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Abstract

In this paper, we introduce a new, fast data assimilation algorithm for a 2D linear advection
equation with divergence-free coefficients. We first apply the nodal discontinuous Galerkin (DG)
method to discretize the advection equation, and then employ a set of interconnected minimax
state estimators (filters) which run in parallel on spatial elements possessing observations. The
filters are interconnected by means of numerical Lax-Friedrichs fluxes. Each filter is discretised
in time by a symplectic Mobius time integrator which preserves all quadratic invariants of the
estimation error dynamics. The cost of the proposed algorithm scales linearly with the number
of elements. Examples are presented using both synthetic and real data. In the latter case,
satellite images are assimilated into a 2D model representing the motion of clouds across the
surface of the Earth.

1 Introduction

Data Assimilation (DA) is an important component in many modern industrial cyber-physical
systems. It improves the accuracy of forecasts provided by physical models by optimally combining
their states – a priori knowledge encoded in equations of mathematical physics – with a posteriori
information in the form of sensor data, and evaluates forecast reliability by taking into account
uncertainty, i.e., model error or measurement noise. Mathematically, DA relies upon optimal
control methods (deterministic state estimators) or applied probability (stochastic filtering). In
the probabilistic framework, the optimal solution of the state estimation problem is given by the
Kushner-Stratonovich equation, which describes the dynamics of the conditional probability density
of the state of a Markov diffusion process given incomplete and noisy observations [9]. In contrast,
deterministic state estimators assume that errors have bounded energy and belong to a given
bounding set. The state estimate is then defined as the minimax center of the reachability set, a
set of all states of the physical model that are “reachable” from the given set of initial conditions

∗This research was partially supported by US Department of Energy Contract NDE-EE0006017. This report
was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represented that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government
or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those
of the United States government or any agency thereof.
†tchrakit@gmail.com
‡sergiy.zhuk@ie.ibm.com

1

ar
X

iv
:1

70
7.

07
31

6v
2 

 [
m

at
h.

N
A

] 
 1

9 
Ju

l 2
01

8



and model errors, and are compatible with observations. The dynamics of the minimax center is
described by a minimax filter [12]. In the case of linear models, the KS equation can be reduced to
the Kalman-Bucy filter equations, which coincide with those of the minimax filter [11]. We refer
the reader to [22, 13] for further discussion on modern data assimilation and state estimation.

A major issue of DA approaches is the lack of scalability: indeed, computing optimal state
estimates for PDEs is often infeasible even in two spatial dimensions due to the “curse of dimen-
sionality”. To illustrate this issue consider a linear system

dc

dt
= Ac , y(t) = Hc(t) + η(t) , c(0) = c0 ,

where A is a differential operator representing the physical model, y is the sensor data corrupted
by some noise η, H is the mathematical representation of the sensor relating states c(t) to y(t),
and c0 is an uncertain initial condition such that, for given symmetric positive definite operators
Q0 and R it holds that:

(Q0c0, c0) ≤ 1 ,

∫ T

0
E(Rη, η)dt ≤ 1 ,

In this case, the optimal state estimator, ĉ, is given by the minimax filter:

dĉ

dt
= Aĉ+ PH>R(y −Hĉ) , ĉ(0) = 0 , (1)

dP

dt
= AP + PA? − PH?RHP , P (0) = Q−1

0 , (2)

which is, in fact, equivalent to the estimate of the Kalman filter [11]. As noted above, accurately
approximating ĉ and the gain (or state error covariance operator) P in real time is not feasible even
if A is a linear advection-diffusion operator in two spatial dimensions: a very modest approximation
of A by 100 or so basis functions in each spatial dimension will result in a 10000× 10000 stiffness
matrix so that, generally speaking, the problem of finding an accurate and fast approximation of
P solving the matrix differential Riccati equation (2) becomes intractable.

1.1 Contributions

In this paper, we propose an efficient and scalable data assimilation algorithm for linear advection
equations with divergence-free coefficients in two spatial dimensions. The algorithm is distributed,
i.e., it uses a network of local filters which process localised observations, and then exchange portions
of the information with the neighbouring filters to reconstruct the “global” state. Mathematically,
the proposed algorithm relies upon the nodal Discontinuous Galerkin (DG) discretization of the
advection equation, and minimax state estimation framework. In what follows, we will briefly
discuss the distributed filtering and its intrinsic relation to the DG discretization. This relationship
is the corner-stone of the proposed DA algorithm.

Distributed filtering/state estimation is popular in control engineering, specifically in distributed
sensor networks where one of the typical problems is how to construct an estimate of the entire state
(global estimate) of a dynamic spatio-temporal process from spatially distributed nodes of sensors
in a decentralized way. This means that there is no “central unit” that runs a global model of the
process and gathers all of the measurements from the nodes in order to construct a global state
estimate by an appropriate technique, e.g. Kalman filter. Instead, each node has a local model of
the process, i.e. a model describing the dynamics of the restriction of the state of the global process
onto the spatial region of the node, and local measurements of this restriction. In addition, each
node may receive information (e.g., state estimates) from the neighbouring nodes. The neighbours
are determined by the network topology. The goal of the distributed state estimation is to construct
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a local estimate at each node, i.e. the estimates of the restriction of the entire state to the node, by
using all of the data available at the node. The local estimates must be constructed so that when
they are stitched together, the resulting estimate of the entire state is as close as possible to the
optimal global state estimate computed at the “central unit” as suggested above. The described
distributed filtering strategy is visualised in fig. 1.
Note that the local nodes use local models of the process, and so these models must communicate
with neighbours to maintain the “global picture”. Thus, the key problem of distributed filtering is
how to set up communications with the neighbours in order to have the “stitched state estimate” be
as close as possible to the global state estimate. The key motivation for developing the distributed
filtering is two-fold: on one hand, the global state estimation can be quite expensive computationally
for reasons outlined above, and the nodes may not be in possession of sufficient computational
power, and, on the other, communicating large amounts of information required to perform the
global filtering may be very expensive and even infeasible especially if the communications are over
a wireless network. We refer the reader to [15] for further details on distributed state estimation
strategies in the context of sensor networks.

Figure 1: Distributed filtering strategy

Now, to relate the distributed filtering and the DG discretization we assume that the dynamic
process of interest is modelled by a PDE, e.g. a linear advection equation, in a large spatial domain
Ω, and that the sensors are located only at some sub-domains of Ω. It turns out that the DG
discretization framework provides a natural means for implementation of the distributed filtering
strategy, thus mitigating the computational cost associated with high dimensionality. Indeed, the
local models of the spatio-temporal process are generated as follows: the DG method splits the
computational domain Ω into a number of non-overlapping elements, Dk, and in each Dk, the
original PDE is substituted by a local ODE. The latter has a local system matrix, Ak which
represents the advection operator A in a local polynomial basis of Dk. All of the resulting local
ODEs are interconnected by means of numerical flux functions which contribute to both local
system matrices Ak and source terms bk to “maintain the global picture”. Moreover, to compute
the solution of the local ODE on the element Dk at time level ts one needs only (i) the solution
on Dk in the past (e.g. at the previous time level, ts−1), (ii) portions of solutions from adjacent
elements (neighbours) in the past, and (iii) the advection field at time ts and possibly in the past.
The data (i)-(iii) are used to update the matrices Ak and source vectors bk, and (ii), in fact,
implements the communication between the nodes by utilizing numerical fluxes. After the update,
all of the local solutions are computed for time level ts independently. One of the key advantages
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of this discretization is that, by taking a large enough number of small elements Dk with low order
polynomial basis functions, one can approximate the solution of the PDE up to high precision, and,
at the same time, keep the local system matrices small. This is in contrast to spectral/finite element
discretization methods where one forms a global “stiffness matrix” to maintain the continuity of
the solution (see section 1.2).

As noted, the DG discretization framework naturally provides the “localisation” and “commu-
nication” components for the implementation of the distributed filtering strategy. Based on this,
we propose a new distributed filtering algorithm for advection equations by combining the DG dis-
cretization and minimax state estimation. Namely, for each element Dk, the local minimax state
estimator (filter) is applied to estimate the state of the system of local ODEs by using the observa-
tions localised in Dk. The local filter relies upon a local Riccati operator P k which is constructed
for every element Dk by solving the standard Riccati equation given the local system matrix Ak,
and the local (for Dk) uncertainty description (e.g. initial condition error, model error and obser-
vation noise). If Dk has no observations, the local observation matrix, Hk is set to zero, i.e. no
data available on Dk. As a result, the innovation term equals zero, and the estimator coincides
with the state of the local ODE. Note that in this case, P k has no impact on the dynamics of the
estimator. The filters, located at adjacent elements, “run” independently and “communicate” with
one another through numerical fluxes (see section 4.1). In fact, the numerical flux is a function
of the local state, the adjacent state and advection field restricted to the boundary between the
elements. At every time step ts, it updates the local system matrix Ak, which “absorbs” everything
related to the solution on Dk, and the source term bk which encapsulates all of the information
about the state on adjacent elements. This provides implicit communications between local Riccati
equations: indeed, solutions from adjacent elements “change” the solution on Dk through the term
bk at time ts, and this change is then reflected in the local system matrix Ak after the numerical
flux has been recomputed at the next time step ts+1. In this way, implicitly, local Riccati matrices
exchange information with each other.

The proposed distributed filtering algorithm has two notable advantages. One is its scalability,
i.e. the potential for speed-up due to parallelisation of the filter over elements. Indeed, as noted
above, the local solutions on each element Dk can be obtained in parallel. As a result, the cost of
the proposed algorithm scales linearly with the number of elements (see section 5.1.5). The other
advantage is the possibility to preserve all of the quadratic invariants associated with local Riccati
operators P k. Indeed, the size of the system matrices is quite small, and this allows us to use a
symplectic Mobius time integrator [8] to discretize the corresponding matrix Riccati differential
equation. This type of time discretization is implicit and preserves symmetry and positivity of
P k. In addition, all quadratic invariants of the estimation error dynamics are preserved too. The
importance of this for practical applications (like the one in section 5.2) is that the simulation results
are trustworthy and represent indeed what has been predicted by the theory for the continuous
case.

Finally, we note that the localisation is an approximation, and as such it may lead to errors
in approximating the solution of the Riccati equation, as the global gain, P is informed by richer
information than is P k in the distributed case. The localisation error is quantified by comparing the
local estimates and operators P k versus the reference estimate represented by optimal centralised
minimax state estimate obtained by forming a “global” system matrix and solving the corresponding
“global” Riccati equation. The resulting comparison shows that the distributed filter provides
estimates that are quite close to the reference estimate (see section 5.1.1).
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1.2 State-of-the-art

In this paper the “discretize-then-optimize” strategy is used instead of discretizing an infinite
dimensional filter/Riccati equation [2] directly. The main reason for this is that the optimal infinite
dimensional minimax/Kalman filters are available in the literature for linear parabolic equations
including advection-diffusion equations, and symmetric systems of linear hyperbolic equations in
Rn. Neither suits our application, namely data assimilation of cloud optical depth images into an
advection-dominated flow given by a scalar linear hyperbolic equations in a bounded domain with
boundary conditions on the inflow zone. For this reason we adopt a hybrid strategy: discretize
in space by using DG method, and perform the state estimation for the resulting continous time
system of ODEs by employing the minimax filter.
Our choice of the DG method is motivated not only by its elemental nature which provides a natural
means of implementation of the distributed filtering strategy, but also because of the stabilizing
effect of the flux transfer between the elements, which makes it more robust in advection dominated
settings [18, 4, 3]. This is a key difference between DG and the Spectral-Element Method (SEM)
family of methods. Although the latter also use an elemental discretisation, their handling of
element interfaces requires the field representing the advected quantity to be smooth (at least of
H1-class) across interfaces which can result in instabilities for advection-dominated flows [14] even
with smooth advection coefficients. In order to overcome this issue, artificial diffusion can be added
to the model [14], but in many cases, the amount of diffusion required may be un-physical. We
stress that in this paper we will restrict our attention to 2D advection by divergence-free (volume
preserving) velocity fields, and thus will not need to apply any post-processing to our estimates.
However, in general, for nonlinear problems and linear advection problems where the velocity field
is non-smooth, a postprocessing in the form of a flux limiter can be employed for DG [18] to get
convergent numerical approximations.
The reason for using the minimax filter is in that it assumes merely bounded model errors in
contrast to the standard statistical assumptions of the Kalman-Bucy filter. Since we have to take
the discretization error into account, and there is no statistical information about its distribution,
the worst-case estimation error of the minimax filter appears to be more appropriate here. Note
that, in the linear case, the state estimates provided by the Kalman-Bucy and minimax filters
coincide [11] – the difference lies only in the interpretation, i.e. conditional mean versus minimax
center of the reachability set.

The problem of finding approximations of the solution P of the matrix differential Riccati
equation has been studied by many authors. The most popular statistical method is the Ensemble
Kalman Filter (EnKF) [7]. Using that approach the computational bottleneck in computing P is
overcome by generating an ensemble of trajectories, e.g. ensemble of grid-functions each of which
approximates the solution over the entire domain Ω, and by computing the ensemble variance to
approximate the state error covariance matrix P . The latter is then used to compute a state
estimate in the same way as in the Kalman filter. We stress that if the size of the discretized state
vector (total number of grid points) is quite large then, to achieve convergence of the empirical
moments to the exact ones the number of ensemble members must be very large that is hardly
feasible even for the advection-diffusion equation in two dimensions. To overcome this issue, the
localised EnKF, a combination of the square-root Kalman Filter with EnKF, was proposed [16].
Similarly to what has been suggested above, the local EnKF splits the domain into regions Ek,
e.g. rectangles, then it makes a localisation, namely the local ensemble vectors are created by
restricting global ensemble vectors (grid-functions representing the solution over the entire domain
at time ts) to the regions Ek, and the local (empirical) covariance matrices P k are computed on
each Ek from local ensembles. Given the specific structure of P k one can relatively easily compute
its eigenvectors and eigenvalues and then perform the filtering step in the space spanned by the
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leading eigenvectors corresponding to the largest eigenvalues. This provides an update for the local
ensembles. Finally, to go to the next time step ts+1, the updated global ensemble vectors can be
obtained from the updated local ensemble vectors by a weighted average. This algorithm does
scale very well as all the local ensembles are completely independent. i.e. the local filtering steps in
each region are not influenced by their neighbours. In contrast, the local state estimates generated
by our algorithm do depend on the adjacent local estimates by means of the boundary integral
interconnection mechanism of the DG method (see section 4.1) and so do the local gains. This
mechanism exchanges the information “in the direction” of the advection coefficients and hence
it maintains numerical stability without the need for artificial smoothing. In particular, it allows
discontinuous observations to be dealt with (e.g. when every other element has observations, giving
rise to a “chequered” pattern, see section 5.1.3) without the need to average the local estimates.

Finally, for the sake of completeness we mention here a family of Particle Filters (PF). Theo-
retically, one can use PFs to approximate the solution of the Zakai equation, which describes the
dynamics of the (un-normalized) density of the conditional distribution of the (hidden) Markov
diffusion given observations [5], or to construct a Gibbs sampler with a target Feynman-Kac dis-
tribution [6]. PF is an active research area and, at the moment, its application to state estimation
problems for PDEs is quite limited [24]. We refer the reader to [21] where a theoretical frame-
work for localization of PFs is provided, and to [17] where an attempt to design an algorithm for
localization of PF has been presented together with application to a small-to-medium sized state
estimation problem for L96 model.

1.3 Experimental assessment

The practical motivation of this work stems from the following problem. For accurate short-term
solar energy forecasting (minutes- to hours-ahead) of large geographical areas (continental scale),
models using geostationary operational environmental satellite (GOES) imagery are more effective
than numerical weather prediction models as the latter typically take too long (several hours) to
ramp up. The GOES satellite imagery only provides information on the current distribution of
clouds, including cloud optical depth (COD) and top/bottom altitude, which can be converted
to the current solar irradiance at the surface of the earth using radiative transfer modeling. An
accurate cloud advection model is thus required to forecast the future cloud distribution and solar
irradiance. We refer the reader to [30, 29] for further details on this. In section 5 we apply the
proposed method for cloud advection over the domain with constant inflow and free-exit bound-
ary condition. The domain spans 16 degrees of longitude and 12 degrees of latitude, and covers
approximately 1.68e6 square kilometres.

In addition, we consider a synthetic scenario in which a non-stationary, divergence-free velocity
field is advecting a smooth quantity over a domain with non-stationary boundary conditions. We use
a relatively low-resolution grid here, as the purpose of this scenario is comparison between “local”
and “global” filters, with the latter being too computationally expensive to run at high resolution.
In the case where observations are incomplete, elements with data neighbouring elements without
data may give rise to sharp discontinuities, which will appear in the global system matrix. These
discontinuities can cause numerical instabilities which can be avoided either by postprocessing, or
by “placing the discontinuities” into the source term as in the case of the distributed filter. We
implement the latter approach since the discontinuities are artificial, i.e. they have nothing to do
with the physics of the advection process, and so “placing them” into the source terms is perfectly
justified as they arise from the boundary terms imposing weak boundary conditions between the
elements (see section 5.1.1).

Finally, we conduct a simple scalability study to demonstrate that the computational cost of the
method scales linearly when the number of elements grows (up to 250 × 250) and the polynomial
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order is fixed (N = 3) resulting in the discrete state vector of dimension 106 (see section 5.1.5).
The paper is organized as follows. The problem statement is detailed in section 2, where we

describe the advection model and the objectives of the filtering problem. Our main results are in
section 4 where we introduce and describe our filtering algorithm. Experimental results including
comparisons of distributed and global filters for both synthetic and real data are described in
section 5, and the conclusions follow in section 6.

Notation Rn denotes n-dimensional vector space of real vectors x = (x1 . . . xn)> with standard
canonical basis and inner product x · y =

∑n
j=1 xiyi. Let Γ denote the boundary of the compu-

tational domain Ω, Γin – the inflow zone of Γ, i.e. Γin := {x ∈ Γ : u(x) · n(x) < 0}, n is the
unit outward vector which is normal to Γ at x, and u(x) = (u(x), v(x))> is a given incompressible
velocity field, i.e. ∇ · u = 0. We also set ΩT := (0, T ) × Ω and ΓinT (0, T ) × Γin for a real number
T < +∞. Finally, let L2(Ω) denote the space of square-integrable measurable functions over Ω,
and let H1(Ω) := {f ∈ L2(Ω) : ∂xf, ∂yf ∈ L2(Ω)}.

2 Problem Statement

The problem we aim to solve is that of state estimation or filtering for a linear advection equation
in two spatial dimensions subject to uncertain but bounded error in the initial and boundary con-
ditions, and uncertain forcing. In what follows we introduce the advection equation with uncertain
parameters, provide the uncertainty description and formulate the problem statement.

State equation Assume that the computational domain Ω ∈ R2 is a convex bounded domain,
and let the function (x, t) 7→ c(x, t) represent a quantity (e.g. a concentration of a material) that is
advected by an incompressible velocity field1 u according to the following linear advection equation:

∂tc(x, t) + u(x) · ∇c(x, t) = g(x, t)e(x, t) in ΩT ,

c(x, 0) = c0(x) + g0(x)e0(x) , on Ω ,

c(x, t) = c∂(x, t) + g∂(x, t)e∂(x, t) , on ΓinT ,

(3)

subject to an uncertain forcing e, boundary condition c∂ and initial condition c0 with uncertain
additive errors e∂ and e0 such that:

|q∂(x, t)e2
∂(x, t)| ≤ 1 , |q0(x)e2

0(x)| ≤ 1 , |q(x, t)e(x, t)| ≤ 1 , (4)

provided q0, q∂ and q are given smooth weighting functions such that q0, q∂ , q > q? > 0 for all
(x, t) ∈ ΩT , and the inequalities are understood for every x ∈ Ω outside perhaps a set of measure
zero. Note that q0 and q quantify the level of confidence in the initial condition/boundary conditions
and state equation: namely, q0 may specify “zones” of Ω where the knowledge of the initial condition
c0 is more precise or less so, and q defines zones of Ω where (3) holds almost exactly (|e| ≈ 0 in that
zone) or only up to a significant error (|e| > 0) and these zones may vary over time. Statistically,
this corresponds to the maximal entropy assumption, i.e., any (e0, e, e∂) verifying (4) have equal
probability of appearing. Functions g, g0 and g∂ are assumed to be given and allow one to either
localize errors in space/time, or switch them off completely if required.

The equations (3) have a unique smooth solution c ∈ H1(ΩT ) provided the data in (3), namely
u, e, c0, e0, g, g0, g∂ and c∂ , e∂ are smooth enough, i.e. of H1(ΩT ) class, and the initial condition

1To simplify the presentation we assume that u is independent of time so that the inflow part of the boundary
Γin does not change over time. However, in some numerical examples, the proposed method is applied with time-
dependent u.
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agrees with boundary conditions (see [19, p.484]). For the case of less regular solutions, namely just
measurable data, the equations (3) still possess the unique weak solution of L2(ΩT ) class (see [1,
p.220]), and the discontinuities/steep gradients are propagated forward by the characteristics. For
the sake of completeness, we note that the solutions of (3) can receive an even more general
representation, namely that of solutions in the space of measures [20] (for the case Ω = Rn). Since
our goal is not in proving the convergence of the proposed method for the most general case, but
rather in demonstrating how one can estimate the state of (3) efficiently without compromising
much the estimation precision, in what follows, we assume that the data are smooth enough so that
c is at least continuous in x and has the classical gradient of L2-class.

Observation equation We further assume that a function y is observed:

y(xj , t) = c(xj , t) + ηj(t) , j = 1 . . . Ns , (5)

where xj ∈ Ω denotes the position of a sensor, and a network of Ns-sensors is deployed in Ω.
Finally, the observation noise η := (η1 . . . ηNs)

> is modelled as a realisation of a vector-valued
random process with zero mean and uncertain but bounded correlation function:∫ T

0
E(η(t) ·R−1(t)η(t))dt ≤ 1 , (6)

where R(t) is a given symmetric positive definite continuous weighting matrix with continuous
inverse. This assumption reflects the fact that the second moments of η are known up to a bounded
error, e.g. when the moments are estimated by an empirical moment estimator, as often happens
in practice.

Problem statement: given state equation (3) together with observations (5) and the uncertainty
descriptions (4), (6) our goal is to design an efficient numerical algorithm estimating the quantity
c(x, t) from (y(x1, t) . . . y(xNs , t))

>.

3 Mathematical preliminaries

In this section we provide well-known information on DG discretization for advection equations,
and minimax filtering for linear ODEs. This material forms a basis for section 4.

3.1 Discontinuous Galerkin formulation

Applying the DG method to equation (3) is along the same lines as its application to a general non-
linear conservation law. For more details on what follows, see [10]. First, the domain, Ω is divided

into K of non-overlapping elements, Dk, i.e., Ω ' Ωh =
K⋃
k=1

Dk, where we choose the elements, Dk

to be rectangular. The restriction of the state c onto the element Dk is denoted by ck. The latter
can be approximated by ckh, which is expressed as the series,

ckh(x, t) =

N+1∑
i=1

ck(xki , t)`
k
i (x), x ∈ Dk, (7)

where `ki (x) are Lagrange interpolating polynomials in two dimensions defined on points xki . These
points are taken to be quadrature points for Legendre polynomials, specifically Legendre-Gauss-
Lobatto (LGL) points. The series (7) is a nodal expansion representing ckh, i.e. ckh(xki , t) = ck(xki , t).
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For more details on this, see [10]. We define ekh and e0
k, e

h
∂ , gkh, gkh,0 and gkh,∂ analogously. Substituting

ckh into (3), we form the residual Rkh on a single element:

Rkh = ∂tc
k
h(x, t) + u · ∇ckh(x, t)− gkh(x, t)ekh(x, t), x ∈ Dk. (8)

The Galerkin method involves taking `ki as test functions (i.e. same as the expansion/trial functions)
and forcing the residual to be orthogonal to each of these test functions. Doing this, and then using
integration by parts∫

Dk

(
(u · ∇ckh)`kn +∇ · uckh`kn + (ckhu) · ∇`kn

)
dx =

∫
∂Dk

(n̂ · u)`knc
k
hdx ,

to move the spatial derivatives off the state c and onto the test functions gives2 the following weak
statement on the element Dk (n = 1 . . . N + 1):∫

Dk

(
∂tc

k
h`
k
n − fkh · ∇`kn

)
dx = −

∫
∂Dk

n̂ · f∗`kndx+

∫
Dk

gkhe
k
h`
k
ndx , (9)

where n̂(x) = (n̂x, n̂y)
> is the unit outward vector which is normal to ∂Dk at x, fkh = (uckh, vc

k
h)>

and f∗ is the numerical flux function which we take to be the local Lax-Friedrichs flux:

f∗(ci, ce,ui,ue) =
ciui + ceue

2
+
µ

2
n̂(ci − ce), (10)

where subscripts i and e refer respectively to the interior and exterior values at a point on the
boundary, and µ is the maximum absolute value of the signal speed normal to the boundary at
that point, i.e.,

µ = max{|ui(x) · n̂|, |ue(x) · n̂|} (11)

The surface integral in (9) allows the elements to ‘communicate’ with one another by imposing the
values for ckh at the boundary of Dk from the adjacent elements. In fact, the boundary values are
imposed in a weak sense [19, p.483] as opposed to the strong/classical sense when the solution takes
exactly the prescribed value at the boundary [19, p.482]. This strategy of weak boundary conditions
agrees well with our problem statement: indeed, we assume that boundary conditions in (3) are
given up to an uncertain function, and so it does make sense to impose boundary conditions “on
average” or in the weak sense. Since we are using rectangular elements, the surface integral is just
the sum of four line integrals, each one over one face of the element Dk. The exterior solution
values ce in (10) and (11) refer to the value of ckh at x at the boundary of a neighbouring element
that shares the boundary with Dk. If x belongs to the physical boundary of the domain, Γ, the
exterior value is determined by the third equation of (3). More specifically, if the flow direction
at x is ‘into’ the domain, i.e. n̂(x) · u(x) < 0, then ce is set to either the value of ckh at x at the
boundary of a neighbouring element or the value prescribed by the 2nd equation of (3). If, on the
other hand, the flow direction at that boundary point is ‘out of’ the domain (i.e. n̂(x) ·u(x) > 0),
then a free exit boundary condition is imposed at that point by setting ce equal to the interior value
ci. Note that the Lax-Friedrichs numerical flux adds artificial viscosity at the element interfaces in
its handling of the jump in state, ci − ce. This smooths discontinuitues that may occur at those
interfaces.

The weak DG formulation of (3) on a single element Dk can be written as:

Mk dc
k
h

dt
− S>x fx − S>y fy = −

4∑
i=1

(−1)iMk,i
e f

∗
i +MkGk(t)ek(t) ,

ckh(0) = ck0 +Gk0e
k
0 ,

(12)

2Recall that ∇ · u = 0.
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where Mk, Sx and Sy are the mass and stiffness matrices with the latter corresponding to advection
in the x- and y-directions. The vectors ckh, ck0, ek and ek0 are grid-functions representing ckh, c0, e0,
e respectively on the (N+1)2 LGL quadrature points of the element Dk, and the vectors fx and fy
are grid functions representing the first and second components of fkh respectively. Gk and Gk0 are
diagonal matrices with the grid-functions gkh and gkh,0 on the diagonal respectively. The matrices

Mk,i
e are edge-mass matrices for the element Dk on face i, where the faces, i = 1 . . . 4, are ordered:

left, right, lower, upper. These matrices act on the vector f∗i which is a grid function representing
the numerical flux, (10), over each node on face i.

As noted above, the weak DG formulation of (3) on a single element Dk leads to the ODE (12),
which describes the time evolution of the vector ckh, the grid-function representing ckh on the (N+1)2

LGL quadrature points on element Dk. The source term f∗i of (12) depends upon vectors csh, s 6= k
which approximate csh on Ds. It is responsible for the “exchange of information” between the
“local” approximations of csh. This “communication mechanism” plays an important role in the
distributed filtering algorithm presented in section 4.1.

3.2 Minimax Filter

Let x(t) ∈ Rn be a state vector of the following equation:

dx

dt
= A(t)x+ b(t) + V e(t) ,x(0) = x0 +G0e0, (13)

where A, V,G0 are given matrices, b ∈ Rn is a given vector-function representing a source term,
e ∈ Rm is a measurable function representing the model error, and e0 ∈ Rp is an unknown vector
representing the error in the initial condition x0 ∈ Rn. We assume that e0 and e are uncertain but
bounded, and belong to the following bounding set:

ET := {(e0, e) : e0 ·Q0e0 +

∫ T

0
(e(t) ·Q(t)e(t)dt ≤ 1} (14)

provided Q0 and Q(t) are given symmetric positive definite matrices, and Q(t) has bounded (in t)
inverse. It is not hard to see that ET is an ellipsoid in the space Rp × L2(0, T,Rm).
We further assume that a vector-function y ∈ Rs is observed:

y(t) = H(t)x(t) + η(t) ,

where the assumptions on the observation noise η ∈ Rs are the same as in section 2.
Let us introduce the minimax filter equations. The minimax filter, x̂ solves the following system:

dP

dt
= AP + PA> + V Q−1V > − PH>R−1HP ,P (0) = G0Q

−1
0 G>0 , (15)

dx̂

dt
= Ax̂+ b(t) + PH>R−1(y −Hx̂) , x̂(0) = x0 (16)

It can be shown that the worst-case state estimation error associated with the minimax filter x̂ can
be expressed as follows:

max
(e0,e)∈ET ,R

E(xj(t)− x̂j(t))2 = Pjj(t). (17)

It is important to note that the worst-case mean-squared error of the minimax estimate is optimal
in that any other estimate of the state that is either linear or non-linear in the observations would
have a corresponding worst-case mean-squared error larger than that of the minimax [28].
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4 Main result

As noted in the introduction, our approach relies upon the “discretize-then-optimize” strategy
composed of the following steps:

1) the domain, Ω is divided into K of non-overlapping elements, Dk, and the weak formulation of
the DG method is applied to (3) on Dk, namely (3) is substituted by a system of ODEs which
describe the evolution (in time) of a vector approximating C on an element Dk (section 3.1);

2) for each element Dk, the minimax state estimator is applied to estimate the state of the
system of ODEs by using the data localised in Dk; the estimators, located at adjacent ele-
ments, ‘communicate’ with one another by means of the boundary integral interconnection
mechanism of the DG method (section 4.1).

4.1 Distributed minimax filter

To proceed we first transform (12) derived in section 3.1 into a form suitable for the application of
the minimax state estimator described in section 3.2. We introduce an affine transformation:

Ak(t)ckh(t) + bk(t, csh) +W kek∂(t) := (Mk)−1(S>x fx(t) + S>y fy(t))

−(Mk)−1
4∑
i=1

(−1)iMk,i
e f

∗
i (t)

(18)

where the first term on the right hand side accounts for the advection of the state quantity, ckh
within the element Dk in the absence of boundary effects, and the second term accounts for inter-
element boundary fluxes. Of those two terms, the first is linear in ckh, as the mass and stiffness
matrices are independent of ckh, while we see from the definition of fx and fy in section 3.1 that
they depend linearly on ckh. The second term, however is affine in ckh, which we can see if we look
at the numerical flux given by (10), which is approximated by the grid-function, f∗i above. The
interior state, ci, in that equation is approximated by ckh restricted to the nodes on the appropriate
boundary. However, the other terms in that equation do not depend on ckh so are treated as an
external source term. As a result, in addition to containing the stiffness terms, Akckh also absorbs
part of the flux term, while bk represents only the component of the flux that depends on the state
csh on elements Ds neighbouring Dk. Finally, ek∂ represents the component of the flux that depends
on e∂ which is only the case when Dk∩Γin 6= ∅. The term ek∂ is in effect a flux term induced by the

error at the physical boundary, i.e., ek∂ = −(Mk)−1
4∑
i=1

(−1)iMk,i
e f∗∂ (t) where f∗∂ (t) is a grid-function

approximating the Lax-Friedrichs flux, (10), with external state, ce = e∂ . The matrix, W k restricts
e∂ to the boundary Dk when Dk has a boundary that intersects with Γ, otherwise W k is zero.
Note that the effect of c∂ is absorbed by bk. In other words, bk represents the “known” part of the
boundary conditions (either from ∂Dk or from Γin), and ek∂ accounts for the uncertain part of the
boundary conditions coming from e∂ . In what follows, we will refer to Ak as the state transition
matrix, or system matrix for short. Having said this, we can rewrite (12) as follows:

dckh
dt

= Ak(t)ckh + bk(t, csh) + V kẽk(t) , ckh(0) = ck0 +Gk0e
k
0 . (19)

where V k := (Gk W k) and ẽk = (ek, ek∂)>. Note that Gk = 0, W k = 0 provided g = 0 and g∂ = 0
respectively.

Now, let us introduce a bounding set for the uncertain vectors ek0 and ẽk. We recall that ek0 =
(c0(xk1) . . . c0(xk(N+1)2))>, and ek, ek∂ are defined analogously. DefineQk0 := diag(q0(xk1) . . . q0(xk(N+1)2)),
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the restriction of q0 onto the LGL grid of Dk. Let Qk(t) denote the restriction of q onto the LGL
grid, defined in the same way. Let Qk∂(t) denote the restriction of q∂ onto the LGL grid points
located at the boundary of Dk. Since q0, q∂ , q > q? > 0, it follows that Qk0, Qk∂ and Qk are positive
definite. By (4), we get that

ek0 ·Qk0ek0 +

∫ t+s

t
(ẽk(τ) · Q̃k(τ)ẽk(τ)dt ≤ (1 + 2s)(N + 1)2 , (20)

provided Q̃k := diag(Qk, Q∂). This approximation represents an ellipsoid containing Ck, the restric-
tion of the hypercube defined by (4) onto the LGL grid within Dk. Clearly, the ellipsoid “contains
more uncertainty” than the restricted hypercube Ck: indeed, this is indicated by the presence of the
factor (N+1)2. However, in practice, N (the degree of Lagrange polynomials) is typically not taken
to be higher than the low integers. The numerical precision of the DG method is increased by fixing
N and refining the partition of Ω by introducing more elements Dk of smaller area. For example,
we use N = 3 and 70×70 rectangular partition of Ω to advect a satellite image of the cloud optical
depth (see section 5.2). Therefore, the factor (N + 1)2 has a positive effect (at least for N ≤ 5) as
it allows one to include uncertain source terms ẽk with slightly larger energy; for instance, setting
ẽk = ẽk1 + dk where the latter term accounts for discretization error (provided it is small enough,
which in turn can be achieved by taking a large enough number of small elements) making the
resulting state estimate more robust by increasing the worst-case estimation error (see proposi-
tion 1). We refer the reader to [27] for further discussion on including the discretization error into
the ellipsoid.

Finally, we recall that a network of Ns-sensors is deployed in Ω. We denote by Dk
obs :=

{xj1 . . .xjMk
} the locations of the sensors that belong to Dk and define

yk = (y(xj1 , t) . . . y(xjMk
, t))> Hk = {`kn(xjMk

)}Mk,(N+1)2

n,j=1 ,

the restriction of y defined by (5) onto Dk
obs, and the interpolation matrix Hk mapping LGL grid

to Dk
obs. Similarly, we define ηk = (ηj1 . . . ηjMk

)>, the restriction of the observation noise onto the

element Dk. Let π denote a matrix of norm 1 mapping η to ηk, and define Rk := π>Rπ. If Dk

does not contain a single sensor we set3 Hk := 0. As a result, the observations take the following
form:

yk = Hkckh(t) + ηk ,

Now, following [28] we state the following proposition:

Proposition 1. Assume that ck solves (19) and the uncertain parameters are bounded according
to (20). Given observations yk we define the minimax estimate ĉkh on Dk as follows:

dP k

dt
= AkP k + P k(Ak)> + V k(Q̃k)−1(V k)> (21)

− P k(Hk)>(Rk)−1HkP k , P k(t) = P kprev(t) , (22)

dĉkh
dt

= Akĉkh + bk(t, ĉsh) (23)

+ P k(Hk)>(Rk)−1(yk −Hkĉkh) , ĉkh(0) = ck0 (24)

3It will become apparent after Proposition proposition 1 that setting Hk = 0 is mathematically equivalent to the
“no observation” case: indeed, the state estimator is coupled to yk by means of Hk so this coupling becomes trivial
if Hk = 0 and the state estimator reduced to the state equation (19) with no uncertainty, e.g. e∂ = 0, ek

0 = 0 and
ek = 0.
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where ĉsh is the minimax estimate on elements Ds neighbouring Dk. It then follows that

max
ẽk,ek0 ,Eη

k(ηk)>
E(ckh(xj , t+ s)− ĉkh(xj , t+ s))2 = (1 + 2s)(N + 1)2Pjj(t+ s) , (25)

i.e. the worst-case mean-squared error of the minimax estimate ĉkh(xj , t+ δt) of the value ckh(xj , t+
δt) is given by the jth diagonal element of the unique symmetric positive definite solution of the
Riccati equation (21)-(22).

The proof of the proposition is given in appendix A. Note that proposition 1 reflects the se-
quential nature of the estimation process: at t = 0 we initialize the process by setting P kprev(0) :=

Gk0(Qk0)−1Gk0, which describes the a priori bound for the initial condition error, and compute P k

and ĉkh on (0, s) by solving (21)-(24); t is then set to s, Pprev(t) is set to P k(t) and (21)-(24) is
solved again on (t, t + s). The factor (1 + 2s)(N + 1)2 in (25) comes from the ellipsoidal approx-
imation of the discretized hypercubes (4), which is required to formulate the minimax filter [26].
As a result, the mean-squared worst-case estimation error is inflated after each estimation step at
t + s by the constant factor (1 + 2s)(N + 1)2 so that at time T the estimation error is given by
(1 + 2T )(N + 1)2Pjj . We stress that the equation for P k is composed of the following parts:

• the linear part (21) represents a Lyapunov operator that describes dynamics of the estimation
error in the absence of observations (e.g. Hk = 0),

• the nonlinear part (22) represents the reduction in the estimation error due to observations.

Similarly, the state estimator equation consists of the model (23) and the innovation part (24).
Both (22) and (24) disappear if Dk does not contain a single sensor.

We stress that the gain P k does not depend explicitly on the gains P s at the neighbouring
elements. In contrast, the minimax estimates ĉkh at elements Dk are advanced independently over
the time window [t, t + s], and the communication terms bk(t, ĉsh) are then updated at t + s. In
this way, the filters on elements with no observations receive information from the elements with
observations, so that the localised observations are, in fact, spread around the entire domain by the
communication terms bk(t, ĉsh). This same mechanism provides an implicit communication between
Pk: indeed, bk depends on ĉsh at time ts, and this changes ĉkh at ts+1, which is in turn reflected in
the local system matrix Ak. The latter, in turn, modifies P k.

4.2 Time discretisation

It was noted in [27] that equations (21)-(24) must be discretized by a method (e.g. symplectic
Runge-Kutta method of order p) preserving quadratic invariants of the estimation error dynamics,
i.e. the discrete estimate should verify the equality (25). The latter holds true for the symplectic
Mobius integrator proposed in [8] to solve the matrix differential Riccati equation (21). The basic
idea behind the Mobius transformation is to make use of the fact that the solution of the Riccati
equation induces a flow on a Grassmannian manifold. This flow is called a Mobius transformation.
It may be constructed by solving an associated linear Hamiltonian system: indeed, the solution of
the Riccati equation, P k, can be expressed in the form P k = V k(Uk)−1 provided(

U̇k

V̇ k

)
=

(
−Ak> (Hk)>(Rk)−1Hk

Q̄k Ak

)(
Uk(t)
V k(t)

)
,

(
Uk(t)
V k(t)

)
=

(
I

P k(t)

)
(26)

where Q̄k := (1 + 2s)(N + 1)2V k (̃Qk)−1(V k)>, and the initial gain, P k(0) := (1 + 2s)(N +
1)2Gk0(Qk0)−1Gk0. The Hamiltonian system (26) can be solved by using symplectic Runge-Kutta
methods of order 2 and thus avoid numerical instabilities associated with Mobius transform by
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means of a reinitialization: namely the gain at time level j + 1 is given by P kj+1 = V k
j+1(Ukj+1)−1

provided (
I + ∆T

2 (Akj )
> −∆T

2 (Hk)>(Rkj+1)−1Hk

−∆T
2 (Q̄k)−1 I − ∆T

2 Akj

)(
Ukj+1

V k
j+1

)
=

(
I − ∆T

2 (Akj )
> ∆T

2 (Hk)>(Rkj )−1Hk

∆T
2 (Q̄k)−1 I + ∆T

2 Akj

)(
I
P kj

) (27)

where ∆T is the time-step, and s := ∆T . The reinitialization is in that Ukj is set to the identity

matrix and V k
j = P kj so that (Ukj+1)−1 is well-conditioned. The resulting symplectic Mobius inte-

grator (27) is stable and preserves symmetry and positivity of the Riccati matrix. Also it preserves
all quadratic invariants of the estimation error dynamics including (25). Finally, the filter equation
in (23)-(24) is also solved using the implicit midpoint method, giving:(

I − ∆T

2
Akj+1 +

∆T

2
P kj+1(Hk)>(Rkj+1)−1Hk

)
(ĉkh)j+1 = ∆Tbkj(

I +
∆T

2
Akj −

∆T

2
P kj (Hk)>(Rkj )−1Hk

)
(ĉkh)j

+
∆T

2

(
P kj+1(Hk)>(Rkj+1)−1ykj+1 + P kj (Hk)>(Rkj )−1ykj

2

)
,

(28)

Note that the above scheme is explicit in bkj as at time level j we only have bkj .

4.3 Varying trust in observations

When filtering, the amount of trust placed in the observations, yk, is regulated by the symmetric
positive definite matrix, Rk: small eigenvalues of R represent high trust and the reverse. Intuitively,
low trust (high eigenvalues) reduces the “rate” at which local filter assimilates the observations by
reducing the impact of the innovation term (24). This simple fact is used to assimilate sparse in
time observations in a stable fashion. Indeed, if the observations are available at discrete time
instants, i.e. the matrix Hk switches between 0 and identity matrix, the numerical scheme (23)-
(24) could quickly become unstable due to the hyperbolic nature of the problem (3). To overcome
this, we suggest the following procedure: instead of switching Hk between 0 and 1 to mimic the
presence/absence of the observations, we fix Hk and vary the trust in yk by multiplying Rk by
a scalar rk > 0 which dictates the trust placed in the observations associated with element k.
Small rk indicates high trust, while large rk indicates low trust. More specifically, the algorithm
assumes that no data are available at t = 0, so rk is initialised to a high value. When observations
become available, say at t = t1, then rk should be decreased from its default high value to a low
value in order to increase the trust in the observations for element k. However, sharply decreasing
rk can cause the system to become numerically unstable, so instead of doing this, we reduce its
value over time, thus increasing the trust gradually and avoiding instabilities. The observations
should however be assimilated relatively fast to avoid lag, so reducing rk at each computational
time-step would not be ideal unless ∆T was set to a small value (i.e. smaller than necessary to
ensure numerical stability of the scheme). This, however, would be computationally inefficient so
instead, we introduce a second, smaller time-step, ∆Ts, where ns∆Ts = ∆T , so that when data
become available, we can switch to using the smaller time-step, ∆Ts, running the filter ns times
over [t1, t1 + ∆T ] while varying rk over that time-interval. The trust at the beginning of the time
interval is small (high rk) and should also be small at the end. Thus, we vary rk in such a way that
it attains a specific minimum value associated with high trust mid-way through the time interval.
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We achieve this by reducing rk for the first ns/2 small time-steps (setting ns to be even) and then
increasing it back to a high value over the remaining ns/2 steps. This procedure resembles the
(weak) approximation of the Dirac delta-function by Gaussian densities.

The distributed filtering algorithm is summarised as algorithm 1, where we use the following
notation:

• ∆T : Standard computational time-step

• Nt: Number of standard time-steps

• Nc: Number of time-steps used at current time-level

• ns: Number of small time-steps for filtering (even)

• K: Number of DG elements

• ∆Tc: Time-step at current time-level

• Es: Set of DG elements on which observations may be available

• rk: Observation trust parameter

• rtr: High trust value of rk

• rd: Low trust value of rk

• τ : Constant for varying trust, where rdτ
−ns/2 = rtr

Note that there are two nested time-loops in algorithm 1. For the outer loop (using control variable,
i) time is advanced using the standard computational time-step, ∆T , and for the inner one (using
control variable, j) time is either incremented by the standard computational time-step for a single
iteration in the case that no observations are available, or by the small time-step, ∆Ts for ns
iterations when observations are available on any element. The time, t, that is set inside the outer
loop is the time at the beginning of the current time-level. It is at this time that a check is performed
for available observations. Inside the inner time-loop, t is then updated to be the estimate/solution
time. This will be either ∆T or ∆Ts beyond the time at the beginning of the current time-level,
depending on whether or not observations are available.

Note also that the loop over DG elements (using control variable, k) can be easily parallelised
as it is called within the inner time-loop and hence runs over a single time-level at a time. As a
result, the elemental estimates/solutions can be obtained in any order, since (27) and (28) form a
two-level scheme whereby the solution at the current time-level is obtained using the solution at
the previous level.

5 Numerical Experiments

In this section, we describe numerical experiments in both synthetic and real scenarios. The real
scenario is that of cloud motion where we use a sequence of velocity fields that are obtained using
an optical flow estimation procedure. The observations used are satellite images depicting cloud
optical depth. We employ the distributed filter here on a high-resolution grid on a domain with
constant inflow and free-exit boundary conditions.
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Algorithm 1 Distributed filtering for 2D advection

rk ← rd
for i = 1 to Nt do
t← (i− 1)∆T
if Observations are available on any element at time, t then
Nc ← ns
∆Tc ← ∆T/ns

else
Nc ← 1
∆Tc ← ∆T

end if
for j = 1 to Nc do
t← t+ j∆Tc
Update boundary conditions and advection field for time t
for k = 1 to K do

Compute elemental system matrix, Ak, and vector, bk

if Element k ∈ Es then
Filter: Compute gain, P k, and estimate, ĉkh(t), using (27) and (28) with current time-
step, ∆Tc
if Nc = ns then

Vary trust in observations:
if j ≤ ns/2 then
rk ← rk/τ

else
rk ← rkτ

end if
end if

else
Solve forward: Set Hk = 0 and compute P k and ĉkh, using (27) and (28)

end if
end for
Assemble full estimate ĉh(t) at time t by combining all K elemental estimates ĉkh(t)

end for
end for
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The synthetic scenario uses a non-stationary, divergence-free velocity field to advect smooth
initial data over a domain with non-stationary boundary conditions. We use a relatively low-
resolution grid here, as we run the global filter for comparison with the distributed filter on this
test-case, with the former being more computationally expensive. The grid resolution required for
the real data would be too expensive for the global filter.

5.1 Assimilation of synthetic data

The distributed filter is first tested on the domain, Ω = [0, 2π] × [0, 2π], discretised into a 10 ×
10 element grid with N = 3. We first generate synthetic observations by solving the advection
equation, (3), using the implicit midpoint method with time-step, ∆T , over t ∈ [0, T ] with initial
data,

c(x, 0) = sin(x) cos(y) + 1.2, x = (x, y)> ∈ Ω (29)

with the divergence-free velocity-field,

u(x, t) =

(
u

v

)
=

(
sin(x2 ) sin(y2 ) cos(2πt

10 )

cos(x2 ) cos(y2 ) cos(2πt
10 )

)
(30)

and boundary conditions,

clower(x, t) = cupper(x, t) = sin(x) cos(t), x ∈ [0, 2π],

cleft(y, t) = cright(y, t) = sin(y) cos(t), y ∈ [0, 2π].
(31)

The numerical solution, c(xj , t), t ∈ [∆T, T ] is used as observations, i.e. y(xj , t) = c(xj , t) + ηj(t)
with 1% signal-to-noise ratio, which is reflected by rtr = 1e − 5 in the matrix R = rtrI. We set

ys(t) := {y(xj , t)}(N+1)2K
j=1 and use this vector-function for the tests in the synthetic scenario.

5.1.1 Global filter

For the case of synthetic model parameters and observations, we compare the results of the dis-
tributed filter to the global implementation. This involves filtering using a global system matrix
as opposed to K local elemental matrices. For this comparison we assume that there is no model
error, and boundary conditions are known too, so that g = 0 and g∂ = 0. The global DG system
in this case can be written as

dch
dt

= Ach + b , ch(0) = c0 + eg0 , (32)

where A is a global system matrix and b is a global flux vector. The filter equations are the
same as those in section 4.1, except with global terms in place of local. An apparent advantage
of this approach is that unlike in the local formulation, the system matrix, A, absorbs the entire
inter-element flux term (rhs of (12)) except in the case where the element boundary in question
lies on the domain boundary, Γ. In that case, the terms in (18) that come from the boundary
data contribute to vector, b. As a result, that flux vector only contains information relating to
the domain boundary, while the global matrix, A absorbs everything else. The advantage of this
approach is that the global gain, P is informed by richer information than is P k in the distributed
case. However, in the case where observations are incomplete, elements with data neighbouring
elements without data may give rise to sharp discontinuities, which will appear in A, and then
manifest themselves in P . In anticipation of this issue, we can define a different global system,

dch
dt

= Abch + bb , ch(0) = c0 + eg0 , (33)
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where for the range of rows of Ab relating to a given element, k, terms containing the state outside
of that element are placed in bb. Using this approach, discontinuities due to spatially sparse
observations will not appear in Ab and hence neither in the gain, P . The gain will now be fed by
the same information as in the case of the distributed filter where a similar approach was taken by
necessity. The trust in the observations is varied in the same way in the global case as it is for the
distributed filter described in section 4.3.

Later, we compare the cost of the global filter to that of the distributed filter.

5.1.2 Synthetic Test 1: Full observations over time and space

In the first test, we initialise the filter to zero, i.e., c0(x) = 0, and impose the correct boundary
conditions, (31), and velocity field, (30), while taking a single observation over all LGL points at
one computational time-level (t=∆T ), where the time step ∆T is the same for the filter as it is for
the forward run for generating observations. We thus set g = 0 (no model error), g0 = 1√

8
(rescaled

initial condition error) and g∂ = 0 (exact boundary conditions). As a result, V k = 0 in (21)- (24).
We also set q0 = 1

2 so that P k(0) = (1 + 2∆T )(N + 1)2Gk0(Qk0)−1Gk0 ≈ I indicating small trust to
the initial conditions. Note, that the minimax filter does not depend on initial conditions, provided
it is integrated for a long enough time that P k(0) is forgotten.

This is a simple experiment to observe how the filter reacts to the incorrect initial condition.
The time-evolution of the distributed filter for for t ∈ [0, 0.1092] is shown in figure fig. 2. The
error shown in the figures is the relative L2 error, i.e. ‖y(t) − ĉh(t)‖/‖y(t)‖. The computational
time-step, ∆T = 0.0695 and the filtering time-step, ∆Ts = ∆T/14 meaning we run the filter with
varying trust 14 times over t ∈ [∆T, 2∆T ] for the observation, ys(∆T ), which becomes available
at t = ∆T (see section 4.3 and algorithm 1). Until t = ∆T , the estimate is zero everywhere apart
from at the regions affected by the boundary conditions, which may induce an inflow depending on
the direction of the velocity field on the boundaries (see section 3.1). We see this in fig. 2a, where
observations have not yet become available. In fig. 2b, the first observation is being assimilated at
time t = ∆T + 2∆Ts, i.e., the 2nd time-step of the inner time-loop in algorithm 1. By t = 0.1092,
the first observation has been assimilated and the relative error is ≈ 1e− 4. This is then compared
to the result of the global filter with fully global system matrix, A, and boundary flux vector, b
(see (32)), as described in section 5.1.1, under the same conditions. The relative errors for both the
local and global filters over time are shown in fig. 3, where the observation becomes available at
t = ∆T . At t = 0.1092 (i.e, t = ∆T + 8∆Ts), the relative error in the global case is also ≈ 1e− 4.

5.1.3 Synthetic Test 2: Sparse observations in space

In the second test, we provide the filter with the correct boundary conditions, (31), and velocity
field, (30), but incomplete observations. Specifically, we equip every other element with obser-
vations in a “chequered” pattern. This experiment is designed to test the filter in the presence
of discontinuities in the observations that may occur when dealing with sparse data. Like in the
previous experiment, the estimate is initialised to zero, while observations are available at times,
t = ∆T, 2∆T, . . .. We use the same g, g0, g∂ and q0. The time-evolution of the estimate is shown
in fig. 4. We see the first observation being assimilated in fig. 4a where the “chequered” observation
pattern is apparent. The subsequent figures show the estimate as further observations are assim-
ilated; we see that over time, the observation pattern becomes less apparent as the velocity field
induces a flux between neighbouring elements, and the relative error decreases over time. We repeat
the same test with the global filter on the system, (32), for comparison. This fails to converge, as
we see from fig. 5a. As discussed in section 5.1.1, discontinuities generated by sparse observations
will manifest themselves in the global gain, possibly leading to instabilities. This could account for
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Figure 2: Assimilation of a single full observation with precise boundary conditions and velocity
field (Synthetic Test 1)
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Figure 3: Estimate error for local and global filters for 1 full observation with precise boundary
conditions and velocity field (Synthetic Test 1)

the failure of the global filter in this case. We re-attempt the experiment with the system, (33),
where the system matrix, Ab, and flux vector, bb, are described in section 5.1.1. To summarise that
discussion, the system matrix is constructed as follows: for a given element, components of the state
on neighbouring elements are placed in the flux vector, bb instead of in Ab. As a result, the latter
will not “see” the discontinuities induced by sparse observations, and consequently, neither will the
global gain, P . In this case, the performance of the global filter is similar to that of the distributed
filter, as seen in fig. 5b, where, at t = 10, the relative L2 error is ≈ 0.09 for the distributed filter and
≈ 0.1 for the global filter. This is not surprising, since the gain in either case is influenced by the
same information, as explained in section 5.1.1. An important point to make is that the apparent
advantage of the fully global filter (discussed in section 5.1.1) is gone when discontinuities due to
observation sparsity are present. While having the system matrix absorb all but the boundary
terms is generally preferable because of the richer information available to the filter, we saw that
in the case of sparse observations, the discontinuities generated may cause the filter to fail. We
also note that in the experiment with full observations, the fully global filter performed well, which
supports our assertion that the presence of discontinuities due to observation sparsity was respon-
sible for the failure of that filter. In fig. 6, we see the worst-case error for the full domain at t = 10
for the local filter. The relative L2 error between this and the worst-case error for the global filter
were found to be within 1e− 8 of one another. The higher worst-case errors at some points on the
boundaries are due to the advection field being close to zero at those points. This results in little
transport in those regions, which consequently results in little element-to-element communication,
and thus higher errors. We conclude that for this specific case, the proposed distributed filtering
strategy yields a similar performance to that of the global filter while running at a much lower
computational cost.

5.1.4 Synthetic Test 3: Sparse observations in space with imprecise knowledge of
boundary conditions and velocity field

The next synthetic experiment we perform is with the same “chequered” observations but with
imprecise boundary conditions and advection velocity field. To do this, we use (31) and (30) with

20



-2

6

-1

0

6

Ĉ
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Figure 4: Assimilation of a partial observations with precise boundary conditions and velocity field
(Synthetic Test 2)
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Figure 7: Relative error for partial observations with imprecise boundary conditions and velocity
field (Synthetic Test 3)

a time-shift, ts. In this way, the advection field and boundary conditions for the filter are out of
phase with those used to generate the observations, ys. We set g = g∂ = 1 and q = q∂ = (N + 1)2.
In fig. 7a, we see the relative error of the distributed filter over time when we run the filter with a
time-shift of ts = −1.5 for both the advection field and boundary conditions. Not only is the error
generally higher than in the case of Synthetic Test 2, it is also seen to fluctuate over time. This
appears to be due to the boundary conditions and advection field, which are periodic in time. This
emphasises the impact of incorrect model parameters on the estimate; although high trust is placed
in the observations, the incorrect model steers the estimate off track. The filter appears to perform
better when the difference between the assumed and real boundary conditions and advection field
are small, which in this example occurs periodically. In fig. 7b, the error over a relatively short time
interval is shown, where the times at which data become available are indicated by vertical dashed
lines. Here, we can see the change in error as the trust is varied over each time-step, and how this
is counteracted by the model, which steers the estimate away from the truth. The absolute error
at a single node for both the local and global filters is shown in fig. 8 for a short time interval.
Also shown is the square root of the worst-case estimation error (25), i.e. the square root of the
diagonal entry of the gain P k for the node in question. We see that both the gains and the errors
for local and global are close, as expected, and that the error is bounded by the square root of the
gain entry as required.

5.1.5 Computational complexity and scalability

Here we provide a high level description of the computational cost measuring the latter in terms of
the number of linear solves required to make an estimate for one time step. In the case of the global
filter we need to perform one sparse linear solve with a matrix of dimension 2(N + 1)2 ∗K, where
N is the degree of the Lagrange polynomials, and K is the number of elements used for the DG
method. The matrices A and Ab are however, sparse, with the number of non-zero terms < 1%, so
a fast algorithm for sparse matrices such as GMRES [23] could be used for linear solves involving
this matrix. However, the matrices U and V in (27) are dense, and the computation of P = V U−1

at each time-level requires K(N + 1)2 linear solves with the matrix U , which is of dimension
K(N + 1)2 ×K(N + 1)2. So, effectively, we need to invert U which costs at least O((N + 1)6K3)
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operations (for Gaussian elimination type linear solvers). Finally, to obtain the estimate using (28),
a matrix of dimension K(N +1)2×K(N +1)2 containing the dense matrix P , must be inverted. In
contrast, to compute the distributed filter at each element, one needs to perform the same number
of linear solves as the global filter but with matrices whose dimension is a factor of K times smaller:
namely, one sparse linear solve with a matrix of dimension 2(N + 1)2 × 2(N + 1)2 and so on. In
particular, in this case inverting U costs O((N+1)6) so, in total, we need O((N+1)6K) inversions.
As a result, the total cost of computing the distributed filter scales linearly with K whereas for the
global case the total computational cost is at least polynomial in K. Note that it is also possible to
devise a hybrid or “semi-local” approach whereby neighbouring elements are grouped into regions
on which a system matrix Ak is assembled from the elemental mass and stiffness matrices of the
elements in the regions. In this case the computational cost of the distributed filter will be different.

To illustrate the scalability of the algorithm, we measure the CPU time taken to carry out the
assimilation of a single set of observations for grids of different resolutions. This process requires the
filtering to be performed ns times in order to ramp up the trust in the observations (see section 4.3).
In these experiments, ns = 14. The results are shown in fig. 9. We see that the cost scales linearly
with the number of elements, as expected. The highest resolution grid depicted in the figure has
250× 250 elements with N = 3 (i.e., state of dimension 106). For that grid, the experimental setup
was the same as that in ‘Synthetic Test 2’ described in section 5.1.3 (i.e., 10×10 grid of alternating
observation regions and knowledge of advection field and boundary conditions). The filter was
run until t = 1.5 by which time the relative error was ≈ 0.17. This demonstrates the efficacy
and tractability of the algorithm at high resolution. We implemented algorithm 1 in C++, and
parallelised the element loop (over k in algorithm 1) using OpenMP. The numerical experiments
have been conducted on an IBM POWER8 machine with 196 cores and 0.5TB of RAM.

5.2 Real data scenario: satellite image assimilation

The distributed filtering algorithm is next tested on real data. For this experiment, the observations
consist of satellite images depicting cloud optical depth, available at 15-minute intervals. We use
a domain that spans 16 degrees of longitude and 12 degrees of latitude which, in the region in
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Figure 9: CPU time taken to assimilate one observation vs number of elements in DG grid

question, covers approximately 1.68e6 square kilometres. The domain is discretised into a 70× 70
element grid with N = 3, which is close to the resolution of the images. The resulting system is of
dimension 19600, which is considerably higher than that in the synthetic case where it was 400.

5.2.1 Satellite image data and advection field

Using a purely synthetic velocity field to advect the satellite images is not desirable as the resulting
motion may not appear natural. Instead, we compute a sequence of fields that captures the motion
of the sequence of images approximately by employing an optical flow estimation procedure [25].
We will not describe the basic optical flow estimation here but note that the procedure does not
necessarily produce a divergence-free velocity field. In order to obtain a divergence-free field,
we perform a projection and reconstruction of the velocity using the standard vorticity-stream
formulation commonly used to solve the incompressible (divergence-free) Navier Stokes equation.
This procedure is described briefly below.

The scalar field, vorticity, ξ = (∇ × u) · ez, is obtained numerically from the optical velocity
field and is then projected into the space, span{φn(x)φm(y)}|n|,|m|≤Nf/2 of complex exponentials,
yielding Nf + 1 projection coefficients, anm, where |n|, |m| ≤ Nf/2. Defining the stream function,
Ψ using the Poisson equation, −∆Ψ = ξ, we can express the velocity components as u = Ψy and
v = −Ψx. Decomposing the Laplacian operator by taking complex exponentials as eigenfunctions,
we can reconstruct the velocity field using the corresponding eigenvalues, λnm, as follows:(

u

v

)
=

(∑
n,m

anm
λnm

φnφ
y
m∑

n,m
anm
λnm

φxnφm

)
, (34)

where φxn and φyn are the derivatives of the complex exponential basis functions with respect to x
and y respectively. This field is divergence-free.

Note that a periodic basis is used to generate the divergence-free field. As the image sequence
we use depicts rotation within the domain with little movement on the boundary, this basis is
suitable.
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The velocity field that advects the images is obtained using an optical flow estimation procedure
on a similar set of images to the ones being assimilated. The reason we do not use the observations
to obtain the optical flow velocity field is that we do not wish the state trajectory to precisely
pass through the images; rather, the velocity field only roughly captures flow and is thus a source
of uncertainty. This way, the images are used to steer the state of the model, which will veer off
track due to the imprecise velocity field. The images are interpolated onto the DG-LGL grid using
bi-linear interpolation. An example of the advection field is shown in fig. 10.
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Figure 10: Sample velocity field for advection of satellite images

5.2.2 Spatially and temporally sparse satellite observations

We perform an experiment to test the distributed filter with sparse observations by using the same
“chequered” observation pattern that was used in section 5.1.3 and section 5.1.4 for the experiments
on synthetic data in order to emulate partial image availability. However, instead of observing every
other element, we observe the images on fixed 7× 7 blocks of elements, separated by blocks of the
same size, giving a 10 × 10 chequered observation pattern. The time-step, ∆T , computed for
the 70 × 70 element grid with N = 3, is adjusted so that it fits the 15-minute interval, yielding
∆T = 15/18 minutes. Using this time-step, observations become available to the filter at intervals
of 18 time-levels. This temporal sparsity can not be reduced for the current grid, as increasing
∆T so that the observations are temporally less sparse would cause the system to violate the CFL
condition. For the experiment, we initialise the state to zero, i.e., c0 = 0, and impose zero Dirichlet
boundary conditions at inflow nodes and free-exit Neumann conditions at outflow nodes. q, q0

and q∂ are intialised as in section 5.1.3 and g = g0 = g∂ = 1. The distributed filter is run for a
simulated time of 3.5+ hours over which time it assimilates 14 observations. In fig. 11, the results
are shown for 6 of those observations including the first and the last. The observation pattern is
clear from fig. 11a where we see the alternating groups of 7 × 7 elements with/without available
observations. Over time, the error decreases, with the last observation yielding a relative error of
≈ 0.16. Over time, the observation pattern does not change, so the portions of the domain without
data rely on flux from neighbouring elements as we also saw in synthetic experiments in section 5.1.3
and section 5.1.4. We refer the reader to [30] for further details on this.
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(a) Assimilation of 1st observation (Relative error ≈
0.56)

Time = 0.759 hours. Observation number = 3

-1.54 -1.52 -1.5 -1.48 -1.46 -1.44 -1.42 -1.4 -1.38

x ×10 4

4100

4200

4300

4400

4500

4600

4700

4800

4900

y

(b) Assimilation of 3rd observation (Relative error
≈ 0.46)

Time = 1.506 hours. Observation number = 6
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(c) Assimilation of 6th observation (Relative error ≈
0.35)

Time = 2.008 hours. Observation number = 8
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(d) Assimilation of 8th observation (Relative error
≈ 0.28)

Time = 3.008 hours. Observation number = 12
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(e) Assimilation of 12th observation (Relative error
≈ 0.20)

Time = 3.509 hours. Observation number = 14
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(f) Assimilation of 14th observation (Relative error
≈ 0.16)

Figure 11: Assimilation of a partial satellite images with approximate divergence-free optical flow
velocity field
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6 Conclusions

We conclude by summarising features of the proposed distributed filtering approach and outlining
directions of the future research. The key advantage of the proposed filtering framework is its
scalability: the computational cost of the distributed state estimator equals the cost of the filtering
at each element multiplied by the total number of elements. Another important feature is the
structure preserving discretisation at each element which preserves symmetry and positivity of
the gain P k, and all quadratic invariants of the estimation error dynamics. Finally, the filter is
designed for the hyperbolic equation directly, without introducing artificial viscosity. The latter is,
to some extent, introduced by means of the Lax-Friedrichs flux which “smooths” out the jumps
across inter-elemental boundaries. Experimental assessment of the distributed filters on synthetic
and real data shows great potential of the algorithm.

A key direction for the future work is to study convergence of the proposed scheme, and intro-
duce explicit boundary interconnection mechanisms for the elemental Riccati equations to improve
the uncertainty exchange mechanism.

A Proofs

Proof of proposition 1. Let ckh solve (19). Then ckh = c̄kh+c̃kh, provided c̄kh solves
dc̄kh
dt

= Ak(t)c̄kh+bk,

c̄kh(0) = ck0, and
dc̃kh
dt

= Ak(t)c̃kh + V kẽk(t), c̃kh(0) = Gk0e
k
0. Define ỹk := yk − c̄kh, set p := (N + 1)2,

and let us find û ∈ L2(t0, tf ,Rp) such that, ∀u ∈ L2(t0, tf ,Rp):

max
ẽk,ek0 ,Eη

k(ηk)>
σ(û) ≤ max

ẽk,ek0 ,Eη
k(ηk)>

σ(u) , σ(u) := E(`>c̃kh(t+ s)−
∫ t+s

t
u>ỹkdτ)2 ,

provided that (20) and (6) hold true. Here ` ∈ Rp is some vector. Introducing adjoint variable
dz

dt
= −(Ak)>z + (Hk)>u, z(t+ s) = `, and integrating by parts we find:

σ(u) =

(
z>(t)(Gk0e

k
0) +

∫ t+s

t
z>(V kẽk)dτ

)2

+ E

(∫ t+s

t
u>ηkdτ

)2

By using Cauchy-Schwartz inequality, (20) and (6) we find:

max
ẽk,ek0 ,Eη

k(ηk)>
σ(u) = (1+2s)(N+1)2(z>(t)Gk0(Qk0)−1Gk0z(t)+

∫ t+1

t
z>(V k(Q̃k)−1(V k)>)z+u>(Rk)udτ)

By using standard LQ control theory results [8] we find that the unique minimum point of this
quadratic cost functional along the solutions of the adjoint equation for z satisfies the following
feed-back representation: û = (Rk)−1HkP kz. By using the latter, and integration by parts it is
not hard to find that:

∫ t+s
t û>ỹkdτ = `>ˆ̃ckh(t+ s), provided ˆ̃ckh solves

dˆ̃ckh
dt

= Akˆ̃ckh + P k(Hk)>(Rk)−1(ỹk −Hkˆ̃ckh) , ˆ̃ckh(0) = 0 .

Integrating by parts we find:

max
ẽk,ek0 ,Eη

k(ηk)>
σ(û) = E(`>c̃kh(t+ s)− `>ˆ̃ckh(t+ s))2 = (1 + 2s)(N + 1)2`>P k(t+ s)` (35)

Now, by recalling that ckh = c̄kh + c̃kh, and by noting that, in fact: ĉkh = c̄kh + ˆ̃ckh we obtain (25)
from (35) by setting ` = (0, . . . , 0, 1, 0, . . . , 0)>, where 1 is at position j. This completes the
proof.
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