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Abstract

Converting modulo flows into integer-valued flows is one of the most critical steps in

the study of integer flows. Tutte and Jaeger’s pioneering work shows the equivalence of

modulo flows and integer-valued flows for ordinary graphs. However, such equivalence

does not hold any more for signed graphs. This motivates us to study how to convert

modulo flows into integer-valued flows for signed graphs. In this paper, we generalize

some early results by Xu and Zhang (Discrete Math. 299, 2005), Schubert and Steffen

(European J. Combin. 48, 2015), and Zhu (J. Combin. Theory Ser. B 112, 2015), and

show that, for signed graphs, every modulo (2 + 1
p
)-flow with p ∈ Z

+ ∪ {∞} can be

converted/extended into an integer-valued flow.

Keyworks: Signed graph; Integer flow; Circular flow; Modulo orientation

1 Introduction

In flow theory, an integer-valued flow and a modulo flow are different by their definitions.

For ordinary graphs, Tutte showed that a graph admits an integer-valued nowhere-zero k-

flow if and only if it admits a modulo nowhere-zero k-flow. We also notice that although

most landmark results are stated as integer-valued flow results, due to the theorem by Tutte,

they were initially proved for modulo flows, such as, the 8-flow theorem by Jaeger [4], the

6-flow theorem by Seymour [12], and the weak 3-flow theorem by Thomassen [14].

However, Tutte’s result cannot be applied for signed graphs (see Fig. 1). That is, there

is a big gap between modulo flows and integer-valued flows for signed graphs. The first

known result was proved by Bouchet [1] in his study of chain-groups.

Theorem 1.1 ([1], Proposition 3.5). If a signed graph (G,σ) admits a modulo k-flow f1,

then it admits an integer-valued 2k-flow f2 with supp(f1) ⊆ supp(f2).
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In this paper, Theorem 1.1 is improved for some important cases: modulo 2-flows,

modulo 3-flows, and modulo circular (2 + 1
p
)-flows.

1.1 Basic definitions

Graphs considered here may have multiple edges or loops. Let G be a graph with vertex

set V (G) and edge set E(G). For a vertex v, we denote by EG(v) the set of edges incident

with v, and denote dG(v) = |EG(v)| (known as the degree of v). When no confusion is

caused, we simply use E(v) and d(v) for short. Let X and Y be two disjoint vertex sets.

We denote by E(X,Y ) the set of edges with one end in X and the other end in Y , and by

e(X,Y ) = |E(X,Y )|. An edge set F is an odd-λ-edge cut if |F | = λ is odd and G − F has

more components than G. A graph G is odd-λ-edge-connected if it contains no odd-k-edge

cut for any k ≤ λ− 2. The odd-edge-connectivity of G is the smallest integer λ for which G

is odd-λ-edge-connected. If F = {e}, then e is a bridge of G. A graph G is bridgeless if it

contains no bridges.

A signed graph is a graph G associated with a signature σ : E(G) → {±1}. An edge e is

positive if σ(e) = 1 and negative otherwise. Every edge of G consists of two half-edges, each

of which is incident with exactly one end of this edge. For a vertex v, denote by H(v) the

set of all half-edges incident with v. Let H(G) =
⋃

v∈V (G)H(v). For a half-edge h, we use

eh to denote the edge containing h. An orientation of (G,σ) is a mapping τ : H(G) → {±1}

such that τ(h1)τ(h2) = −σ(e) for e ∈ E(G), where h1 and h2 are the two half-edges of e.

For a signed graph (G,σ), switching at a vertex u means reversing the signs of all edges

incident with u. Let X(G,σ) be the set of signatures of G obtained from σ via a sequence

of switching operations. The negativeness of G is the smallest integer q for which G has a

signature σ′ ∈ X(G,σ) with exactly q negative edges.

1.2 Integer-valued flows in signed graphs

Definition 1.2. Let (G,σ) be a signed graph associated with an orientation τ . Let k be a

positive integer and f : E(G) → Z be a mapping such that 0 ≤ |f(e)| ≤ (k − 1) for every

edge e ∈ E(G). The boundary of f at a vertex v is defined as ∂f(v) =
∑

h∈H(v) f(eh)τ(h).

The mapping f is an integer-valued k-flow (resp. modulo k-flow) of (G,σ) if ∂f(v) = 0

(resp. ∂f(v) ≡ 0 (mod k)) for each vertex v ∈ V (G).

Let f be a flow of a signed graph (G,σ). The support of f , denoted by supp(f), is the

set of edges e with f(e) 6= 0. A flow f is nowhere-zero if supp(f) = E(G). For convenience,

we respectively shorten the notations of nowhere-zero k-flows into integer-valued k-NZFs

and modulo k-NZFs.

To verify Bouchet’s 6-flow conjecture [1] for 6-edge-connected signed graphs, Xu and
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Figure 1: (G, σ) admits a modulo 3-NZF with all edges assigned with 1, but no integer-valued

3-NZF.

Zhang [17] proved the following two results, which generalize Tutte’s theorem to signed

graph with k = 2, 3.

Theorem 1.3 ([17]). If a signed graph (G,σ) admits a modulo 2-flow f1 such that each

component of supp(f1) contains an even number of negative edges, then it also admits an

integer-valued 2-flow f2 with supp(f1) = supp(f2).

Theorem 1.4 ([17]). If a signed graph (G,σ) admits a modulo 3-flow f1 such that supp(f1)

is bridgeless, then it also admits an integer-valued 3-flow f2 with supp(f1) = supp(f2).

In this paper, under the weaker conditions, we prove the following two results which are

analogs of Theorem 1.1 and respectively improve Theorems 1.3 and 1.4.

Theorem 1.5. If a signed graph (G,σ) is connected and admits a modulo 2-flow f1 such that

supp(f1) contains an even number of negative edges, then it also admits an integer-valued

3-flow f2 with supp(f1) = {e ∈ E(G) : f2(e) = ±1}.

Theorem 1.6. If a signed graph (G,σ) is bridgeless and admits a modulo 3-flow f1, then

it also admits an integer-valued 4-flow f2 with supp(f1) ⊆ {e ∈ E(G) : f2(e) = ±1,±2}.

1.3 Integer-valued circular flows in signed graphs

Definition 1.7. Let (G,σ) be a signed graph associated with an orientation τ .

(1) Let k and d be two positive integers. An integer-valued (resp. modulo) circular k
d
-flow

of (G,σ) is an integer-valued (resp. modulo) flow f such that d ≤ |f(e)| ≤ k − d for

every edge e ∈ E(G).
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(2) Let p be a positive integer. The orientation τ is a modulo (2p + 1)-orientation if
∑

e∈H(v) τ(e) ≡ 0 (mod 2p+ 1) for every vertex v ∈ V (G).

When k = 3, Tutte’s theorem [15] implies that a graph G admits a modulo circular

3-flow if and only if it admits an integer-valued circular 3-flow. This result was generalized

to integer-valued circular (2 + 1
p
)-flows by Jaeger [5] as follows.

Theorem 1.8 ([5]). Let G be a graph. Then the following statements are equivalent:

(A) G admits a modulo (2p + 1)-orientation.

(B) G admits a modulo circular (2 + 1
p
)-flow.

(C) G admits an integer-valued circular (2 + 1
p
)-flow.

For signed graphs, using an identical proof in [5], one can easily prove that (A) and

(B) are still equivalent. However, similar to the argument for modulo flows, the equivalence

relation between (B) and (C) does not hold for signed graphs (see Fig. 1). For more details,

readers are referred to [6], [7], [10], [11], [17], [19], etc.

The following are some early results proved by Xu and Zhang [17], Schubert and Stef-

fen [11], and Zhu [19].

Theorem 1.9. Let (G,σ) be a signed graph. Then (B) and (C) are equivalent if

(1) ([17]) p = 1, and, (G,σ) is cubic and contains a perfect matching;

(2) ([11]) (G,σ) is (2p + 1)-regular and contains an p-factor;

(3) ([19]) (G,σ) is (12p − 1)-edge-connected with negativeness even or at least (2p + 1).

In this paper, we improve all the results in Theorem 1.9 as follows.

Theorem 1.10. (B) and (C) are equivalent for signed graphs with odd-edge-connectivity

at least (2p+1). That is, if a signed graph (G,σ) is odd-(2p+1)-connected, then it admits a

modulo circular (2+ 1
p
)-flow if and only if it admits an integer-valued circular (2+ 1

p
)-flow.

2 Proof of Theorem 1.5

Let (G,σ) together with a flow f1 be a counterexample to Theorem 1.5 such that |E(G)| is

minimized. In the following context, we are to yield a contradiction by showing that (G,σ)

actually admits an integer-valued 3-flow f2 satisfying Theorem 1.5. For convenience, denote

B = supp(f1).

Claim 1. B 6= E(G) and each edge of E(G)−B is a bridge.

4



Proof. If B = E(G), then G is an eulerian graph containing an even number of negative

edges. By Theorem 1.3, G admits an integer-valued 2-NZF f2. If e∗ ∈ E(G) − B is not

a bridge, let G′ = G − {e∗}. Then G′ is connected and f1 is a modulo 2-flow of G′ with

|E(G′)| < |E(G)|. Thus by the minimality of (G,σ), (G′, σ) admits an integer-valued 3-

flow f2 with B = {e ∈ E(G′) : f2(e) = ±1}. In both cases, f2 is a desired integer-valued

3-flow.

Claim 2. For an edge e ∈ E(G) − B, denote the components of G − {e} by Q1 and Q2.

Then each B ∩Qi contains an odd number of negative edges.

Proof. Since B contains an even number of negative edges, B ∩Q1 and B ∩Q2 contain the

same parity number of negative edges. Suppose to the contrary that each contains an even

number of negative edges. For i ∈ {1, 2}, we have |E(Qi)| < |E(G)| and therefore (Qi, σ)

admits an integer-valued 3-flow gi such that B ∩Qi = {e ∈ E(Qi) : gi(e) = ±1}. We define

f2 as f2(e
′) = gi(e

′) for each e′ ∈ Qi and f2(e) = 0. It is easy to see that f2 is a desired

integer-valued 3-flow.

Now we first choose an edge e∗ in E(G)−B and denote its ends by x1 and x2, respectively.

For each i ∈ {1, 2}, let Qi be the component of G − {e∗} with xi ∈ V (Qi). We construct

a new signed graph (Hi, σi) from Qi by adding a negative loop ei at xi. Denote Bi =

(B ∩ Qi) ∪ {ei} and assign f1(ei) = 1. By Claim 2, each Bi contains an even number

of negative edges. Therefore, f1 is a modulo 2-flow of (Hi, σi) with support Bi. Since

|E(Hi)| < |E(G)|, by the minimality of G, (Hi, σi) admits an integer-valued 3-flow gi such

that Bi = {e ∈ E(Hi) : gi(e) = ±1}. Note that |∂gi(xi)| = 2 in Qi. Without loss of

generality, we can assume that ∂g2(x2) = −σ(e∗)∂g1(x1) otherwise we can replace g1 by

−g1. Finally, we define f2 by assigning f2(e) = gi(e) for each e ∈ E(Qi), and by choosing

f2(e
∗) = 2 or −2 such that the boundaries of f2 at x1 and x2 are both zero. It is easy to

verify that f2 is a desired integer-valued 3-flow.

3 Proof of Theorem 1.6

First let us recall the vertex-splitting operation and Splitting Lemma.

Definition 3.1. Let G be a graph and v be a vertex. If F ⊂ EG(v), we denote by G(v;F )

the graph obtained from G by splitting the edges of F away from v. That is, adding a new

vertex v∗ and changing the common end of edges in F from v to v∗ (see Fig. 2).

Lemma 3.2 (Splitting Lemma [2, 3]). Let G be a bridgeless graph and v be a vertex. If

dG(v) ≥ 4 and e1, e2, e3 ∈ EG(v) are chosen in a way that e1 and e3 are in different blocks
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v

e1 e2

· · ·

G

⇒

v

v∗

e1 e2

· · ·

G(v;{e1,e2})

Figure 2: Splitting {e1, e2} away from v

when v is a cut-vertex, then either G(v;{e1,e2}) or G(v;{e1,e3}) is bridgeless. Furthermore,

G(v;{e1,e3}) is bridgeless if v is a cut-vertex.

Proof of Theorem 1.6. Let (G,σ) together with a flow f1 be a counterexample to

Theorem 1.6 such that

(1) | suppc(f1)| is minimized, where suppc(f1) = E(G) − supp(f1);

(2) subject to (1),
∑

v∈V (G) |dG(v)− 3| is minimized.

Now we use an argument similar to the one used in Section 2 and show that (G,σ)

actually admits an integer-valued 4-flow satisfying Theorem 1.6 in the following context.

Claim 3. supp(f1) 6= ∅ and suppc(f1) 6= ∅.

Proof. If supp(f1) = ∅, then simply let f2(e) = 0 for each edge e. If suppc(f1) = ∅, then

supp(f1) = E(G) and thus f1 itself is a modulo 3-NZF of (G,σ). Since G is bridgeless,

Theorem 1.4 implies that (G,σ) admits an integer-valued 3-NZF f2. In both cases, f2 is a

desired integer-valued 4-flow.

Claim 4. The maximum degree of G is at most 3.

Proof. Suppose that G has a vertex v with dG(v) ≥ 4. Since G is bridgeless, Lemma 3.2

implies that we can split a pair of edges e1, e2 from v such that the resulting signed graph,

say (G1, σ1), is still bridgeless. In G1, we consider f1 as a mapping on E(G1) and denote

the common end of e1 and e2 by v∗. Thus, ∂f1(v
∗) ≡ −∂f1(v) (mod 3).

Let w ∈ {v, v∗}. If ∂f1(w) ≡ 0 (mod 3) and dG1
(w) = 2 with EG1

(w) = {ew′ , ew′′}, then

we further suppress the vertex w and denote the new edge by ew (see Fig. 3-(1)). Then we

can assign ew with value f1(ew′), signature σ1(ew′)σ1(ew′′), and an orientation (based on its

signature and value) in a way such that both ends of ew have zero boundary. If ∂f1(w) 6≡ 0

(mod 3), then we further add a positive edge vv∗ oriented from v to v∗ and assign vv∗ with

6



w ⇒

ew′

ew′′

ew

(1) ∂f1(w) ≡ 0 (mod 3), dG1
(w) = 2

v∗ v ⇒ vv∗

(2) ∂f1(w) 6≡ 0 (mod 3)

Figure 3: Construction of signed graph (G2, σ2)

value ∂f1(v
∗) (see Fig. 3-(2)). In both cases, denote the resulting signed graph and mapping

by (G2, σ2) and g1, respectively.

It is easy to verify that g1 is a modulo 3-flow of (G2, σ2) and | suppc(g1)| ≤ | suppc(f1)|

and that
∑

v∈V (G2)
|dG2

(v)−3| <
∑

v∈V (G) |dG(v)−3|. By the choice of (G,σ), (G2, σ2) has

an integer-valued 4-flow g2 with supp(g1) ⊆ {e ∈ E(G2) : g2(e) = ±1,±2}. One can easily

derive a desired integer-valued 4-flow f2 of (G,σ) from g2.

Note that G is connected. By Claim 3, G has a vertex x such that EG(x)∩ supp(f1) 6= ∅

and EG(x) ∩ suppc(f1) 6= ∅. Let e∗ be an edge of EG(x) ∩ suppc(f1) and denote the other

end of e by y. We may without lose of generality assume that e∗ is positive otherwise we

make a switch at x. We may further assume that e∗ is oriented from x to y. Now we

contract e∗ and denote the resulting signed graph by (G′, σ′). Thus, the restriction of f1

to E(G′), say f ′
1, is a modulo 3-flow of (G′, σ′). It follows from supp(f ′

1) = supp(f1) that

| suppc(f ′
1)| < | suppc(f1)|. Hence, (G′, σ′) admits an integer-valued 4-flow f ′

2 such that

supp(f ′
1) ⊆ {e ∈ E(G′) : f ′

2(e) = ±1,±2}.

Now we consider the mapping f ′
2 on E(G). Each vertex (possibly except x and y)

has zero boundary and ∂f ′
2(x) = −∂f ′

2(y). If ∂f ′
2(x) 6≡ 0 (mod 3), then we extend f ′

2 to

a mapping h1 by assigning h1(e
∗) = −∂f ′

2(x). Thus, h1 is a modulo 3-flow of G with

supp(h1) ⊃ supp(f1). This implies | suppc(h1)| < | suppc(f1)|, which contradicts the as-

sumption (1). Thus, ∂f ′
2(x) ≡ 0 (mod 3). In summary, x is a vertex satisfying dG(x) ≤ 3,

EG(x)∩supp
c(f1) 6= ∅, and 1 ≤ |f ′

2(e)| ≤ 2 for e ∈ EG(x)∩supp(f1). Hence, 0 ≤ |∂f ′
2(x)| ≤ 4

and furthermore |∂f ′
2(x)| ∈ {0, 3}. Finally, we extend f ′

2 to a mapping f2 by assigning

f2(e
∗) = −∂f ′

2(x). Clearly, f2 is an integer-valued 4-flow satisfying Theorem 1.6.

7



4 Proof of Theorem 1.10

4.1 A new vertex splitting lemma

The vertex splitting method is one of the most useful techniques in graph theory (especially,

in the study of integer-valued flow and cycle cover problems). In Section 3, we have discussed

Splitting Lemma introduced by Fleischner (see Lemma 3.2). Here are more early results

about vertex splitting by Nash-Williams [9], Mader [8], and Zhang [18].

Theorem 4.1 ([9]). Let k be an even integer and G be a λ-edge-connected graph. Let

v ∈ V (G) and a be an integer such that λ ≤ a and λ ≤ d(v) − a. Then there is an edge

subset F ⊂ E(v) such that |F | = a and G(v;F ) remains λ-edge-connected.

Theorem 4.2 ([8]). Let G be a graph and v ∈ V (G) such that v is not a cut-vertex. If

d(v) ≥ 4 and v is adjacent to at least two distinct vertices, then there are two edges e1, e2 ∈

E(v) such that, for every pair of vertices x, y ∈ V (G) − {v}, the local edge-connectivity

between x and y in the graph G(v;{e1,e2}) remains the same as in G.

Theorem 4.3 ([18]). Let G be a graph with odd-edge-connectivity at least λo. Let v be

a vertex of G such that d(v) 6= λo and E(v) = {e0, e1, . . . , ed(v)−1}. Then there is a pair

of edges ei, ei+1 ∈ E(v) (subindices modulo d(v)) such that the graph G(v;{ei,ei+1}) remains

odd-λo-edge-connected.

Definition 4.4. Let G be a graph and v be a vertex. Let S(v) be a subset of {(ei, ej) : ei, ej ∈

E(v) and ei 6= ej}. The subset S(v) is sequentially connected if, for every pair of edges

e′, e′′ ∈ E(v), there is a sequence (e0, e1), (e1, e2), . . . , (et−2, et−1), (et−1, et) ∈ S(v) (subindices

modulo d(v)) such that e′ = e0 and e′′ = et.

In Theorem 4.3, the subset S(v) = {(ei, ei+1) : i ∈ Zd(v)} is sequentially connected.

Therefore, the following theorem is a generalization of Theorem 4.3, and is expected to

have many applications in graph theory. The proof of Theorem 4.5 is identical to the one

in [18] and an alternative proof can be also found in [13].

Theorem 4.5. Let G be a graph with odd-edge-connectivity at least λo and v be a vertex

with d(v) 6= λo. Let S(v) be a subset of {(ei, ej) : ei, ej ∈ E(v) and ei 6= ej}. If the subset

S(v) is sequentially connected, then there is a pair of edges (e′, e′′) ∈ S(v) such that the

graph G(v;{e′,e′′}) remains odd-λo-edge-connected.

The following corollary is an analog of Theorem 4.1 with respect to odd-edge-connectivity.

Corollary 4.6. Let G be a graph with odd-edge-connectivity at least λo and v be a vertex

with d(v) > λo. Let S(v) = {(ei, ej) : ei, ej ∈ E(v) and ei 6= ej} and a be an even integer

such that a ≤ d(v) − λo. Then there is an edge subset F ⊂ E(v) of size a, consisting of

disjoint elements of S(v), such that G(v;F ) remains odd-λo-edge-connected.
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Proof. Let a = 2b. Now we apply Theorem 4.5 to v repeatedly b times at v. Then the

resulting graph remains odd-λo-edge-connected. Denote by {v∗1 , . . . , v
∗
b} the set of the re-

sulting vertices of degree two. It is easy to see that the collection of the edges incident with

v∗i for i = 1, . . . , b is a desired edge subset F of E(v).

4.2 An application of Tutte’s f-factor theorem

Theorem 1.10 will be proved by applying both Theorem 4.5 and some f -factor lemmas (such

as, Lemma 4.10) in this section.

Definition 4.7. Let G be a graph and f : V (G) → Z
+ be a mapping. An f -factor of G is

a subgraph H such that dH(v) = f(v) for each vertex v ∈ V (G). In particular, if the range

of f is {1, 2}, we simply call H a {1, 2}-factor.

In [16], Tutte gave a necessary and sufficient condition of the existence of f -factors.

Theorem 4.8 ([16]). A graph G has an f -factor if and only if for any two disjoint vertex

subsets S, T ⊆ V (G),

∑

v∈S

f(v) ≥ |O(S, T )|+
∑

v∈T

[f(v)− dG−S(v)], (1)

where O(S, T ) is the set of components U of G− S − T for which

∑

v∈U

f(v) + e(U, T ) ≡ 1 (mod 2). (2)

Next we apply Tutte’s f -factor theorem to find a {1, 2}-factor for graphs defined below.

Lemma 4.9. Let k be an odd integer and G be an odd-k-edge-connected graph. Let {V1, V2}

be a partition of V (G) such that dG(v) = k if v ∈ V1 and dG(v) = 2k if v ∈ V2. If f is a

function satisfying f(v) = dG(v)/k for each vertex v, then G has an f -factor.

Proof. Let S and T be two disjoint subsets of V (G) and O = O(S, T ). Let {Q1, Q2, Q3, Q4}

be a partition of T , where for each t ∈ {1, 2}, Qt consists of the vertices v ∈ T ∩ Vt such

that dG−S(v) = 0, Q3 consists of the vertices v of T ∩ V2 such that dG−S(v) = 1, and

Q4 = T −Q1 −Q2 −Q3. The following claim directly follows from the definitions.

Claim 5. (1) kf(v) = dG(v) and f(v) ≡ dG(v) (mod 2) for each vertex v.

(2)
∑

v∈U dG(v) + e(U, T ) ≡ 1 (mod 2) for each U ∈ O.

We partition O into O1 and O2, where

O1 = {U ∈ O : e(U, T ) = 0} and O2 = {U ∈ O : e(U, T ) 6= 0}.

9



Claim 6.
∑

U∈O

e(U,S) ≥ k|O1|+ |O2|.

Proof. Note that if U ∈ O1, then e(U, T ) = 0 and thus E(U,S) is an edge-cut. Since G is

odd-k-edge-connected, it suffices to show that for each U ∈ O, e(U,S) ≡ 1 (mod 2).

For each U ∈ O, we have

∑

v∈U

dG(v) ≡ e(U, T ) + e(U,S) ≡ −e(U, T ) + e(U,S) (mod 2).

Thus by Claim 5-(2), we have e(U,S) ≡ 1 (mod 2).

Claim 7.

e(S, T ) =
∑

v∈T

[dG(v) − dG−S(v)] ≥ k
∑

v∈T

[f(v)− dG−S(v)] + (k − 1)|O2|.

Proof. Since dG−S(v) = 0 if v ∈ Q1 ∪Q2 and dG−S(v) = 1 if v ∈ Q3, we have

∑

v∈Q1∪Q2∪Q3

[dG(v)− dG−S(v)] = k
∑

v∈Q1∪Q2∪Q3

[f(v)− dG−S(v)] + (k− 1)
∑

v∈Q3

dG−S(v). (3)

Since kf(v) = dG(v) for each vertex v, we have

∑

v∈Q4

[dG(v)−dG−S(v)] =
∑

v∈Q4

[kf(v)−dG−S(v)] = k
∑

v∈Q4

[f(v)−dG−S(v)]+(k−1)
∑

v∈Q4

dG−S(v).

(4)

Combining (3) and (4), we have

∑

v∈T

[dG(v) − dG−S(v)] = k
∑

v∈T

[f(v)− dG−S(v)] + (k − 1)
∑

v∈Q3∪Q4

dG−S(v). (5)

Since each vertex v ∈ Q3 ∪ Q4 is adjacent to at most dG−S(v) components in O2, we

have
∑

v∈Q3∪Q4

dG−S(v) ≥ |O2|. (6)

Combining (5) and (6), we have

e(S, T ) ≥ k
∑

v∈T

[f(v)− dG−S(v)] + (k − 1)|O2|.

10



Denote Sc = V (G)−S. Now we are to estimate e(S, Sc) in two ways by finding a lower

bound and an upper bound. Obviously,

e(S, Sc) ≤
∑

v∈S

dG(v) = k
∑

v∈S

f(v). (7)

On the other hand,

e(S, Sc) ≥ e(S, T ) +
∑

U∈O

e(S,U). (8)

By (7) and (8) together with Claims 6 and 7, we have

k
∑

v∈S

f(v) ≥ k
∑

v∈T

[f(v)− dG−S(v)] + (k − 1)|O2|+ k|O1|+ |O2|

= k
∑

v∈T

[f(v)− dG−S(v)] + k(|O1|+ |O2|)

= k

(

∑

v∈T

[f(v)− dG−S(v)] + |O|

)

.

(9)

By (9), we have
∑

v∈S

f(v) ≥ |O|+
∑

v∈T

[f(v)− dG−S(v)].

Therefore, by Theorem 4.8, G has an f -factor.

Lemma 4.10. Let G be a graph with odd-edge-connectivity at least (2p + 1). If there is a

mapping µ : V (G) → Z
+ such that dG(v) = (2p + 1)µ(v) for each vertex v ∈ V (G), then

there is a spanning subgraph F such that dF (v) = pµ(v).

Proof. For each vertex v with dG(v) /∈ {2p + 1, 2(2p + 1)}, we first apply Corollary 4.6 to

v with a = 2(2p + 1) and λo = 2p + 1. Repeatedly apply this process until the degree of

every vertex is either (2p + 1) or 2(2p + 1). Let G′ denote the resulting graph.

Next we apply Lemma 4.9 to G′ with k = 2p + 1. Let F0 be a {1, 2}-factor of G′ such

that, for each v ∈ V (G′), dF0
(v) = 1 if dG′(v) = 2p+1 and dF0

(v) = 2 if dG′(v) = 2(2p+1).

Let G′′ = G′ − E(F0). Split each vertex v of G′′ with dG′′(v) = 4p into a pair of degree

2p vertices (no need to preserve the odd-edge-connectivity here). Let G′′′ be the resulting

2p-regular graph. By Petersen’s Theorem, G′′′ has a 2-factorization {F1, . . . , Fp}.

When p is even, say p = 2q, the subgraph F induced by the edges of F1, . . . , Fq is a

desired spanning subgraph. When p is odd, say p = 2q+1, the subgraph F induced by the

edges of F0, F1, . . . , Fq is a desired spanning subgraph.
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4.3 Completion of the proof of Theorem 1.10

Now we are ready to complete the proof of Theorem 1.10.

It is obvious that (C) implies (B). Since (A) and (B) in Theorem 1.8 are equivalent,

we will prove that (A) implies (C).

Let (G,σ) be an odd-(2p+1)-edge-connected signed graph and τ be a modulo (2p+1)-

orientation of (G,σ). We are going to show that (G,σ) has an integer-valued circular

(2 + 1
p
)-flow.

For each v ∈ V (G), denote H+
τ (v) = {h ∈ H(v) : τ(v) = 1} and H−

τ (v) = {h ∈

H(v) : τ(v) = −1}. Let d+τ (v) = |H+
τ (v)| and d−τ (v) = |H−

τ (v)|. If both d+τ (v) > 0

and d−τ (v) > 0 for some vertex v, then by Theorem 4.5 with S(v) = {(e′, e′′) : e′ ∈

H+
τ (v) and e′′ ∈ H−

τ (v)}, one can split a pair of half-edges (one from H+
τ (v) and the

other from H−
τ (v)) away from v and then suppress the resulting degree 2 vertex. Let G′ be

the resulting graph obtained from G by repeatedly applying Theorem 4.5 until no such pair

of edges exits. Then G′ remains odd-(2p + 1)-edge-connected. Since τ remains a modulo

(2p + 1)-orientation of (G′, σ) and either d+τ (v) = 0 or d−τ (v) = 0 for each vertex v of G′,

there is a mapping µ of G′ : V (G′) → Z
+ such that dG′(v) = (2p+ 1)µ(v).

By Lemma 4.10, G′ has a spanning subgraph F such that dF (v) = pµ(v). Then the

integer-valued function f∗ defined as follows is a circular (2 + 1
p
)-flow of (G,σ):

f∗(e) =

{

p if e 6∈ F ;

−p− 1 if e ∈ F.
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