Proof. Statement (1) of the lemma is a straightforward calculation.
Now, fix s ≥ s1. Let k ∈ (k0(s), β), then the endpoints of C(s, k) on the x1-axis

are

xℓ(k) =
β2s(1 + k2)

β2 − k2
−
√
β2s2k2(β2 + 1)2

(β2 − k2)2
− h2

xr(k) =
β2s(1 + k2)

β2 − k2
+

√
β2s2k2(β2 + 1)2

(β2 − k2)2
− h2

.
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Clearly the functions xℓ and xr are smooth for k ∈ (k0(s), β). It is straightforward to
see that k 7→ xr(k) is a strictly increasing smooth function for k ∈ (k0(s), β).

We prove that the function xℓ is strictly decreasing by showing xℓ
′ is always

negative. A somewhat tedious calculation shows that

xℓ
′(k) =

β2s(β2 + 1)k

(β2 − k2)2


2−

(β2+1)s(β2+k2)
β2−k2√

β2s2k2(β2+1)2

(β2−k2)2 − h2




By replacing the square root in this expression by the upper bound βsk(β2+1)
(β2−k2) , we see

that

xℓ
′(k) ≤ β2s(β2 + 1)k

(β2 − k2)2βk
(−1)(β − k)2

and the right-hand side of this expression is clearly negative.
The circles C(s, ·) are symmetric about the x1-axis, so if j and k are points in

(k0(s), β) with j < k, since xℓ(k) < xℓ(j) < xr(j) < xr(k), the circle C(s, j) is strictly
inside the circle C(s, k). This proves (2).

By the choice of ǫ in (6.11), 1− 6ǫ > k1 and 1+ 6ǫ < β. Because xℓ(k) and xr(k)
are smooth strictly monotonic functions with nonzero derivatives, (1 − 6ǫ, 1 + 6ǫ) ∋
k 7→ C(s, k) is a foliation of an open, connected region containing C(s, 1) = Σ2,X(s),
and this proves (3).

We define

(6.14) ψ2(s, x) =




1
∣∣∣βBA − 1

∣∣∣ < ǫ

0
∣∣∣βBA − 1

∣∣∣ > 2ǫ

and we extend smoothly between (which is possible by Lemma 6.2, statement (3)).
By the lemma, ψ2(s, ·) is equal to 1 on an open neighborhood of Σ2,X(s) and zero
away from Σ2,X(s).

We assume, without loss of generality, that ψ1 and ψ2 are symmetric about the
x1-axis.

remark 6.3. We now can define the function g(s, t) in Remark 2.5. We let

(6.15) D(s, ǫ) =

{
(x1, x2) : |x2| < ǫ,

∣∣∣∣
βB(s, x)

A(s, x)
− 1

∣∣∣∣ < ǫ

}
.

The set D(s, 4ǫ) is represented by the shaded set in Figure 2 that is near C(s, 1) =
Σ2,X(s) and the x1-axis. Let g be a smooth function of (s, t) that is zero if the ellipse
E(s, t) given in (2.4) intersects D(s, 4ǫ) and is equal to 1 if E(s, t) does not meet
D(s, 5ǫ).

6.3.2. Properties of G∗G and end of proof. We now write G = G0 + G1 +
G2 + G3 where Gi are given in terms of their kernels

KG0
=

∫
e−iϕaψ1ψ2dω, KG1

=

∫
e−iϕaψ1(1 − ψ2)dω,

KG2
=

∫
e−iϕa(1− ψ1)ψ2dω, KG3

=

∫
e−iϕa(1− ψ1)(1 − ψ2)dω,

where ϕ is the phase function of G. The supports of the Gi are given in Figure 3.
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Fig. 2. Picture of ellipse E(s, t) that does not meet D(s, 4ǫ). As discussed in Remark 2.5 and

Remark 6.3, ellipses are muted by g if they intersect D(s, 4ǫ).

  

  

 

 

 

 

 

 

  

Fig. 3. Picture indicating the rough locations of the support of G0, G1, G2, G3. Note that the

circles are not exactly concentric.

Now we consider G∗G, which using the decomposition of G as above can be written
as G∗G = G∗

0G + (G1 + G2)
∗G0 + G∗

1G1 + G∗
2G2 + G∗

1G2 + G∗
2G1 + G∗

1G3 + G∗
2G3 + G∗

3G

The theorem now follows from Lemmas 6.4-6.6, and Theorem 6.7, which we now
state and prove. In the lemmas, we analyze the compositions above.

Recall that G1 and G2 are operators defined as follows:

G1V (s, t) =

∫
e−iϕ(s,t,x,ω)ψ1(x)(1 − ψ2(s, x))a(s, t, x, ω)V (x)dxdω

and

G2V (s, t) =

∫
e−iϕ(s,t,x,ω)(1− ψ1(x))ψ2(s, x)a(s, t, x, ω)V (x)dxdω

Lemma 6.4. The operators G∗
1G2 and G∗

2G1 are smoothing.

Proof. We show that G∗
1G2 is smoothing. The proof for the case of G∗

2G1 is similar.
We have

G∗
1V (x) =

∫
eiϕ(s,t,x,ω)ψ1(x)(1 − ψ2(s, x))a(s, t, x, ω)V (s, t)dsdtdω.

where ψ1(x) and ψ2 are defined in (6.12) and (6.14) respectively. The Schwartz kernel
of G∗

1G2 is

K(x, y) =

∫
eiω(|y−γT (s)|+|y−γR(s)|−|x−γT (s)|−|x−γR(s)|)ã(x, y, s, ω) dsdω,
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where ã(x, y, s, ω) has the following products of cutoff functions as an additional
factor:

g(s, t)ψ1(x)(1 − ψ2(s, x))(1 − ψ1(y))ψ2(y, s).

Here t is determined from s and x as the value for which x ∈ E(s, t). For this reason,
in trying to understand the propagation of singularities, we need only to restrict
ourselves, for each fixed s ≥ s1, to those base points x and y for which

(6.16) x ∈ supp(ψ1(·)(1 − ψ2(s, ·)), y ∈ supp((1 − ψ1(·)))ψ2(s, ·)).

We use this setup to show G∗
1G2 is smoothing by showing its symbol is zero for

covectors in Ct
G ◦CG (note that our argument shows that the symbol of the operator is

zero in a neighborhood in (T ∗(X) \ 0)2 of Ct
G ◦ CG). Let (x, ξ, y, ξ′) ∈ Ct

G ◦ CG . Then,
there is an (s2, t2, η) ∈ T ∗(Y )\0 such that (x, ξ, s2, t2, η) ∈ Ct

G and (s2, t2, η, y, ξ
′) ∈ CG .

For the rest of the proof, we fix this s2. (If there are other values of s associated to
the composition, we repeat this proof for those values of s.)

Because Ct
G ◦ CG ⊂ ∆ ∪C1 ∪ C2, we consider three cases separately.

I. Covectors (x, ξ, y, ξ′) ∈ ∆∩
(
Ct
G ◦ CG

)
: In this case, x = y and x is in supp(ψ1)∩

supp(ψ2) ⊂ D(s2, 4ǫ). By the choice of the function g(s, t) in Remark 6.3, the
symbol of G∗

1G2 is zero above such x.
II. Covectors (x, ξ, y, ξ′) ∈ C1 ∩

(
Ct
G ◦ CG

)
: In this case, (x1, x2) = (y1,−y2) and

the argument in case I shows that the symbol of G∗
1G2 is zero for such x and y

III. Covectors (x, ξ, y, ξ′) ∈ C2 ∩
(
Ct
G ◦ CG

)
: If (x, ξ, y, ξ′) ∈ C2 ∩

(
Ct
G ◦ CG

)
, then for

some (s2, t2) above, there is a k2 > k0(s2), such that

x ∈E(s2, t2) ∩ supp(ψ1) ∩ supp(1− ψ2(s, ·)) ∩ C(s2, k2)(6.17)

y ∈E(s2, t2) ∩ supp(1− ψ1) ∩ supp(ψ2(s, ·)) ∩ C (s2, 1/k2) .(6.18)

Using (6.17), the fact that k2 = βB(s2, x)/A(s2, x), we see that |x2| < 2ǫ and
|1− k2| > ǫ. Now, using the restriction on 1/k2 in (6.18) and the fact that
ǫ < 1/4, we see |1− k2| < 4ǫ. Putting this together shows that

1− 4ǫ < k =
βB(s2, x)

A(s2, x)
< 1 + 4ǫ.

Since |x2| < 2ǫ, this shows that x ∈ D(s2, 4ǫ). Therefore E(s2, t2)∩D(s2, 4ǫ) 6= ∅
and g(s2, t2) = 0 by Remark 6.3. Therefore, the symbol of G∗

1G2 is zero near
(x, ξ, y, ξ′) so G∗

1G2 is smoothing near (x, ξ, y, ξ′).
This finishes the proof that G∗

1G2 is smoothing.

Lemma 6.5. The operator G0 is smoothing.

Proof. Recall that the Schwartz kernel of G0 is

KG0
=

∫
e−iϕaψ1(x)ψ2(s, x)dω.

For each fixed s ≥ s1, the support of ψ1(·)ψ2(s, ·) is inside D(s, 4ǫ) and by the choice
of the function g(s, t) in Remark 6.3, the symbol of G0 is zero above such (s, x).

Lemma 6.6. The operators G∗
1G3, G∗

2G3 and G∗
3G can be decomposed as a sum of

operators belonging to the space I3(∆\(C1∪C2))+I
3(C1\(∆∪C2))+I

3(C2\(∆∪C1)).
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Fig. 4. Picture indicating the rough locations of the support of G0, and the partitioned functions

Gi
1, G

j
2, and Gk

3 . Note that the circles are not exactly concentric.

Proof. Each of these compositions is covered by the transverse intersection cal-
culus.

We decompose G1, G2, and G3 into a sum of operators on which the compositions
will be easier to analyze. This is represented in Figure 4.

For G1, note that Σ2,X(s) divides {|x2| < 2ǫ} in three regions since r(s, 1) > 12ǫ
by (6.10). Let H1(s) be the part of {|x2| < 2ǫ} \Σ2,X(s) to the left of Σ2,X(s) and let
H2(s) be the part inside Σ2,X(s) and H3(s) the part to the right of Σ2,X(s). Define
our partitioned operators as follows G1 = G1

1 + G2
1 + G3

1 where

G
i
1V (s, t) =

∫

e
−iϕ(s,t,x,ω)

ψ1(x)(1− ψ2(s, x))χHi(s)(x)a(s, t, x, ω)V (x)dxdω

for i = 1, 2, 3. Note that the symbols are all smooth because

χHj(s)(x)ψ1(x) (1− ψ2(s, x))

is a smooth cutoff function in (s, x) since the support of ψ1 is inside {|x2| < 2ǫ} and
the support of (1− ψ2(s, ·)) does not meet Σ2(s).

We decompose G2 into two operators in a similar way. Let I1 be the open upper
half plane and let I2 be the open lower half plane. Define

(6.19) Gi
2V (s, t) =

∫
e−iϕ(s,t,x,ω)(1− ψ1(x))ψ2(s, x)χIj(s)(x)a(s, t, x, ω)V (x)dxdω

for j = 1, 2 Because the functions (1 − ψ1(·))ψ2(s, ·) are supported away from the x1
axis, these symbols are smooth.

We decompose G3 into four operators in a similar way using Figure 4: Σ2,X(s)
divides {x2 6= 0} into four regions J1(s), the unbounded region above the x1-axis,
J2(s), it’s mirror image in the x1-axis, J3(s), the bounded region inside Σ2,X(s) and
above the x1-axis, and its mirror image, J4(s). We define

G
k
3V (s, t) =

∫

e
−iϕ(s,t,x,ω)(1− ψ1(x))(1− ψ2(s, x))χJk(s)(x)a(s, t, x, ω)V (x)dxdω

for k = 1, 2, 3, 4, and because of the cutoffs used, these are all FIO with smooth
symbols.

To find the canonical relation of Gj
1

∗Gk
3 , we consider (x, ξ, y, ξ′) ∈ Ct

G ◦ CG and let

(s, t) ∈ Y such that (x, ξ, s, t, η) ∈ Ct
G and (s, t, η, y, ξ′) ∈ CG . In any case, (Gi

1)
∗Gj

3 has
canonical relation a subset of Ct

G ◦CG ⊂ ∆∪C1∪C2. To find which subset, we consider
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the restriction that the supports of the Gj
i put on x and y. We use the fact that x

and y are on E(s, t) plus the following rules to understand the canonical relations of
these operators:
(i) If the supports exclude x and y from being equal, then the canonical relation

(WF ′) of the composed operator does not include ∆.
(ii) if the supports exclude x and y from being reflections in the x1 axis then the

canonical relation of the composed operator does not include C1.
(iii) If the supports exclude x from being outside Σ2,X(s) and y being inside or vice

versa, then the canonical relation of the composed operator does not include
C2.

We first consider (G1)
∗G3. To do this, we partition G1 further. Let u be a smooth

cutoff function supported in [−ǫ, ǫ] and equal to one on [−ǫ/2, ǫ/2] and let σ+ =
χ[0,2ǫ](1 − u)ψ1(1− ψ2), σ

o = χ[−ǫ,ǫ]uψ1(1− ψ2), and σ
- = χ[−2ǫ,0](1 − u)ψ1(1 − ψ2)

where the characteristic functions and u are functions of x2. Note that, for each fixed
s and functions of x, supp(σ+) ⊂ R × [ǫ/2, 2ǫ], supp(σo) ⊂ R × [−ǫ, ǫ], supp(σ-) ⊂
R× [−2ǫ,−ǫ/2]. All these functions are smooth and ψ1(1−ψ2) = σ+ + σo+ σ-. This
allows us to divide up each Gj

1 (j = 1, 2, 3) into the sum of three operators where

Gj+
1 (V ) has symbol equal to the symbol of G but multiplied by σ+Hj , Gjo

1 (V ) has

symbol equal to the symbol of G but multiplied by σoHj , and Gj−
1 (V ) has symbol

equal to the symbol of G but multiplied by σ-Hj . Note that Gj
1 = Gj+

1 + Gjo
1 + Gj−

1 .
We now analyze the composition G1

1
∗G1

3 using this partition of G1
1 . Consider the

composition (G1+
1 )∗G1

3 . Because both operators are supported in x above the x1 axis,
the canonical relation of this composition cannot intersect C1 (see (ii)). Because they
are both supported outside Σ2,X(s), it cannot intersect C2 (since C2 associates points
inside Σ2,X(s) only with points outside Σ2,X(s) and vice versa by (iii)). So this shows
(G1+

1 )∗G1
3 ∈ I(∆ \ C1).

Note that we use the transverse intersection calculus to show (G1+
1 )∗G1

3 and each
of the other operators in this lemma are regular FIO.

Now, we consider (G1o
1 )∗G1

3 . Note that G1o
1 is supported in x in |x2| < ǫ and G1

3 is
supported in x2 > ǫ. Therefore, the canonical relation of the composition can include
neither ∆ nor C1 by (i), (ii). Furthermore, because they are both supported outside
Σ2,X(s), it does not contain C2 by (iii). Therefore, (G1o

1 )∗G1
3 is smoothing.

Next, we consider (G1−
1 )∗G1

3 . The argument is similar to the case (G1+
1 )∗G1

3 , but
this canonical relation is contained in C1 \∆.

This shows that (G1
1 )

∗G1
3 is a sum of operators in I3(∆\ (C1 ∪C2))+ I

3(C1 \ (∆∪
C2)).

The proof that (G1
1 )

∗G2
3 ∈ I3(∆ \ (C1 ∪C2)) + I3(C1 \ (∆∪C2)) follows using the

same arguments but the roles of G1−
1 and G1+

1 are switched because G2
3 has support

in x below the x1-axis and below Σ2,X(s).
Now we consider (G1

1 )
∗G3

3 . Because the support in x of G1
1 is to the left of Σ2,X(s)

and the support of G3
3 is inside, the canonical relation of (G1

1 )
∗G3

3 cannot intersect
∆ (since there are no points (x, ξ, x, ξ) in that canonical relation by the support
condition and (i) and it cannot intersect C1 for a similar reason by (ii). So (G1

1 )
∗G3

3 ∈
I3(C2 \ (∆ ∪ C1)).

A similar argument using symmetry of support of G3
3 and G4

3 in the x1 axis shows
that (G1

1 )
∗G4

3 ∈ I3(C2 \ (∆ ∪C1)).
Putting these together, we see that (G1

1)
∗G3 ∈ I3(∆ \ (C1 ∪ C2)) + I3(C1 \ (∆ ∪

C2)) + I3(C2 \ (∆ ∪ C1)).
The proof that (G2

1 )
∗G3 ∈ I3(∆\ (C1∪C2))+I

3(C1 \ (∆∪C2))+I
3(C2 \ (∆∪C1))
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is similar but here we use the partition of G2
1 : G2+

1 , G2o
1 and G2−

1 . In a similar way,
(G3

1 )
∗G3 ∈ I3(∆ \ (C1 ∪ C2)) + I3(C1 \ (∆ ∪ C2)) + I3(C2 \ (∆ ∪C1)).
Thus, (G1)

∗G3 ∈ I3(∆ \ (C1 ∪ C2)) + I3(C1 \ (∆ ∪ C2) + I3(C2 \ (∆ ∪ C1)).
Now we consider (G2)

∗G3. Here we partition Gj
2 , j = 1, 2 into three operators with

smooth symbols as we did for G1:
• Gj+

2 will have support in x for fixed s in the union of circles
∪k∈[1+ǫ,1+2ǫ]C(s, k) (outside of Σ2,X(s)),

• Gjo
2 will have support in x for fixed s in the union of circles ∪k∈[1−ǫ,1+ǫ]C(s, k)

(surrounding Σ2,X(s)) and be equal to the symbol of G2 in
∪k∈[1−ǫ/2,1+ǫ/2]C(s, k), and

• Gj−
2 will have support in x for fixed s in the union of circles

∪k∈[1−2ǫ,1−ǫ]C(s, k) (inside Σ2,X(s)).
The proof follows similar arguments as for (G1)

∗G3 and it shows (G2)
∗G3 ∈ I3(∆ \

(C1 ∪ C2)) + I3(C1 \ (∆ ∪ C2) + I3(C2 \ (∆ ∪ C1)).
Finally, we consider (G3)

∗G. By symmetry of the conditions (i), (ii), (iii), we
justify (G3)

∗G1 and (G3)
∗G2 are in I

3(∆\(C1∪C2))+I
3(C1\(∆∪C2))+I

3(C2\(∆∪C1)).
So, the only composition to consider is (G3)

∗G3, and by analyzing all combinations,
we see (G3)

∗G3 ∈ I3(∆ \ (C1 ∪ C2)) + I3(C1 \ (∆ ∪ C2)) + I3(C2 \ (∆ ∪ C1)). This
finishes the proof.

We are left with the analysis of the compositions G∗
1G1 and G∗

2G2. This is the
content of the next theorem:

Theorem 6.7. Let G1 and G2 be as above. Then
(a) G∗

1G1 ∈ I3,0(∆, C1) + I3(C2 \ (∆ ∪ C1)).
(b) G∗

2G2 ∈ I3,0(∆, C2) + I3,0(C1, C2).

Proof. Consider the intersections of ∆, C1, C2. We have that ∆ intersects C1

cleanly in codimension 2; ∆ intersects C2 cleanly in codimension 1 and C1 intersects
C2 cleanly in codimension 2.

For part (a) we decompose G1 = G1
1 +G2

1 +G3
1 . Now, we consider the compositions

that (Gj
1)

∗Gj
1 for j = 1, 2, 3. Using (i), (ii), and (iii), we have that WF ′((Gj

1)
∗Gj

1) ⊂
∆∪C1. Then, using a proof similar to the one for Theorem 2.2, we see that (Gj

1)
∗Gj

1 ∈
I3,0(∆, C1).

Arguments using (i), (ii), and (iii) show that the cross terms (G1
1)

∗G2
1 , (G2

1 )
∗G1

1 ,
(G2

1 )
∗G3

1 , and (G3
1)

∗G2
1 are in I3(C2\(∆∪C1)) and (G3

1 )
∗G1

1 and (G1
1 )

∗G3
1 are smoothing.

Now, we consider part (b) and the operator G∗
2G2.

We recall that Σ1 and Σ2 are disjoint, Σ2 ∈ C \ Σ1 thus C \ Σ1 is a two sided
fold. Next we use [26] to get that (C \Σ1)

t ◦ (C \Σ1) = ∆∪C2, and that C2 is a two
sided fold.

We use the decomposition (6.19) G2 = G1
2 +G2

2 where G1
2 is supported in the upper

part of Σ2 and G2
2 is supported in the lower part of Σ2. Note that the support in x of

G1
2 and G2

2 are disjoint.
Then using Theorem 3.9 we have that

(G1
2 )

∗G1
2 ∈ I3,0(∆, C2) and (G2

2 )
∗G2

2 ∈ I3,0(∆, C2).

Consider the operator R defined as follows:

RV (x1, x2) = V (x1,−x2).
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This is a Fourier integral operator of order 0 and it is easy to check its canonical
relation is C1. Let Ĝ = G2

2 ◦R. We have Ĝ∗G1
2 ∈ I3,0(∆, C2). Note that C1 ◦∆ = C1,

C1 ◦ C2 = C2 and C1 × ∆ (as well as C1 × C2) intersects T ∗X × ∆T∗X × T ∗X
transversally. Using [22, Proposition 4.1], this implies that R∗G̃∗G1

2 ∈ I3,0(C1, C2).
Since G̃∗ = R∗(G2

2 )
∗ and (R∗)2 = Id we have (G2

2 )
∗G1

2 ∈ I3,0(C1, C2)
Similarly, we show that

(G1
2 )

∗G2
2 ∈ I3,0(C1, C2).

This concludes the proof of Statement (2) of Theorem 2.6.

6.4. Spotlighting. This is equivalent to assuming the scatterer V has support
in either the open half-plane x2 > 0 or x2 < 0. In this case, C1 does not appear in
the analysis.

Theorem 6.8. Let G be as in (2.2) of order 3
2 . Assume the amplitude of G is

nonzero only on a subset of either the upper half-plane (x2 > 0) or the lower half
plane x2 < 0 and bounded away from the x1 axis. Then G∗G ∈ I3,0(∆, C2), where C2

is given by (6.1).

Proof. We assume x2 > 0 (the other case is similar), Σ1 is empty and πL and πR
have fold singularities along Σ2 as proved in Proposition 6.1. Thus Ct ◦ C = ∆ ∪ C2

where C2 is a two-sided fold. Using the results in Felea [10] and Nolan [29], we have
that G∗G ∈ I3,0(∆, C2).

In this case, C2 does contribute to the added singularities and this is discussed in
Remark 2.7.
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Appendix A. Proofs of iterated regularity for F (α ≥ 0).
In this section, we prove that each of the p̃i given in (5.12) is a sum of products

of derivatives of Φ and smooth functions. This will finish the proof that F∗F ∈
I3,0(∆, C1).
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A.1. Expression for x1 − y1. We will use the same prolate spheroidal coordi-
nates (5.8) with foci γR(s) and γT (s) to solve for x and y. We have

x1 − y1 =

(
1 + α

2
s+

1− α

2
s cosh ρ cosφ

)

−
(
1 + α

2
s+

1− α

2
s cosh ρ′ cosφ′

)

=
1− α

2
s (cosh ρ cosφ− cosh ρ′ cosφ′)

=
1− α

2
s ((cosh ρ− cosh ρ′) cosφ+ cosh ρ′(cosφ− cosφ′)) .(A.1)

We have

∂ωΦ =
(
‖y − γT (s)‖+ ‖y − γR(s)‖ − (‖x− γT (s)‖+ ‖x− γR(s)‖)

)

= (1− α)s(cosh ρ′ − cosh ρ).

Therefore in (A.1), it is enough to express cosφ− cosφ′ in terms of ∂ωΦ and ∂sΦ. We
obtain:

∂sΦ

ω
=

(
α
x1 − αs

A
+
x1 − s

B

)
−
(
α
y1 − αs

A′
+
y1 − s

B′

)

= α
cosh ρ cosφ+ 1

cosh ρ+ cosφ
+

cosh ρ cosφ− 1

cosh ρ− cosφ

−
(
α
cosh ρ′ cosφ′ + 1

cosh ρ′ + cosφ′
+

cosh ρ′ cosφ′ − 1

cosh ρ′ − cosφ′

)

Combining the first and the third term, and second and the fourth term above and
then simplifying, we get

= α
(cosφ− cosφ′)(cosh ρ cosh ρ′ − 1) + (cosh ρ− cosh ρ′)(cosφ cosφ′

− 1)

(cosh ρ′ + cos φ′)(cosh ρ+ cos φ)

+
(cosφ− cosφ′)(cosh ρ cosh ρ′ − 1) + (cosh ρ− cosh ρ′)(1− cosφ cos φ′)

(cosh ρ− cosφ)(cosh ρ′ − cosφ′)

= (cosφ− cosφ′)(cosh ρ cosh ρ′ − 1)

×

(

α

(cosh ρ′ + cos φ′)(cosh ρ+ cos φ)
+

1

(cosh ρ− cosφ)(cosh ρ′ − cosφ′)

)

+ (cosh ρ− cosh ρ′)(cosφ cos φ′
− 1)

×

(

α

(cosh ρ′ + cos φ′)(cosh ρ+ cos φ)
−

1

(cosh ρ− cosφ)(cosh ρ′ − cosφ′)

)

where × indicates multiplication with the expression in the previous line. Now denote

P± :=
α

(cosh ρ′ + cosφ′)(cosh ρ+ cosφ)
± 1

(cosh ρ− cosφ)(cosh ρ′ − cosφ′)

Note that since α > 0, P+ > 0. Therefore we have

cosφ− cosφ′ =
1

(cosh ρ cosh ρ′ − 1)P+

(
1

ω
∂sΦ− (1 − cosφ cosφ′)

(1 − α)s
P−∂ωΦ

)

Now using this expression for the difference of cosines in (A.1), we are done.
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A.2. Expression for x22 − y22. We have

x22 − y22 =
(1 − α)2s2

4

(
sinh2 ρ sin2 φ cos2 θ − sinh2 ρ′ sin2 φ′ cos2 θ′

)

=
(1 − α)2s2

4

(
sinh2 ρ sin2 φ− sinh2 ρ′ sin2 φ′

)

+
(1− α)2s2

4

(
− sinh2 ρ sin2 φ sin2 θ + sinh2 ρ′ sin2 φ′ sin2 θ′

)
(A.2)

Since x3 = y3 = 0, we have that the last term in (A.2) is 0.
Now we can write

sinh2 ρ sin2 φ−sinh2 ρ′ sin2 φ′ = (cosh2 ρ−cosh2 ρ′) sin2 φ−(cos2 φ−cos2 φ′) sinh2 ρ′ =
(cosh ρ− cosh ρ′)(cosh ρ+ cosh ρ′) sin2 φ− (cosφ− cosφ′)(cosφ+ cosφ′) sinh2 ρ′.
Since cosh ρ− cosh ρ′ and cosφ− cosφ′ can be expressed in terms of ∂ωΦ and ∂sΦ as
above, we are done.

A.3. Expression for ξ1 − η1. We have

ξ1 = −ω
(

x1 − αs√
(x1 − αs)2 + x22 + h2

+
x1 − s√

(x1 − s)2 + x22 + h2

)

η1 = −ω
(

y1 − αs√
(y1 − αs)2 + y22 + h2

+
y1 − s√

(y1 − s)2 + y22 + h2

)

In prolate spheroidal coordinates, we have

ξ1 − η1
2ω

=

(
sinh2 ρ′ cosφ′

cosh2 ρ′ − cos2 φ′
− sinh2 ρ cosφ

cosh2 ρ− cos2 φ

)

=

(
sinh2 ρ′ cosφ′

cosh2 ρ′ − cos2 φ′
− sinh2 ρ′ cosφ′

cosh2 ρ− cos2 φ

+
sinh2 ρ′ cosφ′

cosh2 ρ− cos2 φ
− sinh2 ρ cosφ

cosh2 ρ− cos2 φ

)

= sinh2 ρ′ cosφ′

(
cosh2 ρ− cosh2 φ′ + cos2 φ′ − cos2 φ

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ− cos2 φ)

)

+

(
sinh2 ρ′ cosφ′ − sinh2 ρ cosφ

cosh2 ρ− cos2 φ

)
.

= sinh2 ρ′ cosφ′

(
cosh2 ρ− cosh2 φ′ + cos2 φ′ − cos2 φ

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ− cos2 φ)

)

+

(
(cosh2 ρ′ − cosh2 ρ) cosφ′ + sinh2 ρ(cosφ′ − cosφ)

cosh2 ρ− cos2 φ

)
.

As before we get the terms cosh ρ− cosh ρ′ and cosφ− cosφ′ which can be expressed
in terms of ∂ωΦ and ∂sΦ.

A.4. Expression for (x2 − y2)(ξ2 + η2). We have

ξ2 = −ω
(

x2√
(x1−αs)2+x2

2
+h2

+ x2√
(x1−s)2+x2

2
+h2

)
and
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η2 = −ω
(

y2√
(y1−αs)2+y2

2
+h2

+ y2√
(y1−s)2+y2

2
+h2

)

Thus

− (x2 − y2)(ξ2 + η2)
4

(1−α)sω
=

x22 cosh ρ

cosh2 ρ− cos2 φ
− y22 cosh ρ

′

cosh2 ρ′ − cos2 φ′

+ x2y2

(
cosh ρ′

cosh2 ρ′ − cos2 φ′
− cosh ρ

cosh2 ρ− cos2 φ

)

= (x22 − y22)
cosh ρ

cosh2 ρ− cos2 φ

− y2(x2 − y2)

(
cosh ρ

cosh2 ρ− cos2 φ
− cosh ρ′

cosh2 ρ′ − cos2 φ′

)
.

Now

cosh ρ

cosh2 ρ− cos2 φ
− cosh ρ′

cosh2 ρ′ − cos2 φ′
=

cosh ρ− cosh ρ′

cosh2 ρ− cos2 φ

+ cosh ρ′
(

cosh2 ρ′ − cosh2 ρ+ cos2 φ− cos2 φ′

(cosh2 ρ− cos2 φ)(cosh2 ρ′ − cos2 φ′)

)
.

Next we use again the expressions for cosh ρ− coshρ′ and cosφ− cosφ′ as before and
for x22 − y22 we use (A.2).

A.5. Expression for (x2 + y2)(ξ2 − η2). We have

(x2 + y2)(ξ2 − η2)
4

(1−α)sω

=
−x22 cosh ρ

cosh2 ρ− cos2 φ
+

y22 cosh ρ
′

cosh2 ρ′ − cos2 φ′

+ x2y2

(
cosh ρ′

cosh2 ρ′ − cos2 φ′
− cosh ρ

cosh2 ρ− cos2 φ

)

= (y22 − x22)
cosh ρ

cosh2 ρ− cos2 φ

+ y2(x2 + y2)

(
cosh ρ

cosh2 ρ− cos2 φ
− cosh ρ′

cosh2 ρ′ − cos2 φ′

)
.

Now we are in a similar situation as in the previous case.

A.6. Expression for ξ22 − η22. We have

ξ22 − η22
( 4ω
(1−α)s )

2
=

(
x22 cosh

2 ρ

cosh2 ρ− cos2 φ
− y22 cosh

2 ρ′

cosh2 ρ′ − cos2 φ′

)

=
(x22 − y22) cosh

2 ρ

cosh2 ρ− cos2 φ
+ y22

(
cosh2 ρ

cosh2 ρ− cos2 φ
− cosh2 ρ′

cosh2 ρ′ − cos2 φ′

)

=
(x22 − y22) cosh

2 ρ

cosh2 ρ− cos2 φ
+ y22

(
cosh2 ρ− cosh2 ρ′

cosh2 ρ− cos2 φ
+

cosh2 ρ′
(cosh2 ρ′ − cosh2 ρ) + (cos2 φ− cos2 φ′)

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ− cos2 φ)

)
.
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This part is complete as well.

Appendix B. Expressions for t−s and t+s . Recall that Σ2 is defined in (2.13)

s s 0 

 

 

( ) 

( ) 

( ) 
( , ) 

  

( ) 

 

 

Fig. 5. The geometric setup of filtering, showing the vertical cross-section corresponding to

x2 = 0.

as

Σ2 =

{
(s, x, ω) ∈ CG :

(
x1 −

2αs

α+ 1

)2

+ x22 = −αs2 (α− 1)2

(α+ 1)2
− h2

}

Recall that s0 is defined by (6.5) and for s > s0 Σ2 is nonempty and not trivial.
We assume in this section that the cutoff function f in Section 2 is chosen so it

is zero for s ≤ s0.
The radius and the x1-coordinate of the center of circle Σ2 are

r(s) =

√
−αs2(α − 1)2

(α + 1)2
− h2, and c(s) =

2αs

α+ 1
.

Let e(s) = (α + 1)s/2 < 0 denote the x1-coordinate of the center of ellipses in the
plane. Then the distance between e(s) and c(s) can be written as

d(c, e) = −s(α− 1)2

2(α+ 1)
.

For a fixed s let t−s and t+s denote correspondingly the smallest and the largest
values of t, for which the ellipsoid intersects Σ2. Notice, that since the normal to an
ellipse at a point P bisects the angle from the P to the foci, the condition γ̃R(s) ≤
γR(s) < c(s) implies that our ellipses on the ground can not intersect the circle Σ2 at
more than two points. Here γ̃R(s) denotes the right focus of the ellipse on the ground.
Figure 5 shows the setup for t0, where the ellipsoid passes through x−1 , the closest to
e(s) point of Σ2. The setup for t+s is similar, with the ellipsoid passing through x+1 ,
which is the farthest from e(s) point of Σ2.

A straightforward computation shows that

(B.1) t−s = 2 (β + 1)

√
d (d− r)

β2 + 1
, t+s = 2 (β + 1)

√
d (d+ r)

β2 + 1
,
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where β =
√−α.
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