
ar
X

iv
:1

70
5.

01
79

7v
4

 [
m

at
h.

O
C

]
 1

9
Ju

l 2
01

8

A TWO-PHASE GRADIENT METHOD FOR QUADRATIC

PROGRAMMING PROBLEMS WITH A SINGLE LINEAR

CONSTRAINT AND BOUNDS ON THE VARIABLES∗

DANIELA DI SERAFINO† , GERARDO TORALDO‡ , MARCO VIOLA§ , AND JESSE

BARLOW¶

FINAL VERSION – May 25, 2018

Abstract. We propose a gradient-based method for quadratic programming problems with a
single linear constraint and bounds on the variables. Inspired by the GPCG algorithm for bound-
constrained convex quadratic programming [J.J. Moré and G. Toraldo, SIAM J. Optim. 1, 1991],
our approach alternates between two phases until convergence: an identification phase, which per-
forms gradient projection iterations until either a candidate active set is identified or no reasonable
progress is made, and an unconstrained minimization phase, which reduces the objective function in
a suitable space defined by the identification phase, by applying either the conjugate gradient method
or a recently proposed spectral gradient method. However, the algorithm differs from GPCG not
only because it deals with a more general class of problems, but mainly for the way it stops the
minimization phase. This is based on a comparison between a measure of optimality in the reduced
space and a measure of bindingness of the variables that are on the bounds, defined by extending the
concept of proportional iterate, which was proposed by some authors for box-constrained problems.
If the objective function is bounded, the algorithm converges to a stationary point thanks to a suit-
able application of the gradient projection method in the identification phase. For strictly convex
problems, the algorithm converges to the optimal solution in a finite number of steps even in case of
degeneracy. Extensive numerical experiments show the effectiveness of the proposed approach.

Key words. Quadratic programming, bound and single linear constraints, gradient projection,
proportionality.

AMS subject classifications. 65K05, 90C20.

1. Introduction. We are concerned with the solution of Quadratic Program-
ming problems with a Single Linear constraint and lower and upper Bounds on the
variables (SLBQPs):

min f(x) :=
1

2
xT H x− cTx,

s.t. qTx = b, l ≤ x ≤ u,
(1.1)

whereH∈ Rn×n is symmetric, c,q ∈ Rn, b ∈ R, l ∈{R ∪ {−∞}}n, u ∈{R ∪ {+∞}}n,
and, without loss of generality, li < ui for all i. In general, we do not assume that
the problem is strictly convex. SLBQPs arise in many applications, such as support
vector machine training [36], portfolio selection [33], multicommodity network flow
and logistics [29], and statistics estimate from a target distribution [1]. Therefore,
designing efficient methods for the solution of (1.1) has both a theoretical and a
practical interest.

∗This work was partially supported by Gruppo Nazionale per il Calcolo Scientifico - Istituto
Nazionale di Alta Matematica (GNCS-INdAM).

†Dipartimento di Matematica e Fisica, Università degli Studi della Campania L. Vanvitelli, viale
A. Lincoln 5, 81100 Caserta, Italy, daniela.diserafino@unicampania.it.

‡Dipartimento di Matematica e Applicazioni R. Caccioppoli, Università degli Studi di Napoli
Federico II, via Cintia, 80126 Napoli, Italy, toraldo@unina.it.

§Dipartimento di Ingegneria Informatica Automatica e Gestionale A. Ruberti, Sapienza - Univer-
sità di Roma, via Ariosto 25, 00185 Roma, Italy, marco.viola@uniroma1.it.

¶Department of Computer Science and Engineering, Pennsylvania State University, 343G IST
Building, University Park, PA 16802-6822, USA, barlow@cse.psu.edu.

1

http://arxiv.org/abs/1705.01797v4

Gradient Projection (GP) methods are widely used to solve large-scale SLBQP
problems, thanks to the availability of low-cost projection algorithms onto the feasible
set of (1.1) (see, e.g, [8, 12, 9]). In particular, Spectral Projected Gradient methods [4],
other GP methods exploiting variants of Barzilai-Borwein (BB) steps [35, 12], and
more recent Scaled Gradient Projection methods [6] have proved their effectiveness in
several applications.

Bound-constrained Quadratic Programming problems (BQPs) can be regarded as
a special case of SLBQPs, where the theory or the implementation can be simplified.
This has favoured the development of more specialized gradient-based methods, built
upon the idea of combining steps aimed at identifying the variables that are active
at a solution (or at a stationary point) with unconstrained minimizations in reduced
spaces defined by fixing the variables that are estimated active [31, 24, 32, 25, 3, 20,
22, 27, 21, 28]. Thanks to the identification properties of the GP method [7] and to
its capability of adding/removing multiple variables to/from the active set in a single
iteration, GP steps are a natural choice to determine the active variables. A well-
known method based on this approach is GPCG [32], developed for strictly convex
BQPs. It alternates between two phases: an identification phase, which performs
GP iterations until a suitable face of the feasible set is identified or no reasonable
progress toward the solution is achieved, and a minimization phase, which uses the
Conjugate Gradient (CG) method to find an approximate minimizer of the objective
function in the reduced space resulting from the identification phase. We note that the
global convergence of the GPCG method relies on the global convergence of GP with
steplengths satisfying a suitable sufficient decrease condition [7]. Furthermore, GPCG
has finite convergence under a dual nondegeracy assumption, thanks to the ability of
the GP method to identify the active constraints in a finite number of iterations [7],
and to the finite termination of the CG method. Finally, the identification property
also holds for nonquadratic objective functions and polyhedral constraints, and thus
the algorithmic framework described so far can be extended to more general problems.

Here we propose a two-phase GP method for SLBQPs, called Proportionality-
based 2-phase Gradient Projection (P2GP) method, inspired by the GPCG algorithm.
Besides targeting problems more general than strictly convex BQPs, the new method
differs from GPCG because it follows a different approach in deciding when to ter-
minate optimization in the reduced space. Whereas GPCG uses a heuristics based
on the bindingness of the active variables, P2GP relies on the comparison between
a measure of optimality within the reduced space and a measure of bindingness of
the variables that are on the bounds. This approach exploits the concept of propor-
tional iterate, henceforth also refereed to as proportionality. This concept, presented
by Dostál for strictly convex BQPs [20], is based on the splitting of the optimality
conditions between free and chopped gradients, firstly introduced by Friedlander and
Mart́ınez in [24]. To this end, we generalize the definition of free and chopped gradi-
ents to problem (1.1). As in GPCG, and unlike other algorithms for BQPs sharing a
common ground (e.g., [20, 21, 22, 30]), the task of adjusting the active set is left only
to the GP steps; thus, for strictly convex BQPs our algorithm differs from GPCG in
the criterion used to stop minimization of the reduced problem. This change makes a
significant difference in the effectiveness of the algorithm as our numerical experiments
show. In addition, the application of the proportionality concept allows to state fi-
nite convergence for strictly convex problems also for dual-degenerate solutions. More
generally, if the objective function is bounded, the algorithm converges to a stationary
point as a result of suitable application of the GP method in the identification phase.

2

About the GP iterations, we note that the identification property holds provided
that a sufficient decrease condition holds, and therefore the choice of the Cauchy
stepsize as initial trial value in the projected gradient steps [31, 32] can be replaced
by rules used by new spectral gradient methods. Inspired by encouraging results
reported for BQPs in [11] and by further studies on steplength selection in gradient
methods [17, 18], we consider a monotone version of the Projected BB method which
uses the ABBmin steplength introduced in [23].

In the minimization phase, we use the CG method, and, in the strictly convex
case, we also use the SDC method proposed in [14]. This provides a way to extend
SDC to the costrained case, with the goal of exploiting its smoothing and regularizing
effect observed on certain unconstrained ill-posed inverse problems [15]. Of course,
the CG solver is still the reference choice in general, especially because it is able to
deal with nonconvexity through directions of negative curvature (as done, e.g., in
[30]), whereas handling negative curvatures with spectral gradient methods may be a
non-trivial task (see, e.g., [10] and the references therein).

This article is organized as follows. In Section 2, we recall stationarity results
for problem (1.1). In Section 3, we define free and chopped gradients for SLBQPs
and show how they can be used to extend the concept of proportionality to this class
of problems. In Section 4, we describe the P2GP method and state its convergence
properties. We discuss the results of extensive numerical experiments in Section 5,
showing the effectiveness of our approach. We draw some conclusions in Section 6.

1.1. Notation. Throughout this paper scalars are denoted by lightface Roman
fonts, e.g., a ∈ R, vectors by boldface Roman fonts, e.g., v ∈ Rn, and matrices by
italicized lightface capital fonts, e.g., M ∈ Rn×n. The vectors of the standard basis
of Rn are indicated as e1, . . . , en. Given R, C ⊆ {1, . . . , n}, we set

vR := (vi)i∈R, MRC := (mij)i∈R,j∈C ,

where vi is the ith entry of v and mij the (i, j)th entry ofM . For any vector v, {v}⊥
is the space orthogonal to v. For any symmetric matrix M , we use κ(M), ζmin(M)
and ζmax(M) to indicate the condition number, and the minimum and maximum
eigenvalue of M , respectively. Norms ‖ · ‖ are ℓ2, unless otherwise stated.

The feasible set, Ω, of problem (1.1) is given by

Ω :=
{
x ∈ Rn : qTx = b ∧ l ≤ x ≤ u

}
.

For any x ∈ Ω, we define the following index sets:

Al(x) := {i : xi = li}, Au(x) := {i : xi = ui},
A(x) := Al(x) ∪Au(x), F(x) := {1, . . . , n} \ A(x).

A(x) and F(x) are called the active and free sets at x, respectively. Given x,y ∈ Ω,
by writing A(x) ⊆ A(y) we mean that

Al(x) ⊆ Al(y), Au(x) ⊆ Au(y)

both hold. For any x ∈ Ω, we also set

Ω(x) :=
{
v ∈ Rn : qTv = b ∧ vi = xi ∀ i ∈ A(x)

}
, (1.2)

Ω0(x) :=
{
v ∈ Rn : qTv = 0 ∧ vi = 0 ∀ i ∈ A(x)

}
. (1.3)

3

Note that Ω(x) is the affine closure of the face determined by the active set at x.
We use superscripts to denote the elements of a sequence, e.g.,

{
xk

}
; furthermore,

in order to simplify the notation, for any xk and x∗ we also define

fk := f(xk), ∇fk := ∇f(xk), Ak := A(xk), Fk := F(xk),

f∗ := f(x∗), ∇f∗ := ∇f(x∗), A∗ := A(x∗), F∗ := F(x∗).

Finally, for any finite set T , we denote by |T | its cardinality.
2. Stationarity results for SLBQPs. We recall that x∗ ∈ Ω is a stationary

point for problem (1.1) if and only if there exist Lagrange multipliers ρ∗, λ∗i ∈ R, with
i ∈ A∗, such that

∇f∗ =
∑

i∈A∗

λ∗i ei + ρ∗q, λ∗i ≥ 0 if i ∈ A∗
l , λ∗i ≤ 0 if i ∈ A∗

u, (2.1)

or, equivalently,
∇f∗

F∗ − ρ∗qF∗ = 0, (2.2)

λ∗i = ∇f∗
i − ρ∗qi ≥ 0 if i ∈ A∗

l , λ∗i = ∇f∗
i − ρ∗qi ≤ 0 if i ∈ A∗

u. (2.3)

If qF∗ 6= 0, by taking the scalar product of (2.2) with qF∗ , we obtain

ρ∗ =
qT
F∗ ∇f∗

F∗

qT
F∗ qF∗

(with a little abuse of notation we include F∗ = ∅ in the case qF∗ = 0). Then, by
defining for all x ∈ Ω

ρ(x) :=

0 if qF = 0,
qT
F ∇fF (x)
qT
F qF

otherwise,
(2.4)

where F = F(x), and
h(x) := ∇f(x)− ρ(x)q, (2.5)

conditions (2.2)-(2.3) can be expressed as

h∗i = 0 if i ∈ F∗, h∗i ≥ 0 if i ∈ A∗
l , h∗i ≤ 0 if i ∈ A∗

u. (2.6)

This suggests the following definition.

Definition 2.1 (Binding set). For any x ∈ Ω, the binding set at x is defined as

B(x) := {i : (i ∈ Al(x) ∧ hi(x) ≥ 0) ∨ (i ∈ Au(x) ∧ hi(x) ≤ 0)} . (2.7)

We note that, for the BQP case, (2.7) corresponds to the standard definition of binding
set where h(x) is replaced by ∇f(x).

We can also provide an estimate of the Lagrange multipliers based on (2.5), as
stated by the following theorem.

Theorem 2.2. Assume that
{
xk

}
is a sequence in Ω that converges to a nonde-

generate stationary point x∗, and A(xk) = A(x∗) for all k sufficiently large. Then

lim
k→∞

ρ(xk) = ρ∗ and lim
k→∞

λi(x
k) = λ∗i ∀i ∈ A∗, (2.8)

4

where λi(x) is defined as follows:

λi(x) :=

max{0, hi(x)} if i ∈ Al(x),
min{0, hi(x)} if i ∈ Au(x),

0 if i ∈ F(x).

Proof. The result is a straightforward consequence of the continuity of ∇f .
Remark 2.1. Theorem 2.2 can be rephrased by saying that

(
ρ(x), λ(x)T

)T
,

where λ(x) = (λi(x))i∈A(x), is a consistent Lagrange multiplier estimate for (1.1),
according to the definition in [7, p. 107].

Another way to express stationarity for problem (2.1) is by using the projected
gradient of f at a point x ∈ Ω, defined by Calamai and Moré [7] as

∇Ωf(x) := argmin{‖v +∇f(x)‖ s.t. v ∈ TΩ(x)} , (2.9)
where

TΩ(x) =
{
v ∈ Rn : qTv = 0 ∧ vi ≥ 0 ∀ i ∈ Al(x) ∧ vi ≤ 0 ∀ i ∈ Au(x)

}

is the tangent cone to Ω at x, i.e., the closure of the cone of all feasible directions at x.
It is well known that x∗ ∈ Ω is a stationary point for (1.1) if and only if ∇Ωf(x

∗) = 0,
which is equivalent to

−∇f(x∗) ∈ TΩ(x)
◦,

where TΩ(x)
◦ =

{
w ∈ Rn : wTv ≤ 0 ∀v ∈ TΩ(x)

}
is the polar of the tangent cone

at x, i.e., the normal cone to Ω at x.
In the method proposed in this work we use the projected gradient as a measure

of stationarity. It could be argued that the projected gradient is inappropriate to
measure closeness to a stationary point, since it is only lower semicontinuous (see [7,
Lemma 3.3]); because of that, e.g., Mohy-ud-Din and Robinson in their algorithm
prefer to use the so-called reduced free and chopped gradients [30]. However, Calamai
and Moré in [7] show that the limit points of a bounded sequence {xk} generated by
any GP algorithm are stationary and

lim
k→∞

‖∇Ωf(x
k)‖ = 0, (2.10)

provided the steplengths are bounded and satisfy suitable sufficient decrease condi-
tions. Similar results hold for a more general algorithmic framework (see [7, Algo-
rithm 5.3]), which GPCG as well as the new method P2GP fit into. Another important
issue is that, for any sequence {xk} converging to a nondegenerate stationary point x∗,
if (2.10) holds then Ak = A∗ for all k sufficiently large. However, for problem (1.1),
condition (2.10) has an important meaning in terms of active constraints identification
even in case of degeneracy, provided the following constraint qualification holds.

Assumption 2.1 (Linear Independence Constraint Qualification - LICQ). Let x∗

be any stationary point of (1.1). The active constraint normals {q} ∪ {ei : i ∈ A∗}
are linearly independent.

This assumption is not very restrictive; for instance, it is always satisfied if Ω is the
standard simplex. Furthermore, it guarantees qF∗ 6= 0.

The following proposition summarizes the convergence properties for a sequence
{xk} satisfying (2.10), both in terms of stationarity and active set identification.

Theorem 2.3. Assume that
{
xk

}
is a sequence in Ω that converges to a point x∗

and limk→∞ ‖∇Ωf(x
k)‖ = 0. Then

5

(i) x∗ is a stationary point for problem (1.1);
(ii) if Assumption 2.1 holds, then A∗

N ⊆ A(xk) for all k sufficiently large, where
A∗

N = {i ∈ A∗ : λ∗i 6= 0} and λi is the Lagrange multiplier associated with
the ith bound constraint.

Proof. Item (i) trivially follows from the lower semicontinuity of ‖∇Ωf(x)‖.
Item (ii) extends [7, Theorem 4.1] to degenerate stationary points that satisfy

Assumption 2.1. We first note that, since
{
xk

}
converges to x∗, we have F∗ ⊆ Fk

and hence Ak ⊆ A∗ for all k sufficiently large. The proof is by contradiction. Assume
that there is an index m and an infinite set K ⊆ N such that m ∈ A∗

N \ Ak for all
k ∈ K. Without loss of generality, we assume x∗m = um and thus λ∗m < 0. Let PΦ be
the orthogonal projection onto

Φ =
{
v ∈ Rn : qTv = 0 ∧

(
eTi v = 0 ∀ i ∈ A∗, i 6= m

)}
.

Assumption 2.1 implies that PΦ(em) 6= 0. Since m /∈ A(xk), it is PΦ(em) ∈ TΩ(x
k).

Then, by [7, Lemma 3.1],

∇f(xk)T PΦ(em) ≥ −
∥∥∇Ωf(x

k)
∥∥ ‖PΦ(em)‖ ,

and since
{
xk

}
converges to x∗ and

{∥∥∇Ωf(x
k)
∥∥} converges to 0, we have

∇f(x∗)T PΘ(em) ≥ 0.

On the other hand, by (2.1) and the definition of PΦ we get

∇f(x∗)TPΦ(em) =
∑

i∈A∗

λ∗i e
T
i PΦ(em) + θ∗qTPΦ(em) = λ∗meTm PΦ(em) < 0,

where the last inequality derives from λ∗m < 0 and (em)TPΦ(em) = ‖PΦ(em)‖2 >
0. The contradiction proves that the set K is finite, and hence m ∈ Ak for all k
sufficiently large.

By Theorem 2.3, if an algorithm is able to drive the projected gradient toward zero,
then it is able to identify the active variables that are nondegenerate at the solution
in a finite number of iterations.

3. Proportionality. A critical issue about a two-phase method like GPCG
stands in the approximate minimization of f(x) in the reduced space defined ac-
cording to the working set inherited from the GP iterations. This is an unconstrained
minimization phase in which the precision required should depend on how much that
space is worth to be explored. For strictly convex BQPs, Dostál introduced the
concept of proportional iterate [20, 22], based on the ratio between a measure of opti-
mality within the reduced space and a measure of optimality in the complementarity
space. Similar ideas have been discussed in [24, 25, 3]. According to [20], xk is called
proportional if, for a suitable constant Γ > 0,

‖β(xk)‖∞ ≤ Γ‖ϕ(xk)‖, (3.1)

whereϕ(x) and β(x) are the so-called free and chopped gradients, respectively, defined
componentwise as

ϕi(x) :=

∇fi(x) if i ∈ F(x),
0 if i ∈ Al(x),
0 if i ∈ Au(x),

βi(x) :=

0 if i ∈ F(x),
min{0,∇fi(x)} if i ∈ Al(x),
max{0,∇fi(x)} if i ∈ Au(x).

6

We note that x∗ is stationary for the BQP problem if and only if

‖β(x∗)‖+ ‖ϕ(x∗)‖ = 0;

Furthermore, when the Hessian of the objective function is positive definite, dispro-
portionality of xk guarantees that the solution of the BQP problem does not belong
to the face determined by the active variables at xk, and thus exploration of that face
is stopped.

In the remainder of this section, to measure the violation of the KKT condi-
tions (2.2)-(2.3) and to balance optimality between free and active variables, we give
suitable generalizations of the free and chopped gradient for the SLBQPs. As in [20],
we exploit the free and the chopped gradient to decide when to terminate minimiza-
tion in the reduced space, and to state finite convergence for strictly convex quadratic
problems even in case of degeneracy at the solution. For simplicity, in the sequel we
adopt the same notation used for BQPs.

We start by defining the free gradient ϕ(x) at x ∈ Ω for the SLBQP problem.

Definition 3.1. For any x ∈ Ω, the free gradient ϕ(x) is defined as follows:

ϕi(x) :=

{
hi(x) if i ∈ F(x),
0 if i ∈ A(x),

where h(x) is given in (2.5).

We note that

ϕF (x) = P{qF}⊥ (∇fF (x)) , (3.2)

where F = F(x) and P{qF}⊥ ∈ R|F|×|F| is the orthogonal projection onto the subspace

of R|F| orthogonal to qF (i.e., the nullspace of qT
F),

P{qF}⊥ = I − qF qT
F

qT
F qF

.

The following theorems state some properties of ϕ(x), including its relationship with
the projected gradient.

Theorem 3.2. Let x ∈ Ω. Then ϕ(x) = 0 if and only if x is a stationary point for

min f(u),

s.t. u ∈ Ω(x).
(3.3)

Proof. Because of Definition 3.1, ϕ(x) = 0 if and only if

∇fi(x) − ρ(x) qi = 0 ∀ i ∈ F(x). (3.4)

On the other hand, x is a stationary point for problem (3.3) if and only if ∇f(x) =∑
i∈A(x̄) νiei + µq, with νi, µ ∈ R, which implies

∇fi(x) = µ qi ∀ i ∈ F(x̄). (3.5)

The thesis follows by comparing (3.4) and (3.5).

Remark 3.1. Theorem 3.2 shows that ϕ(x) can be considered as a measure of
optimality within the reduced space determined by the active variables at x.

7

Theorem 3.3. For any x ∈ Ω, ϕ(x) is the orthogonal projection of −∇Ωf(x)
onto Ω0(x), where Ω0(x) is given in (1.3). Furthermore,

‖ϕ(x)‖2 = −(∇Ωf(x))
Tϕ(x). (3.6)

Proof. By the definition of projected gradient (see (2.9)),

(∇Ωf(x))
Tq = 0, (3.7)

∇Ωf(x) = −∇f(x) + ν q+ µ (3.8)

for some ν ∈ R and µ ∈ Rn, with

µi = 0 if i ∈ F(x), µi ≥ 0 if i ∈ Al(x), µi ≤ 0 if i ∈ Au(x).

Let

σ = ν − ρ(x), τi = µi − hi(x) if i ∈ A(x), τi = 0 if i ∈ F(x),

where ρ(x) and h(x) are given in (2.4) and (2.5), respectively. Then (3.8) can be
written as

hi(x) = −(∇Ωf)i(x) + σqi + τi if i ∈ F(x),

0 = −(∇Ωf)i(x) + σqi + τi if i ∈ A(x),

or, equivalently,

ϕ(x) = −∇Ωf(x) + σq+ τ , (3.9)

with τi = 0 if i ∈ F(x). This, with (3.7) and ϕi = 0 for i ∈ A(x), proves that

ϕ(x) = argmin{‖v +∇Ωf(x)‖ s.t. v ∈ Ω0(x)} ,

which is the first part of the thesis. Equation (3.6) follows from (3.9) and the definition
of ϕ(x).

Theorem 3.4. Let x ∈ Ω. Then A(x) = B(x) if and only if

ϕ(x) = −∇Ωf(x). (3.10)

Proof. Assume that A(x) = B(x). Proving (3.10) means showing that

−ϕ(x) = argmin{‖v +∇f(x)‖ s.t. v ∈ TΩ(x)} . (3.11)

Since, by Theorem 3.3, −ϕ(x) ∈ Ω0(x), we need only to prove that

−ϕ(x) = −∇f(x) + ν q+ µ,

for some ν ∈ R and µ ∈ Rn, with µi = 0 if i ∈ F , µi ≥ 0 if i ∈ Al(x), µi ≤ 0
if i ∈ Au(x). Since A(x) = B(x), the previous equality holds by setting ν = ρ(x),
µi = hi(x) for i ∈ A(x), and µi = 0 otherwise.

Now we suppose that (3.10) holds. From the definition of ϕ and (3.8), it follows
that (3.10) can be written as

ϕi(x) = ∇fi(x) − ρ(x)qi = ∇fi(x)− ν qi ∀ i ∈ F(x), (3.12)

0 = ∇fi(x)− ν qi − µi ∀ i ∈ A(x), (3.13)

8

with µi ≥ 0 if i ∈ Al(x) and µi ≤ 0 if i ∈ Au(x). From (3.12) we get ρ(x) = ν, and
then, from (3.13) and the definition of h(x),

hi(x) ≥ 0 if i ∈ Al(x), hi(x) ≤ 0 if i ∈ Au(x);

thus A(x) = B(x).
Inspired by the two previous lemmas, we give the following definition.

Definition 3.5. For any x ∈ Ω, the chopped gradient β(x) is defined as

β(x) := −∇Ωf(x)−ϕ(x). (3.14)

Remark 3.2. Because of Theorem 3.4, β(x) = 0 if and only if A(x) = B(x).
Thus, β(x) can be regarded as a “measure of bindingness” of the active variables at x.

Some properties of β(x) are given next.

Theorem 3.6. For any x ∈ Ω, β(x) has the following properties:

β(x) ⊥ ϕ(x), β(x) ⊥ q, (3.15)

−β(x) ∈ TΩ(x). (3.16)

Proof. Since

β(x)Tϕ(x) = (−∇Ωf(x)−ϕ(x))
T
ϕ(x) = (−∇Ωf(x))

Tϕ(x)−ϕ(x)Tϕ(x),

the first orthogonality condition in (3.15) follows from (3.6). The second one follows
from

β(x)Tq = (−∇Ωf(x))
Tq−ϕ(x)Tq,

by observing that ∇Ωf(x) and ϕ(x) are orthogonal to q. Finally, (3.16) trivially
follows from Theorem 3.3 and the definition of ∇Ωf(x).

Theorem 3.7. For any x ∈ Ω, ‖β(x)‖2 = ∇f(x)Tβ(x).
Proof. By [7, Lemma 3.1], we have −(∇f(x))T∇Ωf(x) = ‖∇Ωf(x)‖2, which can

be written as

(∇f(x))T (ϕ(x) + β(x)) = ‖ϕ(x)‖2 + ‖β(x)‖2 (3.17)

by exploiting (3.14) and (3.15). We note that the scalar product (∇f(x))Tϕ(x) in-
volves only the entries corresponding to F(x). Furthermore, since ϕF(x) = ∇fF(x)−
ρ(x)qF , where ρ(x) is given in (2.4), we get

(∇f(x))Tϕ(x) = ‖∇fF(x)‖2 − ρ(x)qT
F∇fF(x),

‖ϕ(x)‖2 = ‖∇fF(x)‖2 − 2 ρ(x)qT
F∇fF (x) + ρ2‖qF (x)‖2.

By subtracting the two equations and using the expression of ρ(x), we get

(∇f(x))T (x) − ‖ϕ(x)‖2 = 0;

then the thesis follows from (3.17).

9

3.1. Proportional iterates for SLBQPs. So far we managed to decompose
the projected gradient ∇Ωf(x) into two parts: −ϕ(x), which provides a measure of
stationarity within the reduced space determined by the active variables at x, and
−β(x), which gives a measures of bindingness of the active variables at x. With
this decomposition we can apply to problem (1.1) the definition (3.1) of proportional
iterates introduced for the BQP case. In the strictly convex case, disproportionality
of xk again guarantees that the solution of (1.1) does not belong to the face identified
by the active variables at xk. This result is a consequence of the next theorem, which
generalizes Theorem 3.2 in [20] and is the main result of this section.

Theorem 3.8. Let H be the Hessian matrix in (1.1) and let Hq = V TH V be

positive definite, where V ∈ Rn×(n−1) has orthonormal columns spanning {q}⊥. Let
x ∈ Ω be such that ‖β(x)‖∞ > κ(Hq)

1/2 ‖ϕ(x)‖2, and let x̄ be the solution of

min f(u),

s.t. u ∈ Ω(x),
(3.18)

where Ω(x) is defined in (1.2). If x̄ ∈ Ω, then β(x̄) 6= 0.

To prove Theorem 3.8, we need the lemma given next.

Lemma 3.9. Let us consider the minimization problem

min w(z) := 1
2z

T A z− pT z,
s.t. rT z = s,

(3.19)

where A ∈ Rm×m, p, r ∈ Rm, s ∈ R, and m ≥ 1. Let Θ =
{
z ∈ Rm : rT z = s

}

and Θ0 =
{
z ∈ Rm : rT z = 0

}
. Let PΘ0

be the orthogonal projection onto Θ0, and

U ∈ Rm×(m−1) a matrix with orthonormal columns spanning Θ0. Finally, let UTAU
be positive definite, and z̄ the solution of (3.19). Then

z− z̄ = B PΘ0
∇w(z), ∀z ∈ Θ, (3.20)

where B = U(UTAU)−1UT . Furthermore,

w(z) − w(z̄) ≤ 1

2
‖B‖‖PΘ0

∇w(z)‖2. (3.21)

Proof. Without loss of generality we assume ‖r‖2 = 1. Let z ∈ Θ; since s = rT z

and range(U) is the space orthogonal to r, we have

z = s r+ Uy,

for some y ∈ Rm−1. Thus, (3.19) can be reduced to

min w̃(y) :=
1

2
yTUTAUy − (pT − s rTA)Uy.

By writing z̄, the minimizer of (3.19), as z̄ = s r+ U ȳ, we have

z− z̄ = U(y − ȳ) (3.22)

and, by observing that ∇w̃(ȳ) = 0, we obtain

∇w̃(y) = ∇w̃(y)−∇w̃(ȳ) = UTAU(y − ȳ) = UT (∇w(z) −∇w(z̄)). (3.23)

10

Since ∇w(z̄) = γ r for some γ ∈ R, we get UUT∇w(z̄) = PΘ0
∇w(z̄) = 0 and hence

U∇w̃(y) = UUT (∇w(z) −∇w(z̄)) = PΘ0
∇w(z). (3.24)

From (3.22), (3.23) and (3.24) it follows that

z− z̄ = U(y − ȳ) = U(UTAU)−1UTU∇w̃(y) = B PΘ0
∇w(z),

which is (3.20).
Let φ(z) = PΘ0

∇w(z). By applying (3.20), we get

w(z) − w(z̄) =
1

2
(z − z̄)TA(z− z̄) =

1

2
φ(z)TBT AB φ(z).

By observing that BTAB = U(UTAU)−1UTAU(UTAU)−1UT = B, we have

w(z) − w(z̄) =
1

2
φ(z)TB φ(z) ≤ 1

2
‖B‖‖φ(z)‖2,

which completes the proof.

Now we are ready to prove Theorem 3.8.

Proof of Theorem 3.8. Let y = x−‖Hq‖−1 β(x). By Theorem 3.7 and observing

that ‖ · ‖ ≥ ‖ · ‖∞ and β(x) = V V Tβ(x), because β(x) ∈ {q}⊥, we get

f(y) − f(x) =
1

2
‖Hq‖−2 β(x)THβ(x)− ‖Hq‖−1 (∇f(x))Tβ(x)

=
1

2
‖Hq‖−2 β(x)T V Hq V

Tβ(x)− ‖Hq‖−1 ‖β(x)‖2

≤ 1

2
‖Hq‖−1 ‖V Tβ(x)‖2 − ‖Hq‖−1 ‖β(x)‖2 = −1

2
‖Hq‖−1 ‖β(x)‖2

< −1

2
‖Hq‖−1 κ(Hq) ‖ϕ(x)‖2 = −1

2
‖H−1

q ‖ ‖ϕ(x)‖2. (3.25)

The point x̄ satisfies the KKT conditions of problem (3.18),

∇f(x̄) =
∑

i∈A(x)

ηiei + γ q, (3.26)

qT x̄ = b, x̄i = xi ∀ i ∈ A(x),

where ηi and γ are the Lagrange multipliers, and hence

∇f(x̄)T (x− x̄) =
∑

i∈A

(ηiei + γq)T (x− x̄) = 0, (3.27)

∇fF (x̄) = γ qF , (3.28)

where A = A(x) and F = F(x). It follows that

f(x)−f(x̄) = 1

2
(x−x̄)TH(x−x̄)+∇f(x̄)T (x−x̄) =

1

2
(x−x̄)TF HFF (x−x̄)F . (3.29)

Now we apply Lemma 3.9 with z = xF , A = HFF , p = cF − HFA xA, r = qF ,
s = b− qT

A xA, Θ0 = {qF}⊥, and w(z) defined as in (3.19). By (3.2), we have

PΘ0
∇w(z) = P{qF}⊥ (∇fF(x)) = ϕF (x).

11

Therefore, from (3.21) and (3.29) we get

f(x)− f(x̄) ≤ 1

2
‖B‖ ‖ϕF (x)‖2, (3.30)

where B = W (WTHFFW)−1WT and W ∈ R|F|×(|F|−1) has orthonormal columns

spanning {qF}⊥. We note that

‖B‖ ≤ ‖(WTHFFW)−1‖ = ζmax

(
(WTHFFW)−1

)
=

1

ζmin(WTHFFW)
; (3.31)

furthermore,

ζmin(W
THFFW) = min

s ∈ R
|F|−1

s 6= 0

sTWTHFFW s

sT s
= min

w ∈ R
|F|, w 6= 0

w ⊥ qF

wTHFFw

wTw

= min
v ∈ R

n, v 6= 0
vF ⊥ qF , vA = 0

vTHv

vTv
≥ min

v ∈ R
n, v 6= 0

v ⊥ q

vTHv

vTv
(3.32)

= min
u ∈ R

n−1

u 6= 0

uTV THV u

uTV TV u
= ζmin(Hq).

The last inequality, together with (3.30) and (3.31), yields

f(x)− f(x̄) ≤ 1

2

1

ζmin(Hq)
‖ϕF(x)‖2 =

1

2
‖H−1

q ‖ ‖ϕ(x)‖2. (3.33)

Then, by (3.25) and (3.33), we get

f(y)− f(x̄) = f(y) − f(x) + f(x)− f(x̄) < 0. (3.34)

For the remainder of the proof we assume that x̄ ∈ Ω and set F̄ := F(x̄). From (3.28)
and F̄ ⊆ F it follows that ∇fF̄ (x̄) = γ qF̄ , and hence

ϕF̄ (x̄) = hF̄ (x̄) = ∇fF̄(x̄)−
∇fF̄ (x̄)T qF̄

qT
F̄
qF̄

qF̄ = 0.

Therefore

ϕ(x̄) = 0. (3.35)

By using (3.34) we get

0 > f(y)− f(x̄) = ∇f(x̄)T (y − x̄) +
1

2
(y − x̄)T H (y − x̄) > ∇f(x̄)T (y − x̄).

Because of the definition of y and (3.27), we have

∇f(x̄)T (y − x̄) = ∇f(x̄)T (y − x) +∇f(x̄)T (x− x̄) = ∇f(x̄)T (y − x)

= −‖H−1
q ‖∇f(x̄)T β(x),

and thus

∇f(x̄)T β(x) > 0. (3.36)

By contradiction, suppose that β(x̄) = 0. Since x̄ ∈ Ω, from (3.35) it follows that
x̄ is the optimal solution of problem (1.1), and thus −∇f(x̄) ∈ TΩ(x̄)

◦. We consider
two cases.

12

(a) A(x) = A(x̄). In this case TΩ(x̄)
◦ = TΩ(x)

◦, and, since −β(x) ∈ TΩ(x) and
−∇f(x̄) ∈ TΩ(x)

◦, it is −∇f(x̄)T (−β(x)) ≤ 0. This contradicts (3.36).

(b) A(x) (A(x̄). In this case the optimality of x̄ for problem (1.1) yields

∇f(x̄) =
∑

i∈A(x̄)

λiei + θ q, λi ≥ 0 if i ∈ Al(x̄), λi ≤ 0 if i ∈ Au(x̄). (3.37)

Since F(x̄) (F(x), by comparing (3.26) and (3.37) we find that ∇fi(x̄) = θqi =
γqi for all i ∈ F(x̄), and thence θ = γ. Then, ηi = λi for i ∈ A(x), whereas
λi = 0 for i ∈ A(x̄) \ A(x), i.e.,

∇f(x̄) =
∑

i∈A(x)

λiei + θ q, λi ≥ 0 if i ∈ Al(x), λi ≤ 0 if i ∈ Au(x).

Therefore −∇f(x̄) ∈ TΩ(x)
◦, which leads to a contradiction as in case (a).

4. Proportionality-based 2-phase Gradient Projection method. Before
presenting our method, we briefly describe the basic GP method as stated by Calamai
and Moré in [7]. Given the current iterate xk, the next one is obtained as

xk+1 = PΩ(x
k − αk∇fk),

where PΩ is the orthogonal projection onto Ω, and αk satisfies the following sufficient
decrease condition: given γ1, γ2, γ3 > 0 and µ1, µ2 ∈ (0, 1),

fk+1 ≤ fk + µ1 (∇fk)T (xk+1 − xk), (4.1)

where

αk ≤ γ1,

αk ≥ γ2 or αk ≥ γ3 ᾱ
k > 0,

(4.2)

with ᾱk such that

f(xk(ᾱk)) > fk + µ2 (∇fk)T (xk(ᾱk)− xk), (4.3)

where xk(ᾱk) := PΩ(x
k − ᾱk∇f(xk)). In Section 4.1 a simple practical procedure is

described for the determination of αk that satisfies the sufficient decrease condition.
In [7, Algorithm 5.3] a very general algorithmic framework is presented, where

the previous GP steps are used in selected iterations, alternated with simple decrease
steps aimed to speedup the convergence of the overall algorithm. The role of GP steps
is to identify promising active sets, i.e., active variables that are likely to be active at
the solution too. Once a suitable active set has been fixed at a certain iterate xk, a
reduced problem is defined on the complementary set of free variables

min f(x),

s.t. x ∈ Ω(xk),
(4.4)

Problem (4.4) can be easily formulated as an unconstrained quadratic problem, as
shown in Section 4.1.

We now introduce the Proportionality-based 2-phase Gradient Projection (P2GP)
method for problem (1.1). The method does not assume that (1.1) is strictly convex.
However, if (1.1) is not strictly convex, the method only computes an approximation of

13

a stationary point or finds that the problem is unbounded below. If strict convexity
holds, P2GP provides an approximation to the optimal solution. The method is
outlined in Algorithm 4.1 and explained in detail in the next sections. For the sake
of brevity, ϕ(xk) and β(xk) are denoted by ϕk and βk, respectively. Like GPCG, it
alternates identification phases, where GP steps are performed that satisfy (4.1)-(4.3),
and minimization phases, where an approximate solution to (4.4) is searched, with xk

inherited from the last identification phase. Unless a point satisfying

‖ϕk + βk‖ ≤ tol (4.5)

is found, or the problem is discovered to be unbounded below, the identification phase
proceeds either until a promising active set Ak+1 is identified (i.e., an active set that
remains fixed in two consecutive iterations) or no reasonable progress is made in re-
ducing the objective function, i.e.,

fk − fk+1 ≤ η max
m≤l<k

(f l − f l+1), (4.6)

where η is a suitable constant and m is the first iteration of the current identification
phase. This choice follows that in [32]. In the minimization phase, an approximate
solution to the reduced problem obtained by fixing the variables with indices in the
current active set is searched for. The proportionality criterion (3.1) is used to decide
when the minimization phase has to be terminated; this is a significant difference from
the GPCG method, which exploits a condition based on the bindingness of the active
variables. Note that the accuracy required in the solution of the reduced problem (4.4)
affects the efficiency of the method and a loose stopping criterion must be used, since
the control of the minimization phase is actually left to the proportionality criterion
(more details are given in Section 4.2). Like the identification, the minimization
phase is abandoned if a suitable approximation to a stationary point is computed
or unboundedness is discovered. Nonpositive curvature directions are exploited as
explained in Sections 4.1 and 4.2.

We note that the minimization phase can add variables to the active set, but can-
not remove them, and thus P2GP fits into the general framework of [7, Algorithm 5.3].
Thus we may exploit general convergence results available for that algorithm. To this
end, we introduce the following definition.

Definition 4.1. Let
{
xk

}
be a sequence generated by the P2GP method applied

to problem 1.1. The set

KGP =
{
k ∈ N : xk+1 is generated by step 9 of Algorithm 4.1

}

is called set of GP iterations.

The following convergence result holds, which follows from [7, Theorem 5.2].

Theorem 4.2. Let
{
xk

}
be a sequence generated by applying the P2GP method

to problem (1.1). Assume that the set of GP iterations, KGP , is infinite. If some
subsequence

{
xk

}
k∈K

, with K ⊆ KGP , is bounded, then

lim
k∈K, k→∞

∥∥∇Ωf(x
k+1)

∥∥ = 0. (4.7)

Moreover, any limit point of
{
xk

}
k∈KGP

is a stationary point for problem (1.1).

The identification property of the GP steps is inherited by the whole sequence
generated by the P2GP method, as shown by the following Lemma.

14

Algorithm 4.1 (P2GP)

1: x0 ∈ Ω; tol ≥ 0; η ∈ (0, 1); Γ > 0; k = 0;
2: conv = (

∥

∥ϕk + βk
∥

∥ ≤ tol); unbnd = .false.; phase1 = .true.; phase2 = .true.

3: while (¬ conv ∧ ¬unbnd) do ⊲ Main loop
4: m = k;
5: while (phase1) do ⊲ Identification Phase
6: if ((∇Ωf

k)TH (∇Ωf
k) ≤ 0 ∧ max

{

α > 0 s.t. xk + α∇Ωf
k ∈ Ω

}

= +∞) then
7: unbnd = .true.;
8: else

9: xk+1 = PΩ(x
k − αk∇fk) with αk such that (4.1)-(4.3) hold;

10: end if

11: if (¬unbnd) then
12: conv = (

∥

∥ϕk+1 + βk+1
∥

∥ ≤ tol);
13: phase1 = (Ak+1 6= Ak) ∧ (fk − fk+1 > η max

m≤l<k
(f l − f

l+1)) ∧ (¬ conv);
14: k = k + 1;
15: end if

16: end while

17: if (conv ∨ unbnd) then
18: phase2 = .false.;
19: end if

20: while (phase2) do ⊲ Minimization Phase
21: Compute an approx. solution dk to min

{

f(xk+ d) s.t. qTd = 0, di = 0 if i ∈ Ak
}

;

22: if ((dk)TH dk ≤ 0) then
23: Compute αk = max

{

α > 0 s.t. xk + αdk ∈ Ω
}

;
24: if (α = +∞) then
25: unbnd = .true.;
26: else

27: xk+1 = xk + αkdk;
28: conv = (

∥

∥ϕk+1 + βk+1
∥

∥ ≤ tol);
29: k = k + 1;
30: end if

31: phase2 = .false.;
32: else

33: xk+1 = PΩk (xk + αkdk) with αk such that fk+1 < fk and Ωk = Ω ∩ Ω(xk)
34: conv = (

∥

∥ϕk+1 + βk+1
∥

∥ ≤ tol);

35: phase2 = (‖βk+1‖∞ ≤ Γ ‖ϕk+1‖2) ∧ (¬ conv);
36: k = k + 1;
37: end if

38: end while

39: phase1 = .true.; phase2 = .true.;
40: end while

41: if (conv) then
42: return xk

43: else

44: return “problem (1.1) is unbounded”;
45: end if

Lemma 4.3. Let us assume that problem (1.1) is strictly convex and x∗ is its
optimal solution. If

{
xk

}
is a sequence in Ω generated by the P2GP method applied

to (1.1), then for all k sufficiently large

A∗
N ⊆ Ak ⊆ A∗

15

where A∗
N is defined in Theorem 2.3.

Proof. Since f(x) is bounded from below and the sequence
{
fk

}
is decreasing,

the sequence
{
xk

}
is bounded, and, because of Theorem 4.2, there is a subsequence{

xk
}
k∈K∗ , with K∗ ⊆ KGP , which converges to x∗. Now we show that the whole

sequence
{
xk

}
converges to x∗. For any k ∈ N we have

f(xk)− f(x∗) ≤ f(xk+

)− f(x∗), (4.8)

where k+ = min {s ∈ K∗ : s ≥ k}. Moreover, for the stationarity of x∗ we have
∇f(x∗)T (xk − x∗) ≥ 0, and then

f(xk)− f(x∗) = ∇f(x∗)T (xk − x∗) +
1

2
(xk − x∗)T H (xk − x∗)

≥ 1

2
(xk − x∗)TVHqV

T (xk − x∗) ≥ ζmin(Hq) ‖xk − x∗‖2,
(4.9)

where Hq and V are defined in Theorem 3.8 and the equality xk−x∗ = V V T (xk−x∗)
has been exploited. From (4.8) and (4.9) it follows that

{
xk

}
converges to x∗. Then,

for k sufficiently large, F∗ ⊆ Fk and hence Ak ⊆ A∗. Furthermore, by Theorem 2.3,
the convergence of

{
xk

}
k∈KGP

to x∗, together with (4.7), yields A∗
N ⊆ A(xk) for all

k ∈ KGP sufficiently large. Since minimization steps do not remove variables from
the active set, we have A∗

N ⊆ A(xk) for all k sufficiently large.

We note that in case of nondegeneracy (A∗
N = A∗) the active set eventually settles

down, i.e., the identification property holds. This implies that the the solution of (1.1)
reduces to the solution of an unconstrained problem in a finite number of iterations,
which is the key ingredient to prove finite convergence of methods that fit into the
framework of [7, Algorithm 5.3], such as the GPCG one. In case of degeneracy we can
just say that the nondegenerate active constraints at the solution will be identified in
a finite number of steps. However, in the strictly convex case, finite convergence can
be achieved in this case too, provided a suitable value of Γ is taken, as stated by the
following theorem.

Theorem 4.4. Let us assume that problem (1.1) is strictly convex and x∗ is its
optimal solution. Let

{
xk

}
be a sequence in Ω generated by the P2GP method applied

to (1.1), in which the minimization phase is performed by any algorithm that is exact
for strictly convex quadratic programming. If one of the following conditions holds:

(i) x∗ is nondegenerate,
(ii) x∗ is degenerate and Γ ≥ κ(Hq)

1/2, where Hq is defined in Theorem 3.8,

then xk = x∗ for k sufficiently large.
Proof. (i) By Lemma 4.3, in case of nondegeneracy Ak = A∗ for k sufficiently

large, and the thesis trivially holds.
(ii) Thanks to Lemma 4.3, we have that P2GP is able to identify the active non-

degenerate variables and the free variables at the solution for k sufficiently large. This
means that there exists k such that for k ≥ k the solution x∗ of (1.1) is also solution of

min f(x),

s.t. x ∈ Ω(xk).
(4.10)

Now assume that Γ ≥ κ(Hq)
1/2 and suppose by contradiction that there exists k̂ ≥ k

such that ‖β(xk̂)‖∞ > Γ‖ϕ(xk̂)‖2. Then, by Theorem 3.8 it is β(x̂) 6= 0, where x̂ is

the solution of (4.10) with k = k̂. Since x̂ = x∗, this contradicts the optimality of x∗.

Therefore, xk is a proportional iterate for k ≥ k̂ and P2GP will use the algorithm of
the minimization phase to determine the next iterate. Two cases are possible:

16

(a) xk+1 = x∗, therefore the thesis holds;
(b) xk+1 6= x∗ is proportional and such that A(xk) (A(xk+1), therefore xk+2 will be

computed using again the algorithm of the minimization phase. Since the active
sets are nested, either P2GP is able to find A∗ in a finite number of iterations or
at a certain iteration it falls in case (a), and hence the thesis is proved.

4.1. Identification phase. In the identification phase (Steps 4-16 of Algo-
rithm 4.1), every projected gradient step needs the computation of a steplength αk sat-
isfying the sufficient decrease condition (4.1)-(4.3). According to [31], this steplength
can be obtained by generating a sequence {αk

i } of positive trial values such that

αk
0 ∈ [γ2, γ1] (4.11)

αk
i ∈ [γ4α

k
i−1, γ5α

k
i−1], i > 0, (4.12)

where γ1 and γ2 are given in (4.2) and γ4 < γ5 < 1, and by setting αk to the first
trial value that satisfies (4.1). Note that in practice γ2 is a very small value and γ1
is a very large one; therefore, we assume for simplicity that (4.12) holds for all the
choices of αk

0 described next.
Motivated by the results reported in [11] for BQPs, we compute αk

0 by using a BB-
like rule. Following recent studies on steplength selection in gradient methods [17, 18],
we set αk

0 equal to the ABBmin steplength proposed in [23]:

αk
ABBmin

=

min
{
αj
BB2 : j = max{m, k − q}, . . . , k

}
if
αk
BB2

αk
BB1

< τ,

αk
BB1 otherwise,

(4.13)

wherem is defined in Step 4 of Algorithm 4.1, q is a nonnegative integer, τ ∈ (0, 1), and

αk
BB1 =

‖sk−1‖2
(sk−1)Tyk−1

, αk
BB2 =

(sk−1)Tyk−1

‖yk−1‖2 ,

with sk−1 = xk−xk−1 and yk−1 = ∇fk−∇fk−1. Details on the rationale behind the
criterion used to switch between the BB1 and BB2 steplengths and its effectiveness
are given in [23, 18].

If αk
0 > 0, we build the trial steplengths by using a quadratic interpolation strategy

with the safeguard (4.12) (see, e.g., [31]). If αk
0 ≤ 0, we check if (∇Ωf

k)T H (∇Ωf
k) ≤

0, which implies that the problem

min f(xk + v),

s.t. qTv = 0, vi = 0 if i ∈ Bk

is unbounded below along the direction ∇Ωf
k. In this case we compute the break-

points along ∇Ωf
k [31]. For any x ∈ Ω and any direction p ∈ TΩ(x), the breakpoints

ωi, with i ∈ {j : pj 6= 0}, are given by the following formulas:

if pi < 0, then ωi = +∞ if li = −∞, and ωi =
li − xi
pi

otherwise;

if pi > 0, then ωi = +∞ if ui = +∞, and ωi =
ui − xi
pi

otherwise.

If the minimum breakpoint, which equals max
{
α > 0 s.t. xk − α∇Ωf

k ∈ Ω
}
, is in-

finite, then problem (1.1) is unbounded. Otherwise, we set αk
0 = ω̄, where ω̄ is

17

the maximum finite breakpoint. If αk
0 does not satisfy the sufficient decrease condi-

tion, we reduce it by backtracking until this condition holds. Finally, if αk
0 ≤ 0 and

(∇Ωf
k)T H (∇Ωf

k) > 0, we set

αk
0 = − (∇Ωf

k)T∇fk

(∇Ωfk)TH (∇Ωfk)
,

and proceed by safeguarded quadratic interpolation.1

The identification phase is terminated according to the conditions described at
the beginning of Section 4.

4.2. Minimization phase. The minimization phase (Steps 20-38 of Algorithm
4.1) requires the approximate solution of

min f(xk + d),

s.t. qTd = 0, di = 0 if i ∈ A(xk),

which is equivalent to

min g(y) :=
1

2
yTHFF y + (∇fk

F)
Ty,

s.t. qT
F y = 0, y ∈ Rs,

(4.14)

where F = Fk and s = |F|.
Problem (4.14) can be formulated as an unconstrained quadratic minimization

problem by using a Householder transformation

P = I −wwT ∈ Rs×s, ‖w‖ =
√
2, PqF = σe1,

where σ = ±‖qF‖ (see, e.g., [5]). Letting y = Pz, M = PHFFP and r = P∇fk
F ,

problem (4.14) becomes

min p(z) :=
1

2
zTM z+ rT z,

s.t. z1 = 0,

which simplifies to

min
z̃∈Rs−1

p̃(z̃) :=
1

2
z̃T M̃ z̃+ r̃T z̃, (4.15)

where

M =

(
m11 m̃T

m̃ M̃

)
, r =

(
r1
r̃

)
, z =

(
z1
z̃

)
.

We note that qF = σPe1 , i.e., qF is a multiple of the first column of P , and
hence the remaining columns of P span {qF}⊥. Furthermore, a simple computa-

tion shows that M̃ = P̃THFF P̃ , where P̃ is the matrix obtained by deleting the
first column of P . By reasoning as in the proof of Theorem 3.8 (see (3.32)), we

find that ζmin(M̃) ≥ ζmin(Hq) and ζmax(M̃) ≤ ζmax(Hq), where Hq = V THV and
V ∈ Rn×(n−1) is any matrix with orthogonal columns spanning {q}⊥. Therefore, if
Hq is positive definite, then

κ(M̃) ≤ κ(Hq).

1In Algorithm 4.1 we do not explicitly consider αk
0
in order to simplify the description.

18

For any other Z ∈ Rn×(n−1) with orthogonal columns spanning {q}⊥, we can write
V T = DZT with D ∈ R(n−1)×(n−1) orthogonal; therefore, V THV and ZTHZ are
similar and κ(Hq) does not depend on the choice of the orthonormal basis of {q}⊥.
Furthermore, if H is positive definite, by the Cauchy’s interlace theorem [34, Theo-
rem 10.1.1] it is κ(Hq) ≤ κ(H).

The finite convergence results presented in Section 4 for strictly convex problems
rely on the exact solution of (4.15). In infinite precision, this can be achieved by
means of the CG algorithm, as in the GPCG method. Of course, in presence of
roundoff errors, finite convergence is generally neither obtained nor required.

We can solve (4.15) by efficient gradient methods too. In this work, we investigate
the use of the SDC gradient method [14] as a solver for the minimization phase in the
strictly convex case. The SDC method uses the following steplength:

αk
SDC =

{
αk
C if mod

(
k, k̄ + l

)
< k̄,

αt
Y otherwise, with t = max{i ≤ k : mod

(
i, k̄ + l

)
= k̄}, (4.16)

where k̄ ≥ 2, l ≥ 1, αk
C is the Cauchy steplength and

αt
Y = 2

√√√√

(
1

αt−1
SD

− 1

αt
SD

)2

+ 4
‖∇f t‖2

(
αt−1
SD ‖∇f t−1‖

)2 +
1

αt−1
SD

+
1

αt
SD

−1

(4.17)

is the Yuan steplength [37]. The interest for this steplength is motivated by its spec-
tral properties, which dramatically speed up the convergence [14, 18], while showing
certain regularization properties useful to deal with linear ill-posed problems [15].
Similar properties hold for the SDA gradient method [16], but for the sake of space
we do not show the results of its application in the minimization phase. It is our
opinion that the P2GP framework provides also a way to exploit these methods when
solving linear ill-posed problems with bounds and a single linear constraint.

Once a descent direction dk is obtained by using CG or SDC, a full step along this
direction is performed starting from xk, and xk+1 is set equal to the resulting point if
this is feasible. Otherwise xk+1 = PΩk(xk + αkdk) where αk satisfying the sufficient
decrease conditions is computed by using safeguarded quadratic interpolation [32].

If the problem is not strictly convex, we choose the CG method for the mini-
mization phase. If CG finds a direction dk such that (dk)TH dk ≤ 0 we set xk+1 =
xk + αkdk, where αk is the largest feasible steplength, i.e., the minimum breakpoint
along dk, unless the objective function results to be unbounded along dk.

As already observed, the stopping criterion in the solution of problem (4.15)
must not be too stringent, since the decision of continuing the minimization on the
reduced space is left to the proportionality criterion. In order to stop the solver for
problem (4.15), we check the progress in the reduction of the objective function as in
the identification phase, i.e., we terminate the iterations if

p̃(z̃j)− p̃(z̃j+1) ≤ ξ max
1≤l<j

{
p̃(z̃l)− p̃(z̃l+1)

}
, (4.18)

where ξ ∈ (0, 1) is not too small (the value used in the numerical experiments is given
in Section 5). This choice follows [32]. If the active set has not changed and the
current iterate is proportional, the minimization phase does not restart from scratch,
but the minimization method continues its iterations as it had not been stopped.

19

4.3. Projections. P2GP requires projections onto Ω (Step 9 of Algorithm 4.1),
onto Ωk = Ω ∩ Ω(xk) (Step 33 of Algorithm 4.1), and onto TΩ(x

k) (for the computa-
tion of β(xk)). We perform the projections by using the algorithm proposed by Dai
and Fletcher in [12].

5. Numerical experiments. In order to analyze the behavior of P2GP using
both CG and SDC in the minimization phase, we performed numerical experiments
on several problems, either generated with the aim of building test cases with varying
characteristics (see Section 5.1) or coming from SVM training (see Section 5.2).

On the first set of problems, referred to as random problems because of the way
they are built, we compared both versions of P2GP with the following methods:

• GPCG-like, a modification of P2GP where the termination of the minimiza-
tion phase (performed by CG) is not driven by the proportionality criterion,
but by the bindingness of the active variables, like in the GPCG method;

• PABBmin, a Projected Alternate BB method executing the line search as in
P2GP and computing the first trial steplength with the ABBmin rule described
in Section 4.1;

The first method was selected to evaluate the effect of the proportionality-based cri-
terion in the minimization phase, the second one because of its effectiveness among
general GP methods. P2GP, GPCG-like, and PABBmin were implemented in Matlab.

To further assess the behavior of P2GP, we also compared it, on the random
and SVM problems, with the GP method implemented in BLG, a C code available
from http://users.clas.ufl.edu/hager/papers/Software/. BLG solves nonlin-
ear optimization problems with bounds and a single linear constraint, and can be
considered as a benchmark for software based on gradient methods. Its details are
described in [27, 26].

The following setting of the parameters was considered for P2GP: η = 0.1 in (4.6)
and ξ = 0.5 in (4.18); µ1 = 10−4 in (4.1); γ1 = 1012, γ2 = 10−12, γ3 = 10−2, and
γ4 = 0.5 in (4.11)-4.12; q = 3 and τ = 0.2 in (4.13). Furthermore, when SDC was
used in the minimization phase, k̄ = 6 and l = 4 were chosen in (4.16). A maximum
number of 50 consecutive GP and CG (or SDC) iterations was also considered. The
previous choices were also used for the GPCG-like method, except for the parameter
ξ, which was set to 0.25. The parameters of PABBmin in common with P2GP were
given the same values too, except τ , which was computed by the adaptive procedure
described in [6], with 0.5 as starting value. Details on the stopping conditions used
by the methods are given in Sections 5.3 and 5.4, where the results obtained on the
test problems are discussed.

About the proportionality condition (3.1), a conservative approach would suggest
to adopt a large value for Γ. However, such a choice is likely to be unsatisfactory in
practice; in fact, a large Γ would foster high accuracy in the minimization phase, even
at the initial steps of the algorithm, when the active constraints at the solution are
far from being identified. Thus, we used the following adaptive strategy for updating
Γ after line 37 of Algorithm 4.1:

if ‖βk‖∞ > Γ ‖ϕk‖2 then

Γ = max {1.1 · Γ, 1} ;
else if Ak 6= Ak−1 then

Γ = max {0.9 · Γ, 1} ;
end if

Based on our numerical experience, we set the starting value of Γ equal to 1.

20

http://users.clas.ufl.edu/hager/papers/Software/

BLG was run using the gradient projection search direction (it also provides the
Frank-Wolfe and affine-scaling directions). However, the code could switch to the
Frank-Wolfe direction, according to inner automatic criteria. Note that BLG uses a
cyclic BB steplength ᾱk as trial steplength, together with an adaptive nonmonotone
line search along the feasible direction PΩ(x

k − ᾱk∇fk)−xk (see [27] for the details).
Of course, the BLG features exploiting the form of a quadratic objective function were
used. The stopping criteria applied with the random problems and the SVM ones are
specified in Sections 5.3 and 5.4, respectively. Further details on the use of BLG are
given there.

All the experiments were carried out using a 64-bit Intel Core i7-6500, with max-
imum clock frequency of 3.10 GHz, 8 GB of RAM, and 4 MB of cache memory. BLG
(v. 1.4) and SVMsubspace (v. 1.0) were compiled by using gcc 5.4.0. P2GP, GPCG-
like, and PABBmin were run under MATLAB 7.14 (R2012a). The elapsed times
reported for the Matlab codes were measured by using the tic and toc commands.

5.1. Random test problems. The implementations of all methods were run
on random SLBQPs built by modifying the procedure for generating BQPs proposed
in [31]. The new procedure first computes a point x∗ and then builds a problem of
type (1.1) having x∗ as stationary point. Obviously, if the problem is strictly convex,
x∗ is its solution. The following parameters are used to define the problem:

• n, number of variables (i.e., n);
• ncond, log10 κ(H);
• zeroeig ∈ [0, 1), fraction of zero eigenvalues of H ;
• negeig ∈ [0, 1), fraction of negative eigenvalues of H ;
• naxsol ∈ [0, 1), fraction of active variables at x∗;
• degvar ∈ [0, 1), fraction of active variables at x∗ that are degenerate;
• ndeg ∈ {0, 1, 2, . . .}, amount of near-degeneracy;
• linear, 1 for SLBQPs, and 0 for BQPs;
• nax0 ∈ [0, 1), fraction of active variables at the starting point.

The components of x∗ are computed as random numbers from the uniform distri-
bution in (−1, 1). All random numbers considered next are from uniform distributions
too. The Hessian matrix H is defined as

H = GDGT , (5.1)

where D is a diagonal matrix and G = (I − 2p3p
T
3)(I − 2p2p

T
2)(I − 2p1p

T
1), with

pj unit vectors. For j = 1, 2, 3, the components of pj are obtained by generating
p̄j = (p̄ji)i=1,...,n, where the values p̄ji are random numbers in (−1, 1), and setting
pj = p̄j/‖p̄j‖. The diagonal entries of D are defined as follows:

dii =

0 for approximately zeroeig ∗ n values of i,

−10
i−1

n−1
(ncond) for approximately negeig ∗ n values of i,

10
i−1

n−1
(ncond) for the remaing values of i.

We note that zeroeig and negeig are not the actual fraction of zero and negative
eigenvalues. The actual fraction of zero eigenvalues is determined by generating a
random number ξi ∈ (0, 1) for each i, and by setting dii = 0 if ξi ≤ zeroeig; the
same strategy is used to determine the actual number of negative eigenvalues. We
also observe that κ(H) = 10 ncond, if H has no zero eigenvalues.

In order to define the active variables at x∗, n random numbers χi ∈ (0, 1) are
computed, and the index i is put in A∗ if χi ≤ naxsol; then A∗ is partitioned into the

21

sets A∗
N and A∗ \ A∗

N , with |A∗ \A∗
N | approximately equal to ⌊degvar ∗ naxsol ∗ n⌋.

More precisely, an index i is put in A∗ \ A∗
N if ψi ≤ degvar, where ψi is a random

number in (0, 1), and is put in A∗
N otherwise. The vector λ∗ of Lagrange multipliers

associated with the box constraints at x∗ is initially set as

λ∗i =

{
10−µi ndeg if i ∈ A∗

N ,
0 otherwise,

where µi is a random number in (0, 1). Note that the larger ndeg, the closer to 0 is the
value of λ∗i , for i ∈ A∗

N (in this sense ndeg indicates the amount of near-degeneracy).
The set A∗ is splitted into A∗

l and A∗
u as follows: for each i ∈ A∗, a random number

νi ∈ (0, 1) is generated; i is put in A∗
l if νi < 0.5, and in A∗

u otherwise. Then, if
i ∈ A∗

u, the corresponding Lagrange multiplier is modified by setting λ∗i = −λ∗i . The
lower and upper bounds l and u are defined as follows:

li = −1 and ui = 1 if i /∈ A∗,
li = x∗i and ui = 1 if i ∈ A∗

l ,
li = −1 and ui = x∗i if i ∈ A∗

u.

If linear = 0, the linear constraint is neglected. If linear = 1, the vector q

in (1.1) is computed by randomly generating its components in (−1, 1), the scalar b
is set to qTx∗, and the vector c is defined so that the KKT conditions at the solution
are satisfied:

c =

{
H x∗ − λ∗ if linear = 0,
H x∗ − λ∗ − ρ∗ q if linear = 1,

where ρ∗ is a random number in (−1, 1) \ {0} representing the Lagrange multiplier
associated with the linear constraint.

By reasoning as with x∗, approximately nax0 ∗ n components of the starting
point x0 are set as x0i = li or x0i = ui. The remaining components are defined as
x0i = (li + ui)/2. Note that x0 may not be feasible; in any case, it will be projected
onto Ω by the optimization methods considered here.

Finally, we note that although x∗ is a stationary point of the problem generated
by the procedure described so far, there is no guarantee that P2GP converges to x∗

if the problem is not strictly convex.
The following sets of test problems, with size n = 20000, were generated:
• 27 strictly convex SLBQPs with nondegenerate solutions, obtained by setting
ncond = 4, 5, 6, zeroeig = 0, negeig = 0, naxsol = 0.1, 0.5, 0.9, degvar
= 0, ndeg = 0, 1, 3, and linear = 1;

• 18 strictly convex SLBQPs with degenerate solutions, obtained by setting
ncond = 4, 5, 6, zeroeig = 0, negeig = 0, naxsol = 0.1, 0.5, 0.9, degvar
= 0.2, 0.5, ndeg = 1, and linear = 1;

• 27 convex (but not stricltly convex) SLBQPs, obtained by setting ncond

= 4, 5, 6, zeroeig = 0.1, 0.2, 0.5, negeig = 0, naxsol = 0.1, 0.5, 0.9, degvar
= 0, ndeg = 1, and linear = 1;

• 27 nonconvex SLBQPs, obtained by setting ncond = 4, 5, 6, zeroeig = 0,
negeig = 0.1, 0.2, 0.5, naxsol = 0.1, 0.5, 0.9, degvar = 0, ndeg = 1, and
linear = 1;

Since BQPs are special cases of SLBQPs, four sets of BQPs were also generated, by
setting linear = 0 and choosing all remaining parameters as specified above. All
the methods were applied to each problem with four starting points, corresponding
to nax0 = 0, 0.1, 0.5, 0.9.

22

5.2. SVM test problems. SLBQP test problems corresponding to the dual
formulation of two-class C-SVM classification problems were also used (see, e.g., [36]).
Ten problems from the LIBSVM data set, available from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/,
were considered, whose details (size of the problem, features and nonzeros in the data)
are given in Table 5.1. A linear kernel was used, leading to problems with positive
semidefinite Hessian matrices. The penalty parameter C was set to 10. For most of
the problems, the number of nonzeros is much smaller than the product between size
and features, showing that the data are relatively sparse.

problem size features nonzeros

a6a 11220 122 155608
a7a 16100 122 223304
a8a 22696 123 314815
a9a 32561 123 451592
ijcnn1 49990 22 649870
phishing 11055 68 331650
real-sim 72309 20958 3709083
w6a 17188 300 200470
w7a 24692 300 288148
w8a 49749 300 579586

Table 5.1
Details of the SVM test set.

5.3. Results on random problems. We first discuss the results obtained
by running the implementations of the P2GP, PABBmin and GPCG-like methods
on the problems described in Section 5.1. In the stopping condition (4.5), tol =
10−6‖ϕ0 + β0‖ was used; furthermore, at most 30000 matrix-vector products and
30000 projections were allowed, declaring failures if these limits were achieved with-
out satisfying condition (4.5). The methods were compared by using the performance
profiles proposed by Dolan and Moré [19]. We note that the performance profiles in
this section may show a number of failures larger than the actual one, because the
range on the horizontal axis has been limited to enhance readability. However, all the
failures will be explicitly reported in the text.

Figure 5.1 shows the performance profiles, π(χ), of the three methods on the set
of strictly convex SLBQPs with nondegenerate solutions, using the execution time as
performance metric. The profiles corresponding to all the problems and to those with
κ(H) = 104, κ(H) = 105, and κ(H) = 106 are reported. We see that the version of
P2GP using CG in the minimization phase has by far the best performance. P2GP
with SDC is faster than the PABBmin and GPCG-like methods too. GPCG-like
appears very sensitive to the condition number of the Hessian matrix: its performance
deteriorates as κ(H) increases and the method becomes less effective than PABBmin

when κ(H) = 106. This shows that the criterion used to terminate the minimization
phase is more effective than the criterion based on the bindingness of the active
variables, especially as κ(H) increases. We also report that the GPCG-like method
has 6 failures over 36 runs for the problems with κ(H) = 106.

For the previous problems, the performance profiles concerning the number of
matrix-vector products and the number of projections are also shown, in Figure 5.2.
We see that PABBmin performs the smallest number of matrix-vector products, fol-
lowed by P2GP with GC, and then by GPCG-like and P2GP with SDC. On the other

23

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

π(
χ)

Strictly convex SLBQPs (H>0) − Time

P2GP (CG)
P2GP (SDC)
GPCG−like
PABBmin

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

π(
χ)

Strictly convex SLBQPs (H>0), ncond = 4 − Time

P2GP (CG)
P2GP (SDC)
GPCG−like
PABBmin

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

π(
χ)

Strictly convex SLBQPs (H>0), ncond = 5 − Time

P2GP (CG)
P2GP (SDC)
GPCG−like
PABBmin

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

π(
χ)

Strictly convex SLBQPs (H>0), ncond = 6 − Time

P2GP (CG)
P2GP (SDC)
GPCG−like
PABBmin

Fig. 5.1. Performance profiles of P2GP with CG and SDC, PABBmin, and GPCG-like on
strictly-convex SLBQPs with nondegenerate solutions: execution times for all the problems (top
left), for κ(H) = 104 (top right), for κ(H) = 105 (bottom left), and for κ(H) = 106 (bottom right).

hand, the number of projections computed by P2GP with CG and with SDC is much
smaller than for the other methods; as expected, the maximum number of projections
is computed by PABBmin. This shows than the performance of the methods cannot
be measured only in terms of matrix-vector products; the cost of the projections must
also be considered, especially when the structure of the Hessian makes the compu-
tational cost of the matrix-vector products lower than O(n2). The good behavior of
P2GP results from the balance between matrix-vector products and projections.

The performance profiles concerning the execution times on the strictly convex
SLBQPs with degenerate solutions, on the convex (but not strictly convex) SLBQPs,
and on the nonconvex ones are reported in Figure 5.3. Of course, the version of
P2GP using the SDC solver was not applied to the last two sets of problems. In the
case of nonconvex problems, only 85% of the runs were considered, corresponding to
the cases where the values of the objective function at the solutions computed by
the different methods differ by less than 1%. P2GP with CG is generally the best
method, followed by GPCG-like and then by PABBmin. Furthermore, on strictly
convex problems with degenerate solutions, P2GP with SDC performs better than
GPCG-like and PABBmin. GPCG-like is less robust than the other methods, since it
has 4 failures on the degenerate stricltly convex problems and 8 failures on the convex
ones. This confirms the effectiveness of the proportionality-based criterion.

For completeness, we also run the experiments on the strictly convex problems

24

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

π(
χ)

Strictly convex SLBQPs (H>0) − Mat−Vec

P2GP (CG)
P2GP (SDC)
GPCG−like
PABBmin

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

π(
χ)

Strictly convex SLBQPs (H>0) − Proj

P2GP (CG)
P2GP (SDC)
GPCG−like
PABBmin

Fig. 5.2. Performance profiles of P2GP with CG and SDC, PABBmin, and GPCG-like on
strictly convex SLBQPs with nondegenerate solutions: number of matrix-vector products (left) and
projections (right).

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

π(
χ)

Convex degenerate SLBQPs (H>0) − Time

P2GP (CG)
P2GP (SDC)
GPCG−like
PABBmin

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

π(
χ)

Convex SLBQPs (H>=0) − Time

P2GP (CG)
GPCG−like
PABBmin

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

π(
χ)

Nonconvex SLBQPs − Time

P2GP (CG)
GPCG−like
PABBmin

Fig. 5.3. Performance profiles (execution times) of P2GP with CG and SDC, PABBmin, and
GPCG-like on strictly convex SLBQPs with degenerate solutions (top), convex SLBQPs (bottom
left), nonconvex SLBQPs (bottom right).

with nondegenerate solutions by replacing the line search strategy in PABBmin with
a monotone line search along the feasible direction [2, Section 2.3.1], which requires
only one projection per GP iteration. We note that this line search does not guarantee

25

in general that the sequence generated by the GP method identifies in a finite number
of steps the variables that are active at the solution (see, e.g., [13]). Nevertheless, we
made experiments with the line search along the feasible direction, to see if it may
lead to any time gain in practice. The results obtained, not reported here for the sake
of space, show that the two line searches lead to comparable times when the number
of active variables at the solution is small, i.e., naxsol = 0.1. On the other hand,
the execution time with the original line search is slightly smaller when the number
of active variables at the solution is larger.

Finally, the performance profiles concerning the execution times taken by the
P2GP, PABBmin and GPCG-like methods on the strictly convex BQPs with nonde-
generate and degenerate solutions, on the convex (but not strictly convex) BQPs, and
on the nonconvex ones are shown in Figure 5.4. Only 97% of the runs on the noncon-
vex problems are selected, using the same criterion applied to nonconvex SLBQPs.
P2GP with CG is again the most efficient method. The behavior of the methods is
similar to that shown on SLBQPs. However, P2GP with SDC and PABBmin have
closer behaviors, according to the smaller time required by projections onto boxes,
which leads to a reduction of the execution time of PABBmin. GPCG-like has again
some failures: 6 on the strictly convex problems with nondegenerate solutions, 5 on
the ones with degenerate solutions, and 9 on the convex (but not strictly convex)
problems.

Now we compare P2GP (using CG) with BLG on the random problems. BLG
was run in its full-space mode (default mode), because the form of the Hessian (5.1)
does not allow to take advantage of the subspace mode. The stopping condition (4.5)
was implemented in BLG, and the code was run with the same tolerance and the same
maximum numbers of matrix-vector products and projections used for P2GP. Default
values were used for the remaining parameters of BLG. Of course, a comparison of
the two codes in terms of execution time would be misleading, since BLG is written in
C, while P2GP has been implemented in Matlab. Therefore, we consider the matrix-
vector products. We do not show a comparison in terms of projections too, because
BLG does a projection at each iteration, and this generally results in many more
projections than P2GP. Performance profiles are provided in Figure 5.5. The results
concerning all the types of convex problems are shown together, since their profiles are
similar. On these problems P2GP appears more efficient than BLG; we also verified
that the objective function values at the solutions computed by the two codes agree
on at least six significant digits and are smaller for P2GP for 70% of the test cases.
Furthermore, in four cases BLG does not satisfy condition (4.5) within the maximum
number of matrix-vector products and projections. The situation is different for the
nonconvex problems, where the number of matrix-vector products performed by BLG
is smaller. In this case, we verified that BLG also used Frank-Wolfe directions, which
were never chosen for the convex problems. This not only reduced the number of
matrix-vector products, but often led to smaller objective function values. The values
of the objective function at the solutions computed by the two methods differ by
less than 1% for only 47% of the test cases, which are the ones considered in the
performance profiles on the right of Figure 5.5. On the other hand, in three cases
BLG performs the maximum number of matrix-vector products without achieving the
required accuracy.

5.4. Results on SVM problems. In order to read the SVM problems, available
in the LIBSVM format, BLG was run through the SVMsubspace code, available from
http://users.clas.ufl.edu/hager/papers/Software/. Since we were interested

26

http://users.clas.ufl.edu/hager/papers/Software/

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

π(
χ)

Strictly convex BQPs (H>0) − Time

P2GP (CG)
P2GP (SDC)
GPCG−like
PABBmin

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

π(
χ)

Convex degenerate BQPs (H>0) − Time

P2GP (CG)
P2GP (SDC)
GPCG−like
PABBmin

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

π(
χ)

Convex BQPs (H>=0) − Time

P2GP (CG)
GPCG−like
PABBmin

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

π(
χ)

Nonconvex BQPs − Time

P2GP (CG)
GPCG−like
PABBmin

Fig. 5.4. Performance profiles (execution times) of P2GP with CG and SDC, PABBmin, and
GPCG-like on strictly convex BQPs with nondegenerate solutions (top left), strictly convex BQPs
with degenerate solutions (top right), convex BQPs (bottom left), nonconvex BQPs (bottom right).

in comparing P2GP with the GP implementation provided by BLG, SVMsubspace
was modified to have the SVM subspace equal to the entire space, i.e., to apply BLG
to the full SVM problem. For completeness we also run SVMsubspace in its subspace
mode (see [26]), to see what the performance gain is with this feature. In the following,
we refer to the former implementation as BLGfull, and to the latter as SVMsubspace.

Following [26], BLGfull and SVMsubspace were used with their original stop-
ping condition, with tolerance 10−3. P2GP was terminated when the infinity norm
of the projected gradient was smaller then the same tolerance. With these stop-
ping criteria, the two codes returned objective function values agreeing on about six
significant digits, with smaller function values generally obtained by P2GP. At most
70000 matrix-vector products and 70000 projections were allowed, but they were never
reached.

In Figure 5.6, left, the performance profiles (in logarithmic scale) concerning the
matrix-vector products of P2GP (with CG) and BLGfull are shown. A comparison
in terms of projections and execution times is not carried out for the same reasons
explained for the random problems. BLGfull appears superior than P2GP; on the
other hand, we verified that the number of projections performed by BLG is by far
greater than that of P2GP for eight out of ten problems. However, it must be noted
that SVMsubspace is much faster than BLGfull, as shown by the performance profiles
concerning their execution times (see Figure 5.6, right). This confirms the great

27

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

π(
χ)

Convex SLBQPs − Mat−Vec

P2GP (CG)
BLG

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

π(
χ)

Nonconvex SLBQPs − Mat−Vec

P2GP (CG)
BLG

Fig. 5.5. Performance profiles of P2GP, with CG, and BLG on convex (left) and nonconvex
(right) SLBQPs: number of matrix-vector products.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

π(
2χ)

SVM Problems − Mat−Vec

P2GP (CG)
BLGfull

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

π(
2χ)

SVM Problems − Time

BLGfull
SVMsubspace

Fig. 5.6. Performance profiles on SVM test problems: number of matrix-vector of P2GP, with
CG, and BLG (left), and execution times of BLG and SVMsubspace (right).

advantage of performing reduced-size matrix-vector products in solving the subspace
problems for this class of test cases.

6. Concluding remarks. We presented P2GP, a new method for SLBQPs
which has its roots in the GPCG method. The most distinguishing feature of P2GP
with respect to GPCG stands in the criterion used to stop the minimization phase.
This is a critical issue, since requiring high accuracy in this phase can be a useless and
time-consuming task when the face where a solution lies is far from being identified.

Our numerical tests show a strong improvement of the computational performance
when the proportionality criterion is used to control the termination of the minimiza-
tion phase. In particular, the comparison of P2GP with an extension of GPCG to
SLBQPs shows the clear superiority of P2GP and its smaller sensitivity to the Hessian
condition number. Thus, proportionality allows to handle the minimization phase in
a more clever way. The numerical results also show that P2GP requires much fewer
projections than efficient GP methods like PABBmin and the one implemented in
BLG. This leads to a significant time saving, especially when the Hessian matrix is
sparse or has a structure that allows the computation of the matrix-vector product
with a computational cost smaller than O(n2), where n is the size of the problem.
From the theoretical point of view, a nice consequence of using the proportionality

28

criterion is that finite convergence for strictly convex problems can be proved even in
case of degeneracy at the solution.

An interesting feature of P2GP is that it provides a general framework, allowing
different steplength rules in the GP steps, and different methods in the minimiza-
tion phase. The encouraging theoretical and computational results suggest that this
framework deserves to be further investigated, and possibly extended to more general
problems. For example, it would be interesting to extend P2GP to general differen-
tiable objective functions or to problems with bounds and a few linear constraints.

The Matlab code implementing P2GP used in the experiments is available from
https://github.com/diserafi/P2GP. It includes the test problem generator de-
scribed in Section 5.1.

Acknowledgments. We wish to thank William Hager for helpful discussions about
the use of the BLG code and for insightful comments on our manuscript. We also
express our thanks to the anonymous referees for their useful remarks and suggestions,
which allowed us to improve the quality of this work.

REFERENCES

[1] S. Amaral, D. L. Allaire, and K. Willcox, Optimal L2-norm empirical importance weights
for the change of probability measure, Statistics and Computing, 27 (2017), pp. 625–643.

[2] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, USA, 1999.
[3] R. H. Bielschowsky, A. Friedlander, F. A. M. Gomes, and J. M. Mart́ınez, An adaptive

algorithm for bound constrained quadratic minimization, Investigacion Operativa, 7 (1997),
pp. 67–102.

[4] E. G. Birgin, J. M. Mart́ınez, and M. Raydan, Nonmonotone spectral projected gradient
methods on convex sets, SIAM Journal on Optimization, 10 (2000), pp. 1196–1211.

[5] Å. Björck, Numerical methods for least squares problems, SIAM, Philadelphia, PA, USA,
1996.

[6] S. Bonettini, R. Zanella, and L. Zanni, A scaled gradient projection method for constrained
image deblurring, Inverse Problems, 25 (2009), p. 015002.

[7] P. H. Calamai and J. J. Moré, Projected gradient methods for linearly constrained problems,
Mathematical Programming, 39 (1987), pp. 93–116.

[8] P. H. Calamai and J. J. Moré, Quasi-Newton updates with bounds, SIAM Journal on Nu-
merical Analysis, 24 (1987), pp. 1434–1441.

[9] L. Condat, Fast projection onto the simplex and the l1 ball, Mathematical Programming, 158
(2016), pp. 575–585.

[10] F. E. Curtis and W. Guo, Handling nonpositive curvature in a limited memory steepest
descent method, IMA Journal of Numerical Analysis, 36 (2016), pp. 717–742.

[11] Y.-H. Dai and R. Fletcher, Projected Barzilai-Borwein methods for large-scale box-
constrained quadratic programming, Numerische Mathematik, 100 (2005), pp. 21–47.

[12] , New algorithms for singly linearly constrained quadratic programs subject to lower and
upper bounds, Mathematical Programming (Series A), 106 (2006), pp. 403–421.

[13] P. L. De Angelis and G. Toraldo, On the identification property of a projected gradient
method, SIAM Journal on Numerical Analysis, 30 (1993), pp. 1483–1497.

[14] R. De Asmundis, D. di Serafino, W. W. Hager, G. Toraldo, and H. Zhang, An efficient
gradient method using the Yuan steplength, Computational Optimization and Applications,
59 (2014), pp. 541–563.

[15] R. De Asmundis, D. di Serafino, and G. Landi, On the regularizing behavior of the SDA
and SDC gradient methods in the solution of linear ill-posed problems, Journal of Compu-
tational and Applied Mathematics, 302 (2016), pp. 81 – 93.

[16] R. De Asmundis, D. di Serafino, F. Riccio, and G. Toraldo, On spectral properties of
steepest descent methods, IMA Journal of Numerical Analysis, 33 (2013), pp. 1416–1435.

[17] D. di Serafino, V. Ruggiero, G. Toraldo, and L. Zanni, A note on spectral properties of
some gradient methods, in Numerical Computations: Theory and Algorithms (NUMTA-
2016), vol. 1776 of AIP Conference Proceedings, 2016, p. 040003.

[18] , On the steplength selection in gradient methods for unconstrained optimization, Applied

29

https://github.com/diserafi/P2GP

Mathematics and Computation, 318 (2018), pp. 176–195.
[19] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,

Mathematical Programming, Series B, 91 (2002), pp. 201–213.
[20] Z. Dostál, Box constrained quadratic programming with proportioning and projections, SIAM

Journal on Optimization, 7 (1997), pp. 871–887.
[21] Z. Dostál and L. Posṕı̌sil, Minimizing quadratic functions with semidefinite Hessian subject

to bound constraints, Computers and Mathematics with Applications, 70 (2015), pp. 2014–
2028.

[22] Z. Dostál and J. Schöberl, Minimizing quadratic functions subject to bound constraints with
the rate of convergence and finite termination, Computational Optimization and Applica-
tions, 30 (2005), pp. 23–43.

[23] G. Frassoldati, L. Zanni, and G. Zanghirati, New adaptive stepsize selections in gradient
methods, Journal of Industrial and Management Optimization, 4 (2008), pp. 299–312.

[24] A. Friedlander and J. M. Mart́ınez, On the numerical solution of bound constrained opti-
mization problems, RAIRO - Operations Research, 23 (1989), pp. 319–341.

[25] , On the maximization of a concave quadratic function with box constraints, SIAM Jour-
nal on Optimization, 4 (1994), pp. 177–192.

[26] M. D. Gonzalez-Lima, W. W. Hager, and H. Zhang, An affine-scaling interior-point method
for continuous knapsack constraints with application to support vector machines, SIAM
Journal on Scientific Computing, 21 (2011), pp. 361–390.

[27] W. W. Hager and H. Zhang, A new active set algorithm for box constrained optimization,
SIAM Journal on Optimization, 17 (2006), pp. 526–557.

[28] , An active set algorithm for nonlinear optimization with polyhedral constraints, Science
China Mathematics, 59 (2016), pp. 1525–1542.

[29] P. Kamesam and R. Meyer, Multipoint methods for separable nonlinear networks, Springer,
1984.

[30] H. Mohy-ud-Din and D. P. Robinson, A solver for nonconvex bound-constrained quadratic
optimization, SIAM Journal on Optimization, 25 (2015), pp. 2385–2407.

[31] J. Moré and G. Toraldo, Algorithms for bound constrained quadratic programming problems,
Numerische Mathematik, 55 (1989), pp. 377–400.

[32] J. J. Moré and G. Toraldo, On the solution of large quadratic programming problems with
bound constraints, SIAM Journal on Optimization, 1 (1991), pp. 93–113.

[33] P. M. Pardalos and J. B. Rosen, Constrained global optimization: algorithms and applica-
tions, Springer-Verlag, New York, NY, USA, 1987.

[34] B. N. Parlett, The Symmetric Eigenvalue Problem, SIAM, Philadelphia, PA, USA, 1998.
[35] T. Serafini, G. Zanghirati, and L. Zanni, Gradient projection methods for quadratic pro-

grams and applications in training support vector machines, Optimization Methods and
Software, 20 (2005), pp. 353–378.

[36] V. N. Vapnik and S. Kotz, Estimation of dependences based on empirical data, vol. 40,
Springer-Verlag, New York, NY, USA, 1982.

[37] Y. Yuan, A new stepsize for the steepest descent method, Journal of Computational Mathe-
matics, 24 (2006), pp. 149–156.

30

