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Abstract. We consider the problem of finding a low discrepancy coloring for sparse set systems
where each element lies in at most ¢ sets. We give an efficient algorithm that finds a coloring with
discrepancy O((tlog n)1/2), matching the best known nonconstructive bound for the problem due to
Banaszczyk. The previous algorithms only achieved an O(tl/ 2logn) bound. The result also extends
to the more general Komlds setting and gives an algorithmic O(logl/2 n) bound.
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1. Introduction. Let (V,8) be a finite set system with V' = {1,...,n} and
S = {51,...,Sm} a collection of subsets of V. For a two coloring x : V — {—1,1},
the discrepancy of x for a set S is defined as x(S) = |>,c¢ x(7)| and measures the
imbalance from an even split for S. The discrepancy of the system (V,S) is defined
as
elS) = {0 BEEXE)

That is, it is the minimum imbalance for all sets in S, over all possible two colorings
X-

Discrepancy is a widely studied topic and has applications to many areas in
mathematics and computer science. For more background we refer the reader to the
books [Cha00, Mat09, CST*14]. In particular, discrepancy is closely related to the
problem of rounding fractional solutions of a linear system of equations to integral ones
[LSV86, Rot12], and is widely studied in approximation algorithms and optimization.

Until recently, most of the results in discrepancy were based on nonalgorithmic
approaches and hence were not directly useful for algorithmic applications. However,
in the last few years there has been remarkable progress in our understanding of
the algorithmic aspects of discrepancy [Ban10, CNN11, LM12, Rot14, HSS14, ES14,
NT15]. In particular, we can now match or even improve upon all known applications
of the widely used partial-coloring method [Spe85, Mat09] in discrepancy. This has,
for example, led to several other new results in approximation algorithms [Rot13,
BCKL14, BN15, NTZ13].

Sparse set systems. Despite the algorithmic progress, one prominent question that
has remained open is to match the known nonconstructive bounds on discrepancy
for low degree or sparse set systems. These systems are parametrized by ¢, that
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denotes the maximum number of sets that contain any element. Beck and Fiala
[BF81] proved, using an algorithmic iterated rounding approach, that any such set
system has discrepancy at most 2t — 1. They also conjectured that the discrepancy
in this case is O(tl/z), and settling this has been an elusive open problem.

The best known result in this direction is due to Banaszczyk [Ban98], which
implies an O(y/tlogn) discrepancy bound for the problem.! Unlike most results in
discrepancy that are based on the partial-coloring method, Banaszczyk’s proof is
based on a very different and elegant convex geometric argument, and it is not at
all clear how to make it algorithmic. Prior to Banaszczyk’s result, the best known
nonalgorithmic bound was O(t/2 logn) [Sri97], based on the partial-coloring method.
This bound was first made algorithmic in [Ban10], and by now there are several differ-
ent ways known to obtain this result [LM12, Nik13, Rot14, HSS14, ES14]. However,
the question of matching Banaszczyk’s bound algorithmically for the problem and
its variants has been open despite a lot of attention in recent years [Nik13, Buk13,
ES14, EL15, DGLN16]. In particular, as we discuss in section 1.2 there is a natural
algorithmic barrier to improving the O(t!/? logn) bound.

A substantial generalization of the Beck—Fiala conjecture is the following.

Komlés conjecture. Given any collection of vectors vq,...,v, € R™ such that
|lvilla < 1 for each i € [n],? there exist signs z1,...,7, € {—1,1} such that
2001 wivillo = O(1).

This implies the Beck—Fiala conjecture by choosing each v; as the column corre-
sponding to element 7 in the incidence matrix of the set system scaled by t~/2. Again,
the best known nonconstructive bound here is O(y/logn) due to Banaszczyk and the
previous algorithmic techniques can also be adapted to achieve O(logn) constructively
for the Komlés setting.

1.1. Our results. In this paper we give the following algorithmic result for the
Beck—Fiala problem, which matches the nonconstructive bound due to Banaszczyk.

THEOREM 1. Given a set system (V,S) with |V| = n such that each elementi € V
lies in at most t sets in S, there is an efficient randomized algorithm that finds an
O(V/tlogn) discrepancy coloring with high probability.

Our result also extends to the Komlds setting with some minor modifications.

THEOREM 2. Given an m X n matriz A with all columns of a-norm at most 1,
there is an efficient randomized algorithm that finds x € {—1,1}" such that || Az||c =
O(V1ogn) with high probability.

Our algorithm gives a new constructive proof of Banaszczyk’s result for the Beck—
Fiala and Komlés setting. While Theorem 2 implies Theorem 1, for better clarity we
first present the algorithm for the Beck—Fiala problem in sections 2 and 3 and then
discuss the extension to Theorem 2 in section 4.

After this paper was published, an alternate algorithm using multiplicative weight
updates giving the same result was given in [LRR16]. Also, the techniques in this
paper were used to get improved bounds on other problems in discrepancy [BG16a).

1.2. High-level overview. The algorithm has a similar structure to the previ-
ous random walk based approaches [Ban10, LM12, HSS14]. It starts with the coloring
xp = 0" at time 0, and at each time step k, updates the color of element i by adding
a small increment to its coloring at time k — 1, i.e., 25 (i) = xx—1(7) + Azg(i). If a

1'We assume here that t > logn, otherwise the O(t) bound is better.
2We use [n] to denote the set {1,2,...,n}.
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variable reaches —1 or 1 it is frozen, and its value is not updated any more. The
increment is determined by solving an appropriate SDP and projecting the resulting
vectors in a random direction.

However, all the previous approaches get stuck at the O(tl/ 2logn) barrier, and
it is instructive to understand why this happens before we present our algorithm.

The O(t'/?logn) barrier. Roughly speaking, the execution of the previous al-
gorithms can be divided into O(logn) phases (either implicitly or explicitly), where
in each phase about half the variables get frozen and each set incurs an expected
discrepancy of O(t'/2). This gives an overall discrepancy bound of O(t'/2logn).

Intuitively, however, for a fixed set S, one should expect an O(t'/?) discrepancy
over all the phases for the following reason. Assume that all sets are of size O(t). This
can be ensured using a standard linear algebraic argument to ensure that sets incur
zero discrepancy as long as they have at least 2t uncolored elements.? After i phases
of partial coloring, one would expect that S has about 2~¢ fraction of its elements
left uncolored and, hence, it should incur about O((27%¢)'/2) discrepancy in the next
phase, giving a total discrepancy of O(}, 27%/2t1/2) = O(t'/2).

However, the problem is that the size of sets may not evolve in this ideal manner,
as the partial coloring phase does not give us a fine-grained control over how the
elements of each set get colored. For example, even though half of the variables
(globally) get colored during a phase, it is possible that half the sets get almost
completely colored, while the other half only get ¢/logn of their elements colored
(while still incurring an Q(¢'/2) discrepancy). This imbalance between the discrepancy
incurred and “progress” made for each set is the fundamental barrier in overcoming
the O(t'/? logn) bound.

Our approach. The key idea of our algorithm is to ensure that during the color-
ing updates the squared discrepancy we add to a set is proportional to the progress
elements of that set make towards geting colored. More formally, the updates Az (7)
that we choose at time k satisfy the following properties:

1. Zero discrepancy for large sets: If a set S has more than at unfrozen (alive)
elements at time k, for some constant a, we ensure that ), ¢ Ay (i) = 0.
This is similar to the previous approaches and allows us to not worry about
the discrepancy of a set until its size falls below at.

2. Proportional discrepancy property: This is the key new property and (roughly
speaking) ensures that the squared discrepancy added to a set is proportional
to the “energy” injected into the set. That is,

2
(Z Axk(i)> <2 (Z Axk(i)2> :
icS icS

Note that the left-hand side is the square of the discrepancy increment for
set S, and the right-hand side is the sum of squares of the increments of the
elements of S.

Given a coloring 2y, let us define the energy of set S at time k as >, 21 (i)
Clearly, the energy of a set can never exceed its size |S|. As we can assume
that |S| = O(t) (by the zero discrepancy property above), this property
suggests that if the total energy injected (3, (3 ;cq Az (i)?)) into S was

3The reader may observe that if all sets were of size O(t), a simple application of the Lovisz
local lemma already gives an O(y/tlogt) discrepancy coloring, so this should imply an O(1/tlogt)
discrepancy in general. However, the problem is that the Lovész local lemma does not combine with
the linear algebraic argument.
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comparable to its final energy (which is O(t)) and the increments were mean
0 random variables, the squared discrepancy should be O(t).

3. Approzimate orthogonality constraints to relate the injected energy to actual

energy: One big problem with the above idea is that the total injected energy
into a constraint may be unrelated to its final energy. For example, even for a
single variable ¢ if the coloring z (i) “Huctuates” a lot around 0 over time, the
injected energy Y, Aw(i)? could be arbitrarily large, while the final energy
for 7 is at most 1. For general sets S, other problems can arise beyond just
fluctuations due to correlations between the updates of different elements of
S.
To fix this we use the following idea. Suppose we could ensure that for each
set S the coloring update at time k was orthogonal to the coloring at time
k—1,ie, ) ;cqgxr—1(i)Azk(i) = 0. Then, by the Pythagoras theorem, the
increase in energy of S would satisfy

Y@ =Y wea (i) =) (1)) + Az (i) — @r-1 (i)°)

€S €S €S
=2 a1 (i) Az (i) + Y Awp(i)?
€S €S
(1) =) Ax(i)?,
€S

where the last equality follows from the orthogonality constraint. As the
expression in (1) is the injected energy at time k, this would precisely make
the total injected equal to the final energy as desired.
However, we cannot add such constraints directly for each small set as there
might be too many of them. So the idea is to add a weaker version of these
orthogonality constraints, where we only require that

(Z kal(i)Axk(i)> <2 (Z Awm)Z)

i€S i€S

and show that these suffice for our purpose.

4. Sufficient progress property: Of course, all the properties above can be triv-
ially satisfied by setting Axy (i) = 0 for each i. So the final step is to ensure
that a nontrivial update exists. To this end, we show that there exist updates
with the (unnormalized) sum Y, Azy(i)? = Q(Ay), where Ay, is the number
of alive variables at time k.

For this purpose, we write a semidefinite program (SDP) that captures the
above constraints and use duality to show the existence of a large feasible
solution.

A weaker version of these properties was used in the arXiv preprint [BG16b] to
get a more size-sensitive discrepancy bound for each set, but it still only achieved an
O(t'/?1logn) discrepancy in the worst case.

We now describe the algorithm and the SDP we use in section 2. The analysis
consists of two main parts. In section 3.1 we show the sufficient progress property
mentioned above, and in section 3.2 we show how this gives an overall discrepancy
bound of O((tlogn)'/?).
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2. Algorithm for the Beck—Fiala problem. We will index time by k. Let
xp € [—1,1]™ denote the coloring at the end of time step k. During the algorithm,
variables which get set to at least (1 — 1/n) in absolute value are called frozen and
their values are not changed anymore. The remaining variables are called alive. We
denote by Ay the set of alive variables at the beginning of time step k. Initially all
variables are alive. Let v = 1/(n?logn), T = (12/~4%)logn, and a = 6.

We will call a set S € S big at time k if it has at least at variables alive at time
k, i.e., |S N Ag| > at and small otherwise. We will use By to denote the collection of
big sets at time k and L to denote the collection of small (little) sets.

Algorithm:

1. Initialize z(¢) =0 for all ¢ € [n] and A; = {1,2,...,n}.
2. For each time step kK =1,2,...,T repeat the following:
(a) Find a solution to the following semidefinite optimization problem:

Maximize »  ||u;3

i€EAL
2
(2) s.t. Z ul| =0 for each S € By,
1€ESNAL 2
2
(3) Z uif| <2 Z l|uill3 for each S € Ly,
1€ESNAg 2 1IESNA
(4) Z Tp—1(Du|| < 2 Z (| wi||2 for each S € L,
i€SNA, 5 i€SN Ay

uill3 <1 Vi€ Ay.

(b) Let 1, € R™ be a random %1 vector, obtained by setting each coordinate
(1) independently to —1 or 1 with probability 1/2.
For each i € Ay, update zx (i) = xp_1(i) + v(rg, u;). For each i & Ay,
set xp (1) = zr—1 (7).

(c) Initialize Agt11 = Ag.
For each i, if |zx(i)] > 1 — 1/n, update Ap11 = Agy1 \ {i}.

3. Generate the final coloring as follows. For the frozen elements i ¢ Apiq,
set zp(i) = 1 if zp(i) > 1 — 1/n and z7(i) = —1 otherwise. For the alive
elements i € Apyq, set them arbitrarily to +1.

Note that the SDP at time k uses the vectors u; to generate the update Az (i)
by projecting u; to the random vector r; and scaling this by ~. If we think of u;
as one dimensional vectors (so Az (i) = yru;, where r is randomly +1), constraints
(2) will ensure that a set incurs zero discrepancy as long as it is big. Constraints
(3) require the updates to satisfy the proportional discrepancy property mentioned
earlier. Constraints (4) require the updates to satisfy the approximate orthogonality
property mentioned earlier.

3. Analysis. We begin with some simple observations.

LEMMA 3. For any vector u € R™ and a random vector r € {+1}", E[(r,u)?] =
[ull3 and |(r,u)| < v/nlull2-
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Proof. Writing w in terms of its coordinates u = (u(1),...,u(n)),

%

2
E[(r,u)’] =E <Z r(i)U(i)> = ZE[r(i)r(j)]U(i)U(j) = [[ull3,

where the last equality uses that E[r(i)r(j)] = 0 for i # j and E[r(i)?] = 1.
The second part follows by the Cauchy—Schwarz inequality, as |(r,u)| < ||7||2|lu|2

= Vitlulla 0

This implies the following.

Observation 4. The rounding of frozen elements in step 3 of the algorithm affects
the discrepancy of any set by at most n - (1/n) = 1. So we can ignore this rounding
error. Moreover, as |lu;|l2 < 1, |y(r,u;)| < yv/nlluil2 < 1/n, which implies that no
xy (i) goes out of the range [—1, 1] during any step of the algorithm.

The rest of the analysis is divided into three parts. In section 3.1, we show that the
SDP is feasible and has value at least | Ax|/3 at each time step k. In section 3.2, we use
the properties of the SDP to show that each set in S has discrepancy O((tlogn)'/?)
after T' steps with high probability. Finally, in section 3.3 we show that there are
no alive elements after T steps with high probability. Together these will imply
Theorem 1.

3.1. SDP is feasible and has value Q(]Ax|). To show that the SDP has
value at least |Ag|/3 at any time step k, we will consider the dual and show that no
solution with objective value less than |Ag|/3 can be feasible. By strong duality, this
suffices as if the optimum (primal) SDP solution was less than |Ay|/3, there would
also be some feasible dual solution with that value (provided Slater’s conditions are
satisfied).

It might be useful to point out here that the feasibility of our SDP is incomparable
to the main result in [Nik13]; we can ensure a zero discrepancy to a few rows, which
was not possible in the approach used in [Nik13] but we can only ensure a partial
coloring (3~ |luil|3 > |Ak|/3), whereas the SDP in [Nik13] was feasible with the
stronger constraint ||u;|2 = 1 for all 4.

To make it easier to write the dual, we rewrite the SDP in the following ma-
trix notation by setting X to be the Gram matrix of vectors corresponding to alive
elements, i.e., X;; = (u;,u;) for i,j € Ay:

Maximize I - X subject to

Usvg - X=0 for each S € B,
(vsvd —2I5)- X < 0 for each S € Ly,
(xszl —2I5)- X < 0 for each S € Ly,
(eiel)- X < 1 Vi € Ay,
X > 0.

Here vg is the indicator vector of set S N Ay, xg is the vector with its ith entry
equal to zx—1 (%) if i € SN Ay and 0 otherwise, and Ig is the identity matrix restricted
to set SN Ag, i.e., (Ig); =1if i € SN A and 0 otherwise. - denotes the usual inner
product on matrices, A - B = Tr(A" B) = 3, Ay Bij.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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We can write the dual of the above SDP (for reference, see [GM12]), which is
given by
Minimize Z b;

1EAL
(5) s.t. Z bieie? + Z ozgvgv:‘g + Z (ﬁs (vgvg — 2[5) + 8% (azsa:g — 2[5)) =1,
i€ A SeBy, SeLy
(6) b; > 0 Vi € Ag,
(7) as € R VS € By,
() Bs,Bs > 0 VS € Ly,

Here A = B denotes that the matrix A — B is positive semidefinite. To show strong
duality we use the following result.

THEOREM 5 (Theorem 4.7.1 in [GM12]). If the primal program (P) is feasible,
has a finite optimum value n, and has an interior point T, then the dual program (D)
is also feasible and has the same finite optimum value 7).

LEMMA 6. The SDP described above is feasible and has value equal to its dual
program.

Proof. We apply Theorem 5, with P equal to the dual of the SDP. This would
suffice as the dual D of P is our SDP.

We claim that b; = 1+ ¢ for € > 0 for all i € Ag, ag = 0 for all S € By,
and Bs = BL = ¢/(8n?) for all S € Ly is a feasible interior point for P. Clearly,
this solution is strictly in the interior of the constraints (6)—(8). That (5) is satisfied
and has slack in every direction follows as the the number of sets S can be at most
t|Ag] <tn < n?, and that for any vector v, vv” is a rank one positive semi-definite
matrix with eigenvalue ||v]|3 < n, and thus all eigenvalues of vgvl —2Ig and xgz L —21g
lie in the range [—2, n].

As this point has objective value at most (14¢€)n and since the b; are nonnegative,
P has a finite optimum value. a

We wish to show that any feasible solution to the dual must satisfy >, b; > |Ax|/3.
To do this, we will show that there is a large subspace W of dimension at least |Ag|/3
where the operator

Z asvsvg + Z (ﬂs (’Us’l}g — 2[5) + ﬂgv (xsx:SF — 2.[5))
SeBy SeLly

is negative semidefinite. This would imply that to satisfy (5), the b;’s have to be quite
large on average. We first give two general lemmas.

LEMMA 7. Given an h X n matric M with columns 21,29, ..., 2zn. If ||2i|l2 < 1 for
all i € [n], then there exists a subspace W of R™ satisfying

(i) dim(W)> %, and

(i) Yy e W, [[My3 < 2[ly|l3.

Proof. Let the singular value decomposition of M be given by M = >"" | oipial,
where 0 < 07 < -+ < 0, are the singular values of M and {p; : i € [n]},{q; : i € [n]}
are two sets of orthonormal vectors (if h < n, some p;’s and the corresponding o;’s
will be zero). Then,

n
E o2 =Tr
i=1

> otqal 1 =Te [MTM] = ||z <n.
i=1 i=1
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So at least [5] of the squared singular values 0?s have value at most 2, and thus

o1 <o <o < V2. Let W:span{ql,...,q[%]}. For y e W,

2

2 |13
= > opidy
=1 9

n
> oipig]y

=1

1Myl =

2

< Z o? (qf y)2 (since the p; are orthonormal)

=1
%1
<23 (¢7y)"
i=1
=2||y||? (since the ¢; are orthonormal). O

This implies the following result.

THEOREM 8. Let V be any finite collection of vectors vi,...,vn in R™, and for
each v € V, there is some nonnegative multiplier 8, > 0. Consider the operator

B= Zﬁv <U’UT - 2i(v,ei>26ie?> ,
i=1

veV

where the e; are the standard basis of R™. Then there exists a subspace W of dimension
at least n/2 such that (y, By) < 0 for every y € W or, equivalently, y" By < 0 for
everyy € W.

Proof. Let v; denote (v, e;). We can express yT By as

B-yy" =) b, <va yyt =2 (Z v?é’ﬁf) -ny>
2
=> 6 (Z vy) -2) iyl

Construct a matrix M with rows indexed by v for each v € V and columns indexed
by i € [n]. The entries of M are given by M, ; = ﬁll,/gvi. Then, we can write

2
Zﬁv (Z%Zh) = ||MZ/||§

For each i € [n], define 32 = > B,v? as the squared ¢>-norm of column i of M, and
let D be an n x n diagonal matrix with entries D;; = §;. Then,

2
9) > B <Zvy> =2 oy} | = Myl - 2(|Dyll3.

Let N C [n] be the set of coordinates with ; > 0. We claim that it suffices to focus
on the coordinates in N. Let us first observe that if i ¢ N, i.e., 52 = 0, then we can
set y; arbitrarily as (9) is unaffected. As the directions e; for ¢ € N are orthogonal
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to the directions in [n] \ N, it suffices to show that there is an |N|/2 dimensional
subspace W in span{e; : i € N} such that |[My||3 —2||Dy||3 < 0 for each y € W. The
overall subspace we desire is simply W @ span{e; : i € [n] \ N} which has dimension
INI/2+ (n— IN]) > n/2.

So, let us assume that N = [n] (or, equivalently, restrict M and D to columns in
N), which gives us that ; > 0 for all i € N and hence that D is invertible.

Let M’ = MD~'. The squared fs-norm of each column in M’ is Y B,v?/D3
which equals 1, and by Lemma 7, there is a subspace W' of dimension at least |N|/2
such that || M'y'||3 < 2||y||3 for each y' € W’. Setting y = D™y’ gives

IMyll3 = 1My'lI5 < 2lly'13 = 21| Dyll3,
and thus W = {D71y/ : y/ € W’} gives the desired subspace since dim(W) =
dim(W"). O
Going back to the dual SDP, this gives the following.

LEMMA 9. Let By = > gcr, (Bs(vsvl — 2Ig) + pE(wsal — 2Ig)). Then, there

exists a subspace W C RIAx of dimension at least |Ay|/2 such that for all y € W,
y" Bry <0.

Proof. We apply Theorem 8 with vectors v as vg and zg for each small set S € L
with the multipliers S5 and 3¢. Then,

B= Z [ﬂs <v51}§ -2 Z (vs, ei>2eie?> + B85 (xsx:‘g -2 Z (xs, 6i>26i6?>‘|

Secy, i€ Ay, i
-y [ﬂs (vsvl —21s) + B3 (;vsx”-g 2 % xkl(i)%ie?)]
SeLy i€SNAy
= Z (Bs (vsv§ —2Ig) + B (zsa§ — 2I5))
SeLy
- B,

Here we use that vg is the indicator vector for set S N Ax with entries (vg,e;) =1
iff i € SN A, and, thus, ZieAk@S,ei)Qeie? = Ig. Similarly for the vectors zg,
(ws,e;) = xp_1(i) for i € SN A and 0 otherwise. The last step uses that z;_1(i)? < 1
and thus

=2 > apa(i)ee] = =21

i€SNAy
By Theorem 8, there is a subspace W with dim(W) > |Az|/2 such that 37 By < 0 for
each y € W. As B > By, it also holds that yTBky < 0 for each y € W. 0

We now come to the main theorem of this subsection.
THEOREM 10. At time step k, the dual program has value at least |Ag|/3.

Proof. As element 4 in Ay appears in at most ¢ sets, the number of big sets |B|
at time step k is at most |Ax|t/at = |Ag|/a. Let Wi be the subspace orthogonal to
C = span{vg : S € By}. Clearly, dim(C) < |Bg| < |Ax|/a.

Let Wy be the subspace guaranteed by Lemma 9 for matrix By, such that dim (W)
> |Ax|/2 and for all y € Wy, y* By < 0. Define the subspace W = W; N Wy. Then,

dim(W) > dim(Wp) — dim(C) > [Ay]/2 — | Al /a = |A4] /3.
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Let Py be the projection operator on the subspace W. Projecting the dual
constraint (5) onto W, we get

Py <Z bieie? + Z Oésvs’vg + Bk> = Pw.
i€AL SeB
By linearity of Py and as Py (vsvl) = 0 for each S € By, this implies
Py <Z b181€?> + Pw(Bk) = Pw.
i€EAR
Taking the trace on both sides and noting that Tr[Py (By)] < 0 since y7 By <0
for all y € W, we get

Tr

Py (Z bieiefﬂ > Tr[Py] = dim(W).

1€EAL

As b; > 0 for all © € Ay, the operator ZieAk bieiel is positive semidefinite. As
taking the projection of a positive semidefinite operator can only decrease its trace,
we can lower bound the dual objective as

> bi=Tr [Z bieiel | > Tr | Py (Z bieie?> > Tr[Pw] = dim(W) > |A.|/3
i€ Ay i€ Ay i€ Ay
which completes the proof. a

3.2. Bounding the discrepancy. Let Dg(k) denote the signed discrepancy of
set S € S at the end of time step k, i.e., Ds(k) = Y, g zx ().
We now show the following key result.

THEOREM 11. Fiz a set S € S. Then, for any A > 0, the discrepancy of S at
time step T satisfies

Pr [IDs(T)] = AVE| < Sexp (~A%/(100a)) .

Setting A = O(logl/ ?n) would imply that with high probability every set has
discrepancy O((tlogn)'/?) at time T.

Among other things, the proof of Theorem 11 will use a powerful concentration
inequality for martingales due to Freedman that we describe below.

Martingales and Freedman’s inequality. Let X1, Xo,..., X, be a sequence of in-
dependent random variables on some probability space, and let Y; be a function of
X1,...,Xk. The sequence Yy, Y1, Yo, ..., Y, is called a martingale with respect to the
sequence X7, ..., X, if for all k € [n], E[|Y)]] is finite and E[Y;| X1, X2, ..., Xk—1] =
Yi—1. We will use E;_1[Z] to denote E[Z]| X1, Xa, ..., Xi_1], where Z is any random
variable.

THEOREM 12 (Freedman [Fre75]). LetYp,...,Y, be a martingale with respect to
X1,..., X, such that |Yy — Yi—1| < M for all k, and let
k k
We=Y Ej1 [(YV;-Y;-1)% = VarlYj|X1,..., X; 1]
=1 =1
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Then for all A > 0 and 02 > 0, we have

2
Pr[|Y,, — Yo| > X and W,, < 0?] < 2exp (—W) .

Observe crucially that the above inequality is much more powerful than the related
Azuma—Hoeffding or Bernstein’s inequality. In particular, the term W,, is the variance
encountered by the martingale on the particular sample path it took, as opposed to
a worst case bound on the variance over all possible paths.

Simple observations. We now get back to the proof of Theorem 11 and begin with
a few simple observations.

Fix a set S € S. Let the vector solution returned by the SDP at time k be given
by vectors uf for i € [n], where we take u¥ = 0 if i ¢ A;. We say that S becomes
active at time k if k is the first time step when |S N Ag| < at.

Observation 13. Before a set S € S is active, it incurs zero discrepancy.

Proof. Suppose S becomes active at time kg. Then,

ks—1
Ds(ks - 1) = Z "/<7‘k, Z uf> = 0,
k=1 i€SNAy,
since by SDP constraint (2), > ;cgna, uk =0 for k < ks. O

Observation 14. As a set has no more than at alive variables when it becomes
active, Observation 13 implies that the maximum discrepancy any set can have is 2at,
which Theorem 11 for A > 2at!/2. So henceforth we can assume that A < 2at!/2.

Define the energy of set S at the end of time step k as Es(k) = Y, . 2x(i)? and
the change in energy of S at time step k as Ay Es = Eg(k) — Es(k —1). Then,

AkEs = Zxk(i)z — Zxkfl(if = Z ((!Ekfl(i) + Yy <7‘k, uf>)2 — :Ekfl(i)2)

€S €S €S
(10) =23 (e ub) 4 2y <m,zxk1(i)u§>.
€S €S

The following is a simple but crucial observation.

Observation 15. Once a set S € S becomes active, its energy can increase overall
by at most at.

Proof. When S becomes active, it has at most at alive variables. Moreover, a
frozen variable is never updated by the algorithm and can never become alive again.
As the energy of a single variable is bounded by 1, the energy of S can increase by at
most at after it becomes active. d

Remark. Note that the energy of a set S does not necessarily increase mono-
tonically over time. It evolves randomly and can also decrease. So, even though
the overall increase is at most at, the total energy “injected” ;. [AyEs| can be
arbitrarily larger than at. Here kg denotes the time when S becomes active.

By Observation 13, we only need to bound the discrepancy of S after it becomes
active. For notational convenience, let us call the time S becomes active as time 0.
So, Dg(k) and Eg(k) will be the signed discrepancy and energy of S, respectively, k
time steps after it becomes active.
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Observation 16. After S becomes active, Dg(k) behaves like a martingale with
variance of the increment at time step k bounded by

Ei1 [(Ds(k) = Ds(k = 1)°] < ' 3 Ikl

Proof. The discrepancy update of S at time k is Y(rk, Y ;c5a, uk). This has ex-
pectation 0 (averaging of ) and by Lemma 3 this variance is exactly v?[| Y, cgn 4,45 |13,
which by SDP constraint (3) is upper bounded by 292 37, g4, luf |13 0

Proof of Theorem 11. The plan of the proof is the following. Freedman’s in-
equality allows us to bound the discrepancy at time 7T as a function of the variance
Zle Er—1[(Ds(k) — Ds(k —1))?] which is at most 2v? E;{:l > iesnay [[uf |3 by Ob-
servation 16. As we will see, this term is expected total energy injected into S.

As the overall energy increase of S can be at most at (Observation 15), it would
suffice to show that the total injected energy into S is comparable to at. To do
this, we will use the approximate orthogonality constraints (4) and apply Freedman’s
inequality again to show that the injected energy is tightly concentrated around the
energy increase. We now give the details.

Recall that by (10), the energy change at time k is a random variable given by

AREs = ~2 Z (re, uf>2 + 2y <rk, Z a:k_l(i)uf> .

i€S i€S
Denote the first term above as
2
AQs =Y (re,uf)
=
which we will call the change in quadratic energy of S at time step k and let Qg(k) =

Z?:l A;Qs, the total quadratic energy of S until time k.
Similarly, denote the second term as

AkLS = 2’)/ <7’k, Z a:k_l(i)uf>
icS
which we will call the change in linear energy of S at time step k, and let Lg(k) =

Z?:l AjLg, the total linear energy of S until time k. The energy of S at time k is
given by Es(k) = Qs(k) + Ls(k).
Define Q' (k) as

k k
Qs(k) = > Bj 1[A;Es] = > E;j1[A;Qs].
j=1 j=1
By Lemma 3, A
Qs(k) => 7> [lud|3.
j=1 €S

We are now ready to prove the tail bound on discrepancy. The probability that
the discrepancy of S at time T exceeds AVt can be written as

(11)
Pr [|Ds(T)| = AVE| < Pr[IDs(T)| > AWE Q5(T) < 16at]| + Pr [Q4(T) > 16at]

We now bound each of the terms in (11) separately.
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Bounding the first term. Recall that Dg(k) is a martingale. To apply Freedman’s
inequality (Theorem 12) we bound M and W}, as follows. By Lemma 3,

(2

Similarly from Lemma 3 and the SDP constraint (3),

M < |Ds(k) — Ds(k —1)] = |y <V (D | < md

€S

2

k k 2
Wi =Y E; 1 [(Ds(j) = Ds(G—1)°] =D Ejq | <7“j,ZUf>
Jj=1 J=1

€S
k

=27

j=1

k
<27 il = 2Q5 (k).

9  j=I1 =

Zu

€S

Freedman’s inequality now gives

Pr [|DS(T)| > A1 and Q4(T) < 16at] < Pr [|DS(T)| > A1 and Wy < 32at}

—\2
<2e
= oo (2[32at + ~yn3/2/\\/i/3]>

(12) < 2exp ( - ) (using A < 2av/t).

100a

Bounding the second term. We can write

Pr[Qs(T) > 16at] = i Pr[27Hat < Q4(T) < 27H5at]
=0

< Pr(Qs(T) < Q5(T) - Sat]
(13) +) Pr(Qg(T) < 27%0at, Qs(T) > 27 at] .
The inequality above holds as the event {Q'(T") > 16at} is contained in the union of
the two events in (13).

As the energy Eg(T') of S cannot exceed at, we have Eg(T) = Lg(T)+ Qs(T) <
at. Thus, Qs(T) > 27 3at implies Ls(T) < at — 27 T3at < —7- 2/ at, giving

PrQ5(T) > 16af] < PrlQs(T) < Q4(T) —Sa

(14) —|—ZPr Ls(T) < —7-2at,Q(T) < 27*0at] .

To bound the second term on the right-hand side of (14), we will crucially use the
approximate orthogonality constraints in the SDP (4) and use Freedman’s inequality.
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To this end, note that Lg(k) is a martingale whose difference sequence can be bounded
by

M < |Ls(k) = Ls(k —1)| =

2~ <rk, Z Th_1 (z)uf> ‘

€S

< 2vvn Zxk,l(i)u < 2yn3/?,

€S

2

where we used Lemma 3 in the first inequality and the fact that |z5_1(7)| < 1.
By Lemma 3 and SDP constraint (4),

k k 2
Wi = Ej-1 [ILs(j) — Ls(j — )| ZEJ L4 <w72%1<i>u3>

j=1 €S

k
=D 47> (i)ug
j=1

€S

< ZWZ [ul]3 = 8Qs (k).

€S

Applying Freedman’s inequality now with these bounds on M and Wy, we obtain

Pr ['LS(T)| > 7-2/at and Q’S(T) < 2j+5aﬂ
< Pr [|LS(T)| >7-2at and Wr < 2j+8at}
—49 - 2% q%¢?
< 2exp : 4
2[27+8at + 2yn/2 - 7- 2 at /3]

—27at
< 2exp 20 .

Together with A < 2a+/t (by our assumption), this gives

, —at —\?
(15) ZPr Ls(T) < —7-2at, Q5(T) < 27*%at] < dexp <%> < dexp (100a) '

It remains to bound Pr[Qs(T) < Q4(T') — 8at], the first term in (14). We use
Freedman’s inequality in a simple way (even the Azuma-Hoeffding inequality would
suffice here).

Define the martingale 7, = Qg (k) — Zl’?zl E;_1[A;Qs] = Qs(k) — Qs(k) (this is
the standard Doob decomposition of Asta. By Lemma 3,

M < |Z = Za| = |AkQs — Ex-1[AQs]] < 218Qs| < 290 ) [[uf[|3 < 29°n?
ics

Using the trivial bound E;_1[(Z; — Z;_1)?] < M?, we obtain that

T
Wr =Y Ej1 [(Zk — Zk-1)?] < ATv'n* = 48y*n" logn.
j=1
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As Qs(T) < Q4(T') — 8at is the same as Zpy < —8at, by Freedman’s inequality we get

Pr(Qs(T) < Q's(T) — 8at] < Pr|Zr| > 8at]
<9 —64a%t?
=P 2[Wr + 1692n2at/3)

<2e a7t
o [
- P 2v2ntlogn

32
(16) < 2exp (—a’t?) < 2exp < A ) .

100a

In the last step we use that v = 1/(n?logn), and Observation 14.
Combining (11), (12), (14), (15), and (16), we obtain the desired bound

Pr{|Ds(T)] > AVI] < 8exp (1‘03) |

3.3. Termination and finishing the proof. To finish the proof, we show that
the last rounding step at time 7'+ 1 does not cause problems.

THEOREM 17. After time T, there are no alive variables left with probability at
least 1 — O(n™2).

Proof. Given the coloring xy at time k, define G, = Y7, 4 (1 —2x(i)?). Clearly
G1 < n. As mx(i) = z_1(3) + 7k, uF), we have that Ep_1[2x(i)?] = zp_1(4)% +
72 ||uk||3. Tt follows that

Er—1[G(k)] = Er—1 [Z (1- $k(i)2)1 =Y (=2 ()?) =7 > [ufll3

i€EAL i€EAp i€EAL
<D (M-mea(@)?) =A< (1-797/3) D (1 - 21 (0)?)
i€EAL i€EAR
<(1=9%/3) > (1—zp-1(1)?) = (1—+%/3) Gr-1.
1€AR_1

Thus by induction,
ElGria] < (1—72/3) Gy < e T30 —n~*.n = 1/n.

Thus by Markov’s inequality, Pr[Gr41 > 1/n] < 1/n?. However, Gr11 < 1/n implies
that A7,1 = 0 as each alive variable contributes at least 1 — (1 — 1/n)? > 1/n to
Gry1. 0

Theorem 1 now follows directly. Applying Theorem 11 with A = clogl/ 2n for ¢
a large enough constant and taking a union bound over the at most nt < n? sets, we
get that |Dg(T)| = O((tlogn)'/?) with probability at least 1 — 1/poly(n) for all sets
S. By Theorem 17 with probability at least 1 — O(n~2), all variables are frozen by
time T and, hence, at most an additional discrepancy of 1 is added by rounding the
frozen variables to £1. d

4. Extension to the Komlés setting. The algorithm also extends to the more
general Komlés setting with some additional modifications. Recall that in the Komlds
setting, we are given an m X n matrix B with arbitrary real entries b;; such that for
each column i, it holds that >, b?i < 1. Let r; denote the jth row of B and let a be
the constant as in the previous section. We will show the following result.
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THEOREM 18. Fiz any row r; of matriz B. Then, for any A > 0, the discrepancy
of r; at time step T (the end of the algorithm) satisfies

Pr[|Dr(r;)| > A < 8exp (—A?/(1000a)),

where |Dr(r;)| is the discrepancy of row j after time step T.

The previous argument does not work directly when the entries b;; are arbitrary
as we may not get a strong concentration if some entries b;; are too large. So we
consider the following modified algorithm.

Algorithm. Given a matrix B, for any A > 0 we denote by rj“ the A-truncation of
row j containing only the entries b;; that are at most 4a/X in absolute value, i.e., 7“;-‘
only contains those entries ¢ of row j for which |b;;| < 4a/X and is 0 otherwise.

As previously, let A denote the set of alive variables at the beginning of time
step k, and we set v = 1/n% and T = (12/4%)logn. A row j is called big at time step
kif 37,c 4, 0% > a, and small otherwise. As the fo-norm of columns of B’ is at most
1, there are at most |Ag|/a big rows at any time step k.

The modified SDP. The SDP is modified as follows: Similarly to (2) we still

require the discrepancy of big rows to be zero. That is,

> bjiu;

i€ Ay

2

(17) =0 for each big row j.

2

For an active (not big) row r; at time k, we add proportional discrepancy and
approximate orthogonality constraints for every A-truncation rj)-‘ of rj, i.e., for every
A > 0, we add the proportional discrepancy constraint (3) (same as before, we just
multiply the w;’s by bj;’s)

2

(18) Z bjiui|| <2 Z A

1€ AL, bji|<4a/X 9 1€ AL, |bji|<4a/X

and the approximate orthogonality constraints (4)

2

(19) > b ak—1(i)ug|| <2 > b33

iEAk,‘bji‘Sﬁla/)\ 2 iEAk,|bji|§4a/A

Notice that as stated, for each active row we add two SDP constraints for every
value of A > 0. However it suffices to add at most 2n constraints in total for each
active row: Just sort the entries of a row in increasing order of absolute value and
add the proportional discrepancy and orthogonality constraints in the SDP for every
prefix of this sorted row (alternately, one could also consider geometrically increasing
values of \). Thus the SDP has a polynomial number of constraints at any time step.

Analysis. First, exactly as before the SDP is feasible and has a solution with value
at least |Ax|/3. This follows from Theorem 8, which shows that there is a subspace W
of dimension at least |Ay|/2, where the corresponding operator is negative semidefinite
on W, and then applying the argument in Theorem 10. In fact, this would be true
even if (19) was replaced by the stronger constraint

2

> b1 (Dui| <2 > bk ()% [|udl|3-

1€AL,|bji |<4a/X 2 1€ AL, |bji | <4a/X
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Let Dg(r;) denote the signed discrepancy of row j at the end of time step k,
Dy(ry) = Y bjswn(i).
i€[n]

We also extend this definition to truncations of rows:

ze[n],\b”\§4a/)\

We now show Theorem 18. Fix a row r; and a A > 0. Call an entry b;; large if
|bji| > 4a/X. We first make the following key observation.

Observation 19. When a row becomes active, the ¢1-norm of the alive variables
in that row that are large can be at most \/4.

Proof. Each large entry is at least 4a/\ in absolute value. As a row r; becomes
active when Y7, , b%; < a, there can be at most a/(4a/)\)* = A\*/16a alive variables
with b;; large. By the Cauchy-Schwarz inequality,

1/2 212
> [bjil S(Z@) (@) < \/4.

1€ AL,|bji|>4a/X\ 1€ AL O

The above observation implies that when a row becomes active, the large entries
in it can change discrepancy by at most A/2. Thus to prove Theorem 18, it suffices
to show

Pr[|Dr (r})| > A/2] < 8exp (—A%/(1000a)) .

This follows similarly to the analysis as before, using the proportional discrep-
ancy (18) and approximate orthogonality constraints (19) for r} and noting that (19)
implies that

(20)

. 32a2
> bk (iui|| < > by lluill3 < SYE > b3 lluill3

iEAk,|bji|§4a/A 9 ’iEAk,|bji|§4a/A ’iEAk,‘bji‘Sﬁla/)\

A

as |bji| < 4a/A for all entries in the truncated row r;

A-truncation of row j at time k as

Ei(r}) = > b2 (i),

ze[n],\b”|§4a/)\

. Let us define the energy of

As previously, once the row becomes active, its energy can rise by at most a.
The analysis in section 3.2 had two main ideas:

1. First we showed that the expected squared discrepancy of a set S at time
T was O(1) times the energy injected into the set Q'(T) (using constraints
(3)). This argument works exactly as before using constraints (18) and we
sketch the details below.
For ease of notation we will denote the entries of the truncated row 7“;-‘ as
bji, where it is understood that we are setting b;; = 0 if b;; was large in the
original matrix. The change in energy at time k is a random variable given

by
2 .
AkE(rJ)-‘) =2 Z b?i <7“k, uf> + 2 <rk, Z b?ia:k_l(z)uf> )
i€ [n]

1€[n]
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Denote the first term above as AxQ(r7}), the change in quadratic energy of 7}
at time step k, and let Qg (7“])‘) = ZZ,:l Ak/Q(r;-‘), the total quadratic energy
of rj)»‘ until time k.
Similarly, denote the second term as A;.CL(rJ)-‘)7 the change in linear energy of
r} at time step k, and let Ly (r}) = Sy Ay L(r}), the total linear energy
of 7"])»‘ until time k.

Define Q,(r)) = S , Ew-1[AwE(r)] = S5 Ev_1[ArQ(r))]. By

Lemma 3,
Z v Z bl

k’'=1 i€[n

k'

Just as before, discrepancy Dk( ) behaves as a martingale with the variance
Wi, bounded by 2@ (r; M. Freedrnan s inequality then gives

—\2
(21)  Pr[|Drp (r] D= A/2 and Q7 (r; 7) < 16a] < 2exp <1000a> '

Next we showed that Qs(7") was essentially the same as Qg(7) (shown in
(16)). In fact this difference can be made arbitrarily small by reducing v and
the argument here works exactly as before. In particular, we get

—\2
22 < —8a| <2 .
(22 PrQr () < @1 () -~ 8a] < 205 (1.

2. The second part was to show that the linear term does not cause problems.
In particular, the crucial argument was that Qg(7") cannot be much more
than at as (i) the total rise in energy Ls(T') + @s(T") cannot exceed at and
(ii) L(T) was a martingale with squared deviation comparable to Qgs(T") and
hence cannot be much larger than Ql/ %(T). This step used the constraints
(4).

This argument also works similarly in our setting here. For a truncated
row rJ, Qr(r j) cannot be much more than a as (i) the total rise in energy
Lr(r; )—I—QT( A) cannot exceed a and (ii) Lr(r; A) is a martingale with squared

deviation comparable to 32“ Qr(r}) (by (19) and (20)). Proceeding exactly
as before and applying Freedman S mequahty we obtain that,

—)\2
) < ¢ < 2t5g] < .
(23) § Pr[Lr (r —7-2%, Qp(r})<2 ]_4exp<1000a>

Theorem 18 now follows by combining (21),(22),(23) as before and using Obser-
vation 19.

Theorem 2 now follows easily, by observing that m can be assumed to be polyno-
mially bounded in n and applying a union bound. Indeed, we can discard all rows of
£1-norm less than +/logn since they can only ever have discrepancy at most /logn.

The remaining rows have squared fo-norm at least 105”, as by the Cauchy—Schwarz
inequality
1/2
Viegn < bl < [ D% (n)/2.
i€ [n] i€ [n]
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As 37, ;0% < n, there can be at most n?/logn such rows. We now set A = O(y/logn)
in Theorem 18 and take a union bound over all these rows.
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