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Abstract. Integrodifference equations are discrete-time cousins of reaction-diffusion equations.4
Like their continuous-time counterparts, they are used to model spreading phenomena in ecology and5
other sciences. Unlike their continuous-time counterparts, even scalar integrodifference equations6
can exhibit non-monotone dynamics. Few authors studied the existence of spreading speeds and7
travelling waves in the non-monotone case; previous numerical simulations indicated the existence of8
travelling two-cycles. Our numerical observations indicate the presence of several spreading speeds9
and multiple travelling wave profiles in these equations. We generalize the concept of a spreading10
speed to encompass this situation and prove the existence of such generalized spreading speeds and11
associated travelling waves in the corresponding second-iterate operator. Our numerical simulations12
let us conjecture that these spreading speeds could be linearly determined. We prove the existence of13
bistable travelling waves in a related second-iterate operator. We relate our results to the existence14
of stacked waves and to dynamical stabilization.15
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1. Introduction. Spreading processes are ubiquitous phenomena in science that19

arise in areas as diverse as flame fronts, action potentials, or biological invasions. The20

two most important questions in this context ask how fast the quantity of interest21

propagates and what shape it forms. Accordingly, there is a vast body of literature22

on mathematical modelling and analysis of spreading phenomena, specifically on the23

corresponding mathematical concepts of the ‘asymptotic spreading speed’ [30] and the24

profile of a ‘travelling wave’ [12]. Depending on the phenomenon of interest, the time25

and space variables in the mathematical model may be chosen discrete or continuous.26

In this paper, we work with a spatially continuous, time-discrete model, known as27

‘integrodifference equation’ [14] or ‘integral recursion’ [30].28

Integrodifference equations are particularly well suited to model the dynamics29

of a biological population with discrete, non-overlapping generations and temporally30

separated growth and dispersal phases; a pattern that many plant and insect popula-31

tions exhibit [14]. The quantity of interest is a one-dimensional density representing32

the population, whose value in generation t (in time) and point x (in space) is de-33

noted by Nt(x). The growth phase, during which individuals are spatially stationary,34

is modelled by a growth function F. The dispersal phase is described by a ‘dispersal35

kernel’ K, which is the probability density function of the signed distances that an36

individual disperses [22]. The ‘next generation operator’ Q that maps the density at37

time t to the density at time t+ 1 is given by the composition of growth and dispersal38

as the convolution integral operator39

(1) Nt+1(x) = Q[Nt](x) = [K ∗ F (Nt)](x) =

∫
R
K(x− y)F (Nt(y))dy.40
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2 A. BOURGEOIS, V. LEBLANC, AND F. LUTSCHER

Unless otherwise noted, integrals in this work will be over the entire real line, and we41

will drop the symbol R from the integral if no confusion can arise. The symbol ∗ will42

denote the convolution of two functions over the real line as defined in (1).43

Integrodifference equations have been used quite successfully to model biological44

invasions [5, 8, 13], most commonly by studying properties of travelling wave solutions,45

i.e. solutions of (1) of the form Nt(x) = W (x− ct), where W is the spatial profile and46

c is the speed of the invasion. While the existence and shape of such a profile depend47

on properties of both F and K, we focus on the influence of the growth function. We48

list the standard requirements on K in the next section.49

In the simplest biologically relevant application, the non-spatial, one-dimensional50

map N 7→ F (N) is monotone increasing, concave down, and has two fixed points:51

N∗ = 0 is linearly unstable and N∗ = 1 is globally asymptotically stable. We can and52

shall always scale a positive fixed point to equal 1. The Beverton-Holt function53

(2) F (N) =
RN

1 + (R− 1)N
54

with R > 1 has these properties. Then there is a minimal speed c∗, such that the55

spatial model (1) has constant-speed, monotone travelling waves that connect the two56

fixed points of the non-spatial map for all c ≥ c∗ [30]. In contrast, the Ricker function57

(3) F (N) = N exp(r(1−N))58

is not monotone but may still have an unstable fixed point at N = 0 and a stable point59

at N = 1, provided 0 < r < 2. In this case, there is again a minimal speed c∗, and60

for each c ≥ c∗ one can observe numerically a non-monotone travelling wave for the61

integrodifference equation (1), connecting the two fixed points [12]. The existence of62

such a travelling wave was proved in [10, 15, 33]. The positive fixed point of the Ricker63

function can lose stability via a flip bifurcation where a stable two-cycle emerges. In64

fact, the dynamics of the Ricker function are qualitatively the same as those of the65

famous discrete logistic function66

(4) F (N) = (1 + r)N − rN2.67

If the growth function exhibits a stable two-cycle or more complex behaviour, it is68

natural to ask whether the spatial dynamics of (1) are similarly complex. In some69

cases, one can still prove the existence of a travelling wave profile [10, 15, 33], but70

since the positive fixed point of the growth function is unstable, one cannot expect71

the profile to approach it.72

Based on numerical simulations, Kot conjectured that there is a ‘travelling two-73

cycle’, i.e. a pair of wave profiles that alternate between generations and advance at a74

constant speed [12]. Each of these profiles would connect the zero state with exactly75

one of the points of the stable two-cycle; please see Figure 9 in [12]. Our own numerical76

simulations of this scenario give a similar, yet different result, documented in Figure77

1. While the solution profile alternately approaches the two values of the stable two-78

cycle, different parts of the solution propagate at different speeds. There is a first,79

non-monotone wave front that connects the unstable state N = 0 to the unstable80

state N = 1. Then there is a second, monotone front that connects the unstable state81

N = 1 to the stable states of the two-cycle, alternatingly in time. The first front82

moves faster than the second: the distance between two subsequent ”first” fronts is83

larger that the distance between two subsequent ”second” fronts. The purpose of this84
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SPREADING PHENOMENA WITH NON-MONOTONE GROWTH FUNCTIONS 3

Fig. 1. Numerical solution of (1), where the logistic growth function F from (4) admits a stable
two-cycle and the dispersal kernel K is the Laplace kernel in (16). Solutions are plotted for even
(top panel) and odd (bottom panel) generations every 10 time steps. The values n+ and n− indicate
the high and low density of the two-point cycle for the function F. Parameters are r = 2.2 in (4)
and a = 6 in (16). The initial condition was the characteristic function N0(x) = n+χ[x≥10].

paper is to study this phenomenon of propagation when the map N 7→ F (N) admits85

a stable two-cycle.86

The subsequent sections are organized as follows. We recall the concept of an87

‘asymptotic spreading speed’ from [30] and review the most important existing results88

about this speed and related travelling waves. In Section 2, we define a ‘generalized89

spreading speed’ and extend the most important results from [30] accordingly. In90

Section 3, we apply this theory to the second iterate of the operator Q in (1) and91

show that there exists a generalized spreading speed and corresponding travelling92

waves. We present numerical simulations of these travelling waves and an explanation93

of stacked waves in Section 4. We present two directions in which our work can be94

extended in Section 5. We close with a discussion that identifies several challenging95

problems in the analysis of integrodifference equations that result from our work.96

2. Mathematical Background and Theoretical Set-up. In this section, we97

give the precise definitions and review the relevant existing results on spreading speeds98

and travelling waves before we formulate the problem that we will subsequently study.99

We shall always assume that the growth function F ≥ 0 is sufficiently smooth.100

The precise properties of F will be discussed later. We also assume that the dispersal101

kernel K is a non-negative, continuous and symmetric function with the property102

(5)

∫
K(x)dx = 1.103

In addition, we assume that the moment-generating function of K, given by104

(6) M(s) =

∫
K(x)esxdx,105

exists for at least one non-zero value of s.106

To define the asymptotic spreading speed, we denote by C[π0,π1] the set of con-107

tinuous functions on R with values in the interval [π0, π1], where 0 ≤ π0 < π1. We108
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4 A. BOURGEOIS, V. LEBLANC, AND F. LUTSCHER

can consider any real number as a constant function. In that sense, fixed points of109

F are spatially constant fixed points of Q. If F is continuous with values between π0110

and π1, then Q will map C[π0,π1] into itself. For a given initial condition N0(x) we111

define the sequence {Nt(x)} via the recursion Nt+1 = Q[Nt] as in (1). The following112

definition is standard and appears in the literature in slightly different but equivalent113

formulations [10, 15, 30, 31].114

Definition 2.1. The value c∗ is called the asymptotic spreading speed of Q if115

the following conditions hold:116

i) For any N0 ∈ C[0,1] with compact support, we have117

lim
t→∞

sup
|x|≥ct

Nt(x) = 0 for all c > c∗.118

119

ii) For any N0 ∈ C[0,1] with N0 6≡ 0, we have120

lim
t→∞

inf
|x|≤ct

Nt(x) = 1 for all c ∈ (0, c∗).121
122

The following result is standard and was recently reviewd in [2, 26].123

Proposition 2.2. Let F be a Lipschitz continuous function with values in [π0, π1]124

and let Q be the operator defined in (1). Then Q is continuous and compact in the125

topology of uniform convergence on compact subsets in C[π0,π1]. More specifically,126

i) (Continuity) If vt → v uniformly on compact subsets of R in C[π0,π1], then127

Q[vt](x)→ Q[v](x) for all x ∈ R.128

ii) (Compactness) Every sequence {vt} in C[π0,π1] has a subsequence {vti} such129

that {Q[vti ]} converges uniformly on every bounded subset of R.130

Under the standing assumptions on the dispersal kernel K, we can formulate131

conditions on the growth function F that guarantee the existence of a spreading132

speed. The following is an adaptation of the seminal theorem by Weinberger [30],133

with additions by Weinberger and Zhao [31].134

Theorem 2.3 (see Theorem 6.5 in [30]). Assume that the standing assumptions135

on K hold and let F be a growth function that satisfies the following conditions:136

i) F is bounded and continuously differentiable,137

ii) F (0) = 0 and F (1) = 1 are the only two fixed points of F on [0, 1],138

iii) F ′(0) > 1,139

iv) F is non-decreasing on [0, 1].140

Then, there exists a spreading speed c∗ > 0 for the operator Q defined by (1).141

Since our operator Q is compact (see Proposition 2.2), the existence of travelling142

waves is also guaranteed.143

Theorem 2.4 (Theorem 6.6 in [30]). Let F be a function that satisfies the144

hypotheses of Theorem 2.3. Then for all c ≥ c∗, there exists a monotone travelling145

wave solution Nt(x) = W (x+ct) of (1) with limz→∞W (z) = 1 and limz→−∞W (z) =146

0. For c < c∗ there exists no such travelling wave solution.147

Moreover, under the additional assumption that the function F is bounded above148

by its linearization at zero, there is an explicit formula for the spreading speed.149

Theorem 2.5 ([29, 30]). If, in addition to the assumptions of Theorem 2.3, we150

have F (N) ≤ F ′(0)N on [0, 1], then the spreading speed of Q is given by151

c∗ = inf
s∈Ω

1

s
ln (F ′(0)M(s)) , Ω = {s > 0|M(s) <∞}.(7)152

153
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SPREADING PHENOMENA WITH NON-MONOTONE GROWTH FUNCTIONS 5

Fig. 2. A stable two-cycle (left) and four-cycle (right) for the Ricker function with parameter
r = 2.2 (left) and r = 2.6 (right).

It is a straightforward calculation to show that the minimal speed of a travelling154

profile Nt(x) = W (x + ct) for the linear integrodifference equation (1) with F (N)155

replaced by F ′(0)N is also given by the expression for c∗ in (7); please see e.g. [13].156

If the spreading speed of the nonlinear equation is the same as for the linearized (at157

zero) equation, then we say that the spreading speed is linearly determined [15]. Using158

the linearization, one obtains a parametric representation of c∗ through the pair of159

conditions [12]160

c =
M ′(s)

M(s)
, and F ′(0) =

esM
′(s)/M(s)

M(s)
,(8)161

162

where M denotes the moment-generating function of K as in (6).163

The conditions on the growth function F in Theorem 2.3 are somewhat restrictive.164

The Beverton-Holt function in (2) satisfies them, independent of the value of R. The165

Ricker and logistic functions, however, satisfy these conditions only for 0 < r < 1.166

When 1 < r < 2, they both become non-monotone, but N = 0 is still an unstable167

fixed point and N = 1 is the globally stable positive fixed point. These two ingredients168

are sufficient to guarantee that Theorems 2.3, 2.4 and 2.5 hold to the extent possible.169

One now considers the space C[0,π1], where π1 is the maximum of the growth function170

F . One can show that there exists a spreading speed, that it is linearly determined171

by the formula in (7), and there exist travelling waves, not necessarily monotone, for172

all speeds greater than or equal to the spreading speed [10, 15, 32, 33]. Numerical173

simulations of such profiles are shown in Figure 8 in [12] and Figure 2 in [15].174

At r = 2, the positive state N = 1 in the Ricker and logistic functions loses175

stability through a flip bifurcation, and there is a (globally) stable two-cycle for 2 <176

r < 2.526 and 2 < r < 2.449, respectively [21]. We denote the values of the two-cycle177

as n±. They satisfy the relations n+ = F (n−) = F (F (n+)) and 0 < n− < 1 < n+, see178

Figure 2. Our work is concerned with the behaviour of travelling objects in this case.179

It is well known that, as r increases further, there is a period doubling bifurcation to a180

four-cycle (see right plot in Figure 2). We will touch this case in Section 5. Increasing181

r even further triggers a period-doubling cascade to higher order cycles and chaos.182

As mentioned in the introduction, Kot conjectured the existence of a travelling183

two-cycle for model (1), based on simulations in Figure 9 in [12]. Our simulations184

in Figure 1 indicate that different parts of the profile travel at different speeds, as185

explained in the introduction. As is common when studying two-cycles, we introduce186
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6 A. BOURGEOIS, V. LEBLANC, AND F. LUTSCHER

the second-iterate operator Nt+2(x) = S[Nt](x) as187

(9) S[N ](x) := (Q ◦Q)[N ](x) =

∫
K(x− y)F

(∫
K(y − z)F (N(z))dz

)
dy.188

When studying the properties of S, it will be convenient to change indices and study189

Ñt+1(x) = S[Ñt](x). We will drop the tilde when no confusion can arise. The following190

properties of S are a direct consequence of the corresponding properties of Q.191

Proposition 2.6. Under the assumptions of Proposition 2.2, the operator S is192

continuous and compact.193

A travelling two-cycle for the operator Q corresponds to a pair of travelling wave194

profiles for the operator S. Since our simulations in Figure 1 indicate that instead, we195

expect travelling objects of different speeds for the operator S, we begin by defining196

an appropriate generalized spreading speed.197

Definition 2.7. The value c∗(π0,π1) is called the generalized asymptotic spreading198

speed of S from π0 to π1 if the following conditions hold:199

i) For any N0 ∈ C[π0,π1] such that N0 − π0 has compact support,200

lim
t→∞

sup
|x|≥ct

Nt(x) = π0 for all c > c∗(π0,π1).(10)201

202

ii) For any N0 ∈ C[π0,π1] such that N0 − π0 6≡ 0203

lim
t→∞

inf
|x|≤ct

Nt(x) = π1 for all c ∈ (0, c∗(π0,π1)).(11)204
205

Please note that for π0 = 0, this definition agrees with the standard definition given206

above, i.e. c∗(0,1) = c∗.207

We adapt and extend the theory in [30] to establish the existence of a spreading208

speed and travelling wave solutions for our operator S. We slightly generalize Wein-209

berger’s theory by vertically translating functions bounded below by 0 to functions210

bounded below by π0 > 0. The idea behind the proof of the following theorem can be211

found in the corollary of Proposition 3 in [16].212

Theorem 2.8. Assume that the operator U acts on the space C[π0,π1] of continu-213

ous functions as follows:214

i) (Translation invariance) U [N(· − a)](x) = U [N ](x− a).215

ii) (Invariance on C[π0,π1]) N ∈ C[π0,π1] ⇒ U [N ] ∈ C[π0,π1].216

iii) (Fixed points) U [π0] = π0, U [π1] = π1, U [α] > α for α ∈ (π0, π1).217

iv) (Monotonicity) π0 ≤ N ≤M ≤ π1 ⇒ U [N ] ≤ U [M ].218

v) (Continuity) If {ft} ⊂ C[π0,π1] and ft → f uniformly on compact subsets of219

R then U [ft]→ U [f ] pointwise as t→∞.220

Then there exists a generalized spreading speed c∗(π0,π1) for U from π0 to π1.221

Proof. We construct an operator Ũ on C[0,π1−π0] as Ũ [f ] = U [f + π0]− π0. This222

operator inherits all the qualitative properties from Ũ , shifted to the interval [0, π1 −223

π0. Hence, it satisfies the assumptions of Theorem 6.5 in [30], which guarantees the224

existence of a spreading speed.225

3. Existence of Spreading Speeds and Travelling Waves. We apply The-226

orem 2.8 to U = S = Q ◦Q and prove the existence of a generalized spreading speed227

and travelling waves from 1 to n+. We begin with the case where F is monotone on the228

interval [n−, n+]. For the Ricker and logistic functions, the monotonicity condition is229

satisfied when 2 < r < 2.2565 and 2 < r < 2.2361, respectively.230
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3.1. The Monotone Case.231

Theorem 3.1. Let F be a growth function that satisfies the following conditions:232

i) F is bounded and continuously differentiable;233

ii) F has exactly one stable two-cycle, i.e. there exist n± such that 0 < n− <234

1 < n+, and F (n−) = n+ and F (n+) = n−, and all non-negative initial235

conditions converge to this two-cycle under the map Nt+1 = F (Nt);236

iii) N = 1 is the only fixed point of F on the interval [n−, n+];237

iv) F ′(1) < −1;238

v) F is non-increasing on the interval [n−, n+].239

Then, there exists a spreading speed c∗(1,n+) for the operator S in (9) from 1 to n+.240

Proof. Clearly, S is translation invariant. The function F maps [1, n+] into [n−, 1]241

and vice versa. Hence, if N ∈ [1, n+], then Q[N ] ∈ [n−, 1] and also Q(Q[N ]) ∈ [1, n+].242

Therefore, C[1,n+] is invariant under S. Since F (1) = 1 and F (F (n+)) = n+, we have243

S(1) = 1 and S(n+) = n+ in the sense of constant functions. From iv) we have244

(F ◦ F )′(1) > 1 and hence F (F (α)) > α for some α > 1. Since there is no fixed245

point between 1 and n+, we must have F (F (α)) > α for α ∈ (1, n+). The same246

relation holds for constant functions under S. To show monotonicity, assume that247

1 ≤ N(x) ≤ M(x) ≤ n+. Then by v), we have 1 ≥ F (N(x)) ≥ F (M(x)) ≥ n− and248

hence also 1 ≥ Q[N ] ≥ Q[M ] ≥ n−. But then we repeat the argument since F maps249

[n−, 1] into [1, n+] and obtain 1 ≤ Q(Q[N ]) ≤ Q(Q[M ]) ≤ n+. Finally, continuity250

follows from Proposition 2.6.251

Along with the existence of a spreading speed, we are able to establish the exis-252

tence of travelling wave solutions connecting 1 to n+.253

Theorem 3.2. Let F be a function that satisfies the hypotheses of Theorem 3.1.254

Then for all c ≥ c∗(1,n+), there exists a monotone travelling wave solution W (x + ct)255

with limz→−∞W (z) = 1 and limz→∞W (z) = n+ for the recursion defined by (9).256

Proof. For M ∈ C[0,n+−1] define the operator M 7→ S[M + 1]− 1. This operator257

inherits the monotonicity properties from S and is compact by Proposition 2.6. Hence,258

the existence of a traveling wave with asymptotic conditions 0 and n+−1 follows from259

Theorem 6.6 in [30]. An upward shift by 1 of this wave gives the desired traveling260

wave.261

Although we have not been able to prove that c∗(1,n+) is linearly determined, we262

can linearize S aroundN = 1 and obtain the slowest speed of a travelling (exponential)263

profile of the linearized equation. The linearization is given by264

(12) Nt+1(x) = [F ′(1)]2
∫

(K ∗K)(x− y)Nt(y)dy.265

Analogous to the formula in (7), the spreading speed of this linearized equation is266

ĉ(1,n+) = inf
s∈Ω

1

s
ln
(
[F ′(1)]2[M(s)]2

)
, Ω = {s > 0|M(s) <∞}.(13)267

268

The term M2 arises from the properties of the moment-generating function under269

convolution. In Section 4 we use simulations to discuss how c∗(1,n+) and ĉ(1,n+) are270

related.271

3.2. The Non-Monotone Case. An overcompensatory growth function that272

has a stable two-cycle, given by {n−, n+}, is not necessarily non-increasing in the in-273

terval [n−, n+]. This behaviour arises in the Ricker and logistic functions for 2.2565 <274
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8 A. BOURGEOIS, V. LEBLANC, AND F. LUTSCHER

Fig. 3. Construction of the functions F+ and F− in the non-monotone case, where F is the
Ricker function with r = 2.5. Left panel: Functions F (solid), F+ (dotted) and F− (dash-dot).
Right panel: Functions F ◦ F (solid), F+ ◦ F+ (dotted) and F− ◦ F− (dash-dot).

r < 2.526 and 2.2361 < r < 2.449, respectively. Hence, condition v) of Theorem 3.1275

is violated in that range. In this case, we can adapt the ideas in [10, 15] to construct276

sub- and super-solutions that satisfy the conditions of Theorem 3.1 and that bound277

the iterates of S.278

Let F be a function that satisfies the first four hypotheses of Theorem 3.1. Instead279

of condition v), assume the following (see Figure 3):280

v′) There is a point m ∈ (n−, 1) such that F is increasing on [0,m) and decreasing281

on (m,F (m)).282

Since F is unimodal, there is a unique point n∗ ∈ (m, 1) such that F (n∗) = F (F (ñ)).283

We define284

F+(N) :=

{
ñ, 0 ≤ N ≤ m,
F (N), N > m,

and F−(N) :=

{
F (F (ñ)), 0 ≤ N ≤ n∗,
F (N), N > n∗.

285

We use the Ricker function to illustrate this definition. The Ricker function has286

a unique maximum, and it occurs at m = 1/r. The left plot in Figure 3 shows F, F−287

and F+, whereas the right plot shows the respective second iterates. Please note that288

F−(N) ≤ F (N) ≤ F+(N) on [F (ñ), ñ] and F−(N) = F (N) = F+(N) for N ≥ n∗.289

By assumption, the fixed points of F ◦ F are precisely n−, 1 and n+. Further-290

more, we have (F ◦ F )′(1) > 1. Thus, we find (F ◦ F )(N) < N on (n−, 1). Since291

n− < m < n∗ < 1, we have F (ñ) = F (F (m)) < m and F 3(ñ) = F (F (n∗)) < n∗. We292

also obtain ñ > m and (F ◦ F )(ñ) > n∗ since 1 is the only positive fixed point of F ,293

F+ and F−. With this information, we can verify that the fixed points of F+◦F+ are294

N = F (ñ), N = 1 and N = ñ, whereas the fixed points of F− ◦ F− are N = F 3(ñ),295

N = 1 and N = F (F (ñ)), where F (F (ñ)) ≤ n+ ≤ ñ.296

We define the second-iterate operators S± as in (9) with F replaced by F±. Then297

F± satisfy the hypotheses of Theorem 3.1 for n+ = ñ and n+ = F (F (ñ)), respectively.298

Corollary 3.3. There exist generalized spreading speeds c∗+ and c∗− for the op-299

erators S+ and S− from 1 to ñ and 1 to F (F (ñ)), respectively.300

Theorem 3.4. Let F satisfy the conditions of Theorem 3.1 where v) is replaced301

by v′) and define F+, F− and ñ according to the above construction. Assume that302

the spreading speeds of S± as above are linearly determined. Then the value of c∗(1,n+)303

given by (13) is the spreading speed for S in the following sense:304
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i) For any N0 ∈ C[1,ñ] such that N0 − 1 has compact support,305

lim
t→∞

sup
|x|≥ct

Nt(x) = 1 for all c > c∗(1,n+).306

307

ii) For any N0 ∈ C[1,ñ], N 6≡ 1,308

F (F (ñ)) ≤ lim
t→∞

inf
|x|≤ct

Nt(x) ≤ ñ for all c ∈ (0, c∗(1,n+)).309
310

Proof. By construction of F+ and F−, we have the inequalities311

S−[N ](x) ≤ S[N ](x) ≤ S+[N ](x)(14)312313

for 1 ≤ N ≤ ñ. In fact, for N ∈ [1, ñ], we find
∫
K(y − z)F (N(z))dz ∈ [F (ñ), 1].314

Thus,315

F−
(∫

K(y − z)F (N(z))dz

)
≤ F

(∫
K(y − z)F (N(z))dz

)
316

≤ F+

(∫
K(y − z)F (N(z))dz

)
.317

318

Given that F−(N) = F (N) = F+(N) for N ≥ 1, we have319

F−
(∫

K(y − z)F−(N(z))dz

)
≤ F

(∫
K(y − z)F (N(z))dz

)
320

≤ F+

(∫
K(y − z)F+(N(z))dz

)
.321

322

Hence, the relations in (14) hold.323

By construction, we have F−(N) = F (N) = F+(N) near N = 1, so that the324

derivatives of these three functions at N = 1 agree. By the assumption that the325

spreading speeds c∗± of S± are linearly determined, we have c∗+ = c∗− = c∗(1,n+) from326

the formula in (13). We now proceed to proving i) and ii) from the statement.327

i) Let N0 ∈ C[1,ñ] such that N0 − 1 has compact support. If Nt = St(N0) and328

N+
t = (S+)t(N0), then by the comparison principle (Proposition 4.1 in [30])329

1 ≤ Nt(x) ≤ N+
t (x).330331

Applying (10) with π0 = 1 to the previous inequality gives us our result.332

ii) Let N0 ∈ C[1,ñ], N 6≡ 1 and M0 = min{N0, F (F (ñ))}. Then M0 ≤ N0333

and M0 ∈ C[1,F (F (ñ))], M0 6≡ 1. Since F− is non-increasing, (S−)t(M0) ≤334

(S−)t(N0). If M−t = (S−)t(M0), Nt = St(N0) and N+
t = (S+)t(N0), then335

by the comparison principle336

1 ≤M−t ≤ Nt ≤ N+
t .337338

We get our result by applying (10) with π1 = F (F (ñ)) to the sequence {M−t }339

and π1 = ñ to the sequence {N+
t }.340

The previous theorem does not guarantee that the solution Nt(x) converges to341

n+ but only gives an interval for Nt(x). In the corresponding case for the operator Q342

with a non-monotone growth function F that has an unstable fixed point at 0 and a343
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stable fixed point at 1, the authors in [10] were able to guarantee the corresponding344

limit of 1. Unfortunately, we cannot directly apply their result to our operator S.345

However, we expect the solution to have a limit at n+ when the 2-cycle is stable.346

This expectation is based on the numerical evidence that we discuss in the next347

section. A more generalized approach, like the one in [32], would be needed to prove348

this statement. When the two-cycle for the non-spatial map is unstable, we cannot349

expect convergence to n+. Instead, the non-spatial map will have cycles of longer350

period. We discuss these in Section 5.1.351

The results regarding the existence of a spreading speed and travelling wave so-352

lutions for operator S from 1 to n+ stated in this section also apply to S from 1 to353

n−, by application of operator Q to the solution Nt(x).354

4. Numerical Results and Interpretation. In this section, we illustrate our355

theoretical results from the previous section with numerical simulations. We com-356

pare the numerically obtained spread rates with the formula in (13) for ĉ(1,n+) that357

results from the linearization at the unstable steady state. We show that there is a358

good agreement between the two quantities. We also define a different ‘second-iterate359

operator’ and compare the behaviour of solutions of the two.360

For all examples and numerical simulations, we employ the two most frequently361

used dispersal kernels (together with their moment-generating functions), which are362

the Gaussian kernel363

K(x) =
1√

2πσ2
e−

x2

2σ2 with M(s) = e
σ2s2

2 ,(15)364
365

and the Laplace kernel366

K(x) =
a

2
e−a|x| with M(s) =

a2

s2 − a2
.(16)367

368

Setting a =
√

2
σ2 guarantees that both kernels have the same variance.369

4.1. An Alternative ‘Second-iterate’ Operator. The second-iterate opera-370

tor S = Q◦Q that we study describes two growth and two dispersal phases, alternating371

over two generations. Ultimately, we are interested in the spreading speed of this op-372

erator, which is an asymptotic quantity that arises in the limit when the number of373

growth and dispersal phases approaches infinity. One can then ask whether and how374

much the order of events in the short term matters for this quantity in the long term.375

To explore this question, we formulate the operator376

S̃[N ](x) =

∫
(K ∗K)(x− y)(F ◦ F )(N(y))dy,(17)377

378

that describes two growth phases followed by two dispersal phases. The operators S379

and S̃ describe slightly different order of events, but the same number of each of the380

events. Operator S̃ is much easier to study since it has the same form as operator Q381

and fits the framework by Weinberger [30] and others.382

In the following, we will first show that the two operators have the same spreading383

speed from 0 to 1 in the monostable case. Then we will show why the spreading speed384

of S̃ from 1 to n+ is easier to study than that of S. This discussion will also clarify385

that the operators have the same spreading speed if that speed is linearly determined.386

In Section 5.2, we will give an example that shows that no such result can hold for387

the bistable case.388
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4.2. The Spreading Speed. We begin with the well-known case when the389

growth function is monotone and concave down, i.e. it satisfies the hypotheses of390

Theorem 2.5. Then the operator Q has an asymptotic spreading speed from 0 to 1391

that we denote by c∗. It is given explicitly by the formula in (7). It follows that the392

operator S also has a spreading speed from 0 to 1 and that its value is given by 2c∗.393

Since the growth function F satisfies the hypotheses of Theorem 2.5, so does its394

second iterate F ◦F. Thus, from the theory in [30] we conclude that a spreading speed395

c̃∗ exists for the operator S̃ from 0 to 1 and that it is given by the expression:396

c̃∗ = inf
s∈Ω

1

s
ln

(
(F ◦ F )′(0)

∫
esx(K ∗K)(x)dx

)
,397

398

where Ω denotes the values of s > 0 for which the moment-generating function of K399

exists. Since F ′(F (0)) = F ′(0) and since the moment-generating function of a convo-400

lution is the product of moment-generating functions, we conclude that operators S401

and S̃ have the same spreading speed from 0 to 1.402

We can use the parametrization provided by equations (8) to calculate an explicit403

formula for c∗ [12]. In the case of the Gaussian kernel (15), we obtain404

c∗ =
√

2σ2 ln(F ′(0)).(18)405406

In the case of the Laplace kernel (16), the parametric equations in (8) result in407

c =
2s

a2 − s2
, F ′(0) =

a2 − s2

a2
exp

(
2s2

a2 − s2

)
=

2

e2

a2 − s2

2a2
exp

(
2a2

a2 − s2

)
.408

The latter equation is of the form ρz = ez and can be solved by the Lambert W409

function (see e.g. [4])410

2a2

a2 − s2
= −W

(
− 2

F ′(0)e2

)
.411

412

For real values s, we need to choose the branch W−1 of the Lambert W function [2]413

and obtain414

s = a

√√√√ 2

W−1

(
− 2
F ′(0)e2

) + 1.(19)415

416

Substituting (19) into (8), we obtain an explicit expression for the speed as417

c∗ = −1

a
W−1

(
− 2

F ′(0)e2

)√√√√ 2

W−1

(
− 2
F ′(0)e2

) + 1.(20)418

419

This expression is novel. It still requires computation for the Lambert W function,420

but since many modern software packages have this function built in, our formula421

becomes easier to use than the root-finding algorithm previously proposed in [12].422

All the results so far hold when the growth function is monotone on [0, 1]. In addi-423

tion, the spreading speed of Q is still linearly determined when the growth function is424

not monotone but has N = 1 as a stable fixed point. If we drop the requirement that425

the density behind the front converges to the steady state and instead require only426

that it be bounded below by a positive number, then there is still a ‘spreading speed’427
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12 A. BOURGEOIS, V. LEBLANC, AND F. LUTSCHER

Fig. 4. Theoretical (solid line) and numerical spreading speeds for operators S (dashed line)
and S̃ (dash-dot line) from 0 to 1 with Ricker function and Laplace kernel for different values of a
(top: a = 10, middle: a = 12, bottom: a = 15) with respect to parameter r. The plot is generated
with a scheme that uses the FFT algorithm and is based on [23].

and it is linearly determined [10, 15, 32, 33]. Hence, the explicit expressions (19, 20)428

give the spreading speed for the Ricker and logistic functions even when r > 1.429

We compare the numerical spreading speeds obtained from simulations to the430

values predicted by formulas (18) and (20). We illustrate the plot obtained for the431

Laplace kernel and the Ricker function in Figure 4, with respect to the parameter r432

of the growth function. Similar plots are obtained when K is the Gaussian kernel and433

when F is the logistic function. In all cases, the numerical errors are bounded above434

by 5%. An error of this magnitude is standard for spread problems [23].435

4.3. The Generalized Spreading Speed from 1 to n+. When the growth436

function F satisfies the hypotheses of Theorem 3.1, operators S and S̃ have generalized437

spreading speeds c∗(1,n+), c̃
∗
(1,n+) from 1 to n+. The linearizations of S and S̃ at N = 1438

are identical. Sufficient conditions for linear determinacy of c̃∗(1,n+) for S̃ follow directly439

from [30], but not for S. Somewhat surprisingly, these sufficient conditions for S̃ are440

met when F is the logistic growth function, but not for the Ricker function, as we show441

below. Nonetheless, our simulations indicate that the generalized spreading speed for442

S̃ is linearly determined in both cases and that the speeds for S̃ and S are identical.443

Proposition 4.1. Let F be the logistic function. Then the generalized spreading444

speed of S̃ from 1 to n+ is linearly determined.445

Proof. We begin by showing that (F ◦ F )′′(N) ≤ 0 on [1, n+]. Indeed,446

(21) (F ◦ F )′′(N) = −2r(1 + r)(2 + r) + 12[r2(1 + r)N − r3N2].447

The roots of (21) are given by the expression448

N =
3(1 + r)±

√
3(r2 − 1)

6r
.449

By solving the inequality450

3(1 + r) +
√

3(r2 − 1)

6r
− 1 < 0,451

we conclude that both roots of (21) are less than 1 when r > 2. It follows that452
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(F ◦ F )′′(N) ≤ 0 for all N ≥ 1. By the mean value theorem,453

(F ◦ F )(N) ≤ [F ′(1)]2(N − 1) + 1454

on [1, n+]. Thus, the spreading speed of S̃ is linearly determined (similarly to the455

result of Theorem 2.5).456

We now find explicit expressions for the generalized spreading speed of S̃ from 1457

to n+ with the logistic growth function and the two dispersal kernels. Since the speed458

is linearly determined, we can use the formula in (13) or the corresponding (adapted)459

parametrization from (8). Since the moment-generating function of K ∗K is simply460

the square of the moment-generating function of K, we find the expressions:461

c =
2M ′(s)

M(s)
and [F ′(1)]2 =

e2sM ′(s)/M(s)

M(s)2
.(22)462

463

When K is the Gaussian kernel, we easily find the speed as464

c∗(1,n+) = 2
√
σ2 ln[F ′(1)]2.(23)465

466

When K is the Laplace kernel, we can derive an expression in terms of the Lambert467

W function in a similar manner as (20) (for details, see [2]), namely468

c∗(1,n+) = −2

a
W−1

(
− 2

|F ′(1)|e2

)√√√√ 2

W−1

(
− 2
|F ′(1)|e2

) + 1.(24)469

470

We compare the values given by (24) to simulations (Figure 5, left plot); the results471

for the Gaussian kernel are similar. All three curves match very well, indicating that472

the generalized spreading speed for S could be linearly determined. The discrepancy473

between theoretical and numerical results are again within 5%.474

Finally, we turn to the Ricker function from (3). The second derivative of F ◦ F475

can easily be evaluated as (F ◦ F )′′(1) = r(r − 1)(r − 2)2. The following lemma476

highlights the difference between the Ricker and the logistic function.477

Lemma 4.2. Let F be the Ricker function with r > 1. Then (F ◦ F )′′(1) >478

0, i.e. F is concave up near N = 1. In particular, exists some α > 1 such that479

(F ◦ F )(N) ≥ [F ′(1)]2(N − 1) + 1 on [1, α].480

According to the lemma, the function F ◦ F is not bounded by its linearization481

near N = 1. We also have (F ◦F )′(1) > 1. It follows that the function F ◦F exhibits482

what is called a ‘weak Allee effect’ at N = 1 [27], and does not satisfy the sufficient483

condition for linear determinacy from [30].484

For reaction-diffusion systems, it was shown that if the Allee effect is sufficiently485

weak, then the spreading speed is linearly determined [27]. Although some analysis486

has been done regarding Allee effects in integrodifference equations [28], it is unclear487

how to characterize an Allee effect as sufficiently weak. Our numerical simulations488

suggest that formulas (23) and (24) still represent the generalized spreading speed for489

operator S̃, with this weak Allee effect (see Figure 5, right plot).490

Since the operators S and S̃ have the same linearization at N = 1, and since the491

numerical simulations show such a good agreement between the respective speeds, we492

formulate the following conjecture.493

Conjecture. Let S be the operator defined by expression (9). Assume F is the494

Ricker function or the logistic function with r > 2. Then the generalized spreading495

speed c∗(1,n+) of S from 1 to n+ is linearly determined, and is thus given by (13).496
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14 A. BOURGEOIS, V. LEBLANC, AND F. LUTSCHER

Fig. 5. Theoretical (full line) and numerical generalized spread speeds of operators S (dashed
line) and S̃ (dash-dot line) from 1 to n+, with Laplace dispersal kernel and logistic growth function
(left) or the Ricker growth function (right). The speeds are plotted for different values of a (top:
a = 10, middle: a = 12, bottom: a = 15) with respect to parameter r. The plot is generated with a
scheme that uses the FFT algorithm and is based on [23].

4.4. Stacked Fronts. We can now explain the behaviour of solutions that we497

observed in Figure 1. The operator S has two spreading speeds. One is simply twice498

the spreading speed of Q and is defined by the linearization at 0. When r > 2 so499

that the positive steady state of Q is unstable, the exact behaviour behind the front500

is unclear. The other generalized spreading speed exists only when the positive state501

of Q is unstable and a stable two-cycle exists. We conjecture that this second speed is502

given by the linearization at 1. We proved the existence of travelling waves connecting503

the states 1 and n+ (n−) for the operator S under certain conditions.504

The simulations in Figure 1 show what has been termed ‘stacked fronts’ [20]:505

There is a non-monotone travelling front between the unstable states 0 and 1. This506

front travels at the speed determined by the linearization at 0. In behind, the travelling507

wave that connects 1 to n+ (or n−) forms a second, stacked, front that propagates at508

the speed given by the linearization at 1. The two cases for S (i.e. the connection of509

the second front to n+ or n−) appear as alternating profiles in the operator Q. Only510

in that sense, but not in the strict sense, we have a ‘travelling two-cycle’ [12].511

We can observe a stacked front only if the profile that starts at 0 moves faster512

than the profile starting at 1. If that is the case, we see a plateau emerging at N = 1.513

The length of the plateau at N = 1 increases with time, giving the impression of514

stability, even though this state is unstable for the map N 7→ F (N) when r > 2.515

This type of behaviour for solutions was first observed in the context of a system of516

reaction-diffusion equations in [18], and was termed as dynamical stabilization.517

From the two explicit formulas for the spreading speeds, we calculate whether the518

first profile actually travels faster, i.e. whether we have 2c∗ > c∗(1,n+). For the speeds519

reported in Figures 4 and 5 (right plot), this relationship certainly holds. In general,520

in the case of the Gaussian kernel, we use equations (18) and (23) to obtain521

2c∗

c∗(1,n+)

=

√
ln(F ′(0))

ln(|F ′(1)|)
.522

523

When F is the Ricker function or the logistic function, we have F ′(0) > |F ′(1)| for524

r > 2 so that 2c∗ > c∗(1,n+). The same conclusion holds for the Laplace kernel, but525

the derivation is a bit more involved, see [2]. In both cases, the result is independent526

of the variance of the kernel.527

The condition that the first profile travel faster than the second is necessary but528

not sufficient for the emergence of a plateau [19]. Figure 6 shows that the oscillatory529
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Fig. 6. Numerical solution of the integrodifference equation, where F is the Ricker function
with r = 2.525, and K is the Laplace kernel with a = 15, plotted for even (top panel) and odd
(bottom panel) generations every 10 time steps. The values n+ and n− are the high and low density
point cycle. N0 = n+χ[x≥10].

decay to the dynamically stabilized positive state can be so slow that no plateau530

emerges for at least 50 generations. We also do not see the connection to n+ emerge531

as a constant profile with constant speed.532

5. Extensions. Our results on how two-cycles in the growth function can trans-533

late into generalized spreading speeds and travelling waves for the second-iterate op-534

erator are the basis for several possible extensions. We list two of them in this section.535

5.1. Four-cycles. As r increases, the two-cycle of the Ricker or logistic function536

undergoes a period-doubling bifurcation and gives rise to a stable four-cycle, that we537

denote by n−−, n+
−, n−+ and n+

+, (Figure 2, right plot). In [12], the author plotted538

a ‘travelling four-cycle’ in this case. Our simulations reveal that, again, the profile539

consists of several parts that move at different speeds. As in Figure 1, we observe a540

leading profile from 0 to 1 that moves the fastest, followed by a second, slower profile541

that connects 1 to n+ or n−. Eventually, there emerges an even slower third profile542

that connects n+ to n+
+ in the top left panel, and correspondingly other points on543

the four-cycle in the other panels. In each panel of Figure 7, we plot the solutions of544

Nt+1 = Q[Nt] every 10 generations. Each panel corresponds to a different generation545

modulo 4. To focus on the second and third profiles, we do not show the leading profile546

in these plots. We notice the emergence of a plateau at all unstable fixed points of F,547

i.e. at 1, n+, n−. We can extend the ideas and theory developed above and study the548

fourth-iterate map of Q or the second-iterate map of S.549

Since operator S satisfies the continuity and compactness properties required for550

the existence of a spreading speed and travelling waves, the operator S ◦ S does also.551

The following theorem is analogous to Theorems 3.1 and 3.2.552

Theorem 5.1. Let F be a growth function with the following properties:553

i) F is bounded and Lipschitz continuous;554

ii) F has exactly one stable four-cycle (n+
+, n−−, n−+, n+

−), which corresponds to555

two stable two-cycles in F ◦ F , given by (n−−,n+
−) and (n−+, n+

+);556

iii) N = n+ is the only fixed point of F ◦ F on the interval [n−+, n
+
+];557

iv) (F ◦ F )′(n+) < −1;558
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Fig. 7. Four travelling profiles emerge when the growth function has a stable four-cycle. Nu-
merical solution of the integrodifference equation in (1), with logistic growth function and Laplace
dispersal kernel. Solutions are plotted every 10 generations with remainders 0 (top left), 1 (top
right), 2 (bottom left) and 3 (bottom right) modulo 4. Th values n+ and n− indicate the high and
low density of the two-point cycle for the function F. Values n+

+, n
−
+, n

+
− and n−− form the four-

cycle. Parameters are r = 2.5 in (4) and a = 6 in (16). The initial condition was the characteristic
function N0(x) = χ[x<10] + n+

+χ[x≥10].

v) F is non-increasing on [n−+, n
+
+] and non-decreasing on [n−−, n

+
−].559

Then, there exists a generalized spreading speed c∗
(n+,n

+
+)

for the operator S◦S from n+560

to n+
+. Furthermore, for all c ≥ c∗

(n+,n
+
+)

, there exists a monotone travelling wave so-561

lution W (x+ ct) with limz→−∞W (z) = n+ and limz→∞W (z) = n+
+ for the recursion562

defined by N̂t+1 = (S ◦ S)[N̂t].563

5.2. Bistable Wave. With the emergence of a stable two-cycle for the growth564

function F, there are two stable fixed points of F ◦ F, namely n+ and n− and an565

unstable fixed point at 1 in between. These three fixed points translate into corre-566

sponding spatially constant fixed points of the operators S and S̃. This situation is567

reminiscent of the so-called ‘bistable’ scenario of the operator Q that arises when the568

growth function F has 0 and 1 as stable fixed points and some intermediate unstable569

fixed point. Ecologically, this situation corresponds to a ‘strong Allee effect’ where a570

minimum population density is required for population growth.571

The authors in [16, 28] studied the existence of monotone travelling waves con-572

necting two stable fixed points in equation (1). The situation is markedly different573

from the ‘monostable’ case that we reviewed in Theorems 2.3 and 2.4. In the bistable574

case, one can show that there exists a travelling wave profile for exactly one speed,575

cb, and this speed can have either sign, i.e. the population density may advance or576

retreat. The sign of the speed is given by the sign of the integral
∫ 1

0
[F (n)−n]dn [28].577

It turns out that our approach of upward shift from the previous section applies578

directly to the operator S̃ but not to S. Symmetry, however, gives important insights579

into the dynamics for S, which we verify through numerical simulations below.580

Theorem 5.2. Let the assumptions of Theorem 3.1 be satisfied. Then for the581

operator S̃ there exists a unique speed cb and a monotone travelling wave profile W582

with limz→−∞W (z) = n− and limz→∞ = n+ so that W (·−cb) = S̃[W ]. Furthermore,583
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Fig. 8. Bistable wave for S̃. Numerical solution of the integrodifference equation in (1),
with logistic growth function and Laplace dispersal kernel. Solutions are plotted every other
generation. Parameters are r = 2.2 and a = 15. The initial condition is the step function
N0 = n−χ[x<0] + n+χ[x≥0]

the sign of cb is given by the sign of584

(25)

∫ n+

n−

[(F ◦ F )(n)− n]dn.585

The proof of this theorem follows from applying the same construction as in586

Theorem 2.8 for the operator S̃ to the results in [16, 28].587

When 2 < r < 2.2564 and 2 < r < 2.2361 for the Ricker function and logistic588

function, respectively, then the conditions of the theorem (in particular monotonicity)589

are satisfied. For the logistic function, the values of n± are explicitly given by the590

expressions591

n± =
1

2r

[
r + 2±

√
r2 − 4

]
.592

The integral in (25) can be calculated as593 ∫ n+

n−

[(F ◦ F )(n)− n]dn = G(n+)−G(n−),594

where595

G(n) =
2r + 22

2
n2 − r(1 + r)(2 + r)

3
n3 +

r2(1 + r)

2
n4 − r3

5
n5.596

Evaluating this expression numerically, it turns out that the integral is negative when-597

ever the two-cycle is stable (i.e. 2 < r < 2.449). In particular, the bistable wave is598

always retreating. We illustrate the resulting front in Figure 8.599

Studying the existence of a bistable wave for operator S turns out to be more600

difficult. We cannot directly apply the results of [16, 28], as they require an operator601

of the form in (1). A more generalized theory of bistable travelling waves in monotone602

semiflows is provided in [6]. However, applying the results by those authors to our603

case would require the relation c∗(1,n+) − c
∗
(1,n−) > 0. Since, by symmetry, we have604

c∗(1,n+) = c∗(1,n−), we cannot use their methods. Similarly, neither of the techniques605

in [16] or [6] carry over to prove uniqueness of the speed for a travelling wave. But,606

assuming uniqueness, we can prove that the speed has to equal zero.607

Proposition 5.3. Let the assumptions of Theorem 3.1 be satisfied. Assume fur-608

thermore that there is a unique speed cb for which the operator S admits a travelling609

wave with limz→−∞W (z) = n− and limz→∞W (z) = n+. Then cb = 0.610
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Fig. 9. Bistable standing wave for S. Numerical solution of the integrodifference equation in
(1), with Ricker growth function and Laplace dispersal kernel. Solutions are plotted every other
generation. Parameters are r = 2.2 (left plot), r = 2.52 (right plot) and a = 10. The initial
condition is the step function N0 = n−χ[x<0] + n+χ[x≥0]

Proof. Let cb be the speed and W the profile of the corresponding wave with611

asymptotic behaviour as in the statement. Then Ŵ (z) = −W (z) is a travelling612

wave of S with speed −cb and asymptotic behaviour limz→−∞ Ŵ (z) = n+ and613

limz→∞ Ŵ (z) = n−. Applying the operator Q to W, we obtain a travelling wave614

W̃ (z) = Q[W ](z) with speed cb and asymptotic behaviour limz→−∞ W̃ (z) = n+ and615

limz→∞ W̃ (z) = n− of the operator S. Hence, we have a wave with speed cb and one616

with speed −cb and identical asymptotic behaviour. By the uniqueness of the speed,617

we require cb = 0.618

Numerical simulations illustrate the prediction of the proposition: the wave comes619

to a halt after a few iterations; see Figure 9. The argument in Proposition 5.3 does620

not require monotonicity of the wave profile. The left panel in Figure 9 corresponds621

to the case that the growth function F is monotone in the interval [n−, n+], and we622

see a monotone profile emerge. The panel on the right is for the case when F is not623

monotone. Correspondingly, we see a non-monotone profile establish.624

6. Discussion. Integrodifference equations are discrete-time, continuous-space625

models to understand biological invasions [13]. Like reaction-diffusion equations,626

their continuous-time counterparts, integrodifference equations can support travel-627

ling waves. Scalar differential equations have monotone dynamics, and accordingly,628

scalar reaction-diffusion equations have monotone travelling waves. Scalar difference629

equations can have non-monotone dynamics and, accordingly, integrodifference equa-630

tions may have non-monotone waves [1]. This difference is crucial in applications631

since, for example, many insect species exhibit non-monotone (overcompensatory)632

dynamics [3]. The theory of spreading speeds and travelling waves is well developed633

in the monotone case. We clarify previous conjectures [12] and contribute to our634

understanding of non-monotone phenomena [10, 15, 33].635

Our main results are that integrodifference equations with overcompensation can636

support several spreading speeds and associated travelling waves that connect various637

fixed points and periodic orbits of the underlying growth function, and that these638

should be studied by analyzing appropriate iterates of the operator Q. Our numerical639

results show that the different spreading speeds manifest themselves in the form of640

stacked waves of these iterates. Previous authors proved the existence of travelling641

waves with overcompensation [10, 15]. Based on our results, we conjecture that these642

travelling waves are unstable for the integrodifference equation. Instead, the theory643
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of stacked waves should be developed further. This theory is partially developed644

for reaction-diffusion equations where vector-valued models are required to study the645

phenomenon [7, 11, 24]. Integrodifference equations offer an opportunity for deeper646

understanding using scalar equations. Stacked waves in vector-valued integrodiffer-647

ence equations were recently found in a disease model [20].648

The different speeds of the different wave fronts lead to ‘dynamical stabilization’649

[18, 19, 25], i.e. the appearance of a plateau of increasing length that separates the650

initial ‘invasion’ from the final state of a two-cycle. In an ecological context, this651

observation means that a population that had spread into a certain region long ago652

and had been stable for a long time could suddenly exhibit periodic fluctuations.653

While the typical question would then be whether any changes in biotic or abiotic654

conditions caused the instability, our results show a different possibility: the steady655

state may have been unstable all along, stabilized temporarily by dispersal and spread.656

We showed that our approach can be extended to study travelling waves and657

generalized spreading speeds in cases where the growth function has a four-cycle. As658

parameter r increases, the Ricker and logistic equations are known to have a sequence659

of period-doubling bifurcations that can generate cycles of length 2k (among others).660

Our techniques and theory generalize to these longer cycles as well. However, the661

existence of a generalized spreading speed and/or a corresponding travelling wave662

does not necessarily imply that these objects are stable and that we see them in663

simulations [2]. Heuristically, as r increases, the quantity |F ′(1)| increases and the664

state N = 1 becomes harder to stabilize. Dynamic stabilization does not occur any665

more and solutions exhibit oscillatory-like behaviour [2].666

In addition to the ecologically correct second iterate S, we introduced the operator667

S̃ that corresponds to two growth phases followed by two dispersal phases. It is not668

a second-iterate operator but describes the same number of events as S, only in a669

different order. The advantage of S̃ is that its particular form allows one to directly670

apply the results by previous authors (e.g. [30]) to prove the existence and, in cases,671

linear determinacy of spreading speeds and of travelling waves. Interestingly, we found672

that the results for the Ricker and logistic growth function differ in that only with673

the latter does the linearization of S̃ at 1 satisfy the subtangential condition for linear674

determinacy. Numerically, we found that the spreading speeds of S and S̃ matched675

in the case of monostable waves. Future research will prove or disprove this result in676

general. Interestingly, the two operators make very different predictions in the case677

of bistable waves. More research is needed to understand the behaviour of bistable678

waves for S.679

So far, results were based on the assumption of a symmetric dispersal kernel.680

Asymmetry complicates the analysis since we have to consider one spreading speeds681

in each direction. Several authors studied aspects of asymmetry for the operator Q,682

even for non-monotone dynamics [32] and stacked waves [20]. A particular form of683

asymmetry arises from biased dispersal, for example due to stream flow, ocean currents684

or prevailing wind direction [8, 17, 20]. With biased dispersal, the spreading speed685

can be positive in the direction of the bias but negative in the opposite direction, even686

with a monotone and monostable growth function. In river ecosystems, a negative687

spread rate in the upstream direction has been interpreted as a downstream wash-688

out of the species [17]. A very simple form of asymmetry arises from a shift in689

the dispersal kernel, for example a Gaussian kernel with non-zero mean. While this690

kernel is still symmetric around its mean, very simple models of biased movement can691

also generate kernels that are not symmetric around their mean [17]. We present an692

initial numerical simulation of our model with overcompensation and an asymmetric693
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Fig. 10. Plateau evolving for asymmetric dispersal. Numerical solution of the integrodifference
equation in (1), with Ricker growth function and Gaussian dispersal kernel K(x) = N (x;µ, σ2),
where N is the normal distribution with mean µ and variance σ2. Solutions are plotted every 10
generations. Parameters are r = 2.1 in (3), σ2 = 0.1, µ = 0.1 (left plot) and µ = 0.2 (right plot).
The initial condition was the characteristic function N0(x) = 1.5χ[x≥0]. The Gaussian distribution
was chosen because there is a standard way to include asymmetry as a non-zero mean, whereas
several options exist for the Laplace kernel [17]. The variance was chosen to match the variance of
a (symmetric) Laplace kernel with a = 15 as in some previous Figures.

(shifted) Gaussian dispersal kernel. We find that the spreading speeds of the first and694

second wave front may have opposite signs (Figure 10). In this case, the plateau that695

emerges through dynamic stabilization expands in both directions.696

We finish our discussion with another analytical challenge. Li and co-authors697

proved the existence of a travelling wave in the case that the growth function has698

a stable two-cycle [15]. They illustrated the shape of such profiles by fixed-point699

iteration, i.e. by numerically solving the equation N = Q[N(· − c∗)], after calculating700

c∗ from the linearized formula. For certain parameter values, they found a profile that701

connects the zero state to a spatially periodic pattern that alternates between n− and702

n+, see Figure 3 in [15]. They conjectured that the period of the pattern behind the703

wave equals twice the speed of the wave. They used a dispersal kernel with a variance704

much smaller than all simulations presented in our previous figures.705

Despite intensive numerical simulations (for very small variance), we did not706

observe such a profile emerge for the dynamic equation in that parameter range from707

a piecewise constant initial condition that we had used in all the Figures so far. With a708

(scaled) normal distribution as initial condition, we observed phenomena on two time709

scales. On a fast scale, within only a few iterations, we observed a moving profile that710

connects zero to a spatially oscillating pattern; see Figure 11. This profile is vaguely711

reminiscent of the profile in Figure 3 in [15], but it moves faster than the linearization712

at zero predicts. Wave-solutions to reaction-diffusion equations with slowly decaying713

initial conditions can travel quite fast [9]. We conjecture that the wave profile in714

Figure 3 in [15] is unstable for the dynamic equation.715

After some time, the fast moving, oscillating profile stops and develops into two716

objects: a slow-moving, non-monotone profile from zero to the unstable positive fixed717

point, and a plateau at that fixed point; see Figure 12. The oscillating pattern that718

developed initially appears relatively stationary. Different initial conditions lead to719

patterns that appear temporally constant and oscillate spatially between n+ and n−720

but differ in the spacing of the oscillations. These patterns therefore appear to be721

echoes of the initial condition.722

For much larger times, either a secondary wave profile emerged, as observed in723

Figure 1 for example, or an oscillating pattern evolved that looked very much like the724
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Fig. 11. Short-time simulation of integrodifference equation (1) with scaled Gaussian initial
condition N0(x) = n+ exp(−x2). Only the region {x < 0} is shown, the region {x > 0} is symmetric.
We used the logistic growth function and the Laplace dispersal kernel with parameters r = 2.2 and
a = 50, respectively.

Fig. 12. Intermediate-time simulation of (1) with scaled Gaussian initial condition N0(x) =
n+ exp(−x2). Only the region {x < 0} is shown, the region {x > 0} is symmetric. We used the
logistic growth function and the Laplace dispersal kernel with parameters r = 2.2 and a = 50,
respectively.

second part of the profile from Figure 3 in [15], however, it was a standing-wave pat-725

tern, not a moving pattern. We tested these results with two independent numerical726

methods: Fast Fourier Transform (with which we had produced all previous simula-727

tion plots) or application of the trapezoidal rule to the convolution integral. In both728

cases, we observed what appeared to be instabilities after about 200 generations. More729

stable and more accurate numerical methods are necessary to explore the dynamic730

behaviour further. In particular, the question remains whether there are asymptotic731

patterns that are not spatially constant (i.e. at 1, n+ or n−). Since the bistable fronts732

between n+ and n− have speed zero (see previous section), it is conceivable that spa-733

tially oscillating, temporally stationary patterns could arise as concatenations of such734

transition fronts. Hence, the analytical challenge is to prove whether there are many735

coexisting, spatially oscillating steady-state patterns for the operator S (potentially a736

continuum) or whether this is a long-term transient phenomenon that will eventually737

be replaced by the simple, spatially homogeneous two-cycle.738
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