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Abstract

We have derived an analytical formulation for estimating the volume of geometries enclosed by implicitly defined surfaces.

The novelty of this work is due to two aspects. First we provide a general analytical formulation for all two-dimensional

cases, and for elementary three three-dimensional cases by which the volume of general three-dimensional cases can be

computed. Second, our method addresses the inconsistency issue due to mesh refinement. It is demonstrated by several

two-dimensional and three-dimensional cases that this analytical formulation exhibits 2nd-order accuracy.
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1. Introduction

Accurate and efficient volume estimation is important for investigating complex geometries encountered in a variety of

scientific and engineering problems. In astronomy, the estimation of an asteroid volume is helpful to determine the bulk

density for assessing the material composition. Except for some large spheroidal asteroids whose volumes can be estimated

by their mean diameters, most asteroids have irregular shapes which require more complicated volume estimation methods.

Usually, three-dimensional (3D) reconstructed shape models are employed to approximate such irregular geometries [7, 1].

In computational fluid dynamics, a volume-fraction estimation is required for the transport of multiple fluids by the volume-

of-fluid (VOF) method or the level-set method [12]. The volume fraction of a specific fluid in a uniform mesh cell can be

computed by the Heaviside [23, 25] or color function [9], or combination of either one with the interface normal direction

[11]. The interface reconstruction step of the VOF method may also require a volume-estimation method to determine

the interface location [22, 5, 4]. Another example is medical engineering, where in order to detect the development of

lung hypoplasia and investigate the correlation between lung growth and fetal presentation, accurate measurement of

fetal lung volume is a pressing need [21]. Tumor volume estimation is also widely used in many cancer treatments,

such as prostate cancer [3], brain tumors [13] and pelvic neoplasms [18]. Most of such volume estimations are based on

magnetic-resonance (MR) imaging. A three-dimensional reconstruction method is considered to be much more reliable and

accurate than other more traditional approximation methods, such as ellipsoid and disc-summation approximations, and

automated image segmentation [6, 8, 2, 14]. For example, volume estimation of the articular cartilage is performed by the

Marching Cube algorithm [17, 19] applied on the three-dimensional reconstruction [20]. The disadvantage of this method

is that one first needs to reconstruct the iso-surface before volume estimation. However, there are too many different

cases (16 for 2D and 256 for 3D) to deal with. The volume estimation method is consistent during mesh refinement

in the sense that the volume fractions are conservative with respect to the coarsest level. It is possible to obtain a
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unique volume approximation during mesh refinement by a consistent volume estimation method. Any numerical method

introduces inconsistencies during mesh refinement, irrespectively of its order of accuracy, as the truncation error depends

on mesh resolution. Although not critical for many applications, consistency is desirable, and it is important for numerical

simulations of multiphase flows [24].

The objective of the present paper is to develop a consistent volume estimation method for calculating the volumes of

geometries enclosed by implicitly defined surfaces. To achieve this property, we derive analytical formulations for generic

2D and 3D geometries, which avoid truncation errors, unlike numerical methods. The formulations are then subsumed

to derive a general formulation that can be applied to more complex cases. This method is made consistent during mesh

refinement by employing bilinear/trilinear interpolation. The paper is organized as follows. Sec. 2 describes the derivation

of 2D and 3D analytical volume formulation for arbitrary geometries. We also discuss how to preserve consistency during

mesh refinement. Sec. 3 is dedicated to assessing the capability of the present method to calculate the volumes for various

cases, followed by conclusions in Sec. 4.

2. Analytical Volume Fraction

2.1. 2D formulation

Before presenting the 3D formulation, we first consider the 2D case for its simplicity and give a comprehensive de-

scription of the underlying concept. Suppose that we have volumetric data, say discrete data of a level-set field φ, which

implicitly defines the interface in the domain Ω, the interface in any cell can be expressed by the zero value of a re-

constructed field φ(x, y) which is obtained by bilinear interpolation. The interface is hereby represented by piecewise

parabolas for two dimensions (2D), i.e., the interface inside the cell [i, i+ 1]× [j, j + 1] is defined as

Γ = {(x, y) ∈ Ω : φ(x, y) = β0 + β1x+ β2y + β3xy = 0} , (1)

where the coefficients β0, β1, β2 and β3 are determined by the interpolation conditions,

β0 = φ00, β1 = φ10 − φ00, β2 = φ01 − φ00, β3 = φ00 + φ11 − φ01 − φ10, (2)

with φ00, φ10, φ01 and φ11 defined in Fig. 1(a). The volume of this cell can be easily calculated by integrating the

reconstructed field in x direction or y direction. In order to simplify the integration, we reformulate Eq. (1) with a

coordinate mapping,

ζ =
−aη − b

cη + d
(3)

whose symbols need careful definition to simplify the calculations. The definition is based on the intersection points at

the edges of a mesh cell. Specifically in 2D, we first detect the grid point

x0 = arg max
x∈X

#(x′ ∈ X|φ(x)φ(x′) < 0 ∧ ‖x′ − x‖2 = 1) (4)

and set is as the origin of a local Cartesian coordinate system. X is the set of all 4 vertices (8 in 3D) of the current cell.

Then the coordinate transformation is determined by η = arg max
γ∈{x,y}

lγ and ζ = {x, y} \ {η}, where lγ is the distance from

the vertex (i, j) to the intersection point on a neighbour edge in x-direction or y-direction,

lx = −β2iy + β0

β3iy + β1

if φixiyφ|1−ix|iy < 0 else 1.0, ly = −β1ix + β0

β3ix + β2

if φixiyφix|1−iy| < 0 else 1.0, (5)
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where ix and iy are the coordinates of the origin in the x and y directions, respectively, see Fig. 1(a). Once the origin and

the local transformed coordinates (η, ζ) are defined, the coefficients of Eq. (3), a, b, c and d, are determined according

to the relation between the (x, y) and (η, ζ) coordinate systems. Then the cut volume of cell [i, i + 1]× [j, j + 1] can be

obtained by integration of ζ(η) as

α = (1− 2iς)

[
(ad− bc) log |cη + d|

c2
− aη

c

]∣
∣
∣
∣

η1

η0

+ iς(η1 − η0). (6)

The integration range is determined by η0 = min(lη, iη) and η1 = max(lη, iη), where lη is the length from the origin of the

coordinate system to the intersection point in η direction.

2.2. 3D formulation

The 2D formulation can be easily extended to three dimensions. Again, the interface inside a cell, say [i, i+1]× [j, j+

1]× [k, k + 1] in Fig. 1(b), can be represented by trilinear interpolation,

Γ = {(x, y, z) ∈ Ω : φ(x, y, z) = β0 + β1x+ β2y + β3z + β4xy + β5yz + β6xz + β7xyz = 0} , (7)

where the coefficients are uniquely determined by the interpolation conditions, see Fig. 1(b),

β0 = φ000, β1 = φ100 − φ000, β2 = φ010 − φ000, β3 = φ001 − φ000,

β4 = φ110 − φ100 − φ010 + φ000, β5 = φ011 − φ010 − φ001 + φ000,

β6 = φ101 − φ100 − φ001 + φ000, β7 = φ111 − φ110 − φ101 + φ100 − φ011 + φ010 + φ001 − φ000. (8)

Upon identification of the origin (O) by Eq. (4), the local coordinates are defined as ξ = arg max
γ∈{x,y,z}

lγ , η = arg max
γ∈{x,y,z}\{ξ}

lγ

and ζ = {x, y, z} \ {ξ, η}, where the distance from the grid (i, j, k) to the intersection points, lγ , are calculated by

lx =
− [(β5iy + β3) iz + β2iy + β0]

[(β7iy + β6) iz + β4iy + β1]
if φixiyizφ|1−ix|iyiz < 0 else 1.0

ly =
− [(β6ix + β3) iz + β1ix + β0]

[(β7ix + β5) iz + β4ix + β2]
if φixiyizφix|1−iy|iz < 0 else 1.0

lz =
− [(β4ix + β2) iy + β1ix + β0]

[(β7ix + β5) iy + β6ix + β3]
if φixiyizφixiy|1−iz | < 0 else 1.0. (9)

The coordinates of the origin in the x, y and z directions are ix, iy and iz, respectively, as shown in Fig. 1(b). Eq. (7) is

rewritten as

ζ(ξ, η) =
−ξ(aη + b)− cη − d

ξ(eη + f) + gη + h
, (10)

with the coefficients, a, b, . . . , f, g, determined by the relation between the (x, y, z) and (ξ, η, ζ) coordinate systems. Thus

the volume of each cell α can be calculated by the double integral of ζ(ξ, η),

α = (1− 2iς)

∫ ξ1

ξ0

[∫ η1

η0

ζ(ξ, η)dη

]

dξ + iς

∫ ξ1

ξ0

q(ξ)dξ = (1 − 2iς) [F (ξ1)− F (ξ0)] + iς [G (ξ1)−G (ξ0)] (11)

with

q(ξ) =
−(fiς + b)ξ − hiς − d

(eiς + a)ξ + giς + c
. (12)

The integration ranges are ξ0 = min(lξ, iξ) and ξ1 = max(lξ, iξ) in ξ-direction, and

η0 = − (f iζ + b) ξ + h iζ + d

(e iζ + a) ξ + g iζ + c
if iη = 1 else 0.0, η1 = − (f iζ + b) ξ + h iζ + d

(e iζ + a) ξ + g iζ + c
if iη = 0 else 1.0, (13)
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in η-direction.

For all cells containing a resolved interface, Eq. (11) for the three cases sketched in Fig. 2 can be expressed by

elementary integrals. First we subsume those elementary cases by a single formulation. Other cases can be expressed as

combination of these elementary cases, and their volume estimation will be discussed later.

First we consider iζ = 0 such that F(ξ) in Eq.(11) becomes

F(ξ) =

∫
[

−
(
t2 + ξt1 + ξ2t0

)

(eξ + g)2
[
log (fξ + h) + log (aξ + c)− log

(
t2 + ξt1 + ξ2t0

)]
+

bξ + d

eξ + g

]

dξ (14)

with t0 = af − be, t1 = ah− bg + cf − de, and t2 = ch− dg, while G(ξ) is

G(ξ) = − 1

(iζe+ a)2
[
(eh− fg) i2ζ + (ah− bg − cf + de) iζ + ad− bc

]
log (iζξ0 + ξ4)−

(iζf + b) ξ

iζe+ a
(15)

We define F(ξ) = F1(ξ) + F2(ξ), where F1 and F2 are

F1(ξ) = log(t2 + ξt1 + ξ2t0)

[

−e2t2 − egt1 + (−e2ξ2 − egξ + g2)t0
e4ξ + e3g

+
log(eξ + g)(et1 − 2gt0)

e3

]

−
∫ [

−e2t2 − egt1 + (−e2ξ2 − egξ + g2)t0
e4ξ + e3g

+
log(eξ + g)(et1 − 2gt0)

e3

]

d(t2 + ξt1 + ξ2t0), (16)

and

F2(ξ) =

∫
[

− log (fξ + h)
(
t2 + ξt1 + ξ2t0

)

(eξ + g)2
− log (aξ + c)

(
t2 + ξt1 + ξ2t0

)

(eξ + g)2
+

bξ + d

eξ + g

]

dξ, (17)

respectively. Substituting the variables, Ξ0 = eξ+ g, Ξ1 = t2 + ξt1 + ξ2t0, t3 = e2t2 − egt1 + g2t0 and t6 = et1 − 2gt0, into

the above formula, we obtain

F1(ξ) = log(Ξ1)

[
Ξ0 log(Ξ0)t6 − t3

e3Ξ0

+
ξt0
e2

]

︸ ︷︷ ︸

A

+
t6
e3

∫
(t1 + 2ξt0) log(Ξ0)

Ξ1

dξ

︸ ︷︷ ︸

B1

+

∫
(t1 + 2ξt0) [−t3 + eξΞ0t0]

e3Ξ0Ξ1

dξ

︸ ︷︷ ︸

B2

, (18)

where if t21 − 4t0t2 ≥ 0,

B1 =
t6
e3

∫

log(Ξ0)

(

2t0

2t0 ξ +
√

t21 − 4t0t2 + t1
+

2t0

2t0 ξ −
√

t21 − 4t0t2 − t1

)

dξ, (19)

and otherwise

B1 =
t6
e3

∫

log(Ξ0)

(

2t0

2t0 ξ + i
√

−t21 + 4t0t2 + t1
+

2t0

2t0 ξ − i
√

−t21 + 4t0 − t12t0

)

dξ. (20)

The integration of Eq. (19) results in

B1 = − t6
e3

[

log(Ξ2 + s) log

(

−2Ξ0t0
s1

)

+ log (Ξ2 − s) log

(

−2Ξ0t0
s2

)

+ Li2

(
eΞ2 + es

s1

)

+ Li2

(
eΞ2 − es

s2

)

(21)

− log(Ξ0) log(4Ξ1t0)] ,

with Ξ2 = t1 + 2ξt0, s =
√

|t21 − 4t0t2|, s1 = t6 + es and s2 = t6 − es. The dilogarithm (Spence’s function) is defined as

Li2(z) = −
∫ z

0
log(1− t)dt. Eq. (20) becomes

B1 =
t6
e3

{

log(Ξ0)

[

log(
Ξ1

t0
) + 2 log(2t0)

]

− 2 atan2(s,Ξ2) atan2(es, t6)− 2Li2

[
e(2et2 + eξt1 − gΞ2) + ieΞ0s

2t0t3

]

− log(4t0Ξ1) log

(
Ξ0

√
t0t3

t3

)}

. (22)
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Similarly, in Eq. (18) we have B2 = 1

e3

[

− log(Ξ0)t6 − g log(Ξ1)t0 + 2eξt0 + es log
(

Ξ2−s
Ξ2+s

)]

if t21 − 4t0t2 ≥ 0, otherwise

B2 = 1

e3

[
− log(Ξ0)t6 − g log(Ξ1)t0 + 2eξt0 − 2es atan(Ξ2

s
)
]
.

To calculate F2(ξ), we define F2(ξ) = C+D+E, with C, D and E being

C =

∫

− log (fξ + h)
(
t2 + ξt1 + ξ2t0

)

(eξ + g)
2

dξ = − log(Ξ3)
log(Ξ0)t6

e3
− log(Ξ3)

(

− t3
e3Ξ0

+
ξt0
e2

)

− f log(Ξ3)t3
e3t4

+
ξt0
e2

+
t6
e3

log(Ξ0) log(
eΞ3

t4
) +

t6
e3

Li2

(−fΞ0

t4

)

+
log(Ξ3)

(
f2t3 − eht0t4

)

e3ft4
, (23)

D =

∫

− log (aξ + c)
(
t2 + ξt1 + ξ2t0

)

(eξ + g)
2

dξ = − t6
e3

log(Ξ4) log(Ξ0)− log(Ξ4)

(

− t3
e3Ξ0

+
ξt0
e2

)

− a log(Ξ0)t3
e3t5

+
ξt0
e2

+
t6
e3

log(Ξ0) log(
eΞ4

t5
) +

t6
e3

Li2

(−aΞ0

t5

)

+
log(Ξ4)

(
a2t3 − ect0t5

)

e3at5
(24)

and

E =

∫
bξ + d

eξ + g
dξ =

bξ

e
− (bg − de) log(Ξ0)

e2
, (25)

respectively, with t4 = eh − fg, t5 = ce − ag, Ξ3 = fξ + h and Ξ4 = aξ + c. We can generalize Eq. (11) for cases with

different iζ ,

α = (1− 2iς)
[
F (ξ1)

∗ − F (ξ0)
∗]

+ iς
[
G (ξ1)

∗ −G (ξ0)
∗]

, (26)

where F∗ (ξ) = (1− 2iη) (A
∗ −B1

∗ −B2
∗) + (1− 2iη) (C

∗ +D∗ +E∗) + G∗ and G (ξ)
∗
= (1− 2iη)G (ξ), where A∗,

B1
∗ and B2

∗ are the same as A, B1 and B2, respectively. C
∗, D∗, E∗ and G∗ are defined as

C∗ = − t6
e3

log(Ξ0)

[

log(Ξ3 + iηΞ0)− log
e (Ξ3 + iηΞ0)

t4

]

+ log(Ξ3 + iηΞ0)

[

(f + iηe)
2t3 − e (h+ iηe) t0t4

e3 (f + iηe) t4
+

t3
e3Ξ0

− ξt0
e2

]

+
t6
e3

Li2

[− (f + iη) eΞ0

t4

]

− (f + iηe) log(Ξ0)t3
e3t4

+
ξt0
e2

, (27)

D∗ = − t6
e3

log(Ξ0)

[

log(Ξ4 + iςΞ0)− log
e (Ξ4 + iςΞ0)

t5

]

+ log(Ξ4 + iςΞ0)

[

(a+ iςe)
2
t3 − e (c+ iςg) t0t5

e3 (a+ iςe) t5
+

t3
e3Ξ0

− ξt0
e2

]

+
t6
e3

Li2

[− (a+ iςe) Ξ0

t5

]

− (a+ iςe) log(Ξ0)t3
e3t5

+
ξt0
e2

, (28)

E∗ = −iς
(eh+ ah− fg − bg − cf + de+ ad− bc)

(a+ e)2
log(Ξ0 + Ξ4)−

(bg − de) + iη(ag − ce)− iς(eh− fg)

e2
log(Ξ0)

+
(1− iς + iςa) (iηiςe+ iςf + iηa+ b)ξ

e [1− iς + (a+ e)iς ]
, (29)

and G∗ = (1− 2iη)G+ ξiη, respectively. Now, we can use this general formulation to calculate 3D volume fraction of all

cases sketched in Fig. 2. These elementary cases generate more complex cases as indicated in Fig. 3, and are defined as

type I, II, and III, respectively. These complex cases can be split them into elementary cases in Fig. 2, as illustrated in

each subgraph. For instance, the case in Fig. 3(a) is composed of type I and II, whereas cases in Fig. 3(b) and (c) are

combinations of all three elementary types. In order to compute the volumes of those cases, the first step is to decompose

the cell into elementary types, which is easy to accomplish. For example, in Fig. 3(b), along the ξ-direction we can find

two intersection points ξ1 and ξ2 which occur at two different edges parallel to ξ-direction. By these intersection points,

the whole cell is cut into three parts in ξ directions, as shown in Fig. 3(b).
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2.3. Accuracy test

We calculate the volumes of a circle and a sphere to assess the accuracy of our analytic formulations in 2D and 3D.

The results of our method are compared to those of a linear approximation method [15], as plotted in Fig. 4.

For 2D, as shown in Fig. 4(a), the cumulative volumes along x-direction indicate that both linear and analytical

results are in good agreement with the exact result while locally the analytical formulation is more accurate. In Fig.

4(b) 2nd-order convergence rate is demonstrated for our formulation because it is based on bilinear/triliner interpolation

while the linear method is 1st-order as expected. The magnitude of the error is much smaller in our method. The result

of the 3D case in Fig. 4(c) exhibits similar error distribution with Fig. 4b. As a consequence, for 2D and 3D, our

analytical formulation provides more accurate volume-estimation than the linear method due to a more accurate interface

representation.

2.4. Consistency test

Definition. The consistency condition of the volume-estimation during mesh refinement is
∫

Ω
α0dV =

∫

Ω
αℓdV , i.e.,

volumes calculated from the initial volumetric field and the refined field are exactly the same.

The significance of maintaining consistency of volume estimation is obvious. For example, for an adaptive multiphase

solver [24] conservation errors can only be prevented if the volumes have an identical value at each resolution level. This

can not be achieved by a linear representation. All such numerical volume estimations are not consistent as the errors

introduced by numerical methods depend on grid resolution.

Theorem. The analytical volume-estimation formulation is consistent if the level-set field is refined by bilinear/trilinear

interpolation.

Proof. The necessary and sufficient condition for consistency is that the parameters of Eq. (1) or Eq. (7) remain

invariant upon mesh refinement as no numerical error is introduced by the analytical formulation and the coordinate

transformation doest not change the computed volume. This can be easily proved. For simplicity, we consider the 2D

cases for description. Assume the grid point level-set values φℓ of a cell [i, i+ 1] × [j, j + 1] on level ℓ are given. During

refinement, a cell is divided into 4 subcells. The level-set values φℓ+1 at level ℓ+1 are computed by bilinear interpolation.

Thus the parameters of the interface equation for the subcell [2i+ 1, 2i+ 2]× [2j + 1, 2j + 2] are

β
′

0 = φℓ+1
00 , β

′

1 = φℓ+1
10 − φℓ+1

00 , β
′

2 = φℓ+1
01 − φℓ+1

00 , β
′

3 = φℓ+1
00 + φℓ+1

11 − φℓ+1
01 − φℓ+1

10 (30)

which can be expressed by φℓ with bilinear interpolation,

β
′

0 =
φℓ
00 + φℓ

01 + φℓ
10 + φℓ

11

4
, β

′

1 =
φℓ
10 + φℓ

11

2
− φℓ

00 + φℓ
01 + φℓ

10 + φℓ
11

4
, β

′

2 =
φℓ
01 + φℓ

11

2
− φℓ

00 + φℓ
01 + φℓ

10 + φℓ
11

4
(31)

β
′

3 =
φℓ
00 + φℓ

01 + φℓ
10 + φℓ

11

4
+ φℓ

11 −
φℓ
01 + φℓ

11

2
− φℓ

10 + φℓ
11

2
.

This implies that the interface equation at ℓ+ 1,

φ(x′, y′) = β
′

0 + β
′

1x
′ + β

′

2y
′ + β

′

3x
′y′ = 0, (32)

is the same as Eq. (1), as x′ = 2 x− 1 and y′ = 2 y − 1. For the other subcell we can obtain the same conclusion, which

completes the proof. �
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For example, a single cell test with specific level-set values clearly shows the consistency feature of our method. After

prescribing the grid values, φℓ
00 = 0.1, φℓ

10 = 0.6, φℓ
01 = -0.3, and φℓ

11 = -0.1, we obtain the coefficients a = 0.5, b = 0.1,

c = −0.3, and d = −0.4. The origin is placed at (0, 0) and the integration variable η is x, hence the interface profile

becomes ζ = (5η + 1)/(3η + 4) with an integration range of [0, 1]. After substituting the parameters into the Eq. (6),

the volume of this piece on this level is α = 1

9
(17 log(4) − 17 log(7) + 15). The bilinear interpolation leads to φℓ+1

00 =

0.1, φℓ+1
10 = 0.35, φℓ+1

01 = -0.1, and φℓ+1
11 = 0.075 for subcell cell [2i, 2i+ 1]× [2j, 2j + 1]. Substitute these values into Eq.

(6), we can get a volume of α00 = 1

63
(120 − 476 log

(
68

7

)
) + 68

9
log (8) + 3

7
. Analogously, the volumes of the other three

subcells are α10 = 1.0, α01 = 68

9
( log

(
68

7

)
− 12 − 68 log (11) + 21) and α11 = 68

9
( log (11) − log (14) + 21), respectively.

Obviously, the consistency is satisfied as α = (α11 +α10 +α01 +α00)/4. Analogously, we can proof the consistency of our

volume-estimation method during coarsening.

In addition, simple cases used in the accuracy test are employed to test the consistency of the present method. As

shown in Fig. 5, the initial resolution is h = 0.05 on ℓ = 0, then the level-set fields are refined from ℓmax = 1 to 5. The

dash-dotted, solid and dashed lines stand for error norms,

L1 =

∑

i,j |αℓ
i,j − α0

i,j |
∑

i,j α
ℓ
i,j

, L2 = [

∑

i,j |αℓ
i,j − α0

i,j |2
∑

i,j α
ℓ
i,j

]
1

2 and L∞ = max
i,j

|αℓ
i,j − α0

i,j |, (33)

respectively, with the superscripts ‘0’ and ‘ℓ’ being the volume fraction of the cell [i, j] × [i + 1, j + 1] on ℓ = 0 and the

summation of volume fractions on ℓ > 0 within the same cell. In 2D, with ℓmax increasing, the discrepancy between ℓ = 0

and ℓmax for linear approximation method is large, ranging from 5× 10−2 to 1× 10−1 for L∞. The linear reconstruction

inside each cell is responsible for this distinct errors as it does not have a consistent representation of interface between

different resolutions. With respect to the analytical formulation the magnitudes are much lower than those of the linear

method. So the bilinear/trilinear representation and interpolation are beneficial to preserving the consistency of the

volume estimation. The 2D and 3D errors produced in our method can be neglected. Therefore it is concluded that for

both 2D and 3D our method automatically achieves consistency which is attributed to the analytical formulation and the

bilinear/trilinear interpolation.

2.5. Additional remarks

1. Note that only resolved cases have an analytical formulation. If there exists ambiguity such as multiple intersections

in one cell edge, pure analytical method may not provide the correct results as the formulation is not able to resolve

this cell. One can easily address this issue by adaptive refinement in the ambiguity regions or performing an interface

scale separation [10].

2. Our method achieves 2nd-order accuracy which is generally acceptable for most of the applications. However the

goal of our work is not to achieve high-order accuracy, but to maintain the consistency which is the unique feature

of our method.

3. Applications

In this section, we apply the analytical formulation to more complicated cases. Firstly we give two cases which have

exact volumes to test both accuracy and consistency. The first one is refered to as “double-circle” case where two circles

with an identical radius r = 0.25 and different centers (x0 = (0.3, 0.5) and x1 = (0.7, 0.5)) are merged. While the Zalesak

disk with a radius of 0.4, a notch width of 0.2 and a notch height of 0.6 is placed in at (0.5, 0.5). As shown in Figs. 6a
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and 6c, the results converge with a 2nd-order rate in our method and a 1st-order rate in the liner method. Both these

cases show distinguished consistency in the analytical formulation and large inconsistency in the linear method. A 3D

double-sphere case with the same parameters in the double-circle case confirms the conclusion, as shown in Fig. 7. In Fig.

8, A case with 15 randomly generated circles provides similar convergence and consistence results with the above cases.

Further more, a more practical case is tested to manifest the features of the present method. As shown in Fig. 10,

this case is the image segmentation of a human brain wihch has more complicated boundaries than the above cases. The

level-set fields are generated by the code in Ref. [16] with the same MR image. The red line represents the air-tissue

interface while the blue one stands for the interface of two different tissues. The consistency results are presented in Fig.

11. Apparently, the errors in both areas are significantly reduced by the analytical formulation, indicating the consistency

of our method in this brain image segmentation.

4. Concluding remarks

In this paper we have proposed a volume-estimation method for implicitly defined geometries. We have derived a

general analytical formulation for 2D cases and three elementary 3D cases which can be employed for more complicated

3D cases. The analytical formulation achieves 2nd-order accuracy for arbitrary geometries. Based on this analytical

formulation, the consistency issue during mesh refinement is imposed by the bilinear/trilinear interpolation. The accuracy

and consistency are demonstrated by 2D and 3D examples. This consistent analytical volume-estimation method has the

potential to be applied in many scientific and engineering fields, such as astronomy, computational fluid dynamics and

medical imaging. Based on the idea developed in this paper, a consistent analytical volume-estimation formulation with

high-order accuracy and its extension to arbitrary convex polyhedra is subject to further work.
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Figure 1: (a) 2D and (b) 3D volume estimation for the cell [i, i+ 1]× [j, j + 1] and [i, i+ 1]× [j, j + 1]× [k, k + 1], respectively.
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Figure 2: Three elementary cases for three dimensional volume estimations.
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Figure 3: The strategy to split the 3D complicated cases into elementary cases in Fig. 2.
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Figure 5: 2D consistency for L1(dash-dotted line), L2(solid line) and L∞(dashed line). The accuracy test: (a) 2D and (b) 3D.
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Figure 6: Accuracy and consistency tests for double circles (a and b) and Zalesak disk (c and d).
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Figure 7: Accuracy and consistency results for the 3D double-sphere case.

Figure 8: The contours of 15 random generated circles.
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Figure 9: Accuracy and consistency results for the random circles case.
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Figure 10: The segmentation of a human brain generated by the method in Ref. [16].
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Figure 11: Consistency results of two different brain tissues for: (a) read line and (b) blue line in Fig. 10.
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