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Motion Smoothing Strategies for 2D Video Stabilization∗

Javier Sánchez† and Jean-Michel Morel‡

Abstract. Video stabilization aims at removing the undesirable effects of camera motion by estimating its shake
and applying a smoothing compensation. This paper proposes a unified mathematical analysis and
classification of existing smoothing strategies. We assume that the apparent velocity induced by
the camera is estimated as a set of global parametric models, typically those of a homography. We
classify the existing smoothing strategies into compositional and additive methods and discuss their
technical issues, particularly the definition of the boundary conditions. Our discussion of the various
alternatives leads to clear-cut conclusions. It rules out the global compositional methods in favor
of local linear methods and finds the adequate boundary conditions. We also show that the best
smoothing strategy yields a scale-space analysis of the camera ego-motion parameters. Analyzing
this scale-space on examples, we show how it is highly characteristic of the camera path, permitting
us to compute ego-motion frequencies and to detect periodic ego-motions like walking or running.
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1. Introduction. Video stabilization is the process of compensating for the undesired
motion produced by camera shake. Such a motion may be caused by several reasons, such as
vibrations and harsh moves of human or vehicle borne cameras, hardware deficiencies in the
camera components, looseness of the underlying platform, meteorological and environmental
conditions, and uneven zooming. The goal of stabilization is to estimate the undesired motion
and to warp the images to compensate for it. As we shall see, the stabilization signal is also
a main characteristic of ego-motion, permitting us to analyze it without any extra calibration
information on the camera path.

Stabilization is particularly useful for videos taken from hand-held cameras, where the
camera jitter can be important. It is also interesting for film production and surveillance
camera systems, where it may serve as an initial step for other high-level processes, such as
background subtraction or object tracking.

It can be tackled from two different perspectives: optical image stabilization (OIS) and
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electronic or digital image stabilization (EIS). OIS systems correct lens orientation or film
sensor position in the camera to compensate for sudden movements by mechanical stabilizers.
We deal here with EIS systems, which rely on the image sequence to estimate and compensate
for the motion of the camera.

These techniques can be divided into three main steps: motion estimation, motion com-
pensation or smoothing, and image warping. Additional postprocessing tasks are needed to
deal with, for example, empty regions that appear at the border of the frames, or to improve
the quality of the images after stabilization.

In the first step, the objective is to determine the camera motion along the scene. This
can be difficult, or even impossible, so the objective is normally simplified by estimating the
2D transformations between the pixels of successive frames. These methods must be robust in
the sense that they must deal with outliers, such as foreground moving objects or occlusions.
The outcome of this step is a set of transformations that approximate the effect of the camera
motion on the movie.

The aim of the motion compensation step is to use the transformations computed in
the previous step to remove the undesired motion. The output of this process is a new
set of transformations which, when applied to the original images, produce a more stable
sequence. In this work, we focus on parametric motion models, which are the basis for the
principal methods today. Our goal is to study and classify the various alternatives for motion
smoothing. Our proposed classification will distinguish several video smoothing approaches,
which can be organized into two main groups: compositional and additive strategies.

The former group relies on the composition of transformations and is, by far, the most
widely used in the literature. They can be further divided into three different approaches:
The compositional approach transforms all the images with respect to a fixed reference frame,
for example the first one. It assumes that the camera is static and, therefore, eliminates any
camera motion. It has been also used for building mosaics. The global approach introduces a
simple smoothing process that preserves the main camera path. It removes the high frequency
motion using a temporal convolution of the motion parameters with a Gaussian function. In
the same way, it depends on an initial reference frame. Finally, the local approach does not rely
on a unique reference frame. Each frame acts as its own reference system, so the regularization
is carried out in a sliding time interval around the current temporal position.

In this article, we also propose two methods that belong to the additive group. In this
case, the stabilization is not based on the composition of transformations but on a linear
relation of their coefficients. These methods are based on the construction of incrementally
computed virtual trajectories. The formulation of these strategies is equivalent to a linear
scale-space theory.

Although the present paper is akin to a review format, it aims at selecting—and improving—
the best found solution. We shall review (or detail) several almost equivalent smoothing
strategies and fix the adequate boundary conditions. Furthermore, the quality of a video sta-
bilization process also depends on the usage of the information that it provides on the video
itself. We show that a good stabilization also delivers a multiscale eight parameter temporal
stabilization signal, which we call a stabilization scale-space. This scale-space yields a reliable
estimation of main intrinsic properties of the video, including a multiscale understanding of
camera ego-motion parameters such as pitch, roll, yaw, and zoom, and of their main frequen-
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cies in a sliding window. Requiring such scale-space properties leads us to select the adequate
one among stabilization processes with similar properties.

Section 2 reviews the literature on the subject. Section 3 introduces the general video
stabilization framework and fixes a common notation. Section 4 introduces the taxonomy
of the motion compensation strategies, divided into the compositional and additive groups.
Section 5 applies a simple criterion to select the best compensation strategy by measuring the
empty space left in the video frame after compensation. Section 6 deduces from this choice
a stabilization scale-space. Experiments demonstrate how it can be used to compute reliable
ego-motion characteristics. Conclusions are presented in section 7.

2. A review of the relevant literature.

3D or 2D stabilization? Video stabilization techniques can be classified into 2D and 3D
methods. The latter aim at finding the camera trajectory through external camera calibration
and an estimation of the 3D structure of the scene. These are the most powerful strategies
for stabilization because they can deal with the parallax motion [10] (but not necessarily with
scenes with moving objects). The work in [31], for example, proposes a 3D method based on
structure-from-motion (SFM) for creating stable hyperlapse videos.

The method of [59] performs a full 3D image reconstruction using a camera array with
multiple viewpoints and estimates the camera path, which is thereafter smoothed to reduce
the shaky effects. In short, multiview stereo is used to compute dense depth maps for each
camera at each time instant. Using these depth maps, the output image sequence is generated
from the desired virtual camera viewpoint. The method also requires knowledge of the camera
calibration and the assumption that it does not change in the sequence. The authors acknowl-
edge that, because a 3D reconstruction of the scene is a strong requirement, 2D methods are
still more preferable in practice, which is our guideline in this paper.

The authors of [18], on the other hand, rely on the epipolar geometry and avoid the
perils of a 3D reconstruction. Their method generates virtual point trajectories by using
epipolar transfer functions and then applies a Gaussian smoothing to the virtual trajectories.
The (sophisticated) frame warping is based on the correspondence between virtual and real
trajectories. We shall review this stabilization technique (in the simpler case, though, where
only correction homographies are considered).

The use of the information provided by depth cameras is another possibility, like in [44].
The recent work in [30] proposes the stabilization of 360o videos through the estimation of
the relative 3D rotation between key frames, and then turns to a 2D optimization framework
for the stabilization of the in-between frames.

As these papers indicate, estimating the 3D information is difficult because of several
challenging tasks, such as the calibration of the cameras, fusing the information in the 3D
scene from multiple views, or dealing with sparse data. Additionally, these techniques often
rely on feature tracking, which may be challenging for unstable sequences.

For these reasons, several methods have tried to combine 2D and 3D strategies [40], but
there is a plethora of methods based on feature tracking that we review in the next paragraph.

Trajectory smoothing methods. Researchers have indeed become increasingly aware of
the risks of 3D stabilization techniques. For example, the authors of [41] notice that their
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practicality is limited by the need to perform 3D reconstruction through SFM. They point
out that these methods cannot work satisfactorily in many situations including lack of paral-
lax, camera zooming, in-camera stabilization, and rolling shutter. Hence these same authors
advocate a trajectory-based method. Features in the video are tracked and assembled into a
“feature trajectory matrix,” which is factored into two low-rank matrices: a coefficient matrix
and an eigen-trajectories matrix. The method then performs a Gaussian smoothing of eigen-
trajectories and obtains output trajectories by multiplying by the original coefficient matrix.
This process ends with a video warping on the new feature trajectories.

Although our analysis here considers simpler methods, it will remain relevant for such
feature trajectory tracking methods. Indeed, this sophisticated method again creates virtual
trajectories and smooths them by a temporal moving Gaussian window to obtain a stabi-
lization warping. As we shall see, our conclusions are similar to those of that paper, which
recommends a sliding Gaussian convolution of virtual trajectories on about 50 frames. Our
discussion of boundary conditions is directly useful to any practical application of this method.

In [34], it is argued that homography-based schemes generally perform quite well for stabi-
lizing planar scenes or rotational camera motions but suffer from highly nonplanar scenes. In
this case, the method does not require an estimation of camera motion. The authors argue,
our approach does not suffer from the problems with insufficient motion models and inaccurate
motion classification. It first detects a set of robust trajectories by feature tracking with spa-
tial coherence, formulated as a first variational problem. These trajectories are the input used
to estimate directly the parametric stabilization warping transforms, namely a temporal series
of isometries or affinities. These are computed by minimizing a functional controlling both the
roughness of the virtual trajectories and the degradation induced by warping. The roughness
of the trajectories is controlled through their second derivative. Hence, it can be argued that
the smoothing method is equivalent to a Laplacian smoothing and therefore to a Gaussian
temporal filtering. Thus, our review here will be relevant for this method, particularly the
discussion of the boundary conditions in the smoothing process.

The method in [67] represents feature trajectories using Bézier curves. It tracks trajec-
tories across the video and regularizes them by minimizing the acceleration, while enforcing
parallelism of similar trajectories. The warping is nonparametric and consists in the applica-
tion of local homographies. Our study in this paper does not apply fully to this work, but still
our discussion of boundary conditions to smooth trajectories is relevant, and the conclusions
of this paper again point to the efficiency of Gaussian smoothing of virtual trajectories as the
main stabilization tool.

2D strategies. Most current techniques are based on simpler 2D strategies that assume
no external information about the 3D camera path. In other terms, only the effect of camera
motion on the movie is handled—not the real 3D camera path. An estimate of the motion
between successive frames is the only information used. Motion estimation techniques are
divided into parametric motion models and optical flow methods. Dense optical flows provide
much more information about the scene and may simultaneously track foreground objects
and solid background. However, the stabilization cannot directly work with the true optical
flow. It requires ad hoc manipulations to create a very smooth flow field. Moreover, current
optical flow methods are slow and typically fail in the presence of homogeneous regions, large
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displacements, or illumination changes. It follows that optical flow methods often end up
being combined with parametric motion models to avoid creating nonrigid distortions [46].

Parametric models instead rely on global motions that are estimated as planar transforma-
tions with growing complexity, namely translations, similarities, affinities, or homographies.
Homographies actually faithfully represent the effect on the image of a moving pinhole camera
motion filming remote and steady objects, or the effect on the image of any rotation of the
camera around its optical center. Applying a homographic stabilization therefore amounts to
stabilizing either the whole image, or at least the background (remote) objects of the scene.
For example, if the camera moves forward and the objects in front are remote, the background
image deformation is a homothety.

Motion estimation. The techniques for parametric motion estimation can be classified
into direct and feature-based methods. The former calculate the global motion by minimizing
an energy functional, whereas the latter look for a set of salient points in the frames and
compute the transformation that better puts these features in correspondence. The key idea
is to find the displacement of the background of the scene, for which a homography is a
good approximation, and discard potential foreground motions. Therefore, most techniques
combine fast matching processes with robust strategies to discard outliers. Both direct and
feature-based methods can be equipped with such robust strategies.

Classic methods [21, 52, 53] used correlation techniques and pyramidal structures for
estimating large displacements. The correspondences were usually detected on a reduced
number of blocks distributed on the images to improve the runtime. In order to remove
outliers, simple rejection strategies were used, like cross-checking the correspondences. The
method proposed in [66], for example, calculates block motion in two areas: the central region,
which is associated with the foreground objects, and the background, which is considered to
be near the border.

The combination of salient points, such as Harris corners [22], and the Kanade–Lucas–
Tomasi (KLT) tracker [48, 58], has often been used. It is usually combined with a pyramidal
structure for estimating large displacements [50, 20, 56]. Robust strategies like RANSAC
are used for the rejection of outliers. In [42], the authors propose the use of motion vectors
employed in the coding of video compression in order to accelerate the motion estimation step.

Affinities are arguably the most commonly used transformations for stabilization [21, 39,
50, 1], as they produce satisfying results without introducing deformations like with homogra-
phies. It is possible to use even more restrictive parameterizations such as translations [28, 66]
or similarities [52]. Paradoxically, these often have a better performance in the presence of
camera parallax, because they do not distort the images so much. Nevertheless, for more
complex motions and arbitrary camera shakes, they cannot rectify the images as faithfully
as affinities or homographies do. On the other hand, the 3D camera rotation model [15, 56]
is also widely used. This is a restricted case of homography that works properly when the
camera rotates about its optical center, and is still valid for small camera parallax.

Several works have proposed computing a set of transformations in each frame instead
of a single parametric model. This is the case, for instance, of the mixture of homography
model proposed in [19]. It relies on the KLT tracker and adapts a threshold to obtain many
distributed features in the images. Various homographies are calculated for each frame in
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different horizontal strips. This mixture is especially useful for dealing with the rolling shutter
problem. Similarly, in [40, 45] the images are divided into cells of a regular grid. The algorithm
computes a warping between the vertices of every two successive images, using the features and
enforcing a similarity transform between the triangles. Finally, homographies are computed
between corresponding cells.

Later, the same authors proposed a method for motion estimation based on smoothed
optical flows [46], which is, however, computationally expensive. More recently, this was
alleviated in [43] using a mesh of motion vector candidates instead of the full optical flow.
These motion candidates are obtained through FAST features [65] and the KLT tracker and
are processed by means of two median filters. In any case, these methods rely on parametric
models for initializing the motion estimates.

In this work, our focus is not on the image matching method. In the experiments we
used indifferently a classic feature-based technique [51], which relies on SIFT features [47],
and a direct method [57], which implements the inverse compositional algorithm [5, 4]. Direct
methods are usually faster but more sensitive to brightness changes and outliers. Feature-
based methods depend on the type of selected features. They are typically more sensitive to
noise and motion blur but allow us to estimate stronger deformations. A discussion of both
strategies is given in [62].

There are many works for stabilization that rely on SIFT [47] or SURF [6] features,
although these are slow for stabilization. In [54], the authors propose using MSER [49] features
for estimating the motion between frames. The benefit of these features is that they are based
on regions, which are typically more stable than features based on corners.

Motion compensation or smoothing. The objective of motion compensation is to esti-
mate a set of transformations that, when applied to the original video, reduces the effect of
camera shake. It should remove the camera jitter at the same time that it must preserve as
much as possible the contents of the original sequence. Additionally, it should avoid introduc-
ing geometric distortions into the scene.

The simplest approach is to transform the images with respect to a reference frame. This
is what we refer to as the compositional approach in section 4.1.1, and it was typical in the
first methods, such as [52]. It is usually associated with the construction of mosaics and allows
for real-time video stabilization [21]. This method is particularly valid if the camera is known
to be static.

For arbitrary camera motions, the transformations must be smoothed. Techniques based
on Gaussian smoothing are the most common [53, 50, 26]. These are more flexible than the
previous approach, are easy to implement, and provide satisfactory results in general.

More recently, the introduction of optimization strategies, like the robust L1 regularization
strategy proposed in [20], has taken into consideration featured camera paths and the size of
the cropping window. The method in [45], on the other hand, minimizes a functional that
forces the new camera path to be close to the original path and contains a smoothness term
to stabilize them. It also introduces a weight to preserve motion discontinuities due to fast
motions of the camera. The technique in [11] approximates the smooth camera path by fitting
the parameters of a polynomial curve. In [17] the camera trajectory is broken into different
segments and a different smoothing strategy is applied in each segment depending on the type
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of motion.

Image warping and postprocessing tasks. In the final step, the images are warped ac-
cording to the calculated smoothed motion. Crop & Zoom is the most widely used strategy
for eliminating empty regions. The objective is to find the maximum visible rectangle in the
whole sequence and to apply a common transformation to the images. This transformation is
usually the composition of a translation and scaling and can be carried out before the warping
process. The result is a video with a shorter field of view and lower quality due to the zoom-in.
For these reasons, it is important for the methods to maximize the crop region. The method
in [19], for instance, allows the user to specify the size of the crop window and manages to
find the smooth camera path that respects this size.

A different alternative, called video completion, consists in filling this information up from
other frames. For example, the work in [39] uses mosaicing to fill up the missing image areas.
However, this process is very complex in practice, because it depends on the motion of the
camera and the structure of the scene. The result is that it typically introduces important
artifacts at the border of the images. The method in [69] proposes filling the holes by sampling
spatiotemporal patches in the same video. More sophisticated image inpainting techniques [12,
3] may be chosen, although the artifacts are more noticeable in videos.

The method in [50] proposes a filling strategy based on the optical flow, called motion
inpainting. It calculates the optical flow between consecutive frames and propagates the
information to the empty regions using the motion information. This is used to guide the
warping of the image from neighbor frames in the case when a mosaicing does not provide
reliable information.

Combining pixels from different frames can introduce brightness changes on the same
image, so it is necessary to blend the information carefully, like in [63] or [9]. On the other
hand, it is also interesting to correct global brightness changes produced by varying exposures,
since this effect is unpleasant after stabilization.

Motion blur is also more noticeable after stabilization. In this case, image deblurring tech-
niques are useful to improve the quality of the output video. Deblurring using deconvolution
is in general difficult [32], and good solutions can be attained only if the camera shake is
small. The method in [50] proposes an algorithm for improving the quality of the images by
transferring sharp pixels between neighboring frames. In this case, the global motion is used
both for image alignment and deblurring, whereas local motion is used for video completion.

The skew and wobble problems caused by the rolling shutter are important for video
stabilization. These may introduce distortions on the images in the form of slanted objects or
jelly effects. The rolling shutter compensation raises two issues: first, the kind of deformations
are generated not only by the camera jitter, but also by the acquisition device, which are many
times related; second, a homography model is not sufficient, and more general parametric
correction must be considered. Many of the aforementioned works deal with this problem [24].
The work in [7], for example, deals with the rolling shutter problem using the information of
on-board gyroscopes, which provide an estimate of the instant velocity of the camera.

In this work, we shall not deal with the rolling shutter problem and assume that the images
are taken from a camera with a global shutter. Indeed, a correct formalism must first address
the problem of global stabilization before extending it to roller shutter effects. Besides, these
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are usually compensated locally by the same stabilization strategies.

Scale-space and the frequency analysis. Scale space theory started with the founding
works of Witkin [70] and Koenderink [29]. They proposed analyzing a signal or an image by
convolving it with Gaussians of growing standard deviations and noticed that this is equivalent
to applying the heat equation. The notion of scale-space means that an event in the signal or
image happens at a certain position, but also at a certain scale. The uniqueness of the heat
equation satisfying a scale-space axiomatics is proven in [2, 37] and summarized in the review
[68]. The main axioms leading to uniqueness are linearity, locality, translation invariance,
rotation invariance (for images), and causality. Causality roughly means that no new detail
is being created by the successive filters. Under these axioms the only possible scale-space
process is the heat equation.

The theory of scale-space remains so fundamental that it is the object of several recent
books [60, 38, 64]. After the founding works of Lindeberg [35, 36], scale-space established
itself in image analysis as a way to detect local features, notably blobs detected by computing
the 3D extrema of the normalized image Laplacian. The scale of these extrema was shown
by Lindeberg to be proportional to the blob’s size. This method had found a groundbreaking
application with the SIFT method [47], by now used by all image analysis practitioners. The
SIFT method was generalized to video and movies by Laptev and Lindeberg [33]. Scale-space
has also been proposed to stabilize the video gray scale distribution and to compensate for
flickering effects. In that case the heat equation is applied to an inverse of the frames’ gray
level cumulative distribution function [14].

Several works have used parametric models between two successive frames in the video for
the purpose of video indexing, camera motion characterization, or ego-motion classification,
such as [8] or [27]. The scale-space analysis that we propose for video stabilization can also
be used for other related tasks, such as activity classification and detection [25, 61, 55].

3. The video stabilization formalism. The motion estimation step receives a sequence of
images, {Ii}, and computes a set of transformations, {Hi,i+1}, between successive frames, i
and i+ 1, as illustrated in Figure 1. The pixels of the images are related by the photometry
consistency principle Ii(x) = Ii+1(Hi,i+1x), where x = (x, y, 1) is the pixel position. These
matrices may be, for example, any of the transformations given in Table 1, each one depending
on a set of parameters. These parameterizations are typical of direct methods [62]. Note that
the matrices and points are expressed in homogeneous coordinates, so the image positions
are obtained after normalizing by the third component. In the following, we will be using
indistinctly matrix notation or its corresponding parameterization.

The motion smoothing step obtains a new set of transformations, {H′i}, from the computed
motions {Hi,i+1}. To that purpose, it applies a Gaussian convolution to the time series of
transformations. We discuss the smoothing alternatives in the following section. {H′i} are the
transformations that must be applied to {Ii} to eventually obtain the stabilized images {I′i}.

The postprocessing step is the process necessary to remove the empty regions that appear
at the border of the frames after image warping. The last step consists in applying the
smoothing transformations as

(3.1) I′i(x) := Ii(H
′
ix).
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Figure 1. Illustration of the motion smoothing process. {Ii}i=1,...,N is the initial image sequence;
{Hi,i+1}i=1,...,N−1 are the computed transformations between consecutive images. {I′i}i=1,...,N is the stabilized
sequence, and {H′i}i=1,...,N are the stabilizing transformations.

Table 1
Typical planar transformations with their parameters and homogeneous matrix representation.

Transform Parameters (p) H

Translation (tx, ty)

 1 0 tx
0 1 ty
0 0 1


Euclidean (tx, ty, θ)

 cos(θ) − sin(θ) tx
sin(θ) cos(θ) ty

0 0 1


Similarity (tx, ty, a, b)

 1 + a −b tx
b 1 + a ty
0 0 1


Affinity (tx, ty, a11, a12, a21, a22)

 1 + a11 a12 tx
a21 1 + a22 ty
0 0 1


Homography (h11, h12, h13, · · · , h32)

 1 + h11 h12 h13

h21 1 + h22 h23

h31 h32 1



Figure 2 shows an example using Euclidean versus homographic transformations for video
stabilization. The van passes very close to the camera, and, for a fraction of second, the
foreground moving object dominates the scene. The feature-based homography detection
mixes foreground and background and leads to a stabilization attempt focused on foreground.
The estimate of Euclidean transformations also mixes foreground and background in such a
situation. Yet the Euclidean transforms do not deform the scene so much. They are therefore
often preferred to handle sequences with alternating foreground/background.
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Figure 2. Foreground motion: Comparison of Euclidean and homographic transformations for video stabi-
lization. First row, original sequence (frames 50, 75, 100); second row, stabilization with Euclidean transforms;
third row, using homographies. A direct method was used for estimating the motion and the local matrix–based
smoothing scheme presented below for motion compensation. The homographies mix up foreground and back-
ground and attempt to compensate the van’s deformation. The Euclidean compensation is more conservative.

4. Motion compensation. The objective of motion compensation is to obtain a new
set of transformations that effectively remove the undesired background motion. Given the
transition background transforms {Hi,i+1}, which we assume henceforth to be correct, the
aim is to obtain the stabilization deformations, as in Figure 1. There are several strategies
for computing {H′i} which can be classified into compositional and additive methods.

4.1. Compositional methods. These techniques are based on the composition of trans-
formations. Depending on the reference system, we may define three different approaches:
compositional, global and local smoothing approaches.

4.1.1. Compositional approach. If the camera is static, it may be sound to find and
compensate for the homographies toward a fixed frame, or even a background image obtained
by former registrations and accumulation. The compensating transformations are obtained
through compositions from the current image to the reference frame. The compositional
approach is extremely relevant for fixed cameras for which a reference background frame can
be established.

Definition 4.1. We define the compositional approach as the process of calculating the
transformations that compensate the images with respect to a reference frame. The trans-
formations are obtained by composing the relative motions between successive frames by

(4.1) H′i = H1,i :=
N∏
j=2

Hj−1,j = Hi−1,iHi−2,i−1 · · ·H2,3H1,2.

This is the technique used in the first works [21, 52]; it was usually combined with the
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Figure 3. Compositional approach and the problem of changing the focal length or moving the camera
forwards/backwards. Left, the first frame of the sequence; middle, another frame of the sequence; right, the
compensated image for that frame. The problem with the compositional approach is that there is a steady zoom
in as the camera moves forward. Thus, compensating the motion by registering the frames up to the first one
reduces the current frame more and more.

construction of mosaics and is compatible with real-time processing, since each single frame
can be directly compensated.

One of the drawbacks of this approach is that the composition of homographies also
accumulates the errors introduced in the motion estimation process. If we choose the first
image as the reference frame, this problem becomes more acute as the video goes on. One
could avoid the accumulation of errors by registering the images directly to the initial reference
frame. However, at some time, there may be no sufficient overlap between the objects in the
current frame and the initial frame, or the illumination conditions may change.

If the camera moves, choosing a unique reference frame may introduce severe distortions.
Nevertheless, there exist several satisfactory strategies in this case, such as the following:

(i) Choosing several reference frames equally distributed along the sequence, so that the
rectification is carried out with respect to the nearest key frame. One of the drawbacks of this
strategy is that this can create incongruous jumps in the video at the reference frames.

(ii) Computing homographies in both temporal directions using multiple reference frames.
The frame in the middle of two key frames can be rectified using an average between the two
composed homographies, from the left and right transformations. But this would force the
result to maintain some frame position uncorrected.

(iii) Detect when the motion has gone beyond the range of the initial reference frame and
pick another one [52].

Another shortcoming of the compositional approach is that it also compensates the inten-
tional changes in focal length. In the same way, the method is not valid if the camera moves
forwards or backwards. The undesirable effect is that the resolution of the images gets bigger
or smaller, like in the example of Figure 3.

In fact, this problem appears when using similarities, affinities, or homographies for the
compensation, because these include the scale factor, and transformations using (4.1) unduly
compensate for the change of scale. The Euclidean transformations, or translations, work
better in this setting, because they do not include the scale parameter.

4.1.2. Global smoothing approaches. Based on the previous approach, it is possible to
design smoothing strategies that are suitable for moving cameras. The images are rectified
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I1 Ii

I′i

H1,i

H′iH̃1,i

H̃
−1
1,i

Figure 4. Relation between the reference frame, I1, the actual frame, Ii, and the compensated frame, I′i.
This figure shows an intuitive way to compute the stabilizing transformation, H′i, from the estimated motion,
H1,i, and the smoothed transformation, H̃1,i.

with respect to a fixed reference frame, but these techniques allow estimating a smooth path
along the camera trajectory.

Compositional smoothing. The idea of compositional smoothing is illustrated in Fig-
ure 4. The objective is to find the transformations {H′i} that relate {Ii} to {I′i}, so that the

smooth transformations {H̃1,i} do not include the high frequency motion. The compositional
smoothing approach simulates a smooth registration of the current frame with respect to a
given reference frame.

Definition 4.2. We start from the compositional transition homographies H1,i defined by
(4.1) and, more precisely, from their eight matrix elements H1,i(p, q), where p and q are the

row and column index, respectively. Consider the smooth homographies H̃1,i, whose elements

H̃1,i(p, q) are obtained through a convolution with a discrete Gaussian function of the series
H1,i(p, q) as

(4.2) H̃1,i(p, q) := (Gσ ∗H1,·)i(p, q) =
∑
j∈Ni

Gσ(j − i)H1,j(p, q),

with Gσ(x) := We−
x2

2σ2 , Ni = {j : i − k ≤ j ≤ i + k}, and W := 1/
∑i=k

i=−k e
− i2

2σ2 a normal-
izing coefficient. The compositional smoothing approach is defined by the following rectifying
transformations and image stabilized sequence

(4.3) H′i := H1,iH̃
−1
1,i ; I′i(x) := Ii(H

′
ix}.

Note that we are using the compositions with respect to the first frame, and each element
is obtained as a weighted average of the elements of the composed homographies. The next
theorem verifies that this is a correct stabilization.
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Theorem 4.3. Given valid image deformations H1,i from frame i to reference frame 1, such
that I1(x) = Ii(H1,ix), the smooth motion compensation for frame i defined by

(4.4) H′i := H1,iH̃
−1
1,i

is also a valid image deformation, as it satisfies

(4.5) I′i(x) =: I1(H̃
−1
1,ix) = Ii(H1,iH̃

−1
1,ix).

Proof. To demonstrate this relation, note that

I1(x) = Ii(H1,ix),

I1(x) = I′i(H̃1,ix).(4.6)

Given that the transformations are invertible, we obtain from the second equation in (4.6)

(4.7) I′i(x) = I1(H̃
−1
1,ix).

Using the first relation in (4.6), we have

(4.8) I′i(x) = I1(H̃
−1
1,ix) = Ii(H1,iH̃

−1
1,ix).

Alternatively to Definition 4.2, the smoothing can be realized on the parameters of the
transformations, p, as detailed in Table 1. For instance, if we use a Euclidean transformation,
the parameters to be smoothed are the translation, (tx, ty), and the angle of rotation, θ. Since
they are treated separately, the smoothing has a geometrical meaning. However, for affinities
and homographies, the smoothing is less intuitive and can be formalized with the transfor-
mation matrices. In the case of similarities, it is possible to use another parameterization
based on the translation (tx, ty), the scale factor λ, and the angle of rotation θ. These can be
easily obtained from the parameters in Table 1, and, again, the smoothing has a geometrical
meaning.

The method explained in [52] follows this scheme, although it combines both the motion
estimation and smoothing steps. Figure 5 shows the influence of σ in the stabilization. In this
sequence, the camera moves forward and rotates 90o on the left. Choosing a small σ yields
good results, but large values are not convenient. A good smoothing method should adapt
the strength of the smoothing to the camera rotation velocity.

Boundary conditions for compositional smoothing. The Gaussian filtering of the se-
quence of homographies requires specifying how to deal with the temporal boundary condi-
tions at the beginning and end of the time interval. When the smoothing radius goes beyond
the limits of the image sequence, several strategies can be envisaged.

Definition 4.4. Let {H1,i} be a set of transformations from each frame i to the reference
frame 1 in a time interval between 1 and N . We define constant boundary conditions by

(4.9) H1,j :=

{
H1,1 if j < 1,

H1,N if j > N.
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Figure 5. Effect of exaggerated smoothing: Left image, one frame of the video; middle image, stabilization
result with σ := 20; right image, stabilization with σ := 100. We used the direct method for motion estimation,
homography transforms, and the local matrix–based smoothing strategy. In this movie the camera is rotating
quickly, and smoothing in a large time interval is damaging.

We define Neumann boundary conditions in the range [−N + 1, 2N − 1] by

(4.10) H1,j :=

{
H1,−j+1 if j < 1,

H1,2N−j if j > N.

We define Dirichlet boundary conditions in the range [−2N + 2, 3N − 1] by

(4.11) H1,j :=


H1,−j+2 + 2H1,1 − 2H1,N if − 2N + 2 ≤ j < −N + 1,

2H1,1 −H1,−j+1 if −N + 1 ≤ j < 1,

2H1,N −H1,2N−j if N ≤ j < 2N,

H1,j−2N+1 + 2H1,N − 2H1,1 if 2N ≤ j < 3N.

Constant boundary conditions replicate the first and last transformations beyond the scope
of the video. A consequence of this boundary condition is that, for large values of σ, the initial
and final frames of the video are allowed to move from their original positions.

In the Neumann boundary conditions, the derivative of the homographies is constant in
the boundaries. These conditions are accomplished by reflecting the values on both ends.
Again, this allows the initial and final frames to move from their original positions.

The goal of Dirichlet boundary conditions is, by an odd reflection across the temporal
boundaries, to ensure that the initial and final frames do not move, namely to obtain at the
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boundaries the equivalent to the original matrices. With these boundary conditions, the first
and last frames will coincide with the original video.

Compositional local smoothing. The compositional local smoothing approach is similar
to the previous method, with the main difference being that the transformations are smoothed
locally and then composed with the original transformations.

Definition 4.5. Given the following convolution with a Gaussian function,

(4.12) H̃i,i+1(p, q) := (Gσ ∗ {H})i(p, q) =
∑
j∈Ni

Gσ(i− j)Hj,j+1(p, q),

the compositional local smoothing is defined by the rectifying transformations

H′i :=

i∏
j=1

(
Hj,j+1H̃

−1
j,j+1

)
=
(
Hi,i+1H̃

−1
i,i+1

)(
Hi−1,iH̃

−1
i−1,i

)
· · ·

· · ·
(
H2,3H̃

−1
2,3

)(
H1,2H̃

−1
1,2

)
.(4.13)

The stabilized image sequence is defined by (3.1), I′i(x) := Ii(H
′
ix}.

This relation is similar to the compositional smoothing approach in Figure 4, where the
expression Hi,i+1H̃

−1
i,i+1 removes the original local shake and introduces a smooth increment.

This method is mentioned in [50].

Boundary conditions for compositional local smoothing. The boundary conditions for
the compositional local smoothing approach are slightly different from the previous scheme,
because the transformations are increments between consecutive images. In this case, we have
the following conditions.

Definition 4.6. Let Id be the identity matrix.
Constant boundary conditions are defined as Hj,j+1 := Id if j < 1 or j > N .
Neumann boundary conditions are defined in the range [−N + 2, 2N − 1] as

(4.14) Hj,j+1 :=

{
H−1−j+1,−j+2 if j < 1,

H−12N−j,2N−j+1 if j > N.

Dirichlet boundary conditions in the range [−N + 1, 2N − 1] are defined by

(4.15) Hj,j+1 :=

{
H−j,−j+1 if j < 1,

H2N−j,2N−j+1 if j > N.

4.1.3. Local smoothing approaches. The main problem with the previous approaches is
that the composition of transformations from a given frame successively accumulates errors.
Local methods, on the other hand, do not rely on a fixed reference image, but the coordinate
system is centered at each frame independently. The smoothing is carried out in a temporal
window centered at the frame.

We envisage two alternatives: in the first, the matrices are referenced to the current frame,
and the components of the matrices are smoothed similarly to the previous approaches; in
the second strategy, a set of points is selected in the current frame, and their positions are
tracked in the neighboring frames by applying the transition transforms.



234 JAVIER SÁNCHEZ AND JEAN-MICHEL MOREL

Ii−2
Ii−1

Ii Ii+1

Ii+2

I′i

H
−1
i−2,i−1

H
−1
i−1,

i

Hi,i+1

H
i+1,i+2

H
−1
i−2,i

H
i,i+2

H′i

Figure 6. Local matrix–based smoothing. The stabilizing transformation, H′i, is obtained from a local
neighborhood of frame Ii using forward, Hi,j, and backward, H−1

i,j , transformations.

Local matrix–based smoothing. This method was proposed in [50] and is presented in
Figure 6. The reference system is centered in the current frame, and the smoothing is carried
out with a set of transformations around a temporal neighborhood. These transformations
need to be related to this central frame, so the composition is given in both temporal directions.

Definition 4.7. Consider the following compositions with the previous transformations from
the current frame,

(4.16) Hi,j:j<i =

i−1∏
l=j

Hl+1,l = Hj+1,jHj+2,j+1 · · ·Hi−1,i−2Hi,i−1,

with Hl+1,l = H−1l,l+1, and the composition with the following frames as

(4.17) Hi,j:j>i =

j∏
l=i

Hl,l+1 = Hj−1,jHj−2,j−1 · · ·Hi−1,iHi,i+1

in a neighborhood, Ni = {j : i− k ≤ j ≤ i+ k}, around frame i. Define the convolution with
a Gaussian function in this interval by

(4.18) Ĥi(p, q) :=

i+k∑
j=i−k

Gσ(i− j)Hi,j(p, q),

with Hi,i := Id. Then the local matrix–based stabilization is defined by the rectifying trans-

formations H′i := Ĥ−1i and the stabilized image sequence by (3.1), I′i(x) := Ii(H
′
ix}.

The boundary conditions for this approach are identical to those for the compositional
smoothing approach, so that Definition 4.4 is valid. This approach is more stable and works
better for more complex transformations, such as affinities and homographies.

One of the clear benefits of this approach is that the influence of errors, which may have
been produced during the motion estimation process, is limited to a region given by the
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temporal window in (4.18). As a consequence, the method is more stable and may recover
from errors during the compensation. In the previous techniques, once an error is introduced
in the motion of an image, it is propagated to the rest of frames.

This idea is also used in [56] for the smoothing of 3D camera rotation matrices. In that
case, it also compensates for the rolling shutter effects.

Local point–based smoothing. This variant proposes a more intuitive way to process the
video by smoothing point trajectories instead of matrices. The idea is to select several points
in the current frame and track them in its neighborhood using the estimated homographies. A
Gaussian convolution in each path will provide an average set of points. Then, the stabilization
homographies can be computed from the averaged points.

If we want to compute a homography—eight parameters—we need to select at least four
points in each frame, {xpi }p=1,...,4. These points are then projected forwards and backwards
as xpi+1 := Hi,i+1x

p
i and xpi−1 := H−1i−1,ix

p
i , respectively.

Definition 4.8. Consider a set of points in the current frame i, {xpi }p=1,...,N , and a trajec-
tory for each point in a temporal neighborhood, Ni = {j : i − k ≤ j ≤ i + k}, given by the
following points:

for j = i− k, . . . , i− 1, xpj :=

i−1∏
l=j

Hl+1,l

xpi =Hj+1,jHj+2,j+1 · · ·(4.19)

· · ·Hi−1,i−2Hi,i−1x
p
i

on the left, and

for j = i+ 1, . . . , i+ k, xpj :=

(
j−1∏
l=i

Hl,l+1

)
xpi =Hj−1,jHj−2,j−1 · · ·(4.20)

· · ·Hi+1,i+2Hi,i+1x
p
i

on the right. We define the convolution of each trajectory with a Gaussian function by

(4.21) for p = 1, . . . , N, x̃pi :=
(
Gσ ∗ {xpj}j=i−k,...,i+k

)
i
.

The local point–based smoothing approach is then obtained by the rectifying transformations
H′i := Ĥ−1i , where Ĥi is calculated from points {xpi } to the smoothed set {x̃pi }. Finally, the
stabilized image sequence is obtained by (3.1) as I′i(x) := Ii(H

′
ix}.

In order to compute the homography from the points, we may follow the strategies pro-
posed in [23]. The inhomogeneous system, where one element of the matrix is set constant, is
the simplest one.

The number of points to track depends on the type of transformation we choose. Since
every point establishes two equations, we need one point for translations, two for Euclidean
and similarity transforms, three for affinities, and four for homographies. For Euclidean
transformations there is one spare equation, and we have an overdetermined system. Another
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alternative is to always track four points and then adapt the resulting homography to the
chosen parameterization.

Here, logically, the boundary conditions are applied to the points themselves with a defi-
nition similar to the one applied on the local matrix–based smoothing.

Definition 4.9. Given a point xpi in the reference frame:
Constant boundary conditions are defined by

(4.22) xpj :=

{
xp1 if j < 1,

xpN if j > N.

Neumann boundary conditions are defined in the range [−N + 1, 2N − 1] by

(4.23) xpj :=

{
xp−j+1 if j < 1,

xp2N−j if j > N.

Dirichlet boundary conditions are defined in the range [−2N + 2, 3N − 1] by

(4.24) xpj :=


xp−j+2 + 2xp1 − 2xpN if − 2N + 2 ≤ j < −N + 1,

2xp1 − xp−j+1 if −N + 1 ≤ j < 1,

2xpN − xp2N−j if N ≤ j < 2N,

xpj−2N + 2xpN − 2xp1 if 2N ≤ j < 3N.

4.2. Additive methods. Instead of compositions, these techniques rely on virtual tra-
jectories obtained by time integration of apparent frame to frame motions. The benefit of
these schemes is that the errors produced by the compositions are not accumulated. We call
these approaches additive methods because the information is computed in an incremental
way through the addition of the transformations.

In this group, we shall distinguish two approaches: The first is based on the integration of
the coefficients of the transformations and the second on the integration of the local motion
of fixed points in the video frames.

Local linear matrix–based smoothing. This technique proposes a linear variant of the
local matrix–based smoothing.

Definition 4.10. We define the virtual trajectory of a homography as

(4.25) H̄i := Id +
i−1∑
l=1

(Hl,l+1 − Id) .

The smoothed coefficients of the matrix trajectory for i = 1, . . . , N are defined by

(4.26) H̃i(p, q) :=
(
Gσ ∗ {H̄j(p, q)}

)
i

=

j=k∑
j=−k

Gσ(j)H̄i−j(p, q)

and

(4.27) Ĥi = H̃i − H̄i + Id.
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The local linear matrix–based smoothing approach is then obtained by the rectifying transfor-
mations H′i := Ĥ−1i . Finally, the stabilized image sequence is obtained by (3.1) as I′i(x) :=
Ii(H

′
ix}.

The boundary conditions for this method are equivalent to the local matrix–based smooth-
ing strategy, as given in Definition 4.4.

Since we obtain a unique virtual trajectory for the whole sequence, it is easy to apply a
discrete cosine transform (DCT) based Gaussian filtering. This method is preferred to discrete
filters because it is more precise [16].

In the case of a pure translation, linear matrix–based smoothing is equivalent to local linear
point–based smoothing, which we shall examine next. However, for general transformations,
the matrix-based scheme is less sensitive to abrupt camera changes and numerical inaccuracies.

Local linear point–based smoothing. This variant proposes a linear system to process
the video by smoothing point trajectories. The virtual trajectories, {xpi }p=1,...,4, of the refer-
ence points are computed by integrating their temporal discrete derivative. Then, as in the
preceding section, they are smoothed out to compute a new position at time i. The new
position of these points yields the stabilization homography.

Definition 4.11. Consider a fixed set of points in frame coordinates, {xp}p=1,...,P , and define
their virtual trajectory by xp1 = xp and

(4.28) for i = 1, . . . , N − 1, xpi := xp +

i−1∑
l=1

(Hl,l+1x
p − xp) .

We define the stabilized position of xpi by

x̃pi :=
(
Gσ ∗ {xpj}

)
i

=

j=k∑
j=−k

Gσ(j)xpi−j ,(4.29)

x̂pi := xp − xpi + x̃pi .(4.30)

The local linear point–based smoothing approach is then obtained by the rectifying transfor-
mations H′i := Ĥ−1i , where the homography Ĥi is calculated from the fixed points {xp} to the
stabilized set at frame i, {x̂pi }. Finally, the stabilized image sequence is obtained by (3.1) as
I′i(x) := Ii(H

′
ix}.

The boundary conditions for this method are equivalent to the local point–based smooth-
ing strategy, as given in Definition 4.9.

A clear benefit of the additive approaches is that, unlike the previous techniques, no
composition between homographies is performed. This reduces the effect of numerical errors
or the influence of errors during the motion estimation step. Another advantage is that it is
easy to use a Gaussian convolution based on the DCT, since we obtain a unique 1D signal for
each point trajectory or matrix coefficient.

In the experimental results, we will use a linear scale-space analysis which is based on
a formulation similar to (4.28). Furthermore, we will see that these two approaches behave
much better if we analyze the empty regions created by the stabilization.
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Figure 7. Office: Average (left) and maximal (right) percentage of empty regions as a function of σ.

5. Which smoothing strategy is the best? A postprocessing step is necessary to remove
the empty regions that appear at the border of the images. The simplest approach, and
probably the most used, is Crop & Zoom. The idea is to find the largest area axis-parallel
rectangle [13] that does not contain empty regions and to apply the adequate crop to all
frames to remove them. This can be realized by translating and scaling the rectangle in order
to fit inside the image dimensions. This process can be executed before the warping step in
the smoothed homographies to account for this similarity transformation.

The necessity of such a process after motion stabilization gives also a natural criterion
to compare stabilization strategies. Cropping must be maximized because it implies either a
resolution loss by digital zoom-in if the video frame size is maintained, or a reduction of this
size.

A natural criterion to compare the motion compensation strategies is to measure the
empty space produced after compensating camera motion. Working on a series of realistic
videos, we explored the average and maximum empty spaces created by every strategy. The
rationale of this comparison is that large empty regions provide poor solutions and that a
smoothing strategy will be preferred if it corrects video shake with minimal information loss.

Looking at Figure 7, we observe that all the strategies have similar behavior for small values
of σ. However, the compositional smoothing approach is more sensitive to large values. This
figure shows the average and maximum percentage of empty regions produced by each strategy
on the Office video, a video containing camera shake and a strong continuous rotation. The
local matrix– and local point–based smoothing approaches behave better for large smoothing
values, with the matrix-based technique having a better average graphic. The performance
of the maximum percentage of empty regions for the local point–based technique is slightly
better. The best approaches are the local linear–based methods, with very similar behaviors.
Paradoxically, the compositional local smoothing approach provides similar results in this
sequence. These results can also be observed in the last two columns of Table 4.

Table 2 shows the average and maximum percentages of empty regions for the brutal video
obtained by a GoPro fixed to the chest of a running man. This example illustrates the limits
of smoothing strategies in such extreme cases. The best strategy, which turns out to be local
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Table 2
Man running with a GoPro in his chest: Average and maximum percentages of empty regions in the border

of the compensated frames (σ := 30).

Method average maximum

Compositional 94% 100%
Compositional smoothing 27,9% 100%
Compositional local smoothing 23,6% 46,6%
Local matrix–based smoothing 20,5% 100%
Local point–based smoothing 52,4% 100%
Local linear matrix–based smoothing 17,1% 35,3%
Local linear point–based smoothing 16,8% 35,2%

Table 3
Average percentage of empty regions left on the border of the compensated frames for (σ := 30). This

percentage is given for each kind of transform, from translation to homography, and for each kind of smoothing
process, from compositional to local linear point–based. This criterion illustrates two phenomena: First, the
growing numbers from left to right show that allowing more degrees of freedom to the transform implies also a
more severe correction, as is logical; second, the table is a clear decider about the preferable smoothing process.
The local linear matrix–based and the (similar) local linear point–based processes win as they guarantee the
smallest distortion and the smallest distortion increase when increasing the number of degrees of freedom.

Method Translat. Euclid. Similar. Affine Homography

Compositional 20,5% 23,8% 21,7% 23,2% 43,8%
Compositional smoothing 4,0% 4,1% 6,3% 6,4% 8,4%
Compositional local smth. 8,3% 10,5% 8,1% 8,5% 18,9%
Local matrix–based 4,0% 4,0% 6,3% 6,4% 6,1%
Local point–based 4,0% 4,1% 6,7% 6,8% 11,2%
Local linear matrix–based 4,0% 4,1% 4,6% 4,6% 5,5%
Local linear point–based 4,0% 4,0% 4,6% 4,6% 5,9%

linear point–based smoothing, loses 16,8% of the frame on average, similar to the local linear
matrix–based smoothing. The maximum loss in these cases is 35,2% and 35,3%, respectively,
which is much better than those of the compositional techniques.

Table 3 presents the average image percentage for the empty regions left on the border
of the compensated frames for moderate smoothing (σ := 30) and ten diverse videos. This
average was computed for each kind of geometric transform, from translation to homography,
and for all kinds of smoothing processes that we have considered, from compositional to local
linear point–based with Neumann boundary condition.

A lower empty region percentage is a logical and factual criterion of success: For a fixed
Gaussian smoothing, it measures the loss of resolution of the video caused by the camera
shake correction. Clearly large percentages like 23% would not be acceptable. Fortunately,
the best methods give a reasonable 5 to 6%.

The results demonstrate two phenomena: First, the increasing numbers from left to right
on each row show that allowing more degrees of freedom in the transform implies also a more
severe correction; second, the table is a clear decider about the preferable smoothing process.
The local linear matrix–based and the (similar) local linear point–based processes win as they
guarantee the smallest distortion and the smallest distortion increase when increasing the
number of degrees of freedom. Table 5 shows the average percentage of empty regions left
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Table 4
Average and maximum percentages of empty regions in the border of the compensated frames after stabi-

lization for five videos with different dynamics: Descending stairs, Man running with a camera on his head,
Earthquake, Cournot Building, and Office, respectively. In all cases, we choose σ := 30. C stands for compo-
sitional, CS for compositional smoothing, CLS for compositional local smoothing, LMS for local matrix–based
smoothing, LPS for local point–based smoothing, LLM for local linear matrix–based smoothing, and LLP for
local linear point–based smoothing.

Method
Desc. stairs Man running Earthquake Building Office

mean max mean max mean max mean max mean max

C 30,5% 63,4% 81,0% 100% 26,0% 62,1% 2,6% 7,9% 64,6% 100,0%
CS 4,3% 12,6% 4,2% 27,4% 1,7% 9,0% 0,4% 2,1% 4,6% 8,6%
CLS 5,5% 13,5% 10,9% 14,3% 2,5% 9,9% 1,2% 2,0% 2,5% 6,1%
LMS 4,4% 12,6% 4,0% 27,4% 1,8% 9,4% 0,4% 2,1% 2,9% 7,1%
LPS 5,2% 13,5% 18,0% 31,2% 3,4% 59,5% 0,4% 1,6% 3,6% 7,0%
LLM 4,3% 12,6% 4,9% 27,7% 1,8% 8,3% 0,4% 2,1% 2,5% 5,8%
LLP 4,2% 12,5% 4,7% 21,8% 1,7% 8,4% 0,4% 2,1% 2,4% 5,9%

Table 5
Average percentage of the empty regions left on the border of the compensated frames for (σ := 60). This

percentage is given for each kind of transform, from translation to homography, and for each kind of smoothing
process, from compositional to local linear point–based. This table confirms, for more drastic smoothing, the
conclusion given for Table 3: The local linear matrix–based and the (similar) local linear point–based processes
win. They guarantee the smallest distortion and the smallest distortion increase when increasing the number of
degrees of freedom. Interestingly, the winners are also the closest ones to the linear scale space strategy designed
for the video analysis.

Method Translat. Euclid. Similar. Affine Homography

Compositional 20,5% 23,8% 21,7% 23,2% 43,8%
Compositional smoothing 5,5% 5,6% 12,6% 12,7% 13,5%
Compositional local smth. 11,9% 14,2% 10,6% 10,5% 21,7%
Local matrix–based 5,5% 5,5% 12,6% 12,7% 11,0%
Local point–based 5,5% 5,5% 14,0% 14,1% 18,3%
Local linear matrix–based 5,5% 5,5% 7,3% 7,3% 8,9%
Local linear point–based 5,5% 5,6% 7,3% 7,3% 9,4%

on the border of the compensated frames for strong smoothing (σ := 60). This percentage is
again given for each kind of transform, from translation to homography, and for each kind of
smoothing process, from compositional to local linear point–based.

This table confirms, for more drastic smoothing, the conclusion given for Table 3: The
local linear matrix–based and the (similar) local linear point–based processes win. They
guarantee the smallest distortion and the smallest distortion increase when increasing the
number of degrees of freedom. Interestingly, the winners are also the closest ones to the linear
scale space strategy designed for video analysis in the next section.

The tables also confirm that the local matrix–based approach is the third best method
and it is, on average, the best of the compositional approaches, as shown in [50]. We notice
that, although the compositional and compositional local smoothing approaches provide good
results for fewer degrees of freedom, and may yield good results for some sequences, they
usually provide worse results for large image sequences, as can be seen in the first experiment
in the next section.
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Table 4 gives a detailed comparative view of the results for several videos. The table
shows the average and maximum percentages of empty regions for each smoothing technique
and for five very different videos. From left to right, the results are shown for Descending
stairs, a camera carried backward by a cameraman; Man running with a camera on his head,
a brisk running video; Earthquake, the violent vibration of a static camera on a pole; Cournot
Building, which is the result of a camera phone held in a hand in front of a static scene; and
Office, which is the result of a hand-held camera rotating strongly in front of a static scene.
A perusal of these examples shows that the linear strategies are the best performing methods,
followed by the local matrix–based and the compositional smoothing approaches.

The supplementary material includes three videos. The first two (M112715 01.mp4 [lo-
cal/web 1.37MB] and M112715 02.mp4 [local/web 1.66MB]) compare the stabilization using
the compositional local and the local matrix–based smoothing strategies. The result of the
latter is more satisfactory because it produces fewer empty regions at the borders of the
video frames. It shows that a global technique typically introduces more errors than a local
approach. The third video (M112715 03.mp4 [local/web 1.12MB]) shows a comparison of
Neumann and Dirichlet boundary conditions. We observe that, for Dirichlet conditions, the
initial and final frames of the stabilized video coincide with the original sequence.

6. The motion linear scale-space.

6.1. The formal scale-space definition. If Hi,i+1 are the original transformations between
consecutive frames and H′i the rectifying homographies, we calculate the set of transformations
for the stabilized sequence as

(6.1) H̃i,i+1 := (H′i+1)
−1Hi,i+1H

′
i,

with H̃0,1 := Id. These are used for computing the trajectories and scale-space graphics in
the experiments. Our goal in this section is to define sets of motion signals that can undergo
a multiscale analysis and that give a reliable geometric account of the camera motion. We
assume that a series of homographies {Hi}i=1,...,N between successive frames is given. These
may be the initial homographies or the smoothed ones. We want to define and visualize repre-
sentative virtual trajectories associated with these series. This virtual trajectory is computed
as the integral of the instantaneous velocity of a fixed frame point. It is obtained by apply-
ing the transition transform of the current frame to this point. Its instantaneous velocity is
defined as the difference between this transformed point and the fixed point in the frame.
Integrating this instantaneous velocity yields a virtual trajectory of the central point.

Definition 6.1. Let x be a fixed point in the video frame domain (for example, its central
point). Given a series {Hi}i=1,...,N of homographies between successive frames, we call the
virtual trajectory of x the series

(6.2) xi := x +

j=i−1∑
j=1

(Hix− x).

We call the instantaneous zoom the area ratio between the quadrangles (Hiw,Hix,Hiy,Hiz)
and (w,x,y, z), where the second quadrangle is the image domain. We call the instantaneous

M112715_01.mp4
M112715_01.mp4
http://epubs.siam.org/doi/suppl/10.1137/17M1127156/suppl_file/M112715_01.mp4
M112715_02.mp4
http://epubs.siam.org/doi/suppl/10.1137/17M1127156/suppl_file/M112715_02.mp4
M112715_03.mp4
http://epubs.siam.org/doi/suppl/10.1137/17M1127156/suppl_file/M112715_03.mp4
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rotation of the video the angle between (Hiu,Hiv) and (u,v), where (u, v) denote the middle
points of the left and right sides of the video frame.

Our scale-space analysis receives discrete signals (virtual trajectories) obtained for the
series of transition homographies. The trajectories are computed by Definition 6.1. These
trajectories will be smoothed by Gaussian convolutions to preserve all the typical scale prop-
erties, namely translation invariance, locality, and causality. Thus we need first to specify how
the Gaussian definition must be done to preserve these three properties.

Consider a digital signal uk with k = 0, . . . , N − 1 and its Discrete Fourier Transform
(DFT) interpolate

(6.3) u(x) =
∑

m∈[−N/2,N/2−1]

ũme
2iπmx
N ,

where ũm are the DFT coefficients of the N samples uk. The classic image analysis theory

called “scale-space” convolves u with a Gaussian Gσ(x) = 1√
2πσ

e−
x2

2σ2 . A direct calculation

shows that the result of the convolution of u with Gσ is

(6.4) v(x) := (Gσ ∗ u)(x) =
∑

m∈[−N
2
,N
2
−1]

ũmĜσ

(
2mπ

N

)
e

2iπm.x
N

with Ĝσ(ξ) = e
−σ2ξ2

2 . Indeed,

Gσ ∗ e
2iπm.x
N =

∫
R
Gσ(y)e

2iπm.(x−y)
N dy = e

2iπm.x
N

∫
R
Gσ(y)e−

2iπm.y
N dy = e

2iπm.x
N Ĝσ

(
2πm

N

)
.

The convolved discrete digital signal therefore simply is

(6.5) vk := Gσ ∗ uk =
∑

m∈[−N
2
,N
2
−1]

Ĝσ

(
2mπ

N

)
ũme

2iπm.k
N .

These calculations lead us to the following definition of Gaussian filtering of a discrete motion
signal.

Definition 6.2. Given a signal uk, k = 0, . . . , N − 1, we call the DFT convolution of this
signal by a Gaussian Gσ the discrete signal Gσ ∗ uk obtained by (6.5).

Nevertheless this definition implicitly assumes the signal to be N -periodic, which is gen-
erally not adequate, as it introduces artificial discontinuities at both ends of the signal. For
this reason, the convolution must respect the constant, Neumann, or Dirichlet boundary con-
ditions used in all our previous definitions of motion smoothing. This leads to the obvious
next definition, which proposes again extending the signal adequately on an interval of length
3N before applying the DFT convolution.

Definition 6.3. Given a signal {vk} and a standard deviation for the Gaussian σ, we set
for k = N to 2N − 1, vak = vk−N+1.
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(i) For a constant boundary condition, for k = 1 to N − 1, vak = v1, and for k = 2N to
3N − 2, vak = vN .

(ii) For a Neumann boundary condition, for k = 1 to N − 1, vak = vN−k−1, and for
k = 2N to 3N − 2, vak = v3N−k−1.

(iii) For a Dirichlet boundary condition, for k = 1 to N − 1, vak = 2v1 − vN−k−1, and
for k = 2N to 3N − 2, vak = vN − v3N−k−1.

Then apply the DFT convolution of the signal vak with the Gaussian Gσ by Definition 6.2
to obtain a discrete signal svk, k = 1, . . . , 3N − 2. Finally, extract the meaningful part of the
signal for k = 1 to N , by setting svk = vbN+k−1.

Our definition of the motion scale-space will be applied to four signals: the virtual trajec-
tory of the central point, the instantaneous zoom, and the instantaneous rotation.

Definition 6.4. Let uk, k = 1, . . . , N − 1, be one of the movie motion signals given by
Definition 6.1. We call the scale-space of uk the following series of signals, which are also
displayed in this order from bottom to top in all graphical representations:

(a) the original virtual trajectory uk,
(b) the high pass filtered signal v10 := uk − (G10 ∗ u)k where G10 ∗ u is as defined in

Definition 6.3,
(c) the low passed version of (b) defined by v20 := (G10 ∗ u)k − (G20 ∗ u)k,
(d) the low passed version of (c) defined by v40 := (G20 ∗ u)k − (G40 ∗ u)k,
(e) the low passed version of (d) defined by v80 := (G40 ∗ u)k − (G80 ∗ u)k,
(f) the final low passed version of u, u80 = (G80 ∗ u)k.

These definitions define a pyramid that can be collapsed back as we have u = u80 +v80 +
v40 +v20 +v10. Of course the basis value of σ = 10 can be replaced by any other. In addition,
our scale-space contemplates the frequency analysis of the pyramid by DFT, namely the DFTs
of v80, v40, v20, and v10, presented on the right of all graphics from top to bottom.

6.2. Scale-space experiments. We shall detail a first experiment, Walking, on a 5.400
frame video obtained from a camera hanging from the chest of a walking person. Figure 8
shows the results of all considered smoothing strategies. The compositional approach cannot
follow the camera path because there are rotations larger than 90o. In the solution of the
compositional local smoothing approach, there are more empty regions at the border of the
image than in the local matrix–based smoothing strategy. This technique typically provides
better results and is more stable for homographic transformations.

Figure 9 shows the compositional trajectories of the original and smoothed transforma-
tions. The compositional trajectories are obtained by successively composing the homogra-
phies to build a trajectory of the central pixel in the first frame. This sort of trajectory is
different from the virtual trajectory in Definition 6.1, which will be used for the scale-space
analysis. Observe that the compositional approach (green line) does not follow the trajectory
of the camera. Most of the strategies show a similar behavior, except the compositional local
smoothing approach at the end of the signal, especially in the y component.

We now pass to the scale-space analysis, for which we use Definition 6.1 for the virtual
rotation and zoom trajectories and Definition 6.4 for the scale-space. The linear scale-space
of Figure 10 is obtained by directly smoothing the virtual trajectory of the central point.
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Figure 8. Walking. From left to right: Image of the original sequence (frame 800) and the results of the
compositional smoothing, the compositional local smoothing, and the local matrix–based smoothing approaches.
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Figure 9. Walking compositional trajectories of the central pixel obtained by applying successively all
transition homographies on the central point in the first frame. The left and right graphics show, respectively,
the x and y components. All smoothing strategies are displayed.

The linear scale-space analysis performs a multiscale frequency analysis of the Walking
sequence. The peaks in the third and fourth DFT graphics around one Hertz can be interpreted
to correspond to the horizontal stepwise walking of the person, while the smaller peak at two
Hertz in the fourth graphic would correspond to the vertical stepwise period. We found this
frequency pattern in all walking sequences we tested.

Similar to the previous graphics, we show, in Figure 11, the linear scale-space of the zoom
parameter. The smoothed upper curve is above the straight blue line which corresponds to
zoom = 1. Thus this smoothed curve gives an excellent account of the walking speed, which
increases toward the end of the walk. On the right, the DFT peaks at approximately 1Hz
and at 2Hz retrieves the periodicity of this regular movement, but the spectrum also shows
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Figure 10. Walking sequence. Left, from bottom to top: Virtual trajectory of the central point using the
original transformations (Definition 6.1); difference between the smoothed trajectory with σ := 10 and the
original trajectory; difference between the solution with σ := 20 and σ := 10; difference between the solution
with σ := 40 and σ := 20; difference between the solution with σ := 80 and σ := 40; finally the original signal
smoothed with σ := 80. Right: DFT signals of the corresponding graphics on the left. Each graphic depicts the
x and y components.
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Figure 11. Walking linear scale-space analysis (zoom).

high frequencies at 8 Hz, which may be due to a random bouncing of the hanging camera.
Figure 12 shows a similar result for the rotation. We shall observe a more clear-cut frequency
pattern on running ego-motions when the camera is fixed to the body.

In the next experiment, Earthquake, we used a sequence taken from a surveillance camera
recording an earthquake. This sequence is composed of 5.342 frames and is more challenging,
because there are rapid and strong vibrations in some parts of the video.

Figure 13 shows linear scale-spaces for the trajectory and the rotation of the camera.
Interestingly, the central point moves to the right and top in the sequence. No dominant
frequency is observable. The smoothed rotation indicates that the pole rotates and rotates
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Figure 12. Walking linear scale-space analysis (rotation).
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Figure 13. Earthquake linear scale-space analysis: Top, scale-space of the central point and its DFT
analysis; bottom, scale-space of the rotation signal. In each row, the top curve displays the original signal
smoothed with σ := 80 and the bottom curve is the difference between the smoothed signal with σ := 10 and the
original one. The right curve is its DFT.

back during the earthquake.
In the next experiment, we analyze the sequence of a man running with a camera fixed on

his head. We observe in Figure 14 the characteristic motion of a running person, where the
displacement is periodic in both the horizontal and vertical directions. There is a dominant
peak in the x component around 1,5 Hz, which denotes the oscillation from left to right. In
the y component, there is a peak at 3 Hz corresponding to the vertical oscillation.

In the zoom figure, we observe that the graphics present fast periodic motions, which are,
on average, above the blue line, corresponding to a static zoom. There is a steady zoom-in
due to the forward motion of the camera. On the other hand, the oscillations are probably
due to the balancing of the head while running.

In the last experiment, we analyze the video of a man running with a camera on his chest.
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Figure 14. Man running with a GoPro on his head, linear scale-space analysis. In the top left figure, we
show the scale-space corresponding to the trajectory of the central point; in the middle left figure, we show the
scale-space of the zoom signal; and, in the bottom left figure, we show the scale-space of the rotation signal. In
these figures, the graphics above show the original signal smoothed with σ := 80 and the graphics below show
the difference between the smoothed signal with σ := 10 and the original one. The right figures depict the DFT
signals of these graphics.

The results are similar to the previous experiment, although the shaking is more important
than when the camera is fixed to the head. This is reasonable since persons tend to stabilize
their head when they run or walk.

The trajectory, in the linear scale-space graphics of Figure 15, seems to be more regular
and periodic; see the two graphics on the bottom. This is due to the fact that the chest is
more rigid and better represents the motion of the run. The peaks are also situated about
1,5Hz for the horizontal displacement and slightly above 3Hz for the vertical one.

The zoom and rotation linear scale-spaces are also similar to the previous experiment,
although the rotation seems to be more regular and aligned with the horizontal displacement.
This may be produced by the motion from side to side of the chest while moving the arms,
which is synchronized with the motion of the legs.

7. Conclusion. We proposed a classification of motion compensation strategies for video
stabilization and characterized the different types of boundary conditions for the involved
smoothing.

We classified the smoothing strategies in compositional and additive approaches. The for-
mer are further divided into global methods, which compose the transformations from a given
reference frame, and local methods, which compose the transformations in a neighborhood
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Figure 15. Man running with a GoPro on his chest, linear scale-space analysis. In the top left figure, we
show the scale-space corresponding to the trajectory of the central point; in the middle left figure, we show the
scale-space of the zoom signal; and, in the bottom left figure, we show the scale-space of the rotation signal. In
these figures, the graphics above show the original signal smoothed with σ := 80 and the graphics below show
the difference between the smoothed signal with σ := 10 and the original one. The right figures depict the DFT
signals of these graphics.

around each image.
We added to the list two linear methods working on the coefficients of the transformations

or on virtual trajectories obtained as integrals of the instant velocity. The experiments showed
that these methods provide the best results in terms of preservation of the video content after
stabilization.

We also found that local smoothing approaches are more flexible and robust to the errors
introduced in the motion estimation step. The accumulation errors are only restricted to the
size of the convolution kernel. These are more suitable for affinities and homographies.

Analyzing the frequency patterns and the smooth tendency in the scale space of the virtual
trajectories yields crucial temporal information such as frequency peaks linked to periodic
ego-motions and a smoothed evaluation of the movement forward and of the rotations. This
scale-space analysis was applied to extremely shaky video to check that such information can
be reliably extracted.
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