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SPREADING PHENOMENA IN INTEGRODIFFERENCE
EQUATIONS WITH NON-MONOTONE GROWTH FUNCTIONS*

ADELE BOURGEOIST, VICTOR LEBLANC!, AND FRITHJOF LUTSCHER'?

Abstract. Integrodifference equations are discrete-time cousins of reaction-diffusion equations.
Like their continuous-time counterparts, they are used to model spreading phenomena in ecology and
other sciences. Unlike their continuous-time counterparts, even scalar integrodifference equations
can exhibit non-monotone dynamics. Few authors studied the existence of spreading speeds and
travelling waves in the non-monotone case; previous numerical simulations indicated the existence of
travelling two-cycles. Our numerical observations indicate the presence of several spreading speeds
and multiple travelling wave profiles in these equations. We generalize the concept of a spreading
speed to encompass this situation and prove the existence of such generalized spreading speeds and
associated travelling waves in the corresponding second-iterate operator. Our numerical simulations
let us conjecture that these spreading speeds could be linearly determined. We prove the existence of
bistable travelling waves in a related second-iterate operator. We relate our results to the existence
of stacked waves and to dynamical stabilization.

Key words. integrodifference equation, non-monotone growth function, asymptotic spreading
speed, travelling wave, stacked wave
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1. Introduction. Spreading processes are ubiquitous phenomena in science that
arise in areas as diverse as flame fronts, action potentials, or biological invasions. The
two most important questions in this context ask how fast the quantity of interest
propagates and what shape it forms. Accordingly, there is a vast body of literature
on mathematical modelling and analysis of spreading phenomena, specifically on the
corresponding mathematical concepts of the ‘asymptotic spreading speed’ [30] and the
profile of a ‘travelling wave’ [12]. Depending on the phenomenon of interest, the time
and space variables in the mathematical model may be chosen discrete or continuous.
In this paper, we work with a spatially continuous, time-discrete model, known as
‘integrodifference equation’ [14] or ‘integral recursion’ [30].

Integrodifference equations are particularly well suited to model the dynamics
of a biological population with discrete, non-overlapping generations and temporally
separated growth and dispersal phases; a pattern that many plant and insect popula-
tions exhibit [14]. The quantity of interest is a one-dimensional density representing
the population, whose value in generation ¢ (in time) and point z (in space) is de-
noted by N¢(z). The growth phase, during which individuals are spatially stationary,
is modelled by a growth function F. The dispersal phase is described by a ‘dispersal
kernel’” K, which is the probability density function of the signed distances that an
individual disperses [22]. The ‘next generation operator’ @ that maps the density at
time t to the density at time ¢+ 1 is given by the composition of growth and dispersal
as the convolution integral operator

1) Ne(@) = QN (@) = [K * F(N))(2) = / K(z — ) F(Ni(y))dy.
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2 A. BOURGEOIS, V. LEBLANC, AND F. LUTSCHER

Unless otherwise noted, integrals in this work will be over the entire real line, and we
will drop the symbol R from the integral if no confusion can arise. The symbol * will
denote the convolution of two functions over the real line as defined in (1).

Integrodifference equations have been used quite successfully to model biological
invasions [5, 8, 13], most commonly by studying properties of travelling wave solutions,
i.e. solutions of (1) of the form Ny(z) = W (x — ct), where W is the spatial profile and
c is the speed of the invasion. While the existence and shape of such a profile depend
on properties of both F' and K, we focus on the influence of the growth function. We
list the standard requirements on K in the next section.

In the simplest biologically relevant application, the non-spatial, one-dimensional
map N +— F(N) is monotone increasing, concave down, and has two fixed points:
N* =0 is linearly unstable and N* = 1 is globally asymptotically stable. We can and
shall always scale a positive fixed point to equal 1. The Beverton-Holt function

RN

(2) F(N)Zm

with R > 1 has these properties. Then there is a minimal speed c¢*, such that the
spatial model (1) has constant-speed, monotone travelling waves that connect the two
fixed points of the non-spatial map for all ¢ > ¢* [30]. In contrast, the Ricker function

(3) F(N) = Nexp(r(l — N))

is not monotone but may still have an unstable fixed point at N = 0 and a stable point
at N = 1, provided 0 < r < 2. In this case, there is again a minimal speed c*, and
for each ¢ > ¢* one can observe numerically a non-monotone travelling wave for the
integrodifference equation (1), connecting the two fixed points [12]. The existence of
such a travelling wave was proved in [10, 15, 33]. The positive fixed point of the Ricker
function can lose stability via a flip bifurcation where a stable two-cycle emerges. In
fact, the dynamics of the Ricker function are qualitatively the same as those of the
famous discrete logistic function

(4) F(N)=(1+47r)N —rN=.

If the growth function exhibits a stable two-cycle or more complex behaviour, it is
natural to ask whether the spatial dynamics of (1) are similarly complex. In some
cases, one can still prove the existence of a travelling wave profile [10, 15, 33], but
since the positive fixed point of the growth function is unstable, one cannot expect
the profile to approach it.

Based on numerical simulations, Kot conjectured that there is a ‘travelling two-
cycle’, i.e. a pair of wave profiles that alternate between generations and advance at a
constant speed [12]. Each of these profiles would connect the zero state with exactly
one of the points of the stable two-cycle; please see Figure 9 in [12]. Our own numerical
simulations of this scenario give a similar, yet different result, documented in Figure
1. While the solution profile alternately approaches the two values of the stable two-
cycle, different parts of the solution propagate at different speeds. There is a first,
non-monotone wave front that connects the unstable state N = 0 to the unstable
state NV = 1. Then there is a second, monotone front that connects the unstable state
N =1 to the stable states of the two-cycle, alternatingly in time. The first front
moves faster than the second: the distance between two subsequent ”first” fronts is
larger that the distance between two subsequent ”second” fronts. The purpose of this
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SPREADING PHENOMENA WITH NON-MONOTONE GROWTH FUNCTIONS 3

Ngt(x)

N2t+1(17)

T

F1G. 1. Numerical solution of (1), where the logistic growth function F from (/) admits a stable
two-cycle and the dispersal kernel K is the Laplace kernel in (16). Solutions are plotted for even
(top panel) and odd (bottom panel) generations every 10 time steps. The values ny and n_ indicate
the high and low density of the two-point cycle for the function F. Parameters are r = 2.2 in (4)
and a = 6 in (16). The initial condition was the characteristic function No(x) = n4X[z>10]-

paper is to study this phenomenon of propagation when the map N — F(N) admits
a stable two-cycle.

The subsequent sections are organized as follows. We recall the concept of an
‘asymptotic spreading speed’ from [30] and review the most important existing results
about this speed and related travelling waves. In Section 2, we define a ‘generalized
spreading speed’ and extend the most important results from [30] accordingly. In
Section 3, we apply this theory to the second iterate of the operator @ in (1) and
show that there exists a generalized spreading speed and corresponding travelling
waves. We present numerical simulations of these travelling waves and an explanation
of stacked waves in Section 4. We present two directions in which our work can be
extended in Section 5. We close with a discussion that identifies several challenging
problems in the analysis of integrodifference equations that result from our work.

2. Mathematical Background and Theoretical Set-up. In this section, we
give the precise definitions and review the relevant existing results on spreading speeds
and travelling waves before we formulate the problem that we will subsequently study.

We shall always assume that the growth function F' > 0 is sufficiently smooth.
The precise properties of F' will be discussed later. We also assume that the dispersal
kernel K is a non-negative, continuous and symmetric function with the property

(5) /K(x)dx =1
In addition, we assume that the moment-generating function of K, given by
(6) M(s) = / K(z)e*da,

exists for at least one non-zero value of s.
To define the asymptotic spreading speed, we denote by Cir, r, the set of con-
tinuous functions on R with values in the interval [mg, 7], where 0 < 7y < m. We

This manuscript is for review purposes only.



131

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

4 A. BOURGEOIS, V. LEBLANC, AND F. LUTSCHER

can consider any real number as a constant function. In that sense, fixed points of
F are spatially constant fixed points of ). If F' is continuous with values between 7
and 71, then @ will map Cy, ) into itself. For a given initial condition No(z) we
define the sequence {N;(x)} via the recursion N1 = Q[N¢] as in (1). The following
definition is standard and appears in the literature in slightly different but equivalent
formulations [10, 15, 30, 31].

DEFINITION 2.1. The value ¢* is called the asymptotic spreading speed of Q if
the following conditions hold:
i) For any No € Cjo 1) with compact support, we have
lim sup Ny(x) =0 for all c> c*.

t—o00 || >ct
ii) For any Ny € Cjo,1) with No # 0, we have
lim inf Ni(x) =1 for all c € (0,c").

t—oo |z|<ct

The following result is standard and was recently reviewd in [2, 26].

PROPOSITION 2.2. Let F' be a Lipschitz continuous function with values in [mo, 7]
and let Q@ be the operator defined in (1). Then @Q is continuous and compact in the
topology of uniform convergence on compact subsets in Ciyr, 1. More specifically,

i) (Continuity) If vy — v uniformly on compact subsets of R in Ciry .1, then
Qlve](x) — Q](z) for all x € R.

ii) (Compactness) Every sequence {vi} in Ciry ) has a subsequence {vy,} such
that {Q[vy,]} converges uniformly on every bounded subset of R.

Under the standing assumptions on the dispersal kernel K, we can formulate
conditions on the growth function F' that guarantee the existence of a spreading
speed. The following is an adaptation of the seminal theorem by Weinberger [30],
with additions by Weinberger and Zhao [31].

THEOREM 2.3 (see Theorem 6.5 in [30]). Assume that the standing assumptions
on K hold and let F' be a growth function that satisfies the following conditions:
i) F is bounded and continuously differentiable,
it) F(0) =0 and F(1) =1 are the only two fized points of F' on [0,1],
iii) F'(0) > 1,
iv) F is non-decreasing on [0, 1].
Then, there exists a spreading speed c¢* > 0 for the operator @ defined by (1).

Since our operator ) is compact (see Proposition 2.2), the existence of travelling
waves is also guaranteed.

THEOREM 2.4 (Theorem 6.6 in [30]). Let F be a function that satisfies the
hypotheses of Theorem 2.3. Then for all ¢ > c¢*, there exists a monotone travelling
wave solution Ni(x) = W (x+ct) of (1) with lim, oo W(2) =1 and lim,_,_ o W(z) =
0. For ¢ < c* there exists no such travelling wave solution.

Moreover, under the additional assumption that the function F' is bounded above
by its linearization at zero, there is an explicit formula for the spreading speed.

THEOREM 2.5 ([29, 30]). If, in addition to the assumptions of Theorem 2.3, we
have F(N) < F'(0)N on [0,1], then the spreading speed of Q is given by

(7) = Slgé%ln (F'(0)M(s)), Q= {s>0/M(s) < oo}.
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—
ot
[SLEITN

—_

L e e
» Ot gt ot gt Ot
o

—_

161
162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
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Fi1G. 2. A stable two-cycle (left) and four-cycle (right) for the Ricker function with parameter
r=2.2 (left) and r = 2.6 (right).

It is a straightforward calculation to show that the minimal speed of a travelling
profile Ny(x) = W(x + ct) for the linear integrodifference equation (1) with F(N)
replaced by F'(0)N is also given by the expression for ¢* in (7); please see e.g. [13].
If the spreading speed of the nonlinear equation is the same as for the linearized (at
zero) equation, then we say that the spreading speed is linearly determined [15]. Using
the linearization, one obtains a parametric representation of ¢* through the pair of
conditions [12]

M/(S) , esM'(s)/M(s)
(8) = M) and F'(0) = M)
where M denotes the moment-generating function of K as in (6).

The conditions on the growth function F' in Theorem 2.3 are somewhat restrictive.
The Beverton-Holt function in (2) satisfies them, independent of the value of R. The
Ricker and logistic functions, however, satisfy these conditions only for 0 < r < 1.
When 1 < r < 2, they both become non-monotone, but N = 0 is still an unstable
fixed point and N = 1 is the globally stable positive fixed point. These two ingredients
are sufficient to guarantee that Theorems 2.3, 2.4 and 2.5 hold to the extent possible.
One now considers the space Clg r,], where 71 is the maximum of the growth function
F. One can show that there exists a spreading speed, that it is linearly determined
by the formula in (7), and there exist travelling waves, not necessarily monotone, for
all speeds greater than or equal to the spreading speed [10, 15, 32, 33]. Numerical
simulations of such profiles are shown in Figure 8 in [12] and Figure 2 in [15].

At r = 2, the positive state N = 1 in the Ricker and logistic functions loses
stability through a flip bifurcation, and there is a (globally) stable two-cycle for 2 <
r < 2.526 and 2 < r < 2.449, respectively [21]. We denote the values of the two-cycle
as ny. They satisfy the relations ny = F(n_) = F(F(n4)) and 0 <n_ <1 < ny, see
Figure 2. Our work is concerned with the behaviour of travelling objects in this case.
It is well known that, as r increases further, there is a period doubling bifurcation to a
four-cycle (see right plot in Figure 2). We will touch this case in Section 5. Increasing
r even further triggers a period-doubling cascade to higher order cycles and chaos.

As mentioned in the introduction, Kot conjectured the existence of a travelling
two-cycle for model (1), based on simulations in Figure 9 in [12]. Our simulations
in Figure 1 indicate that different parts of the profile travel at different speeds, as
explained in the introduction. As is common when studying two-cycles, we introduce

This manuscript is for review purposes only.



6 A. BOURGEOIS, V. LEBLANC, AND F. LUTSCHER

the second-iterate operator Nyyo(z) = S[IV¢](x) as

()  SINI@) = (QoQIN / Kz - y)F ( / K(y—z)F(N(z))dz) dy.

When studying the properties of S, it will be convenient to change indices and study
Nit1(z) = S[Nt](x). We will drop the tilde when no confusion can arise. The following
properties of S are a direct consequence of the corresponding properties of Q.

PROPOSITION 2.6. Under the assumptions of Proposition 2.2, the operator S is
continuous and compact.

A travelling two-cycle for the operator @ corresponds to a pair of travelling wave
profiles for the operator S. Since our simulations in Figure 1 indicate that instead, we
expect travelling objects of different speeds for the operator S, we begin by defining
an appropriate generalized spreading speed.

DEFINITION 2.7. The value i ) 1s called the generalized asymptotic spreading
speed of S from my to w1 if the fo%lowz'ng conditions hold:
i) For any No € Clr, x,] such that No — o has compact support,
(10) lim sup Ni(x) =mg for all ¢ > cz‘

t—o0 |z|>ct mo,m)”
ii) For any No € Clry r,] such that Ng — mo % 0
(11) hm inf Ny(z) =1 for all ¢ € (0,¢(z, r,))-

t—o0 |z|<ct
Please note that for my = 0, this definition agrees with the standard definition given
above, i.e. C?O,l) =c*.

We adapt and extend the theory in [30] to establish the existence of a spreading
speed and travelling wave solutions for our operator S. We slightly generalize Wein-
berger’s theory by vertically translating functions bounded below by 0 to functions
bounded below by my > 0. The idea behind the proof of the following theorem can be
found in the corollary of Proposition 3 in [16].

THEOREM 2.8. Assume that the operator U acts on the space Cir, ) of continu-
ous functions as follows:
i) (Translation invariance) U[N (- — a)](z) = U[N](x — a).
ii) (Invariance on Clry r,1) N € Clry 7] = UIN] € Clry iy
iit) (Fized points) U[mo] = mo, U[m1] = m1, U[a] > a for a € (mg,71).
i) (Monotonicity) mo < N < M <m = U[N] <U[M].
v) (Continuity) If {f;} C Clrymy) and fy — f uniformly on compact subsets of
R then U[fi] — U[f] pointwise as t — co.
Then there exists a generalized spreading speed sz),m) forU from my to my.

Proof. We construct an operator U on Clo,my—mo] @S Z?[f] =U|[f + 7o) — mo. This
operator inherits all the qualitative properties from u , shifted to the interval [0, m; —
mo. Hence, it satisfies the assumptions of Theorem 6.5 in [30], which guarantees the
existence of a spreading speed. 0

3. Existence of Spreading Speeds and Travelling Waves. We apply The-
orem 2.8 toUd =S = Q o Q and prove the existence of a generalized spreading speed
and travelling waves from 1 to n™. We begin with the case where F' is monotone on the
interval [n_,n.]. For the Ricker and logistic functions, the monotonicity condition is
satisfied when 2 < r < 2.2565 and 2 < r < 2.2361, respectively.

This manuscript is for review purposes only.
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SPREADING PHENOMENA WITH NON-MONOTONE GROWTH FUNCTIONS 7

3.1. The Monotone Case.

THEOREM 3.1. Let F' be a growth function that satisfies the following conditions:
i) F is bounded and continuously differentiable;
ii) F has ezxactly one stable two-cycle, i.e. there exist ny such that 0 < n_ <
1 < ny, and F(n_) = ny and F(ny) = n_, and all non-negative initial
conditions converge to this two-cycle under the map Niv1 = F(Ny);
iii) N =1 is the only fixed point of F' on the interval [n_,n4];
) F'(1) < —1;
v) F is non-increasing on the interval [n_,n,].
Then, there exists a spreading speed C?LM) for the operator S in (9) from 1 to n™.

Proof. Clearly, S is translation invariant. The function F' maps [1,n4] into [n_, 1]
and vice versa. Hence, if N € [1,n.], then Q[N] € [n_, 1] and also Q(Q[N]) € [1,n].
Therefore, Cy 5, is invariant under S. Since F'(1) = 1 and F(F(ny)) = ny, we have
S(1) = 1 and S(ny) = ny in the sense of constant functions. From iv) we have
(FoF)(1) > 1 and hence F(F(a)) > « for some o > 1. Since there is no fixed
point between 1 and ny, we must have F(F(a)) > « for a € (1,n4). The same
relation holds for constant functions under S. To show monotonicity, assume that
1 < N(z) < M(z) < ng. Then by v), we have 1 > F(N(z)) > F(M(z)) > n_ and
hence also 1 > Q[N] > Q[M] > n_. But then we repeat the argument since F' maps
[n_,1] into [1,n4] and obtain 1 < Q(Q[N]) < Q(Q[M]) < ny. Finally, continuity
follows from Proposition 2.6. ]

Along with the existence of a spreading speed, we are able to establish the exis-
tence of travelling wave solutions connecting 1 to n.

THEOREM 3.2. Let F' be a function that satisfies the hypotheses of Theorem 3.1.
Then for all ¢ > C>(k17n+)’ there exists a monotone travelling wave solution W(x + ct)
with lim,_, o W(2) =1 and lim,_,o, W(z) = ny for the recursion defined by (9).

Proof. For M € Cfg,, —1) define the operator M + S[M + 1] — 1. This operator
inherits the monotonicity properties from § and is compact by Proposition 2.6. Hence,
the existence of a traveling wave with asymptotic conditions 0 and n4 —1 follows from
Theorem 6.6 in [30]. An upward shift by 1 of this wave gives the desired traveling
wave. O

Although we have not been able to prove that c’(*1 ns) is linearly determined, we

can linearize S around N = 1 and obtain the slowest speed of a travelling (exponential)
profile of the linearized equation. The linearization is given by

(12 Nea(@) = (PP [ (5 x )l = )N )y,

Analogous to the formula in (7), the spreading speed of this linearized equation is
~ o1

(13) Cny) = inf —ln ([F'()P[M(s)]?), Q= {s>0|M(s) < oo}

The term M? arises from the properties of the moment-generating function under

convolution. In Section 4 we use simulations to discuss how Cny) and (1, ) are
related.

3.2. The Non-Monotone Case. An overcompensatory growth function that
has a stable two-cycle, given by {n_,n,}, is not necessarily non-increasing in the in-
terval [n_, ny]. This behaviour arises in the Ricker and logistic functions for 2.2565 <
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L0 R R S :

Fa) 1r n* A F(i) F(n) U F(F®) @

Fi1G. 3. Construction of the functions FT and F~ in the non-monotone case, where F is the
Ricker function with v = 2.5. Left panel: PFunctions F (solid), FT (dotted) and F~ (dash-dot).
Right panel: Functions F o I (solid), F* o F+ (dotted) and F~ o F~ (dash-dot).

r < 2.526 and 2.2361 < r < 2.449, respectively. Hence, condition v) of Theorem 3.1
is violated in that range. In this case, we can adapt the ideas in [10, 15] to construct
sub- and super-solutions that satisfy the conditions of Theorem 3.1 and that bound
the iterates of S.

Let F be a function that satisfies the first four hypotheses of Theorem 3.1. Instead
of condition v), assume the following (see Figure 3):

v") There is a point m € (n_,1) such that F is increasing on [0, m) and decreasing

on (m, F(m)).

Since F' is unimodal, there is a unique point n* € (m, 1) such that F(n*) = F(F(n)).
We define

F(F(R)), 0< N <n*,

n < <
FH(N) : n, 0<N<m,
F(N), N >n*.

F(N), N >m, and F~(N) ::{

We use the Ricker function to illustrate this definition. The Ricker function has
a unique maximum, and it occurs at m = 1/r. The left plot in Figure 3 shows F, F'~
and I, whereas the right plot shows the respective second iterates. Please note that
F~(N)<F(N)< F*(N)on [F(R),n] and F~(N) = F(N)=F*(N) for N > n*.

By assumption, the fixed points of F' o F' are precisely n_, 1 and n,. Further-
more, we have (F o F)’(1) > 1. Thus, we find (F o F)(N) < N on (n_,1). Since
n_ <m<n* <1, we have F(ii) = F(F(m)) <m and F3(f) = F(F(n*)) <n*. We
also obtain 7 > m and (F o F')(7) > n* since 1 is the only positive fixed point of F,
FT and F~. With this information, we can verify that the fixed points of F* o F* are
N = F(f), N =1 and N = 7, whereas the fixed points of F~ o F'~ are N = F3(),
N =1and N = F(F(n)), where F(F(n)) < ny <.

We define the second-iterate operators ST as in (9) with F replaced by F'*. Then
F¥ satisfy the hypotheses of Theorem 3.1 for ny = 7 and ny = F(F(f)), respectively.

COROLLARY 3.3. There exist generalized spreading speeds ¢’ and c* for the op-
erators ST and S~ from 1 to n and 1 to F(F(n)), respectively.

THEOREM 3.4. Let F' satisfy the conditions of Theorem 3.1 where v) is replaced
by v') and define F*, F~ and n according to the above construction. Assume that
the spreading speeds of ST as above are linearly determined. Then the value of c{l )

given by (13) is the spreading speed for S in the following sense:

This manuscript is for review purposes only.
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i) For any No € Cpy 5) such that No — 1 has compact support,

lim sup N¢(x) =1 for all ¢ > C?l,m-

t—o0 |z|>ct
ii) For any No € Cj15), N #1,

F(F()) < lim inf Ny(z) <7 forallc € (0,cf ,,))

t—00 |z]<ct
Proof. By construction of F'* and F~, we have the inequalities
(14) S7[N|(z) < S[N|(z) < S*[N](=)

for 1 < N < n. In fact, for N € [1,7n], we find [ K(y — 2)F(N(z))dz € [F(n),1].

Thus,
- (/K(y — z)F(N(Z))dZ) <F (/ K(y - Z)F(N(Z))dz>

< F* < / K(y— z)F(N(z))dz> .

Given that FF~(N) = F(N) = F*(N) for N > 1, we have

(/K — 2)F~(N(z ))dz> <F (/ K(y— z)F(N(z))dz>
< Ft (/ K(y— z)F+(N(z))dz> .

Hence, the relations in (14) hold.

By construction, we have F~(N) = F(N) = F*(N) near N = 1, so that the
derivatives of these three functions at N = 1 agree. By the assumption that the
spreading speeds ci of ST are linearly determined, we have ch =c = C>(k1,n+) from
the formula in (13). We now proceed to proving i) and ii) from the statement.

i) Let Ny € C[q,5) such that Nog — 1 has compact support. If Ny = S*(Np) and
= (ST)*(Np), then by the comparison principle (Proposition 4.1 in [30])

1 < Ny(z) < N, ().

Applying (10) with 79 = 1 to the previous inequality gives us our result.

11) Let Ny € C[Lﬁ], N 5_'5 1 and My = mln{No,F(F(’ﬁ,))} Then My, < Ny
and My € Cp p(r(a)), Mo # 1. Since F~ is non-increasing, (S7)"(Mp) <
(ST)H(Ng). If My = (S7)*(My), Ny = St(Ny) and N; = (S1)¥(NVy), then
by the comparison principle

1< M; <N; <N,
We get our result by applying (10) with m = F'(F(7)) to the sequence {M; }
and 7, = 7 to the sequence {N;"}. O

The previous theorem does not guarantee that the solution N;(x) converges to
n™ but only gives an interval for N;(z). In the corresponding case for the operator Q
with a non-monotone growth function F' that has an unstable fixed point at 0 and a
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10 A. BOURGEOIS, V. LEBLANC, AND F. LUTSCHER

stable fixed point at 1, the authors in [10] were able to guarantee the corresponding
limit of 1. Unfortunately, we cannot directly apply their result to our operator S.
However, we expect the solution to have a limit at n, when the 2-cycle is stable.
This expectation is based on the numerical evidence that we discuss in the next
section. A more generalized approach, like the one in [32], would be needed to prove
this statement. When the two-cycle for the non-spatial map is unstable, we cannot
expect convergence to ny. Instead, the non-spatial map will have cycles of longer
period. We discuss these in Section 5.1.

The results regarding the existence of a spreading speed and travelling wave so-
lutions for operator S from 1 to ny stated in this section also apply to S from 1 to
n_, by application of operator @ to the solution N;(x).

4. Numerical Results and Interpretation. In this section, we illustrate our
theoretical results from the previous section with numerical simulations. We com-
pare the numerically obtained spread rates with the formula in (13) for ¢, ,,) that
results from the linearization at the unstable steady state. We show that there is a
good agreement between the two quantities. We also define a different ‘second-iterate
operator’ and compare the behaviour of solutions of the two.

For all examples and numerical simulations, we employ the two most frequently
used dispersal kernels (together with their moment-generating functions), which are
the Gaussian kernel

(15) K(z) = e 22 with  M(s)=e 7,

and the Laplace kernel

a a®
(16) K(I) = 567a|93‘ with M(S) = m
Setting a = % guarantees that both kernels have the same variance.

4.1. An Alternative ‘Second-iterate’ Operator. The second-iterate opera-
tor § = Qo that we study describes two growth and two dispersal phases, alternating
over two generations. Ultimately, we are interested in the spreading speed of this op-
erator, which is an asymptotic quantity that arises in the limit when the number of
growth and dispersal phases approaches infinity. One can then ask whether and how
much the order of events in the short term matters for this quantity in the long term.

To explore this question, we formulate the operator

(17) S[N](z) = /(K*K)(I*y)(FOF)(N(y))d%

that describes two growth phases followed by two dispersal phases. The operators &
and S describe slightly different order of events, but the same number of each of the
events. Operator S is much easier to study since it has the same form as operator Q
and fits the framework by Weinberger [30] and others.

In the following, we will first show that the two operators have the same spreading
speed from 0 to 1 in the monostable case. Then we will show why the spreading speed
of S from 1 to n* is easier to study than that of S. This discussion will also clarify
that the operators have the same spreading speed if that speed is linearly determined.
In Section 5.2, we will give an example that shows that no such result can hold for
the bistable case.

This manuscript is for review purposes only.
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4.2. The Spreading Speed. We begin with the well-known case when the
growth function is monotone and concave down, i.e. it satisfies the hypotheses of
Theorem 2.5. Then the operator () has an asymptotic spreading speed from 0 to 1
that we denote by c¢*. It is given explicitly by the formula in (7). It follows that the
operator S also has a spreading speed from 0 to 1 and that its value is given by 2¢*.

Since the growth function F' satisfies the hypotheses of Theorem 2.5, so does its
second iterate F'o F. Thus, from the theory in [30] we conclude that a spreading speed
¢* exists for the operator S from 0 to 1 and that it is given by the expression:

¢" = inf }ln <(FoF)’(O)/esz(K*K)(m)dx) ,
seEQ S

where 2 denotes the values of s > 0 for which the moment-generating function of K
exists. Since F'(F(0)) = F'(0) and since the moment-generating function of a convo-
lution is the product of moment-generating functions, we conclude that operators S
and S have the same spreading speed from 0 to 1.

We can use the parametrization provided by equations (8) to calculate an explicit
formula for ¢* [12]. In the case of the Gaussian kernel (15), we obtain

(18) ¢ = /202 In(F'(0)).

In the case of the Laplace kernel (16), the parametric equations in (8) result in

2s a? — s? 252 2 a? — §? 2a2
c=——7, F'(0) = ex =— ex -
a? — 52 (0) a? p(a2—32) e? 2a? p(a2—52>

The latter equation is of the form pz = e® and can be solved by the Lambert W

function (see e.g. [4])
2a® 2
a? —s2 - <_F’(O)62) '

For real values s, we need to choose the branch W_; of the Lambert W function [2]
and obtain

-z
W—l (_ F/(%))e2>

Substituting (19) into (8), we obtain an explicit expression for the speed as

(19) s=a +1.

2

_F’(0)62> W_y ( :

+ 1.

1
(20) ¢ = —*Wfl (
a . 2
F/(O)e2>

This expression is novel. It still requires computation for the Lambert W function,
but since many modern software packages have this function built in, our formula
becomes easier to use than the root-finding algorithm previously proposed in [12].
All the results so far hold when the growth function is monotone on [0, 1]. In addi-
tion, the spreading speed of @ is still linearly determined when the growth function is
not monotone but has N =1 as a stable fixed point. If we drop the requirement that
the density behind the front converges to the steady state and instead require only
that it be bounded below by a positive number, then there is still a ‘spreading speed’
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12 A. BOURGEOIS, V. LEBLANC, AND F. LUTSCHER

Fia. 4. Theoretical (solid line) and numerical spreading speeds for operators S (dashed line)
and S (dash-dot line) from 0 to 1 with Ricker function and Laplace kernel for different values of a
(top: a = 10, middle: a = 12, bottom: a = 15) with respect to parameter r. The plot is generated
with a scheme that uses the FFT algorithm and is based on [25].

and it is linearly determined [10, 15, 32, 33]. Hence, the explicit expressions (19, 20)
give the spreading speed for the Ricker and logistic functions even when r > 1.

We compare the numerical spreading speeds obtained from simulations to the
values predicted by formulas (18) and (20). We illustrate the plot obtained for the
Laplace kernel and the Ricker function in Figure 4, with respect to the parameter r
of the growth function. Similar plots are obtained when K is the Gaussian kernel and
when F' is the logistic function. In all cases, the numerical errors are bounded above
by 5%. An error of this magnitude is standard for spread problems [23].

4.3. The Generalized Spreading Speed from 1 to n,.. When the growth
function F satisfies the hypotheses of Theorem 3.1, operators S and S have generalized
spreading speeds cZ‘l L) E’(*l ns) from 1 to ny. The linearizations of S and S at N =1

are identical. Sufficient conditions for linear determinacy of éz‘l ) for S follow directly

from [30], but not for S. Somewhat surprisingly, these sufficient conditions for S are
met when F is the logistic growth function, but not for the Ricker function, as we show
below. Nonetheless, our simulations indicate that the generalized spreading speed for
S is linearly determined in both cases and that the speeds for S and S are identical.

PROPOSITION 4.1. Let F be the logistic function. Then the generalized spreading
speed of S from 1 to ny is linearly determined.

Proof. We begin by showing that (F o F)"(N) <0 on [1,n4]. Indeed,
(21) (FoF)"(N)=—2r(1+7)(2+7) +12[r*(1 + r)N — r*N?].

The roots of (21) are given by the expression

N = 3(1+7r)+£+/3(r2—-1)
67 '

By solving the inequality

31+7)+4/3(2-1)
67

—-1<0,

we conclude that both roots of (21) are less than 1 when r > 2. It follows that
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SPREADING PHENOMENA WITH NON-MONOTONE GROWTH FUNCTIONS 13
(FoF)'(N) <0 for all N > 1. By the mean value theorem,

(FoF)(N) < [F'()(N 1) +1

on [1,n4]. Thus, the spreading speed of S is linearly determined (similarly to the
result of Theorem 2.5). |

We now find explicit expressions for the generalized spreading speed of S from 1
to n4 with the logistic growth function and the two dispersal kernels. Since the speed
is linearly determined, we can use the formula in (13) or the corresponding (adapted)
parametrization from (8). Since the moment-generating function of K * K is simply
the square of the moment-generating function of K, we find the expressions:

2M’ 2sM’(s)/M(s)
_AM) g e e

M(s) M(s)?

When K is the Gaussian kernel, we easily find the speed as

(23) Clinyy = 2V/o? In[F'(1)]2.

When K is the Laplace kernel, we can derive an expression in terms of the Lambert
W function in a similar manner as (20) (for details, see [2]), namely

(22)

2 2 2
24 * =——W_i (- 1.
24 i =W+ (i) Ty E——

T FT@)[e?

We compare the values given by (24) to simulations (Figure 5, left plot); the results
for the Gaussian kernel are similar. All three curves match very well, indicating that
the generalized spreading speed for S could be linearly determined. The discrepancy
between theoretical and numerical results are again within 5%.

Finally, we turn to the Ricker function from (3). The second derivative of F o F
can easily be evaluated as (F o F)”(1) = r(r — 1)(r — 2)%2. The following lemma
highlights the difference between the Ricker and the logistic function.

LEMMA 4.2. Let F be the Ricker function with v > 1. Then (F o F)"(1) >
0, i.e. ' is concave up near N = 1. In particular, exists some a > 1 such that
(FoF)(N)>[F'(1)]*(N—1)+1 on [1,q].

According to the lemma, the function F' o F' is not bounded by its linearization
near N = 1. We also have (F o F')'(1) > 1. It follows that the function F o F' exhibits
what is called a ‘weak Allee effect’ at N =1 [27], and does not satisfy the sufficient
condition for linear determinacy from [30].

For reaction-diffusion systems, it was shown that if the Allee effect is sufficiently
weak, then the spreading speed is linearly determined [27]. Although some analysis
has been done regarding Allee effects in integrodifference equations [28], it is unclear
how to characterize an Allee effect as sufficiently weak. Our numerical simulations
suggest that formulas (23) and (24) still represent the generalized spreading speed for
operator S, with this weak Allee effect (see Figure 5, right plot).

Since the operators S and S have the same linearization at N = 1, and since the
numerical simulations show such a good agreement between the respective speeds, we
formulate the following conjecture.

CONJECTURE. Let S be the operator defined by expression (9). Assume F' is the
Ricker function or the logistic function with r > 2. Then the generalized spreading
speed Czl,m) of § from 1 to ny is linearly determined, and is thus given by (13).
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F1G. 5. Theoretical (full line) and numerical generalized spread speeds of operators S (dashed
line) and S (dash-dot line) from 1 to ny, with Laplace dispersal kernel and logistic growth function
(left) or the Ricker growth function (right). The speeds are plotted for different values of a (top:
a = 10, middle: a = 12, bottom: a = 15) with respect to parameter r. The plot is generated with a
scheme that uses the FET algorithm and is based on [23].

4.4. Stacked Fronts. We can now explain the behaviour of solutions that we
observed in Figure 1. The operator S has two spreading speeds. One is simply twice
the spreading speed of @ and is defined by the linearization at 0. When r > 2 so
that the positive steady state of @) is unstable, the exact behaviour behind the front
is unclear. The other generalized spreading speed exists only when the positive state
of ) is unstable and a stable two-cycle exists. We conjecture that this second speed is
given by the linearization at 1. We proved the existence of travelling waves connecting
the states 1 and ny (n_) for the operator S under certain conditions.

The simulations in Figure 1 show what has been termed ‘stacked fronts’ [20]:
There is a non-monotone travelling front between the unstable states 0 and 1. This
front travels at the speed determined by the linearization at 0. In behind, the travelling
wave that connects 1 to ny (or n_) forms a second, stacked, front that propagates at
the speed given by the linearization at 1. The two cases for S (i.e. the connection of
the second front to n4 or n_) appear as alternating profiles in the operator Q. Only
in that sense, but not in the strict sense, we have a ‘travelling two-cycle’ [12].

We can observe a stacked front only if the profile that starts at 0 moves faster
than the profile starting at 1. If that is the case, we see a plateau emerging at N = 1.
The length of the plateau at N = 1 increases with time, giving the impression of
stability, even though this state is unstable for the map N — F(N) when r > 2.
This type of behaviour for solutions was first observed in the context of a system of
reaction-diffusion equations in [18], and was termed as dynamical stabilization.

From the two explicit formulas for the spreading speeds, we calculate whether the
first profile actually travels faster, i.e. whether we have 2¢* > Czﬂl,m)‘ For the speeds
reported in Figures 4 and 5 (right plot), this relationship certainly holds. In general,
in the case of the Gaussian kernel, we use equations (18) and (23) to obtain

2c* [ In(F(0))
o\ RIP)

When F' is the Ricker function or the logistic function, we have F’(0) > |F’(1)| for
r > 2 so that 2¢* > C>(k17n+)' The same conclusion holds for the Laplace kernel, but
the derivation is a bit more involved, see [2]. In both cases, the result is independent
of the variance of the kernel.

The condition that the first profile travel faster than the second is necessary but
not sufficient for the emergence of a plateau [19]. Figure 6 shows that the oscillatory
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Fic. 6. Numerical solution of the integrodifference equation, where F' is the Ricker function
with r = 2.525, and K is the Laplace kernel with a = 15, plotted for even (top panel) and odd
(bottom panel) generations every 10 time steps. The values ny and n— are the high and low density
point cycle. No = n4X(z>10]-

decay to the dynamically stabilized positive state can be so slow that no plateau
emerges for at least 50 generations. We also do not see the connection to n™ emerge
as a constant profile with constant speed.

5. Extensions. Our results on how two-cycles in the growth function can trans-
late into generalized spreading speeds and travelling waves for the second-iterate op-
erator are the basis for several possible extensions. We list two of them in this section.

5.1. Four-cycles. As r increases, the two-cycle of the Ricker or logistic function
undergoes a period-doubling bifurcation and gives rise to a stable four-cycle, that we
denote by n_, n*, n; and nI, (Figure 2, right plot). In [12], the author plotted
a ‘travelling four-cycle’ in this case. Our simulations reveal that, again, the profile
consists of several parts that move at different speeds. As in Figure 1, we observe a
leading profile from 0 to 1 that moves the fastest, followed by a second, slower profile
that connects 1 to ny or n_. Eventually, there emerges an even slower third profile
that connects n4 to ni in the top left panel, and correspondingly other points on
the four-cycle in the other panels. In each panel of Figure 7, we plot the solutions of
Nip1 = Q[Ny] every 10 generations. Each panel corresponds to a different generation
modulo 4. To focus on the second and third profiles, we do not show the leading profile
in these plots. We notice the emergence of a plateau at all unstable fixed points of F)
ie. at 1,n4,n_. We can extend the ideas and theory developed above and study the
fourth-iterate map of @ or the second-iterate map of S.

Since operator S satisfies the continuity and compactness properties required for
the existence of a spreading speed and travelling waves, the operator S oS does also.
The following theorem is analogous to Theorems 3.1 and 3.2.

THEOREM 5.1. Let F be a growth function with the following properties:
i) F is bounded and Lipschitz continuous;
ii) F has exactly one stable four-cycle (ni, n_, ny, nt), which corresponds to
two stable two-cycles in F o F, given by (n_,n" ) and (ny, ni),
iti) N = ny is the only fized point of F o F on the interval [nT,nZ];
iv) (FoFY(ny) < —1;
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F1a. 7. Four travelling profiles emerge when the growth function has a stable four-cycle. Nu-
merical solution of the integrodifference equation in (1), with logistic growth function and Laplace
dispersal kernel. Solutions are plotted every 10 generations with remainders 0 (top left), 1 (top
right), 2 (bottom left) and 8 (bottom right) modulo 4. Th values ny and n— indicate the high and
low density of the two-point cycle for the function F. Values n:[,n:unir and n_ form the four-
cycle. Parameters are r = 2.5 in (4) and a = 6 in (16). The initial condition was the characteristic

function No(z) = X[z<10] + nix[zzlol'

v) F is non-increasing on [n,nl] and non-decreasing on [n_,n7].

Then, there exists a generalized spreading speed c?n ) for the operator SoS from n
+n

*

to ni Furthermore, for all ¢ > ¢ nt)’ there exists a monotone travelling wave so-
+-T 4

(n
lution W (z + ct) with lim,_,_ o W(z) = ny and lim,_,oo W(2) = nl for the recursion
defined by Niyy = (S 0 S)[Ny).

5.2. Bistable Wave. With the emergence of a stable two-cycle for the growth
function F, there are two stable fixed points of F' o F, namely ny and n_ and an
unstable fixed point at 1 in between. These three fixed points translate into corre-
sponding spatially constant fixed points of the operators S and S. This situation is
reminiscent of the so-called ‘bistable’ scenario of the operator () that arises when the
growth function F" has 0 and 1 as stable fixed points and some intermediate unstable
fixed point. Ecologically, this situation corresponds to a ‘strong Allee effect’ where a
minimum population density is required for population growth.

The authors in [16, 28] studied the existence of monotone travelling waves con-
necting two stable fixed points in equation (1). The situation is markedly different
from the ‘monostable’ case that we reviewed in Theorems 2.3 and 2.4. In the bistable
case, one can show that there exists a travelling wave profile for exactly one speed,
¢y, and this speed can have either sign, i.e. the population density may advance or
retreat. The sign of the speed is given by the sign of the integral fol [F(n) —nldn [28].

It turns out that our approach of upward shift from the previous section applies
directly to the operator S but not to S. Symmetry, however, gives important insights
into the dynamics for S, which we verify through numerical simulations below.

THEOREM 5.2. Let the assumptions of Theorem 3.1 be satisfied. Then for the
operator S there erists a unique speed ¢, and a monotone travelling wave profile W
with lim,_, _ oo W(z) = n_ and lim,_, o = ny so that W(-—cp) = S[W]. Furthermore,
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Ny

T

Fic. 8. Bistable wave for S. Numerical solution of the integrodifference equation in (1),
with logistic growth function and Laplace dispersal kernel. Solutions are plotted every other
generation. Parameters are r = 2.2 and a = 15. The initial condition is the step function

No = n—X[z<o0] + M4X[z>0]

the sign of cp is given by the sign of

(25) /n+ [(F o F)(n) — nldn.

The proof of this theorem follows from applying the same construction as in
Theorem 2.8 for the operator S to the results in [16, 28].

When 2 < r < 2.2564 and 2 < r < 2.2361 for the Ricker function and logistic
function, respectively, then the conditions of the theorem (in particular monotonicity)
are satisfied. For the logistic function, the values of ny are explicitly given by the

expressions
1
ny = — [r+2j:\/r2—4} .

2r

The integral in (25) can be calculated as
N
[ e F)m) = nldn = Gny) ~ G-,

where ) ) 5
2 2 1 2 1
_ar+ n2_7“( +7)( +7")n3+7“( +7")n4_7;ns.
2 3 2 5
Evaluating this expression numerically, it turns out that the integral is negative when-
ever the two-cycle is stable (i.e. 2 < r < 2.449). In particular, the bistable wave is

always retreating. We illustrate the resulting front in Figure 8.

G(n)

Studying the existence of a bistable wave for operator § turns out to be more
difficult. We cannot directly apply the results of [16, 28], as they require an operator
of the form in (1). A more generalized theory of bistable travelling waves in monotone
semiflows is provided in [6]. However, applying the results by those authors to our
case would require the relation C*l,m) - cZ‘LM > 0. Since, by symmetry, we have
C>(k1, ny) = cani), we cannot use their methods. Similarly, neither of the techniques
in [16] or [6] carry over to prove uniqueness of the speed for a travelling wave. But,
assuming uniqueness, we can prove that the speed has to equal zero.

PROPOSITION 5.3. Let the assumptions of Theorem 3.1 be satisfied. Assume fur-
thermore that there is a unique speed ¢y, for which the operator S admits a travelling
wave with lim,_,_ o W(z) = n_ and lim,_,oc W(z) = ny.. Then ¢, = 0.
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Fic. 9. Bistable standing wave for S. Numerical solution of the integrodifference equation in
(1), with Ricker growth function and Laplace dispersal kernel. Solutions are plotted every other
generation. Parameters are v = 2.2 (left plot), r = 2.52 (right plot) and a = 10. The initial
condition is the step function No = n—X[z<0] + N+X[z>0]

Proof. Let c, be the speed and W the profile of the corresponding wave with
asymptotic behaviour as in the statement. Then W(z) = —W(z) is a travelling
wave of & with speed —¢;, and asymptotic behaviour lim, , o, W(z) = n4 and
lim, o W(z) =n_. Applying the operator @) to W, we obtain a travelling wave
W(z) = Q[W](#) with speed ¢, and asymptotic behaviour lim,_, W(z) =ny and
lim, W(z) = n_ of the operator S. Hence, we have a wave with speed ¢, and one
with speed —c¢, and identical asymptotic behaviour. By the uniqueness of the speed,
we require ¢, = 0. 0

Numerical simulations illustrate the prediction of the proposition: the wave comes
to a halt after a few iterations; see Figure 9. The argument in Proposition 5.3 does
not require monotonicity of the wave profile. The left panel in Figure 9 corresponds
to the case that the growth function F' is monotone in the interval [n_,ny], and we
see a monotone profile emerge. The panel on the right is for the case when F' is not
monotone. Correspondingly, we see a non-monotone profile establish.

6. Discussion. Integrodifference equations are discrete-time, continuous-space
models to understand biological invasions [13]. Like reaction-diffusion equations,
their continuous-time counterparts, integrodifference equations can support travel-
ling waves. Scalar differential equations have monotone dynamics, and accordingly,
scalar reaction-diffusion equations have monotone travelling waves. Scalar difference
equations can have non-monotone dynamics and, accordingly, integrodifference equa-
tions may have non-monotone waves [1]. This difference is crucial in applications
since, for example, many insect species exhibit non-monotone (overcompensatory)
dynamics [3]. The theory of spreading speeds and travelling waves is well developed
in the monotone case. We clarify previous conjectures [12] and contribute to our
understanding of non-monotone phenomena [10, 15, 33].

Our main results are that integrodifference equations with overcompensation can
support several spreading speeds and associated travelling waves that connect various
fixed points and periodic orbits of the underlying growth function, and that these
should be studied by analyzing appropriate iterates of the operator (). Our numerical
results show that the different spreading speeds manifest themselves in the form of
stacked waves of these iterates. Previous authors proved the existence of travelling
waves with overcompensation [10, 15]. Based on our results, we conjecture that these
travelling waves are unstable for the integrodifference equation. Instead, the theory
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of stacked waves should be developed further. This theory is partially developed
for reaction-diffusion equations where vector-valued models are required to study the
phenomenon [7, 11, 24]. Integrodifference equations offer an opportunity for deeper
understanding using scalar equations. Stacked waves in vector-valued integrodiffer-
ence equations were recently found in a disease model [20].

The different speeds of the different wave fronts lead to ‘dynamical stabilization’
[18, 19, 25], i.e. the appearance of a plateau of increasing length that separates the
initial ‘invasion’ from the final state of a two-cycle. In an ecological context, this
observation means that a population that had spread into a certain region long ago
and had been stable for a long time could suddenly exhibit periodic fluctuations.
While the typical question would then be whether any changes in biotic or abiotic
conditions caused the instability, our results show a different possibility: the steady
state may have been unstable all along, stabilized temporarily by dispersal and spread.

We showed that our approach can be extended to study travelling waves and
generalized spreading speeds in cases where the growth function has a four-cycle. As
parameter r increases, the Ricker and logistic equations are known to have a sequence
of period-doubling bifurcations that can generate cycles of length 2* (among others).
Our techniques and theory generalize to these longer cycles as well. However, the
existence of a generalized spreading speed and/or a corresponding travelling wave
does not necessarily imply that these objects are stable and that we see them in
simulations [2]. Heuristically, as r increases, the quantity |F’(1)| increases and the
state N = 1 becomes harder to stabilize. Dynamic stabilization does not occur any
more and solutions exhibit oscillatory-like behaviour [2].

In addition to the ecologically correct second iterate S, we introduced the operator
S that corresponds to two growth phases followed by two dispersal phases. It is not
a second-iterate operator but describes the same number of events as S, only in a
different order. The advantage of S is that its particular form allows one to directly
apply the results by previous authors (e.g. [30]) to prove the existence and, in cases,
linear determinacy of spreading speeds and of travelling waves. Interestingly, we found
that the results for the Ricker and logistic growth function differ in that only with
the latter does the linearization of S at 1 satisfy the subtangential condition for linear
determinacy. Numerically, we found that the spreading speeds of S and S matched
in the case of monostable waves. Future research will prove or disprove this result in
general. Interestingly, the two operators make very different predictions in the case
of bistable waves. More research is needed to understand the behaviour of bistable
waves for S.

So far, results were based on the assumption of a symmetric dispersal kernel.
Asymmetry complicates the analysis since we have to consider one spreading speeds
in each direction. Several authors studied aspects of asymmetry for the operator @,
even for non-monotone dynamics [32] and stacked waves [20]. A particular form of
asymmetry arises from biased dispersal, for example due to stream flow, ocean currents
or prevailing wind direction [8, 17, 20]. With biased dispersal, the spreading speed
can be positive in the direction of the bias but negative in the opposite direction, even
with a monotone and monostable growth function. In river ecosystems, a negative
spread rate in the upstream direction has been interpreted as a downstream wash-
out of the species [17]. A very simple form of asymmetry arises from a shift in
the dispersal kernel, for example a Gaussian kernel with non-zero mean. While this
kernel is still symmetric around its mean, very simple models of biased movement can
also generate kernels that are not symmetric around their mean [17]. We present an
initial numerical simulation of our model with overcompensation and an asymmetric
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Fic. 10. Plateau evolving for asymmetric dispersal. Numerical solution of the integrodifference
equation in (1), with Ricker growth function and Gaussian dispersal kernel K(z) = N (z;u,02),
where N is the normal distribution with mean pu and variance o2. Solutions are plotted every 10
generations. Parameters are r = 2.1 in (3), 02 = 0.1, u = 0.1 (left plot) and u = 0.2 (right plot).
The initial condition was the characteristic function No(z) = 1.5X[z>0]- The Gaussian distribution
was chosen because there is a standard way to include asymmetry as a non-zero mean, whereas
several options exist for the Laplace kernel [17]. The variance was chosen to match the variance of
a (symmetric) Laplace kernel with a =15 as in some previous Figures.

(shifted) Gaussian dispersal kernel. We find that the spreading speeds of the first and
second wave front may have opposite signs (Figure 10). In this case, the plateau that
emerges through dynamic stabilization expands in both directions.

We finish our discussion with another analytical challenge. Li and co-authors
proved the existence of a travelling wave in the case that the growth function has
a stable two-cycle [15]. They illustrated the shape of such profiles by fixed-point
iteration, i.e. by numerically solving the equation N = Q[N (- — ¢*)], after calculating
c* from the linearized formula. For certain parameter values, they found a profile that
connects the zero state to a spatially periodic pattern that alternates between n_ and
ny, see Figure 3 in [15]. They conjectured that the period of the pattern behind the
wave equals twice the speed of the wave. They used a dispersal kernel with a variance
much smaller than all simulations presented in our previous figures.

Despite intensive numerical simulations (for very small variance), we did not
observe such a profile emerge for the dynamic equation in that parameter range from
a piecewise constant initial condition that we had used in all the Figures so far. With a
(scaled) normal distribution as initial condition, we observed phenomena on two time
scales. On a fast scale, within only a few iterations, we observed a moving profile that
connects zero to a spatially oscillating pattern; see Figure 11. This profile is vaguely
reminiscent of the profile in Figure 3 in [15], but it moves faster than the linearization
at zero predicts. Wave-solutions to reaction-diffusion equations with slowly decaying
initial conditions can travel quite fast [9]. We conjecture that the wave profile in
Figure 3 in [15] is unstable for the dynamic equation.

After some time, the fast moving, oscillating profile stops and develops into two
objects: a slow-moving, non-monotone profile from zero to the unstable positive fixed
point, and a plateau at that fixed point; see Figure 12. The oscillating pattern that
developed initially appears relatively stationary. Different initial conditions lead to
patterns that appear temporally constant and oscillate spatially between ny and n_
but differ in the spacing of the oscillations. These patterns therefore appear to be
echoes of the initial condition.

For much larger times, either a secondary wave profile emerged, as observed in
Figure 1 for example, or an oscillating pattern evolved that looked very much like the
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Fic. 11. Short-time simulation of integrodifference equation (1) with scaled Gaussian initial
condition No(x) = ny exp(—x2). Only the region {x < 0} is shown, the region {x > 0} is symmetric.
We used the logistic growth function and the Laplace dispersal kernel with parameters r = 2.2 and
a = 50, respectively.
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F1G. 12. Intermediate-time simulation of (1) with scaled Gaussian initial condition No(z) =
ny exp(—z?). Only the region {x < 0} is shown, the region {x > 0} is symmetric. We used the
logistic growth function and the Laplace dispersal kernel with parameters r = 2.2 and a = 50,
respectively.

second part of the profile from Figure 3 in [15], however, it was a standing-wave pat-
tern, not a moving pattern. We tested these results with two independent numerical
methods: Fast Fourier Transform (with which we had produced all previous simula-
tion plots) or application of the trapezoidal rule to the convolution integral. In both
cases, we observed what appeared to be instabilities after about 200 generations. More
stable and more accurate numerical methods are necessary to explore the dynamic
behaviour further. In particular, the question remains whether there are asymptotic
patterns that are not spatially constant (i.e. at 1, ny or n_). Since the bistable fronts
between ny and n_ have speed zero (see previous section), it is conceivable that spa-
tially oscillating, temporally stationary patterns could arise as concatenations of such
transition fronts. Hence, the analytical challenge is to prove whether there are many
coexisting, spatially oscillating steady-state patterns for the operator S (potentially a
continuum) or whether this is a long-term transient phenomenon that will eventually
be replaced by the simple, spatially homogeneous two-cycle.
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