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GLOBAL SUPERCONVERGENCE OF THE LOWEST ORDER

MIXED FINITE ELEMENT ON MILDLY STRUCTURED MESHES

YU-WEN LI∗

Abstract. In this paper, we develop global superconvergence estimates for the lowest order
Raviart–Thomas mixed finite element method for second order elliptic equations with general bound-
ary conditions on triangular meshes, where most pairs of adjacent triangles form approximate par-
allelograms. In particular, we prove the L2-distance between the numerical solution and canonical
interpolant for the vector variable is of order 1 + ρ, where ρ ∈ (0, 1] is dependent on the mesh
structure. By a cheap local postprocessing operator Gh, we prove the L2-distance between the exact
solution and the postprocessed numerical solution for the vector variable is of order 1 + ρ. As a
byproduct, we also obtain the superconvergence estimate for Crouzeix–Raviart nonconforming finite
elements on triangular meshes of the same type.

Key words. superconvergence, mildly structured grids, mixed methods, Raviart–Thomas ele-
ments, Crouzeix–Raviart elements, a posteriori error estimation

AMS subject classifications. 65N50, 65N30

1. Introduction. Let Ω ⊂ R
2 be a bounded domain with Lipschitz boundary

∂Ω. For simplicity of presentation, we assume Ω is a polygon. The Sobolev seminorms
and norms are defined by

|u|k,p,Ω =





∑

|α|=k

∫

Ω

|∂αu|p





1
p

, ||u||k,p,Ω =

(

k
∑

l=0

|u|pl,p,Ω

)

1
p

,

|u|k,Ω = |u|k,2,Ω, ||u||k,Ω = ||u||k,2,Ω.

Sobolev norms with ∞-index, norms of vector/matrix-valued functions, and fractional
order norms are generalized in usual ways.

We consider the following second order elliptic equation:

− div(A(x)∇u + b(x)u) + c(x)u = f(x), x ∈ Ω,(1.1a)

u = g(x), x ∈ ∂Ω,(1.1b)

where A is symmetric and uniformly elliptic, A, b, c are sufficiently smooth on Ω. Let

p = A(x)∇u + b(x)u

and set

α = A(x)−1, β = α(x)b(x).

(1.1) can be written in the form of the first order system:

αp− βu−∇u = 0, x ∈ Ω,(1.2a)

− div p+ cu = f, x ∈ Ω,(1.2b)

u = g, x ∈ ∂Ω.(1.2c)

∗Department of Mathematics, University of California, San Diego, La Jolla, CA 92093.
yul739@ucsd.edu.

1

http://arxiv.org/abs/1712.08316v2
mailto:yul739@ucsd.edu


2 YU-WEN LI

Denote

Q = {q ∈ L2(Ω)2 : div q ∈ L2(Ω)}, V = L2(Ω).

Let (·, ·) and 〈·, ·〉 denote the L2(Ω) and L2(∂Ω) inner product, respectively. Let n

denote the outward unit normal to ∂Ω. The mixed formulation for (1.2) is to find
{p, u} ∈ Q× V , such that

(αp, q)− (q,βu) + (div q, u) = 〈q · n, g〉,(1.3a)

− (div p, v) + (cu, v) = (f, v),(1.3b)

for each pair {q, v} ∈ Q × V . Let {Th} be a family of triangulations of Ω, where
0 < h < 1 is the mesh size. Let Pp(τ) denote the set of polynomials of degree ≤ p on
τ . Denote

(1.4) RT 0(τ) := {a+ ax : a ∈ R
2, a ∈ R}.

The lowest order Raviart–Thomas (RT) finite element spaces are defined by

Qh := {qh ∈ Q : qh|τ ∈ RT 0(τ), ∀τ ∈ Th} ,

Vh := {vh ∈ V : vh|τ ∈ P0(τ), ∀τ ∈ Th},

The mixed finite element approximation to the problem (1.3) is to find {ph, uh} ∈
Qh × Vh, such that

(αph, qh)− (qh,βuh) + (div qh, uh) = 〈qh · n, g〉, qh ∈ Qh,(1.5a)

− (div ph, vh) + (cuh, vh) = (f, vh), vh ∈ Vh.(1.5b)

Under the assumption that (1.2) is solvable for {f, g} ∈ L2(Ω)×H
3
2 (Ω) and that

(1.6) ||u||2,Ω . ||f ||0,Ω + ||g|| 3
2
,Ω,

Douglas and Roberts [13] proved the well-posedness and a priori error estimates for
the method (1.5).

In this paper, we shall prove supercloseness/superconvergence results for ||Πhp−
ph||0,Ω and || div(Πhp−ph)||0,Ω, where Πh and Ph are the interpolation operators for
the lowest order RT element. In particular, we shall prove that

||Πhp− ph||0,Ω . h1+ρ||u||4+ε,Ω, ε > 0,(1.7a)

|| div(Πhp− ph)||0,Ω . h2||u||3,Ω,(1.7b)

where ρ = min(1, α, σ/2). (1.7b) holds on general shape regular meshes while (1.7a)
holds on quasi-uniform {Th} satisfying the piecewise (α, σ)-condition. The (α, σ)-grid
or its simplified versions have been considered by many authors (cf. [21, 19, 3, 18, 28]
and references therein). Roughly speaking, Th is said to be an (α, σ)-grid if most
pairs of adjacent triangles in Th form O(h1+α) approximate parallelograms except for
a region of measure O(hσ) (cf. Definition 3.5). (1.7a) has several generalizations. For
example, the quasi-uniformity assumption can be removed under the pure Neumann
boundary condition or at the expense of a slower superconvergence rate ρ, see section 3
and Theorem 4.7 for details.
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(1.7) is closely related to the superconvergence of the finite element solution to
the exact solution. For example, by postprocessing ph by a simple local averaging
operator Gh proposed in [8], we achieve the following superconvergence estimate:

(1.8) ||p−Ghph||0,Ω . h1+ρ||u||4+ε,Ω.

The recovered flux Ghph can be used to develop a posteriori error estimates. Due to
the superconvergence (1.8), ||Ghph − ph||0,Ω is known to be an asymptotically exact
a posteriori estimator for ||p− ph||0,Ω (cf. [8, 4, 1]), that is,

lim
h→0

||Ghph − ph||0,Ω
||p− ph||0,Ω

= 1.

As a byproduct, (1.8) also gives the following superconvergence estimate for Crouzeix–
Raviart (CR) nonconforming finite elements (cf. Theorem 5.6):

(1.9) ||∇u−Gh∇hu
CR
h ||0,Ω . h1+ρ||u||4+ε,Ω,

where uCR
h is the CR finite element solution of Poisson’s equation.

The study of supercloseness between the finite element interpolant and finite el-
ement solution has a long history. For the analogue of (1.7a) for standard Lagrange
elements on mildly structured grids, see [3, 28, 18] and references therein. For super-
convergence of the scalar variable u in mixed methods, see [2, 10, 24] and references
therein. In practice, it is frequently the case that the vector variable p is more impor-
tant than the scalar u. Superconvergence results of rectangular/quadrilateral mixed
finite elements for the vector variable p are well established (cf. [14, 15, 16]). How-
ever, corresponding superconvergence theory of triangular mixed finite elements are
much less sophisticated. To our best knowledge, the only proven superconvergence
estimate of triangular mixed elements for the vector variable are in [12, 8, 7]. In [12],
the authors postprocessed ph and achieved interior superconvergence by convolution
with a Bramble–Schatz kernel [6] which is constructed on uniform grids, i.e. in the
case of α = σ = ∞. For the lowest order RT element on uniform grids in the case
that b = 0, c = 0 in (1.1), Brandts [8] proved

(1.10) ||Πhp− ph||0,Ω . h
3
2 (||p|| 3

2
,Ω + h

1
2 |p|1,Ω + h

1
2 |p|2,Ω),

In [7], he also proved an analogue of (1.10) for second order RT elements on uniform
grids in the case that A = I2×2, b = 0, c = 0.

Our result (1.7) improves existing results significantly in several ways. First, our
estimate holds on general mildly structured grids instead of uniform grids. As pointed
out in [3, 28], the (α, σ)-condition is very flexible and satisfied by many mature finite
element codes. Second, in the best case that ρ = 1, (1.7a) becomes

||Πhp− ph||0,Ω . h2||u||4+ε,Ω,

which shows that the estimate (1.10) is suboptimal. This improvement results from
carefully handling the boundary error, which is usually the trickiest part in global
superconvergence estimates if test functions have nonzero trace. In addition, due
to the cancellation of errors on boundary elements, (1.7a) holds on not only (α, σ)-
grids but also piecewise (α, σ)-grids (cf. Definition 3.6 and Remark 3.8). Third, our
superconvergence results allow the convection term b(x) ·∇u and reaction term c(x)u.
Unlike the case of the standard variational formulation for elliptic equations, the error
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analysis of mixed methods with nonvanishing b, c is much more involved than the case
b = 0, c = 0 (cf. [13] and Remark 4.6). Last, the superconvergence estimate (1.9) for
CR nonconforming elements is obtained. Since uCR

h has jump on each interior edge,
it is very difficult to prove superconvergence of nonconforming methods on triangular
grids directly (cf. [17] and references therein).

The key ingredient of the proof of (1.7a) is two fold. First, we develop the
variational error expansion for RT elements on a local triangle in terms of qh · nk,
the normal trace of qh ∈ Qh on ek, where {ek}3k=1 are three edges of the triangle
and nk is the outward unit normal to ek. Due to the continuity of qh · nk on ek and
the (α, σ)-condition, the lower order global variational error associated with interior
edges is canceled in a very delicate and transparent way instead of using soft analysis
tools (the Bramble–Hilbert lemma etc., cf. [8]). The aforementioned basic idea is
motivated by Bank and Xu [3]. But the technicality here is quite different because
of the apparent difference between Lagrange elements and RT elements. Second, we
split Πhp − ph into two parts by the discrete Helmholtz decomposition Lemma 4.4.
The norm of one part can be estimated by (1.7b) and Theorem 4.1. To obtain optimal
order global superconvergence, the error associated with another part occurring on
triangles near the boundary is treated carefully by the Sobolev and discrete Sobolev
inequalities, see section 3 for details.

The rest of this paper is organized as follows: section 2 contains technical ge-
ometric identities and local error expansions. In section 3, we estimate the global
variational error that forms a basis for the estimate (1.7). The superconvergence re-
sult (1.7) and related results are presented in section 4. In section 5, we develop the
superconvergence estimate (1.8) and the related estimate (1.9) for CR nonconforming
elements. In section 6 we present a few numerical examples illustrating the optimality
and flexibility of our estimates.
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Fig. 1. a local triangle and associated quantities

2. Preliminaries. We begin with geometric identities on a local element τ . It
has three vertices {ak}3k=1, oriented counterclockwise, and corresponding barycentric
coordinates {λk}3k=1. Let ek denote the edge opposite to ak, θk the angle opposite to
ek, ℓk the length of ek, dk the distance from ak to ek, tk the unit tangent to ek, oriented
counterclockwise, nk the unit outward normal to ek, see Figure 1. Corresponding
quantities on τ ′ and τ ′′ have superscripts ′ and ′′ respectively. The subscripts are
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equivalent mod 3. From Bank and Xu [3], we have the following identities:

tk =
cos θk+1

sin θk
nk+1 −

cos θk−1

sin θk
nk−1,(2.1a)

nk−1 = − sin θk+1tk − cos θk+1nk, tk−1 = − cos θk+1tk + sin θk+1nk,(2.1b)

nk+1 = sin θk−1tk − cos θk−1nk, tk+1 = − cos θk−1tk − sin θk−1nk,(2.1c)

sin θk

∫

ek+1

vλkλk−1 = sin θk+1

∫

ek

vλk+1λk−1 −

∫

τ

∂v

∂tk−1
(1− λk−1)λk−1,(2.1d)

sin θk

∫

ek−1

vλkλk+1 = sin θk−1

∫

ek

vλk+1λk−1 +

∫

τ

∂v

∂tk+1
(1− λk+1)λk+1,(2.1e)

∇λk = −nk/dk.(2.1f)

In addition, we have two planar curl operators

−→
∇ × v =

(

∂v

∂x2
,−

∂v

∂x1

)t

, ∇× q =
∂q2
∂x1

−
∂q1
∂x2

.

For convenience, we define the matrix

(2.2) rot =

[

0 −1
1 0

]

.

It’s clear that rot rotates a vector by degree π/2 counterclockwise. By direct calcu-
lation, we have the following identities:

rotnk = tk, rot tk = −nk,(2.3a)

∇ = rot
−→
∇×, ∇× = div rot−1,(2.3b)

−→
∇ × (vw) = v

−→
∇ × w + w

−→
∇ × v,(2.3c)

∇× (vq) = −(
−→
∇ × v) · q + v∇× q,(2.3d)

∫

τ

v∇× q =

3
∑

k=1

∫

ek

vq · tk +

∫

τ

−→
∇ × v · q,(2.3e)

−→
∇ × λi = ti/di.(2.3f)

Now we introduce basic definitions for RT elements. On the element τ , the degrees
of freedom of the lowest order RT elements are defined by

Nk(q) =

∫

ek

q · nk, 1 ≤ k ≤ 3.

For q ∈ Q, the interpolant Πhq is the element in Qh whose restriction to τ is the
unique element in RT 0(τ) such that

(2.4) Nk(Πhq) = Nk(q), 1 ≤ k ≤ 3.

For v ∈ V , the interpolant Phv is the L2(Ω)-projection of v onto Vh. Ph and Πh are
connected by the following commuting diagram, which is crucial to the stability and
error analysis of mixed methods (cf. [22]).

(2.5) Q
div

//

Πh

��

V

Ph

��

Qh
div

// Vh
// 0
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In addition, the following approximation properties hold:

||q −Πhq||0,Ω . h||∇hq||0,Ω,(2.6a)

|| div(q −Πhq)||0,Ω . h||∇h div q||0,Ω,(2.6b)

||v − Phv||0,Ω . h||∇hv||0,Ω.(2.6c)

where ∇h is the piecewise gradient.
The following facts can be checked in a straightforward way:

φk = λk+1
−→
∇ × λk−1 − λk−1

−→
∇ × λk+1, 1 ≤ k ≤ 3,

is the dual basis of {Nk}3k=1. {φk}
3
k=1 in Cartesian coordinate are

(2.7) φk =
x− ak

2|τ |
, 1 ≤ k ≤ 3.

{φk}3k=1 together with

(2.8) ψk = λk+1
−→
∇ × λk−1 + λk−1

−→
∇ × λk+1, 1 ≤ k ≤ 3,

form a basis of P1(τ)
2. Ni vanishes at ψj for 1 ≤ i, j ≤ 3.

It turns out that the CR interpolation is very useful in the analysis of RT elements.
For q ∈ H1(τ)2, the local CR interpolant ICR

h q on τ is the unique element in P1(τ)
2

such that

(2.9)

∫

ek

ICR
h q =

∫

ek

q, 1 ≤ k ≤ 3.

In addition, ICR
h and Πh are connected by the following lemma.

Lemma 2.1.

Πh I
CR
h q = Πhq.

Proof. It follows from (2.4) and (2.9) that

Nk(Πh I
CR
h q − Πhq) =

∫

ek

(ICR
h q − q) · nk = 0.

Lemma 2.1 is then from the unisolvence of RT elements.

Now, we expand the interpolation error for linear functions.

Lemma 2.2. For pL ∈ P1(τ)
2,

pL −ΠhpL =
−→
∇ × r,

where

r = −
3
∑

k=1

ℓ2k
2
nk ·

∂pL

∂tk
λk−1λk+1.
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Proof. First, it follows from Ni(ψk) = 0 and Ni(pL −ΠhpL) = 0 that

pL −ΠhpL =

3
∑

k=1

αkψk.

Then by (2.8), (2.3b), and (2.3c), we arrive at

(2.10) rot(pL −ΠhpL) = ∇

(

3
∑

k=1

αkλk−1λk+1

)

= ∇r.

It remains to verify that

(2.11) αk = −
ℓ2k
2
nk ·

∂pL

∂tk
.

Taking inner products with tk and then taking the directional derivative along tk on
both sides of (2.10) leads to

(2.12) nk ·

(

∂pL

∂tk
−
∂ΠhpL

∂tk

)

=
∂2r

∂t2k
.

The definition of RT 0(τ) (1.4) implies that ∂ΠhpL/∂tk is parallel to tk and therefore

(2.13) nk ·
∂ΠhpL

∂tk
= 0.

For the right hand side,

(2.14)
∂2r

∂t2k
= 2αk

∂λk−1

∂tk

∂λk+1

∂tk
= −

2αk

ℓ2k
.

Combing (2.12), (2.13) and (2.14), we obtain (2.11).

3. Variational error expansions. The following is our main technical lemma
for estimating the global variational error of mixed methods.

Lemma 3.1. For qh ∈ P0(τ),

(3.1)

∫

τ

(pL −ΠhpL) · qh =
3
∑

k=1

cot θk

∫

ek

λk−1λk+1





3
∑

j=1

α
(j)
k A

(j)
k pL



 qh · nk,

where

(3.2) α
(1)
k = |τ |, α

(2)
k = −|τ |, α

(3)
k =

1

2
(ℓ2k−1 − ℓ2k+1),

and A
(j)
k are operators defined by

(3.3) A
(1)
k = tk ·

∂

∂tk
, A

(2)
k = nk ·

∂

∂nk
, A

(3)
k = nk ·

∂

∂tk
.

Proof. Using (2.3e) and Lemma 2.2, we have

∫

τ

(pL −ΠhpL) · qh = −
3
∑

k=1

∫

ek

rqh · tk.
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Therefore, it follows from (2.1a), (2.1d), and (2.1e) that

∫

τ

(pL −ΠhpL) · qh

=
3
∑

k=1

∫

ek

ℓ2k
2
nk ·

∂pL

∂tk
λk−1λk+1qh · tk

=

3
∑

k=1

∫

ek

ℓ2k
2
nk ·

∂pL

∂tk
λk−1λk+1

(

cos θk+1

sin θk
qh · nk+1 −

cos θk−1

sin θk
qh · nk−1

)

=

3
∑

k=1

{

∫

ek−1

ℓ2k−1

2
nk−1 ·

∂pL

∂tk−1
λkλk+1

cos θk
sin θk−1

−

∫

ek+1

ℓ2k+1

2
nk+1 ·

∂pL

∂tk+1
λkλk−1

cos θk
sin θk+1

}

qh · nk

=
3
∑

k=1

cot θk

∫

ek

λk+1λk−1

(

ℓ2k−1

2
nk−1 ·

∂pL

∂tk−1
−
ℓ2k+1

2
nk+1 ·

∂pL

∂tk+1

)

qh · nk.

Then by (2.1b) and (2.1c) and following identities:

ℓk−1 sin θk+1 = ℓk+1 sin θk−1 = dk,

ℓ2k−1 cos
2 θk+1 − ℓ2k+1 cos

2 θk−1 = ℓ2k−1 − ℓ2k+1,

ℓk+1 cos θk−1 + ℓk−1 cos θk+1 = ℓk,

and direct calculation, we obtain (3.1).

Now we state definitions ofO(h1+α) approximate parallelograms and mildly struc-
tured grids in [3] below with a little generalization.

Definition 3.2. Let e be an edge in the triangulation Th. Let τ and τ ′ be the

two adjacent elements sharing e. We say that τ and τ ′ form an O(h1+α) approximate

parallelogram if the lengths of any two opposite edges differ only by O(h1+α).

The boundary elements need more delicate treatment.

Definition 3.3. Let x be a vertex in Th on ∂Ω. Let e and e′ be the two bound-

ary edges sharing x as an endpoint, and let t and t′ be the unit tangents, oriented

counterclockwise. Let τ and τ ′ be the two adjacent elements having e and e′ as edges

respectively. Number e and e′ as a pair of corresponding edges. By going along the

boundaries of τ and τ ′ counterclockwise, we have other two pairs of corresponding

edges. We say that τ and τ ′ form an O(h1+α) approximate parallelogram if the lengths

of any two corresponding edges differ only by O(h1+α), and |t− t′| = O(hα).

Remark 3.4. τ and τ ′ in Definition 3.3 don’t form an approximate parallelogram
in the usual sense, since they have no common edge.

Definition 3.5. The triangulation Th satisfies the (α, σ)-condition if the follow-

ing hold:

1. Let E = E1
⊎

E2 be the set of interior edges. For each e ∈ E1, τ and τ ′ form
an O(h1+α) approximate parallelogram, while

∑

e∈E2
|τ |+ |τ ′| = O(hσ).

2. Let P = P1

⊎

P2 be the set of boundary vertices. The adjacent boundary

elements τ, τ ′ in Definition 3.3 associated with each x ∈ P1 form an O(h1+α)



SUPERCONVERGENCE OF THE LOWEST ORDER MIXED ELEMENT 9

approximate parallelogram, and |P2| = κ is a finite number independent of h.

For example, we have α = σ = ∞, E2 = ∅, κ = 4 for the uniform grid in Figure 3(a).

Definition 3.6. Let Ω be decomposed into N subdomains, where N is indepen-

dent of h. Th is said to satisfy the piecewise (α, σ)-condition if the restriction of Th
to each subdomain satisfies the (α, σ)-condition.

With the above definitions, we can present the main lemma.

Lemma 3.7. Let Th be quasi-uniform and satisfy the (α, σ)-condition. Let qh ∈
−→
∇×Sh, where Sh consists of continuous piecewise linear polynomials on Th. Then

(3.4) |(p−Πhp, qh)| . h1+ρ| log h|
1
2 ||∇p||1,∞,Ω||qh||0,Ω,

where

ρ = min(1, α,
σ

2
).

Proof. By Lemmas 2.1 and 3.1 and passing through ICR
h p, we have

(3.5)

(p−Πhp, qh)

= (p− ICR
h p, qh) +

∑

τ∈Th

∫

τ

(ICR
h p−Πh I

CR
h p) · qh

= (p− ICR
h p, qh)

+
∑

τ∈Th

3
∑

k=1

cot θk

∫

ek

λk−1λk+1





3
∑

j=1

α
(j)
k A

(j)
k (ICR

h p− p)



qh · nk

+
∑

τ∈Th

3
∑

k=1

cot θk

∫

ek

λk−1λk+1





3
∑

j=1

α
(j)
k A

(j)
k p



qh · nk

= I + II + III.

Parts I and II can be simply estimated by the standard finite element interpolation
theory:

(3.6) |I| . h2|p|2,Ω||qh||0,Ω,

and

(3.7)
|II| .

∑

τ∈Th

h

∫

τ

|∇(ICR
h p− p)| · |qh|+ h2

∫

τ

|∇2p| · |qh|

. h2|p|2,Ω||qh||0,Ω.

The main task is to bound part III. For e ⊂ ∂Ω, let τ be the element having e as an
edge. For e ∈ E , let τ and τ ′ be the two elements sharing e. Let te and ne denote the

unit tangent and normal to e whose directions are consistent with τ . Let A
(j)
e denote

the operators in (3.3) corresponding to te and ne, θe the angle opposite to e in τ ,

ℓe the length of e, α
(j)
e the quantity associated with e on τ in (3.2). Corresponding

quantities on τ ′ have a superscript ′. Denote

be = λk−1λk+1, β(j)
e = α(j)

e cot θe − α(j)′
e cot θ′e.
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qh ∈ Qh implies that qh|τ · ne = qh|τ ′ · ne on e. Thus we can transform III from
element-wise summation to edge-wise summation:

III = III1 + III2 + III3,

where

IIIi =
∑

e∈Ei

∫

e

be





3
∑

j=1

β(j)
e A(j)

e p



 qh · ne, i = 1, 2,

III3 =
∑

e⊂∂Ω

cot θe

∫

e

be





3
∑

j=1

α(j)
e A(j)

e p



qh · ne.

For e ∈ E1, the fact that τ and τ ′ form an O(h1+α) approximate parallelogram implies

|β(j)
e | . h2+α.

Combining the above inequality with the trace inequality

(3.8)

∫

∂τ

|f | . h−1

∫

τ

|f |+

∫

τ

|∇f |

leads to

(3.9)

|III1| .
∑

e∈E1

h2+α

{

h−1

∫

τ

|∇p| · |qh|+

∫

τ

|∇2p| · |qh|

}

. h1+α
∑

e∈E1

∫

τ

(|∇p|+ |∇2p|) · |qh|

. h1+α||∇p||1,Ω||qh||0,Ω.

For e ∈ E2, there is no cancellation. Due to the small measure of the region covered
by elements near e ∈ E2, III2 is estimated by

(3.10)

|III2| . h3
∑

e∈E2

||∇p||0,∞,τ ||qh||0,∞,τ

. h||∇p||0,∞,Ω

∑

e∈E2

∫

τ

|qh|

. h1+
σ
2 ||∇p||0,∞,Ω||qh||0,Ω.

The trickiest part of this proof is to bound III3. Let qh =
−→
∇×wh, where wh ∈ Sh.

We can assume that
∫

Ω
wh = 0 by subtracting a constant from wh. Then by the

Poincaré inequality, we have

(3.11) ||wh||1,Ω . ||qh||0,Ω.

Denote

B(j)
e = α(j)

e A(j)
e p cot θe, B̄(j)

e =
1

ℓe

∫

e

Be.
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By (2.3a) and (2.3b),

qh · ne =
∂wh

∂te
.

Then part III3 can be split into:

III3 =
∑

e⊂∂Ω

∫

e

be

3
∑

j=1

(B(j)
e − B̄(j)

e )
∂wh

∂te

+
∑

e⊂∂Ω

∫

e

be

3
∑

j=1

B̄(j)
e

∂wh

∂te
= III

(1)
3 + III

(2)
3 .

The first term can be estimated by (3.11):

(3.12)

|III
(1)
3 | . h3|p|2,∞,Ω

∑

e⊂∂Ω

∫

e

|∇wh|

. h2|p|2,∞,Ω

∑

e⊂∂Ω

∫

τ

|∇wh|

. h2|p|2,∞,Ω||qh||0,Ω.

For x ∈ P , let e, e′ be the two edges on ∂Ω sharing x as an ending point. Then the
second term becomes

III
(2)
3 =

∑

e⊂∂Ω

ℓe
6

3
∑

j=1

B̄(j)
e

∂wh

∂te

=
∑

x∈P

1

6

3
∑

j=1

(

B̄(j)
e − B̄

(j)
e′

)

wh(x).

For x ∈ P1, definitions (3.2) and (3.3) together with the (α, σ)-condition along the
boundary imply cancellation and thus

(3.13)
∣

∣

∣B̄(j)
e − B̄

(j)
e′

∣

∣

∣ . h2+α||∇p||1,∞,Ω.

For x ∈ P2,

(3.14)
∣

∣

∣B̄(j)
e − B̄

(j)
e′

∣

∣

∣ ≤
∣

∣

∣B̄(j)
e

∣

∣

∣+
∣

∣

∣B̄
(j)
e′

∣

∣

∣ . h2||∇p||0,∞,Ω.

It follows from the discrete Sobolev inequality

(3.15) ||wh||0,∞,Ω . | log h|
1
2 ||wh||1,Ω,

the quasi-uniformity, (3.11), (3.13), and (3.14) that

(3.16)

|III
(2)
3 | .

(

∑

x∈P1

h2+α||∇p||1,∞,Ω +
∑

x∈P2

h2||∇p||0,∞,Ω

)

||w||0,∞,∂Ω

. h1+α| log h|
1
2 ||∇p||1,∞,Ω||wh||1,Ω

. h1+α| log h|
1
2 ||∇p||1,∞,Ω||qh||0,Ω.

Now, combining (3.5)–(3.7), (3.9), (3.10), (3.12), and (3.16), we obtain Lemma 3.7.
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In the rest of this paper, ρ always denotes min(1, α, σ/2) unless confusion arises.

Remark 3.8. The proof of Lemma 3.7 is completely local and thus (3.4) holds on
piecewise (α, σ)-grids.

Lemma 3.7 can be easily generalized. By checking the proof of Lemma 3.7, one can
see that the quasi-uniformity is only used to guarantee the discrete Sobolev inequality

and bound the number of vertices lying on ∂Ω. By test function qh ∈
−→
∇×Sh for

the Neumann boundary condition having zero normal trace, we have the following
estimate.

Corollary 3.9. Let Th be an (α, σ)-grid without assuming adjacent boundary

elements form approximate parallelograms in Definition 3.5. Then for qh ∈
−→
∇×Sh

and qh · n = 0,

|(p−Πhp, qh)| . h1+ρ (||∇p||0,∞,Ω + ||p||2,Ω) ||qh||0,Ω.

Proof. The proof is basically the same as Lemma 3.7. But we get rid of bounding
III3, the error occuring on boundary elements. Then the regularity assumption is
weakened.

Let diamτ denote the diameter of τ . The quasi-uniformity in Lemma 3.7 can be
replaced by

(3.17) min
τ∈Th

diamτ & hγ , γ ≥ 1.

Corollary 3.10. Assume the condition (3.17) instead of quasi-uniformity in

Lemma 3.7. Then (3.4) holds with a smaller ρ:

ρ = min(1, 1 + α− γ,
σ

2
).

Proof. The proof is basically the same as Lemma 3.7. (3.17) ensures the discrete
Sobolev inequality (cf. [9]). The number of boundary vertices is bounded by

|P| . h−γ .

Therefore, the only difference is that the bound for III
(2)
3 becomes

|III
(2)
3 | . h1+min(1+α−γ,1)| log h|

1
2 ||∇p||1,∞,Ω||qh||0,Ω.

Remark 3.11. The condition (3.17) also appears in pointwise a posteriori error
estimation (cf. [1]).

At the end of this section, we show that the logarithmic factor in Lemma 3.7 can
be removed by using the following lemma proved by Brandts [8].

Lemma 3.12. Let Ωh = {x ∈ Ω : dist(x, ∂Ω) ≤ h}. Then

||u||0,Ωh
. hs||u||s,Ω, 0 ≤ s ≤

1

2
.

Corollary 3.13. Assume the same conditions in Lemma 3.7. Then ∀ε > 0,

|(p−Πhp, qh)| . h1+ρ||∇p||2+ε,Ω||qh||0,Ω,
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Proof. The bounds for I, II, III1, III2, III
(1)
3 are the same as Lemma 3.7. The

bound for III
(2)
3 is improved by the Sobolev embedding H2+ ε

2 (Ωh) ⊂ W 1
∞(Ωh) and

Lemma 3.12:

|III
(2)
3 | .

(

∑

x∈P1

h2+α||∇p||1,∞,Ωh
+
∑

x∈P2

h2||∇p||0,∞,Ωh

)

||w||0,∞,∂Ω

. h1+α| log h|
1
2 ||∇p||1,∞,Ωh

||wh||1,Ω

. h1+α| log h|
1
2 ||∇p||2+ ε

2
,Ωh

||qh||0,Ω

. h1+α+ ε
2 | log h|

1
2 ||∇p||2+ε,Ω||qh||0,Ω.

Therefore, | log h|1/2 is compensated by hε/2.

Remark 3.14. The factor | log h|1/2 appearing in Lemma 2.5 and Theorem 3.1 in
[3] can be removed in the same way.

4. Superconvergence results. From (1.3) and (1.5), we have the error equa-
tion

(α(p− ph), qh)− (qh,β(u− uh)) + (div qh, u− uh) = 0, qh ∈ Qh,(4.1a)

− (div(p− ph), vh) + (c(u − uh), vh) = 0, vh ∈ Vh.(4.1b)

From [13], we have the following a priori error estimates:

||p− ph||0,Ω . h||u||2,Ω,(4.2a)

|| div(p− ph)||0,Ω . h||u||3,Ω,(4.2b)

||u− uh||0,Ω . h||u||2,Ω.(4.2c)

The following is the well-known superconvergence result for ||Phu − uh||0,Ω on
general unstructured meshes (cf. [13]).

Theorem 4.1.

||Phu− uh||0,Ω . h2||u||3,Ω.

Then we prove the superconvergence for || div(Πhp− ph)||0,Ω.

Theorem 4.2.

|| div(Πhp− ph)||0,Ω . h2||u||3,Ω.

Proof. From (2.5), (2.6), (4.1), and (4.2) and Theorem 4.1, it follows that for
vh ∈ Vh,

(4.3)

(div(Πhp− ph), vh) = (Ph div p− div ph, vh)

= (div(p− ph), vh)

= (u − Phu, cvh) + (Phu− uh, cvh)

= (u − Phu, cvh − Ph(cvh)) +O(h2)||u||3,Ω||vh||0,Ω

= O(h2)||u||3,Ω||vh||0,Ω.

Therefore, Theorem 4.2 follows from setting vh = div(Πhp− ph) in (4.3).
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Before proving the superconvergence result for ||Πhp− ph||0,Ω, it is necessary to
state two lemmas. The first lemma is due to Raviart and Thomas [22].

Lemma 4.3. For vh ∈ Vh, there exists qh ∈ Qh, such that

div qh = vh, ||qh||0,Ω . ||vh||0,Ω.

Another useful lemma is the discrete Helmholtz decomposition (cf. [11] and ref-
erences therein).

Lemma 4.4. Qh has the following orthogonal decomposition with respect to (·, ·):

Qh = gradh Vh ⊕
−→
∇ × Sh,

where gradh : Vh → Q∗
h is defined by

(gradh vh, qh) = −(vh, div qh), qh ∈ Qh.

The following is a result from Lemmas 4.3 and 4.4, Corollary 3.13, and Theo-
rems 4.1 and 4.2.

Theorem 4.5. Let Th be a quasi-uniform and piecewise (α, σ)-grid. Then ∀ε > 0,

||Πhp− ph||0,Ω . h1+ρ||u||4+ε,Ω.

Proof. Let ξh = Πhp− ph. Lemma 4.4 gives

(4.4) ξh = gradh vh ⊕
−→
∇×wh,

where (vh, wh) ∈ Vh × Sh, and

|| gradh vh||0,Ω . ||ξh||0,Ω,(4.5a)

||wh||0,Ω . ||
−→
∇×wh||0,Ω . ||ξh||0,Ω.(4.5b)

Let q̃h ∈ Qh be the preimage of vh under div in Lemma 4.3. Then

||vh||
2
0,Ω = −(gradh vh, q̃h)

. || gradh vh||0,Ω||vh||0,Ω,

and thus

(4.6) ||vh||0,Ω . || gradh vh||0,Ω.

By (4.4) and (4.6), we have

|| gradh vh||
2
0,Ω = −(vh, div gradh vh)

= −(vh, div ξh)

. || gradh vh||0,Ω|| div ξh||0,Ω.

Then it follows from Theorem 4.2 that

(4.7) || gradh vh||0,Ω . h2||u||3,Ω.
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It remains to bound
−→
∇×wh. By the orthogonality in (4.4),

(4.8)

||
−→
∇×wh||

2
0,Ω = (Πhp− ph,

−→
∇×wh)

= −(p−Πhp,
−→
∇×wh)

+ (α(p− ph),A
−→
∇×wh −ΠhA

−→
∇×wh)

+ (α(p− ph),ΠhA
−→
∇×wh)

= I + II + III.

I is estimated by Corollary 3.13

(4.9) |I| . h1+ρ||∇p||2+ε,Ω||
−→
∇×wh||0,Ω.

II is estimated by (2.6) and (4.2)

(4.10) |II| . h2||u||2,Ω||
−→
∇×wh||0,Ω.

As for III, setting qh = ΠhA
−→
∇×wh in (4.1) leads to

III = (qh,β(u− uh))− (div qh, u− uh)

= III1 + III2.

By (1.4), (2.5), and (2.6a), we have

(4.11) ||qh||0,Ω . ||
−→
∇×wh||0,Ω,

and

(4.12) ||∇hqh||0,Ω . || div qh||0,Ω . ||
−→
∇×wh||0,Ω.

Then III1 can be estimated by (4.2), (4.11), and (4.12) and Theorem 4.1:

(4.13)

III1 = (β · qh, u− Phu+ Phu− uh)

= (β · qh − Phβ · qh, u− Phu) +O(h2)||u||3,Ω||qh||0,Ω

= O(h2)||∇h(β · qh)||0,Ω||u||1,Ω +O(h2)||u||3,Ω||qh||0,Ω

= O(h2)||u||3,Ω||
−→
∇×wh||0,Ω.

III2 can be estimated by Theorem 4.2 and (4.12):

(4.14)
III2 = (div qh, Phu− uh)

= O(h2)||u||3,Ω||
−→
∇×wh||0,Ω.

Combining (4.8)–(4.10), (4.13), and (4.14), we obtain

(4.15) ||
−→
∇×wh||0,Ω . h1+ρ||u||4+ε,Ω.

Then Theorem 4.5 follows from (4.4), (4.7), and (4.15).

Remark 4.6. If b = 0, c = 0 in (1.1), then div(Πhp− ph) = 0, which implies that
Πhp−ph is a piecewise constant function. Then the superconvergence analysis in this
section simplifies. In particular, to prove Theorem 4.5, it is not necessary to employ
Lemma 4.4 and Theorems 4.1 and 4.2 in this simplified case.
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Theorem 4.5 can be easily generalized by Lemma 3.7 and Corollaries 3.9 and 3.10
respectively. Here we present a theorem from Corollary 3.9.

Theorem 4.7. Let Th be an (α, σ)-grid without assuming adjacent boundary ele-

ments form approximate parallelograms in Definition 3.5. Then under the Neumann

boundary condition p · n = g on ∂Ω,

||Πhp− ph||0,Ω . h1+ρ(||∇p||0,∞,Ω + ||u||3,Ω).

Proof. The proof is basically the same as Theorem 4.5. The difference is from
function spaces. For the Neumann boundary condition, the test function spaces in
(1.3a) and (1.5a) are Q0 = {q ∈ Q : q · n = 0} and Q0h = {q ∈ Qh : qh · n = 0},
respectively. The numerical solution ph is in Qh with the constraint ph · n = gh,
where

gh|e =
1

ℓe

∫

e

g, e ⊂ ∂Ω.

Thus

(4.16)

∫

e

(Πhp− ph) · ne = 0.

The form of RT 0(τ) (1.4) implies

(4.17)

(

∂Πhp

∂te
−
∂ph

∂te

)

· ne = 0.

Combining (4.16) and (4.17), we have ξh = Πhp − ph ∈ Q0h. By the discrete
Helmholtz decomposition for the Neumann boundary condition (cf. [7]), we have

(4.18) ξh = gradh vh ⊕
−→
∇×wh,

where (vh, wh) ∈ Vh × Sh, and gradh vh ∈ Q0h, wh|∂Ω = 0. Then by following the
proof of Theorem 4.5 and using Corollary 3.9 instead of Corollary 3.13, we prove
Theorem 4.7.

5. Postprocessing operator and connection with CR nonconforming el-

ements. In the gradient recovery framework, once supercloseness between the inter-
polant Πhp and numerical solution ph are available, one can construct postprocessing
operator Gh to achieve superconvergence of Ghph to p. Of course the construction
and analysis of Gh is of independent interest (cf. [29, 4, 28, 5]). In this section, we
first discuss a cheap recovery operator Gh proposed in [8] and use it to achieve the
superconvergence (1.8). Then we prove the superconvergence estimate (1.9) for CR
nonconforming elements.

5.1. Postprocessing operator. To define Gh, we introduce the nonconforming
finite element space:

VCR
h := {v : v|τ is linear on τ ∈ Th, v is continuous

at the midpoints of interior edges of Th}.

Definition 5.1. The operator Gh : Qh → VCR
h × VCR

h is defined as follows:
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e

e

e

m

m

m

Fig. 2. a local patch ω near the boundary

1. For each interior edge e, let τ and τ ′ be the pair of elements sharing e. Then

the value of Ghqh at the midpoint m of e is

Ghqh(m) =
1

2
(qh|τ (m) + qh|τ ′(m)).

2. For each boundary edge e⊂ ∂Ω, let τ be the element having e as an edge. Let

τ ′ be an element sharing an edge e′ with τ . Let e′′ denote the edge of τ ′ that
does not meet with e, τ ′′ the element sharing e′′ with τ ′. Then the value of

Ghqh at the midpoint m of e is

Ghqh(m) = 2Ghqh(m
′)−Ghqh(m

′′),

where m′ and m′′ is the midpoint of e′ and e′′, respectively, see Figure 2.

We have the following lemma.

Lemma 5.2. Let ω be the patch τ∪τ ′ associated with the interior edge or τ∪τ ′∪τ ′′

associated with the boundary edge having the midpoint m in Definition 5.1. Assume

each pair of adjacent elements in ω forms an O(h1+α) approximate parallelogram.

Then we have

|(qL −GhΠhqL)(m)| . hα||∇qL||0,ω,

where qL ∈ P1(ω)
2.

Proof. First consider the case of interior edges. By the fact that ΠhqC = qC for
qC ∈ P0(ω), we can assume qL(m) = 0 without loss of generality. Let mk be the
midpoint of ek. Then by (2.7),

(5.1)

(GhΠhqL − qL)(m)

=
1

2

3
∑

k=1

(

m− ak

2|τ |

∫

ek

qL · nk +
m− a′

k

2|τ ′|

∫

e′
k

qL · n′
k

)

=
1

2

3
∑

k=1

(

m− ak

2|τ |
ℓkqL(mk) · nk +

m− a′
k

2|τ ′|
ℓ′kqL(m

′
k) · n

′
k

)

,
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where mk is the midpoint of ek. From

qL(mk) = ∇qL(m)(mk −m), qL(m
′
k) = ∇qL(m)(m′

k −m),

and the O(h1+α) approximate parallelogram condition, it follows that

(5.2) |(GhΠhqL − qL)(m)| . hα||∇qL||0,ω.

As for the case of boundary edge, again assume qL(m
′) = 0 without loss of generality.

Then by

qL(m) = ∇qL(m
′)(m−m′), qL(m

′′) = ∇qL(m
′)(m′′ −m′),

the O(h1+α) approximate parallelogram condition and (5.2), we have

|(qL −GhΠhqL)(m)| = |qL(m) +GhΠhqL(m
′′)− 2GhΠhqL(m

′)|

≤ |qL(m) + qL(m
′′)|+ |GhΠhqL(m

′′)− qL(m
′′)|

+ 2|GhΠhqL(m
′)− qL(m

′)| . hα||∇qL||0,ω.

Theorem 5.3. Assume the triangulation Th satisfies the (α, σ)-condition. Then

||q −GhΠhq||0,Ω . h1+ρ(||∇q||1,Ω + |q|1,∞,Ω).

Proof. Because Gh is defined locally, we only need to estimate q−GhΠhq element
by element. We partition the domain into three disjoint parts {Ωi}

3
i=1. Ω1 is covered

by interior elements whose three edges belong to E1. Ω2 is covered by boundary
elements τ that forms an approximate parallelogram with one of its interior adjacent
element τ ′ and τ ′ forms an approximate parallelogram with one of its interior adjacent
elements τ ′′, as in Definition 5.1, see the pattern Figure 2. Ω3 is the complement of
Ω1 ∪Ω2. Then

(5.3) ||q −GhΠhq||
2
0,Ω =

3
∑

i=1

∑

τ⊂Ωi

||q −GhΠhq||
2
0,τ =

3
∑

i=1

Ii.

For each element τ , let τ̃ denote the union of elements sharing a side with τ . For
τ ⊂ Ω1 or Ω2, ||q − GhΠhq||0,τ is estimated by passing through a linear polynomial
qL ∈ P1(τ̃ )

2:

(5.4)
||q −GhΠhq||0,τ . ||q − qL||0,τ

+ ||GhΠh(q − qL)||0,τ + ||qL −GhΠhqL||0,τ .

By the Bramble–Hilbert lemma and scaling argument, there exists qL ∈ P1(τ̃ )
2 such

that

(5.5) ||q − qL||s,τ̃ . h2−s|q|2,τ̃ , s = 0, 1,

and

(5.6)
||GhΠh(q − qL)||0,τ . h||GhΠh(q − qL)||0,∞,τ

. h||q − qL||0,∞,τ̃ . h2|q|2,τ̃ .
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Then by Lemma 5.2 and (5.4)–(5.6), we have

(5.7)

I1 + I2 .

2
∑

i=1

∑

τ⊂Ωi

{

h4|q|22,τ̃ + h2||qL −GhΠhqL||
2
0,∞,τ

}

.

2
∑

i=1

∑

τ⊂Ωi

{

h4|q|22,τ̃ + h2 max
1≤k≤3

(qL(mk)−GhΠhqL(mk))
2

}

. h2+2min(1,α)
2
∑

i=1

∑

τ⊂Ωi

(|q|22,τ̃ + ||∇qL||
2
τ̃ )

. h2+2min(1,α)||∇q||21,Ω.

By the (α, σ)-condition and local quasi-uniformity of Th, |Ω3| is forced to be of the size
O(hσ). Since GhΠhqC = qC for qC ∈ P0(τ̃ )

2, I3 can be estimated by the Bramble–
Hilbert lemma with a scaling argument and the small measure of Ω3:

(5.8)

I3 =
∑

τ⊂Ω3

||q −GhΠhq||
2
0,τ

.
∑

τ⊂Ω3

h2|q|21,τ̃ . h2
∫

Ω3

|∇q|2 . h2+σ|q|21,∞,Ω.

By (5.3), (5.7), and (5.8), we obtain Theorem 5.3.

The supercovnergence of ||p − Ghph||0,Ω is a direct result from Theorems 4.5
and 5.3.

Theorem 5.4. Let Th be quasi-uniform and satisfy the (α, σ)-condition. Then

||p−Ghph||0,Ω . h1+ρ||u||4+ε,Ω.

Proof. For qh ∈ Qh and τ ∈ Th,

||Ghqh||0,τ . h||Ghqh||0,∞,τ

. h max
1≤k≤3

|Ghqh(mk)|

. h||qh||0,∞,τ̃ . ||qh||0,τ̃ ,

and then

(5.9) ||Ghqh||0,Ω . ||qh||0,Ω,

that is, Gh is bounded in L2 norm. Combining Theorems 4.5 and 5.3 and (5.9), we
have

||p−Ghph||0,Ω . ||p−GhΠhph||0,Ω + ||Gh(Πhp− ph)||0,Ω

. h1+ρ||u||4+ε,Ω.

5.2. Superconvergence for CR nonconforming elements. As one can see
in section 3 and subsection 5.1, the CR nonconforming method is closely related to
the RT mixed method. In this subsection, we prove the superconvergence estimate
for CR nonconforming methods on (α, σ)-grids by Theorem 5.4. For simplicity, we
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only consider Poisson’s equation with the homogeneous Dirichlet boundary condition,
i.e. A = I2×2, b = 0, c = 0, g = 0 in (1.1). In this case, p = ∇u in (1.2). The
corresponding CR nonconforming method is to find uCR

h ∈ VCR
0h , such that

(5.10) (∇hu
CR
h ,∇hvh) = (f, vh), vh ∈ VCR

0h ,

where

VCR
0h := {v ∈ VCR

h : v = 0 at the midpoints of boundary edges of Th.}.

Marini [23] proved the following theorem.

Theorem 5.5. Let ūCR
h ∈ VCR

0h solve

(5.11) (∇hū
CR
h ,∇hvh) = (Phf, vh), vh ∈ VCR

0h .

Let {p̄h, ūh} ∈ Qh × Vh solve the following mixed problem:

(p̄h, qh) + (div qh, ūh) = 0, qh ∈ Qh,

(div p̄h, vh) = −(f, vh), vh ∈ Vh.

Then

p̄h(x) = ∇ūCR
h −

Phf |τ
2

(x− xτ ), x ∈ τ,

where xτ is the barycenter of τ ∈ Th.

By Theorem 5.5 and (1.10), Hu and Ma [17] proved the following estimate for
Poisson’s equation on uniform grids:

(5.13) ||∇u−Gh∇hu
CR
h ||0,Ω . h

3
2 (||u|| 5

2
,Ω + h

1
2 |u|3,Ω + h

1
2 |f |1,∞,Ω).

Based on the idea of [17], we can prove the following superconvergence estimate for
CR elements by Theorems 5.4 and 5.5.

Theorem 5.6. Let Th be a quasi-uniform (α, σ)-grid. Let uCR
h solve (5.10). Then

||∇u−Gh∇hu
CR
h ||0,Ω . h1+ρ||u||4+ε,Ω.

Proof. Split ||∇u −Gh∇hu
CR
h ||0,Ω as

(5.14)

||∇u−Gh∇hu
CR
h ||0,Ω

.||∇u−Ghp̄h||0,Ω + ||Gh(p̄h −∇hū
CR
h )||0,Ω

+||Gh(∇hū
CR
h −∇hu

CR
h )||0,Ω = I + II + III.

I can be estimated by Theorem 5.4:

(5.15) I . h1+ρ||u||4+ε,Ω.

For the second term, first consider the patch ω = τ ∪ τ ′ associated with an interior
edge e having midpoint m in Definition 5.1. By Theorem 5.5, we have

Gh(p̄h −∇hū
CR
h )(m) = −

1

4
((m− xτ )Phf |τ + (m− xτ ′)Phf |τ ′)
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If τ and τ ′ form an O(h1+α) approximate parallelogram, then

(5.16) |Gh(p̄h −∇hū
CR
h )(m)| . h1+α||f ||1,∞,Ω.

Then consider the patch ω = τ ∪ τ ′ ∪ τ ′′ associated with a boundary edge e having
midpoint m in Definition 5.1. (5.16) implies that

(5.17)
|Gh(p̄h −∇hū

CR
h )(m)| . 2|Gh(p̄h −∇hū

CR
h )(m′)|

+ |Gh(p̄h −∇hū
CR
h )(m′′)| . h1+α||f ||1,∞,Ω,

provided τ, τ ′ and τ ′, τ ′′ form O(h1+α) approximate parallelograms. Now we partition
Ω into ∪3

i=1Ωi as in the proof of Theorem 5.3. By following the proof of Theorem 5.3
and using (5.16) and (5.17), II can be estimated by

(5.18) II . h1+ρ||f ||1,∞,Ω.

As for III, it follows from (5.10) and (5.11) that for vh ∈ VCR
0h ,

(5.19)

(∇hū
CR
h −∇hu

CR
h ,∇hvh) = (f − Phf, vh)

= (f − Phf, vh − Phvh)

. h2|f |1,Ω||∇hvh||0,Ω,

By setting vh = ūCR
h − uCR

h in (5.19) and using boundedness of Gh in L2 norm, we
have

(5.20) III . h2|f |1,Ω.

Then Theorem 5.6 results from combining (5.14), (5.15), (5.18), and (5.20).

In the case of uniform grids (α = σ = ∞), Theorem 5.6 implies that

||∇u −Gh∇hu
CR
h ||0,Ω . h2||u||4+ε,Ω.

which shows that is (5.13) suboptimal. However, Theorem 5.5 cannot be applied to
(1.1) with nonvanishing b and c. It would be interesting to develop a formula similar
to [23] in a more general setting.

(a) (b) (c)

Fig. 3. Three different grids
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Table 1

Uniform grids

nu
||p− ph||0,Ω ||Πhp− ph||0,Ω ||p−Ghph||0,Ω

Error Order Error Order Error Order
336 7.281e-1 0.9911 1.033e-1 1.979 2.629e-1 2.094
1312 3.663e-1 0.9972 2.620e-2 1.995 6.157e-2 2.062
5184 1.835e-1 0.9998 6.574e-3 1.999 1.475e-2 2.035
20608 9.176e-2 0.9997 1.645e-3 1.999 3.598e-3 2.003
82176 4.589e-2 4.114e-4 8.976e-4

Table 2

Piecewise uniform grids

nu
||p− ph||0,Ω ||Πhp− ph||0,Ω ||p−Ghph||0,Ω

Error Order Error Order Error Order
336 7.287e-1 0.9919 9.356e-2 1.937 2.898e-1 1.963
1312 3.664e-1 0.9976 2.449e-2 1.978 7.668e-2 1.790
5184 1.835e-1 0.9998 6.215e-3 1.993 2.217e-2 1.683
20608 9.176e-2 0.9997 1.561e-3 1.998 6.904e-3 1.607
82176 4.589e-2 3.907e-4 2.267e-3

6. Numerical experiments. In this section, we test our superconvergence re-
sults for ||Πhp− ph||0,Ω and ||p−Ghph||0,Ω by the following equation:

−∆u+ u = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω = (0, 1) × (0, 1) is the unit square. Let u = sin(2πx1) sin(πx2) and f be
the corresponding source term. The numerical experiments were performed using
MATLAB, R2016. The linear system resulting from the mixed method (1.5) was
solved by the operation \. The ‘nu’ in Tables 1 to 3 stands for the number of unknowns.

We began with the 8 × 8 uniform grid in Figure 3(a), and computed a sequence
of meshes by regular refinement, i.e. partitioning an element into four similar subele-
ments by connecting the midpoints of each edge. In this case, α = σ = ∞, ρ = 1. As
shown in Table 1, the observed orders of convergence coincide with Theorem 4.5 and
Theorem 5.4.

Then we considered the (α, σ)-grid with (α, σ) = (∞, 1) in Figure 3(b). The mesh
was refined regularly. Although it is not globally uniform, it can be decomposed into
four uniform subgrids. Hence the mesh is a piecewise (α, σ)-grid with (α, σ) = (∞,∞).
By Theorem 4.5, we still obtain 2nd order of convergence for ||Πhp − ph||0,Ω, which
was confirmed by Table 2. However, Theorem 5.4 cannot be applied to piecewise
(α, σ)-grid. Thus the order of convergence for ||p − Ghph||0,Ω approaches 3/2 in
Table 2.

In the last experiment, we generated the initial mesh in Figure 3(c) by ‘pdetool’ in
MATLAB and then refined it regularly. At first glance, it should be an unstructured
grid or a mildly structured grid with unknown α and σ. Surprisingly, it is indeed a
piecewise uniform mesh, since each element in the initial mesh was refined uniformly.
On the other hand, it’s not hard to see that the sequence of grids are globally (α, σ)-
meshes with α = ∞ and σ = 1 asymptotically. As predicted by Theorems 4.5 and 5.4,
the order of convergence for ||Πhp−ph||0,Ω approaches 2 while the order of convergence
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Table 3

Unstructured grids

nu
||p− ph||0,Ω ||Πhp− ph||0,Ω ||p−Ghph||0,Ω

Error Order Error Order Error Order
800 4.585e-1 0.9934 5.152e-2 1.749 1.911e-1 1.724
3160 2.303e-1 0.9981 1.533e-2 1.823 5.783e-2 1.551
12560 1.153e-1 0.9990 4.334e-3 1.862 1.973e-2 1.532
50080 5.769e-2 0.9997 1.192e-3 1.885 6.824e-3 1.518
200000 2.885e-2 3.227e-4 2.383e-3

for ||p − Ghph||0,Ω approaches 3/2. We didn’t obtain exact 2nd order convergence
for ||Πhp − ph||0,Ω, since the linear system eventually became extremely large. In
this case, both time cost and the condition number of the coefficient matrix became
unacceptable.

7. Concluding remarks. In this paper, we proved optimal order global super-
convergence for the lowest order RT element on mildly structured meshes for general
second order elliptic equations. As a byproduct, we also proved superconvergence for
the CR nonconforming method for Poisson’s equations. The results in sections 2 and 3
are PDE-independent and applicable to other numerical PDEs using lowest order RT
elements. The proof of Theorem 4.2 and most steps of the proof of Theorem 4.5 work
for higher order mixed finite elements.

In practice, the solution u does not necessarily belong to W 3
∞(Ω) in Lemma 3.7

or H4+ε(Ω) in Theorem 4.5 if ∂Ω is not smooth enough. Hence our superconvergence
estimates become questionable in this case. In fact, the high regularity requirement is
a common issue shared by most superconvergence results (cf. [3, 8, 15, 18, 28]). There
are several possible ways to fix it. First, by modifying the proof of Lemma 3.7, one
can obtain smaller rate of superconvergence under weaker regularity assumptions. For
example, one can easily show ||p−Ghph||0,Ω = O(h1+min(1/2,α,σ/2)) on (α, σ)-grids for
u ∈ H3(Ω)∩W 2

∞(Ω) if the error occuring on boundary triangles is not canceled in the
proof of Lemma 3.7. Second, u is smooth on any compact subdomain in Ω. Hence it’s
meaningful to look for interior estimates (cf. [26, 27]). As far as we know, u should be
at least inW 2

∞(Ω) to prove interior superconvergence for linear Lagrange elements (cf.
[28]). Of course, the assumption u ∈W 2

∞(Ω) may not hold on domains with corners.
Third, for u ∈ H1+δ with δ > 0, it’s possible to prove superconvergence recovery for
RT elements under adaptive meshes by following the framework of this paper and
assuming certain mesh density function which is enough to resolve the singularity,
see [25] for the case of Lagrange elements. However, it’s difficult to prove that the
adaptively refined sequence of meshes actually satisfies the mesh density pattern.

We also point out that ||Πhp − ph||0,Ω might not superconverge in the case of
general mixed elements on triangular meshes, since part of finite element basis func-
tions become more localized in higher order methods (cf. [7, 20]). We will present
superconvergence results for higher order mixed elements on mildly structured meshes
in another paper.
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