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INTERNAL CONTROLLABILITY OF SYSTEMS OF SEMILINEAR
COUPLED ONE-DIMENSIONAL WAVE EQUATIONS
WITH ONE CONTROL"

CHRISTOPHE ZHANG'

Abstract. We study systems of two coupled wave equations in one space dimension, with
one control, spatially supported on an arbitrarily small interval. We obtain the controllability of
such systems under certain conditions on the coupling. To do this we apply the “fictitious control
method” in two cases: general systems with a controllable linearized system, and a particular case
where the linearized system is not controllable, namely, a cubic coupling. In the latter case, our
proof requires finding nontrivial trajectories of the control system that go from 0 to 0 and having a
controllable linearized system. We build these trajectories by adapting (in one space dimension) a
construction developed by Jean-Michel Coron, Sergio Guerrero, and Lionel Rosier for the study of
coupled parabolic systems.

Key words. wave equations, coupled systems, exact internal controllability, fictitious control
method, algebraic solvability, return method
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1. Main results and outline of proof.
1.1. Control systems. Let 7> 0, and 0 < a < b < L. We study the following
class of systems:
utt_yluww fl(u U)+h Z‘E( L)

(11) Vit — ngm = fa(u,v), z € (0,L),

u=0on {0, L},

v=0on {0,L},
where h : [0,7T] x [0, ] — R is the control, with supp h C [0,T] X [a,b], and f1, f2 €
C*>(R?), f1(0,0) = f»(0,0) = 0, v, # 0. In what follows we shall note, for any
v #0,

Dl, = 3tt — 1/269“.

We will also study the following particular system:

O, u=h, z€(0,L),
O,,v =4, z € (0,L),
u=0on {0,L},
v=0on {0,L}.

(1.2)

These are systems of coupled semilinear wave equations, with different speeds,
which we seek to control with a single control, which takes the form of a source term in
the first equation with a support in [0, L] X [a, b]. In both cases, we will study solutions
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with C*((0,T] x [0, L]) regularity in order to establish a controllability result with
two controls. Thus, the initial and final conditions ((ug, u1), (vo, v1), (ug, u{) (vg, v{))
have to satisfy some compatibility conditions. For example, the conditions of order 1

and 2 read as

uo(B) = ur(B) = (uf)(B) = (u])(B) = 0,
ug(B) = uf(B) = (u})"(B) = (u])"(B) =0,
1.3 vae{0,L},{ °
(13) €102} w(B) = v1(B) = (v§)(B) = (v{)(B) =0,
v (B) =] (B) = (v])"(B) = (v])"(B) = 0

To write the compatibility conditions of order k > 3, the idea is to first write the
time derivatives of u and v as a function of their lower order derivatives.
There exists a multivariate polynomial Qrfl ; such that

(1.4 (&) two) =G i=1.2
where J;*(u,v) denotes the n-jet of time derivatives of u and v, that is,
(u, v, us, v, ..., 00 u, Ofv).
Now, define by recurrence the following family of operators:
Dy =9,
(1.5) DY = s + il
DY =00 0DV o+ Qly, (JF72(,) for3<n<k.

Then, near the corners I' := {(0,0), (0, L), (T,0), (T, L)}, using the equations of sys-
tem (1.1) and keeping in mind that the control h is supported away from the corners,
we have

1.6
(1.6) ot = D (u,v).

{a?u — DP(u,v),
Now, thanks to the boundary conditions,
Ofu(c) = 0fv(c) =0 YeeT,¥n<k.

Moreover, it is clear thanks to the recurrence in (1.5) that there exist multivariate
polynomials sz such that

(1.7) D (u,v) = P (T2 (w,0), T2 ug, ve), TP (u,v)) ¥ < kyi= 1,2,

where J'(u,v) denotes the n-jet of space derivatives f v and v. Now, (1.6) can be
written in the corners using only ug, u1, u{;, u{, Vg, V1, ’U(J;, v{, which gives the following
compatibility conditions of order k:

Pl (3 (w0, v0)(0), Js*(ul,m(ox (0,...,0)) =0,
P,{j, (J2(ug,vo) (L), J2~ (ur, v1)(L), (0,...,0)) =0, |
(18) P'r{jz (J"(uo,vo)(O),J" 1(U1,’U{)(0),(0,...,0)) _0, VTLSIG,ZZLZ
pl, (Jﬁ(ug,vé)(L),Jg—l(u{,v{)(L), 0,... ,0)) =0,
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The existence and uniqueness of solutions to these systems can be derived from Li’s
general results on quasi-linear wave equations (see [LR03] or [Lil0, Chapter 5, section
5.2]).

In this paper we prove two controllability results: a local result for system (1.1)
and a global result for system (1.2).

THEOREM 1.1. Let R >0, and 0 <a <b< L, T > 0 such that

(1.9) T > 2(L - b max (1,1), T > 2amax (1,1>.
1] [vel vl el
If
df2
(1.10) %(070) # 0,

then there exists n > 0 such that for initial and final conditions

4
(w0, u1), (vo, v1), (ud,u), (v, v])) € (Bon(o.7) X Berogo,rpy (0,m)) ",

where Bgr(0,m) denotes the ball centered in 0 and with radius n in the usual c*
topology, satisfying (1.8) at the order 11, there exists h € C°([0,T] x [0, L]) such that

(1.11) supp h C [0,T] x [a, D]

and such that the corresponding solution (u,v) € C°([0,T] x [0,L])* of (1.1) with
initial values ((ug,u1), (vo,v1)) satisfies

and
(112) (.0, B)llcoys < R.

Condition (1.10) is necessary and sufficient for the controllability of linear systems
(if the dynamics of v does not depend on w there is no hope to control v through «). In
contrast, the following theorem shows that it is not necessary in the case of nonlinear
systems: system (1.2) does not satisfy (1.10), but we still obtain a controllability
result. Moreover, thanks to the system’s homogeneity, the result is global.

THEOREM 1.2. Let0 < a < b < L, T > 0 satisfying (1.9). There exists a constant
C > 0 depending on T such that, for any given initial and final conditions

(o, wn). (w0, v0). (g ), (o o)) € (07 (0, L)) x €™ ([0, L))
satisfying (1.8) at the order 11, there exists h € C°([0,T] x [0, L]) such that
(1.13) supp h C [0,T] X [a, b],

and such that the corresponding solution (u,v) € CS([0,T] x [0,L])? of (1.2) with
initial values ((up,u1), (vo,v1)) satisfies
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and
1
(1'14) HhHC’6 <C (H(umul)u({’u{)”(C“xClO)Z + ”(UOvvlvU({?U{)H(acnxcmy) .
1.2. Related results.

Control of hyperbolic equations. Fundamental results for the controllability
and stabilization of the linear wave equation can be found in [BLR92]. For quasi-linear
wave equations, boundary controllability results for scalar systems with C? regular-
ity can be found in [Lil0, Chapter 5] and can be adapted to coupled systems with
the same number of controls and equations, and for C* regularity. For the semilinear
wave equation, local controllability results have been obtained using the implicit func-
tion theorem (see [Fat75] and the generalization by [Che76]). To get global boundary
and internal controllability for the semilinear wave equation, under some growth con-
straints on the nonlinearity, Zuazua used the Hilbert uniqueness method (HUM) and
introduced a suitable fixed-point method in [Zua93] and [Zua91]. These results have
since then been improved successively by [CKL02] and [CKL99], where authors study
the one-sided and internal controllability of a semilinear wave equation with an iter-
ated logarithm nonlinearity. Another powerful method to prove controllability results
is the Carleman estimates method. It was first used for the semilinear wave equation
in [Zha0Oa] and [ZhaO0b], where a new Carleman estimate was established to prove
internal observability. The estimate worked for globally Lipschitz nonlinearities, with
the observer supported in a neighborhood of some portion of the boundary. More
recently, Carleman estimates were used in [FYZ07] to obtain internal controllability
of the semilinear wave equation in any space dimension. The control is supported in
a neighborhood of a portion of the boundary (earlier works required the controller
to be supported in the neighborhood of the whole boundary), and the nonlinearity is
superlinear. The method of Carleman estimates was also used in [HI11] for mechan-
ical systems of several coupled linear hyperbolic equations (a multilayer Rao—Nakra
plate). This yields internal controllability results, with the same number of controls
and equations, and controllers supported on an arbitrarily small neighborhood of some
portion of the boundary.

Systems with fewer controls than equations. Linear case. Regarding con-
trollability with a reduced number of controls, results for boundary and internal con-
trol of coupled linear symmetric wave systems have been proved by Alabau-Boussouira
([ABL13] and [AB13]) in any space dimension, using energy methods, with more or
less strong assumptions on the coupling operators, and in particular in the case where
the control domain and the coupling domain do not intersect. This was then used in
[AB14] to prove the existence of insensitizing controls for a single wave equation, as
this is linked to the controllability of linear cascade systems in one space dimension,
with the same speed in both equations. Other methods have been used to deal with
a reduced number of controllers, albeit on different types of systems: on the related
question of partial observability on a sphere, on top of some results proven by Lions in
[Lio88a] and [Lio88b], [KL00] shows a way to deal with a reduced number of controllers
using the Fourier expansion of the solutions. They prove that for a generic choice of
coupling parameters, and provided the initial conditions of the unobserved compo-
nents are zero and the initial conditions of the observed components are orthogonal to
a finite-dimensional space (possibly trivial, for example, in the one-dimensional (1-D)
case), then partial observability holds.

Nonlinear case. The link between cascade controllability and desensitizing con-
trols has also been explored for semilinear equations in [Tebll], where the author
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proves the controllability of cascade systems of the form

Ou+ f(u) =h+¢&,
(1.15) Ov+ f'(uw)v =0,

u=0,v(t,0) = %Xro on 012,

where I’y is a portion of the boundary and where f is subject to a growth constraint
to have global well-posedness. To prove the controllability of such systems, the au-
thor first establishes the controllability of a linear problem, using a form of HUM
combined with Carleman estimates. Then, using the Schauder fixed-point theorem,
he establishes the controllability of the nonlinear problem.

In other cases, as for system (1.2), the linearized system around 0 is not control-
lable. A classical tool to handle this problem in finite dimension is the use of iterated
Lie brackets; see, for example, [Isi95, Chapter 2], [NvdS90, Chapter 3], and [Cor07,
Chapter 3]. However, this tool does not work for many partial differential equations
(see, for example, [Cor07, Chapter 5]). In particular it does not work for our control
system (1.2). In that case, a method to handle this situation is the return method.
It consists in looking for trajectories going from 0 to 0 and such that the linearized
system around them is controllable (return trajectories). This method has been in-
troduced in [Cor92] for the stabilization of driftless control systems and in [Cor96]
and in [Cor93] for the controllability of the Euler equations of incompressible fluids.
It is also used in [CGR10] for parabolic systems with cubic coupling. Following this
method, in [CGR10] the authors build return trajectories, using the structure of the
coupling. Then, using Carleman estimates, they prove the controllability of a family
of related parabolic linear systems close to the return trajectory, from which they
deduce null-controllability using Kakutani’s fixed-point theorem.

In yet other cases, a phenomenon of loss of derivatives can occur: this can be
handled with an inversion theorem of the Nash—Moser type, with a stronger condition
on the linearized system. A well-known case is the local controllability of the 1-D
Schrodinger equation, which was proved in [Bea05] and [BC06] using a Nash-Moser
implicit function theorem. More recently, the controllability of a system of coupled
quasi-linear first order hyperbolic systems with one control was proved in [ABCO17],
using the “fictitious control method” and a Nash—Moser type inversion theorem proven
by Gromov, which we will explain in the following section. More precisely the result
concerns systems of the form

up + Aq (u, v)(u,v) + fi(u,v) = h,
v + Ao (u,v) (u,v) + fa(u,v) =0,

with

Of2
(1.16) Em (0,0) # 0.

The work presented in this article draws from all these situations: we study
semilinear systems, as in [Teb11], but of a more general form than (1.15). The idea
would then be to prove a controllability result for some sort of linearized system,
then use a fixed-point theorem (or an inversion theorem) to conclude. However,
because of a phenomenon of loss of derivatives, we rather follow the same path as
[ABCO17] to get Theorem 1.1. Using Nash—Moser type theorems to deal with the loss
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of derivatives can lead to technical developments, as in [Bea05] and [BC06]. However,
in our case, the theorem of Gromov we use is more “user-friendly” and requires less
work to use. Thus our method has the advantage of not being as computation heavy
as Carleman estimates and allows for general control domains, whereas the use of
Carleman estimates usually requires the control domain to be the neighborhood of
some portion of the boundary. For Theorem 1.2, however, condition (1.10) (analogous
to (1.16)) is not satisfied. This corresponds to the fact that the linearized system is
not controllable, and so we build return trajectories as in [CGR10].

Finally, a remark on the control time is in order: for hyperbolic systems, the
control time is usually linked to the speeds of propagation and the size of the domain,
as this represents how fast the deformation produced by the control reaches every
point of the domain. Now, in the case of a reduced number of controls, one can
expect that the indirect action of the control should mean additional control time, or
that the control time should depend not only on the geometry of the domains and
the propagation speeds but on some other parameters. For example, in the results of
[ABL13], the authors point out that the control time they obtain depends on all the
parameters of the system, not only the geometry of the control and coupling domains.
Likewise, in [AB13] and [AB14] the control times depend on observability times not
only for a single equation but also for the coupling operator, and in [Teb11], the control
time depends on the choice of some function used to establish Carleman estimates. On
the other hand, in [ABCO17] as well as in our theorems, the control time is the same
as for scalar equations. Indeed, as we will see in what follows, applying the fictitious
control method does not change the control time when removing one control, and
the control time depends only on the size of the support of the control. Physically
speaking, we use the coupling to transmit information from one equation to another
(this corresponds to conditions (1.10) and (1.16)) everywhere in the domain, so that
the action of the control on the first equation can be transmitted without delay.

1.3. The fictitious control method. The fictitious control method was intro-
duced in [Cor92] and [GBPGa05] and successfully used in [CL14], [ABCO17], and
[CG17]. The idea is to first prove a controllability result with two controls (the fic-
titious controls), then reduce the number of controls, using some sort of fixed-point
theorem, namely, Theorem 2.1.

In this article, we apply it to second order hyperbolic systems, which present the
same problem of loss of derivatives as the systems in [ABCO17]. This loss of deriva-
tives is handled by using Gromov’s notion of algebraic solvability, which allows for
differential operators to be inverted in a special way under some condition (infinites-
imal inversion) on their derivative. This yields local results around the equilibrium,
but we will also work around trajectories other than the stationary trajectory at the
equilibrium, in the spirit of the return method, paying close attention to the regu-
larities involved. Indeed, condition (1.10) from Theorem 1.1 is identical to condition
(1.16) and is crucial to solve the system algebraically (see Proposition 2.2). If, as in
Theorem 1.2, it is not satisfied, then, following the spirit of the return method, one
can build trajectories of the system along which such a condition is verified, at least
on some appropriate spatial domain.

We can thus sum up our strategy of proof in three steps:

1. Find smooth trajectories around which Theorem 2.1 can be used (when nec-
essary).

2. Prove a local controllability result with two controls (fictitious controls) around
the return trajectory, using classical boundary control results.

3. Use Theorem 2.1 to reduce the number of controls to one.
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Remark 1.1. In this method, the controllability of the linearized system is not
used directly to obtain controllability of the nonlinear system using a fixed-point
theorem. Rather, the corresponding condition (1.10) gives us some sort of indication
that information is “well transmitted” from the first equation to the second equation
so that what happens with one control in each equation can be translated into a single
control in the first equation.

This article is organized as follows. In section 2, we illustrate Gromov’s ideas on
a linear example and then prove Theorem 1.1, which is a case where we do not need
to find return trajectories. This will allow us to present how Gromov’s ideas can be
applied to a system of nonlinear wave equations. In section 3 we prove Theorem 1.2.
In this case we need to find return trajectories, and the application of Theorem 2.1
around those trajectories will require a more detailed knowledge of the supports of the
return trajectory. Finally section 4 is devoted to possible improvements and further
questions on this topic.

2. First case: The linearized system is controllable. As mentioned in
section 1.3, we build on the method presented in [ABCO17]. One of the main ingredi-
ents of this method is the theory of differential operators, and the notion of algebraic
solvability, which we briefly present in the subsection below. The use of algebraic solv-
ability in the study of control systems first appears in [Cor92], where it was used to
prove the stabilizability of finite-dimensional systems without drift with time-varying
feedbacks. It was first used in the context of partial differential equations in [CL14]
for the control of the Navier—Stokes equation.

But first let us give an informal explanation of our method in the case of a linear
system. First we have to rewrite the control problem using differential operators. We
note & the operator associated with the equation of our control problem. Then, the
control problem, given initial and final conditions, consists in finding (u,v) with those
initial and final conditions, and a control h such that

P (u,v,h) =0.

This corresponds to an inversion problem, but with a twist: one has to find an inverse
image with the right initial and final conditions. Now, using the solutions to forward-
and backward-evolving Cauchy problems corresponding to the initial and final condi-
tions, one can build functions (u,v) with the right initial and final conditions. The
nonlinear version of this is done at the beginning of subsection 2.2. In general, one
can do this so that for some 7 > 0,

(h1,h2) := P(u,v,0) =0 Vt & [n, T —n).

Now suppose Z is invertible. We can make the following computation, the nonlinear
version of which is made in subsection 2.2:

2 ((u,v,0) + 27 (=h1,—hs)) = (h1, ha) — (h1, hs) = 0.

This seems to yield a solution to the control problem; however, we still need to check
that the “corrective term” does not change the initial and final conditions. This is
where Gromov’s notion of algebraic solvability comes into play: the right property
for 2 is not to be invertible but to be algebraically solvable. That is, the inverse can
also be written as a differential operator:

@71(_}117 _hZ) = Zarar(_hl) + Zbrar(_hQ)



CONTROLLABILITY WAVE SYSTEMS NONLINEAR COUPLING 3099

for some functions a.,,b.. With this additional property, one can see that, because
—h1, —hg vanish for t ¢ [n,T — 1],

P Y —h1,—ha) =0 Vt & [n,T —n).

Hence, (u,v,0) + 2~ '(—hy, —hs) still has the right initial and final conditions.

2.1. Differential relations and Gromov’s theorem. In this section we sum
up some basic notions regarding differential operators and Gromov’s local inversion
theorem for differential operators. More details can be found in [Gro86].

In what follows, Q is the closure of a nonempty open bounded smooth subset of
R?, and p, ¢, € N*. We note n,., := 2+ p card{(a1, az) € N* | a; +as < r}. Recall
the definition of the r-jet of a function z € C"(Q)?:

gl z 0"z
ter gz’ gt ez

J z(t,x) = ((t7x)7z(t,x)7...,a ) eR"» V(t,r) € Q.

DEFINITION 2.1. A map 2 : C"(Q)P — C°(Q)? is a C™ nonlinear differential
operator of order r if there exists FF € C°(R""? R?) such that

P(z)=F(J z)Vz € C"(Q)P.

This clearly implies that 9 is C™ (with the usual C", C° topologies), and we denote
by
&, CT(Q)F — C°(Q)?
its Fréchet differential at z € C"(Q)P.
We now define some sort of manifold, over which we can invert these operators.

DEFINITION 2.2. A subset A of C%(Q)P is a differential relation of order d € N
if there exists R C R"®? such that

A={ze CHQP | V(t,z) € Q,J%%(t,x) € R}.
It is said to be open if R is an open subset of R"*». For k € N, we note
AF = AN Ck(Q)P.

For classical local inversion theorems, one needs the differential at one point to
be invertible. Here the requirement is somewhat stronger: we need the differential at
any point to be invertible, with the extra property that the inverse of each differential
is also a linear differential operator.

DEFINITION 2.3. Let A C CH(Q)P be a differential relation of order d, and let 9
be a differential operator of order r. We say that 2 admits an infinitesimal inversion
of order s € N over A if there exists a family of linear differential operators of order s,

2 €A M, : C(Q)1 — C°(Q)P,

such that
1. foreveryg € C°(Q)!, z — M,(g) is a differential operator of order d (possibly
nonlinear) and it is a C*-differential operator in (z,g),
2. (Algebraic solvability) for every z € AT,

fz (¢] ./ﬂz = Idcr+s(g).
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We can now state Gromov’s inversion theorem (see [Gro86, section 2.3.2, main

theorem]).

THEOREM 2.1 (Gromov). Let A C C4(Q)? be a nonempty open differential
relation of order d, and let 2 be a differential operator of order r. Assume that 9
admits an infinitesimal inversion of order s over A. Let

(2.1) oo > max(d, 2r + s),

(2.2) v € (0,00).

Then, there exists a family of sets B, C C°°T*(Q)? and a family of operators 2, " :
B, — A where z € A°°T" | such that the following hold:
1. (Neighborhood property) For every z € A%t 5 0 € B, and

B:= U {z} x B,

zE€AC0FTs

is an open subset of C7°T"T5(Q)P x C70F5(Q)1.
2. (Inversion property)

(2.3) 2(2:'(9)) = 2(2) + g V(z.9) € B.
3. (Normalization property)

(2.4) 2;40) =z Vz € A70FTFs,

z

4. (Regularity and continuity) Let oo < a1 < m1; then for all z € A5 and
geE BT =B, N0
z ' )

(2.5) 27 g) € A* VE < 0.
Moreover,
(2.6) (2,9) — 27 (g) € CO(AT T x BI1Hs  AF) VE < 0.

Finally, if ;1 > o1, then (2.5) and (2.6) hold for k = o1.
5. (Locality) For every (t,x) € Q, and for every (z1,91), (22, 92) € B, if we have

(Zlagl)(gaj> = (32792)(7?’@) V(E, j) € B((t>$>7y) na,

then
2. Mgt 2) = 2 (g2) (t, @),

Remark 2.1. The neighborhood property allows us to relate the domains of inver-
sion for each local inversion to each other: local inverses at two “neighboring” points
will be defined on domains that have “neighboring” sizes. In particular that means
the domains of inversions are bound to overlap. The locality property tells us that
when this happens (albeit locally), the images of the local inverses agree locally. In
the linear case, this corresponds to the fact that when a function vanishes on an open
set, its image by any linear differential operator also vanishes on this open set (see
the beginning of the section).
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2.2. From two controls to one: Algebraic solvability. As in the linear case,
we first build a trajectory (u,v) with the right initial and final conditions, but with
P (u,v,0) potentially nonzero on some restricted domain. In terms of control theory,
this amounts to solving the control problem with two controls (the fictitious controls),
with restricted supports. In fact, for systems of the form

O, u= fi(u,v) + hy, z €0, L],
O,,v = fa(u,v) + he, €0, L],
u=0on {0, L},
v=0on {0,L},

(2.7)

where f1(0,0) = f2(0,0) = 0, we have the following local controllability result, which
is a consequence of boundary control results presented in [Lil0, Chapter 5, sections
5.2 and 5.3].

PROPOSITION 2.1. Let k >2,0<a<b <L, T >0 such that (1.9) holds. For
every 0 < § < min (T/2, (b — a)/2) satisfying

1 1
T —26>2(L—b+ 20) max (,>7
1] (el
(2.8) o
T — 26 > 2(a + 2J) max <,> ,
[’ [vel

there exists 7 > 0 such that, for initial and final conditions

4
(w0, u1), (vo,v1), (ud,ul), (v, v])) € (B (jo,11x10,2)) (0,m) X Bes—1(j0,1)x[0,2)) (0, 7))

satisfying (1.8) at the order k, there exist controls hi, ho € C*¥72([0,T] x [0,L]) and
constants C1,Co > 0 depending on T, d, k satisfying

(2.9)  supp h; C[6,T =48] x [a+d,b— 9], 1=1,2,
(210)  [[hall or-2 < Ci[((uo, ua), (vo, v1), (wd, ul), (v, o))l (crnorrys, i=1,2,

such that the corresponding solution of (2.7) with initial values ((ug,u1), (vo,v1))

satisfies
{U(T’ : ):ugv ut(T’ : ) :u{’
U(Ta ' ):U(J)Cv Ut(Ta ! ):’U{a
(2.11) (1, 0) | (eryz < Call((wo, ), (vo, v1), (ud, ud), (0, vl o orys-

This result is a particular case of Proposition 3.2 which we will prove in the
following section, when dealing with the cubic coupling.
For now, let R > 0,0 <a <b< L, and let T > 0 be such that (1.9) holds. Let
0 <dé < min(7T/2,(b—a)/2)/2 such that (2.8) holds for 2§ (note that it also holds
for §). Define
Q5 :=1[6,T — 8] x [a+d,b— 4],

Qa5 := [26,T — 2] x [a + 26,b — 2],
and let Q C [0,7] X [a,b] be a smooth closed set such that

QJCé
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Define the following nonempty open differential relation of order 2:

A= {(u,uh) € (CQ(Q))3 Y(t,x) € Q, %(u(t,x),v(t,x)) #+ 0}.

We define the following nonlinear differential operator 2 : C%(Q)* — C°(Q)? of order
r=2:

2 ((u,v,h)) = (Op,u — fi(u,v) — h, 0,0 — f2(u,v)) Y(u,v,h) € C*(Q)?
and its differential at (u,v,h) € C*([0,T] x [0, L])*:

Lwwy (@9, h) = (O,,@ — Df1(u,v) - (4, 8) — b, 0,0 — Dfau,v) - (4,7))
Y(a,,h) € C2([0,T] x [0, L])3.

We now have the following result, thanks to the definition of A.
PROPOSITION 2.2. 2 admits an infinitesimal inversion of order 2 over A.

Proof. Let hyi,hy € C*Q), (u,v,h) € A. Using the fact that %(u, v) never
vanishes, if we set

5 =0,
i = ha
% (1,0
- B 0 B
h=0,4a— a—{j(u,v)u — hq,

then we have }
Dg/ﬂ(u,v,h) (ﬂv v, h) = (hla h2)

Moreover, the above formulae clearly show that (u,v,h) — Ly n) (4,0, h) is a (non-
linear, O™ with the usual topology of C?(Q)) differential operator of order 2 on

C?(Q), and (u,v, h, @, 7, h) — Llww,n) (U, 0, h) is also O, d

We can now apply Theorem 2.1 withd =2, s=2,r =209 =17, v = 6/2. This
yields a collection of open sets, which all contain 0,

B. C (C°(Q))%, z e A",
the open subset of (C’H(Q))3 X (C'Q(Q))2

B= |J {2} xB.,

zEAML

and the collection of operators
@2—1 ‘B, —» A, ze A
Now, thanks to condition (1.10),
(0,0,0) € A,

2(0,0,0) = (0,0),
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and
((0,0,0),(0,0)) € B,

so that, thanks to the neighborhood property of Theorem 2.1, there exists £ > 0 such
that

(2.12) (Beri(o)((0,0,0),6))° x (Bes(o)((0,0),¢))? € B.

By the continuity property of Theorem 2.1 with 17, = 01 = 09 = 7, there exists n > 0
such that for |[((u,v,h), (b1, h2))ll(c11)sx(c9)2 <,

1D oty (h1s h2) [ (coys < R.

Proposition 2.1 with k = 11 yields ' > 0 such that for any initial and final conditions

((UO’ ul)’ (UO’ Ul)v (ug’ u{)a (’U(); U{)) € (BCH([O.,T]X[O,L])(O7 77/)

X Bao(jo.r)x10,)) (0,7'))*,
there exist two controls hy, hy € C?([0,T]x [0, L]), supported in Qa5 (condition (2.9)),
that steer system (2.7) from the given initial conditions to the given final conditions,

with the corresponding trajectory (u*,v*) satisfying (2.11). Together with (2.12), this
implies that there exists " > 7" > 0 such that for initial and final conditions

(w0, u1), (vo, v1), (uf, uf), (v§,v])) € (B o, 0, (0,1")

X Boo(or1x [0,y (0,7"))%,

the corresponding trajectory of system (2.7) satisfies

(2.13) P (ujg:v]0,0) = (h1j0s haje) ,
(2.14) ((Urgyvrgvo)v (=h1jo, —h2|g)) € B,
(2.15) [((u*, 0%, 0), (h1, h2)) [l (c11)3x (c9)2 < min(R, 7).

Let us now set, keeping in mind the regularity property of Theorem 2.1 with
m =01 =00 = 7,

(u,v,h) = 9,

6
(ul*Q,v‘*Q,O) (_h1|Q7_h2\Q) e A°.
Then, by the inversion property of Theorem 2.1, and (2.13),

2 (u,v,h) = .@(UTQ,UTQ,O) — (h110, h2j0) = (0,0).

Now, let us show that (u,v,h) = (u*,v*,0) on Q\ Qs . This will allow us to extend
(u,v,h) on ([0,T] x [0,L]) \ Q.
Let (t,z) € Q\ Qs. As the h; are supported in Qas,

(2.16) ((u*,v*,0), (=h1,—h2)) = ((u*,v*,0),(0,0)) on B <(t,x), g) na.
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(w.v|h) = (u*.v*.0)

Das

L=al

L

28

Fic. 1. Matching trajectories with two controls and with a single control on the appropriate
domain.

Thus, using the locality property of Theorem 2.1,

(2.17) .@@}virgjo) (=h1jg, —hsQ) (t,x) = 9@}@1}‘*@70) (0,0) (t,z),
that is, using the normalization property,
(2.18) (u,v,h)(t, z) = (u*,v",0)(t, x).

We can now extend (see Figure 1) (u, v, h) by setting
(2.19) (u,v,h)(t,z) = (u*,v",0)(t,z) V(t,z) €[0,T] x [0,L]\ Q.
Then,

supp h C [0,T] X [a, b],

and (u,v) satisfies the same initial, boundary, and final conditions as (u*,v*):

(U,U)(O, : ) = (UO’UO)a (ut,vt)(ov ) = (ulvvl)a
2.20
( ) {(uvv)(Tv c)= (ugavg)’ (ut>vt)(T7 ) = (u{vv{)’

u(-,0)=u(-,L)=0,
@21 {v< L0 =u(-,1) =0,
and
O, u = fi(u,v) + h,

(2.22) {Duzv — Folu,0),

Finally, we get (1.12) from (2.15) and the continuity property of Theorem 2.1.
This proves Theorem 1.1.
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Remark 2.2. Theorem 1.1 actually holds for coupled quasi-linear equations:
Opu — Oy (K1 (u, 0zu)) = f1(u,v) + h, x €0, L],
v — Oy (Ka(v,0,v)) = fa(u,v), z € [0, L],

u=0on {0,L},

v=_0on {0,L},

where f1(0,0) = f»(0,0) = 0, K;, Ky € C(R?), and K;(0,0) = K»(0,0) = 0. One
can check that when one modifies the recurrence relation in (1.5) to match the new
equations, the operators can still be written using only J(u,v), J» *(u¢,v;), and
J{'(u,v), and thus the compatibility conditions will have the same form as (1.8).

Indeed, in this case we can still use Li’s results for the perturbed quasi-linear sys-
tem, as we consider the “perturbations” around 0. This will yield a “universal” time
condition, because the propagation speeds are close to min(/d2K71(0,0), /92 K2(0,0))
for the perturbed system. On the other hand if we work around a nonzero trajectory
(return method), the perturbed quasi-linear system could present much smaller prop-
agation speeds. The final time condition would then depend on the return trajectories
that are found.

THEOREM 2.2. Let R>0,0<a<b< L, T >0 such that

T > 2(L — b) max ((\/82K1(07 0))_1 : <\/82K2(070))_1> :

(2.23)

(2.24) . .
T > 2amax <(\/82K1(0,0)) : (\/azKQ(o,O)) > .
If
df2
2.2 e
(2:25) 2 0,0) £0,
then there exists n > 0 such that for initial and final conditions

((uo,u1), (vo, v1), (ud,uf), (wf,v])) € B o, Ly x cro(o,)))* (0, 1)

compatible at the order 11, there exists h € C°([0,T] x [0, L]) such that
(2.26) supp h C [0,T] x [a, ],
and such that the corresponding solution (u,v) € C®([0,T] x [0,L]) of (2.23) with
initial values ((ug,uy), (vo,v1)) satisfies
T, ) =ufs w(T, ) =uf
{wﬂ->=%,1mﬂ->=ﬁ,
and inequality (1.12) holds.

3. Second case: An example with an uncontrollable linearized system.
We now turn to system (1.2). As mentioned before, it does not satisfy condition
(1.10); in other words, the linearized system around 0 is not controllable. Indeed, for

O,,u=h,

O,,v =0,
(3.1) 2

ujpn = 0,

Vg =0,

the control h gives us no influence on the dynamics of v.
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Thus, the computations from the beginning of subsection 2.2 do not hold: we
cannot work around the stationary trajectory 0, and thus we need to find another
trajectory around which to work. More precisely, keeping in mind Proposition 2.2,
we look for a return trajectory (u, o, B) going from 0 to 0 such that for some smooth
closed set Q C [0,T] x [a, b], we have

fs
ou
Additionally, @ will have to satisfy some properties so that a result with two controls
can be proved.

To find such a trajectory, we follow the same idea as in [CGR10], where return
trajectories are built for coupled heat equations with a cubic coupling. The additional
derivative in time simply adds terms and makes for heavier computations. However,
condition (3.2) will account for additional work.

We will then prove and use a more general controllability result with two controls.
After that, the application of Gromov’s theorem is rather straightforward.

(3.2) Y(t,z) € Q, == (u(t,x),v(t,z)) = 3u?(t,z) # 0.

3.1. A preliminary construction: Elementary trajectories. In this sub-
section, we describe a construction of a smooth trajectory of system (1.2) that goes
from 0 to 0. For now we consider condition (3.2) but without any special requirements
for Q.

In what follows, we suppose without loss of generality (by scaling the space vari-
able) that vo = 1.

To build trajectories that start at 0 and return there, the idea is to use the cascade
structure of the equation: first we find a C'°°([—1, 1] x [0, 1]) function v such that Ov is
the third power of a C*°([—1,1] x [0, 1]) function u. By setting the right conditions at
the start and end times, this gives us a return trajectory. The corresponding control
will then be 0J,, w.

Let us recall that z — /z is C° on R*. So, by composition, the cubic root of
a C™ function f is C°° at all the points where f is nonzero. At the points where f
vanishes, by Taylor’s formula, a fairly simple sufficient condition for {’/} to be C*
at those points is for f to vanish, along with its first and second derivatives, while its
third derivative is nonzero.

Now, to find functions whose image by the wave operator is a third power of a C*
function, we consider the solutions to the corresponding stationary problem, namely,
functions whose Laplacian is the third power of a C°° function. The solution of this
problem corresponds to the following proposition, proven (with 1/2 instead of 3/4) in

[CGR10).

PROPOSITION 3.1 (Coron, Guerrero, Rosier). There ezistd',8", g € C*([0,1]),G €
C*([0,1]) such that

gll =G,
g(z) =1—2% on [0,6"],
g(z)=e % on [1 —4',1),
3

G(z) (z—i) >0forze(0,1)\{4},

3\° 3 40" 3 &
G(z)—<2—4> on [4—2,44—2]

(3.3)

In a sense, this proposition gives us the simplest example of functions the sec-
ond derivative of which is the third power of a smooth function: G = ¢ vanishes
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exponentially in 1 and has only one vanishing point on [0,1), around which it has
a cubic behavior. The idea of the construction is then to perturb this function of
space and make it evolve in time, so slightly as to preserve the properties (3.3) of the
stationary problem. Let 0 < a < b < L, and T > 0 such that (1.9) holds.

Let 0 < 6 < min(7/2, (b — a)/2) such that (3.4) holds. Set Ag to be a function
such that

No(t) = e VT vie (0, g} U {T g,T) ,
(3.4) Ao(0) = Xo(T') =0,
olt) >0 ¥t e (0,T),
Xo([0,T — o) = {1},

and write A := e)g for some ¢ to be determined.
Remark 3.1. In [CGR10], the authors take

(3.5) At) = et?*(1 —t)*

In our case, however, we will see that we need to fit a rectangle of the form [6,T —
8] X [xo — &, 2o + &] inside the support of u (see Figures 2 and 3). With a polynomial
as in (3.5), the smaller § > 0 gets, the smaller £ has to be. This in itself would not be
an obstruction to prove our controllability result, but using definition (3.4) has the
advantage to fix the width of the rectangle for all § satisfying (2.8).

Set

folt) = e T Vi € (0,T),
fo(0) = fo(T) = 0.

Finally, let go be the solution to the stationary problem (see Proposition 3.1). Let
2o € (0, L), and choose € < min(xg, L — xg). We now look for v in the form

> |z — o]
(3.7 wle) = 3 A0 ().

Note that the fact that fy vanishes faster than A at 0 and T' compensates the singu-
larity that occurs in the term |z — zo|/A(t) of the first term of the sum. We will see
that the f; have a similar property, thus ensuring that functions of the form above
are indeed C'*°. We also require that the g; satisfy

(3.6)

5// 5//
(3.8) supp g; C {3 — 3 + ] Vi € {1,2,3},

4 274" 2
where §” is as defined in Proposition 3.1, so that

(3.9) supp (4,9, h) C [0,T] x [z — &, x0 + €.

Let us then set, in order to simplify the notation for our computations,
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B Y L L L L T T T T T e
- _-——

T Ij T

F1G. 2. The support of the trajectory (u,v, B) The dashed line represents the vanishing points
of Ov (or, equivalently, u).

which we note, in the new set of variables,
V(t,z) :=V(t, A(t)2).

We are now looking for functions f; and g; such that V'3 is of class C*°. In order
to achieve this, we will work with the new set of variables (¢, z) and study V. We now
need to have precise knowledge of the behavior of V when it vanishes.

More precisely, the aim is to write V near % as

5// 5//
> 3+}),gﬁ<0fort7é0,T.

3\3
2yy) _ 2 : o0 7 2
AV = (z 4) o(t,z) withp € C <[0,T] X {4 51T D

Note that ¢ has to be negative because of the minus sign in the wave operator. Hence,
we look for V satisfying
3
V. ( : a4) =0,

3
sz(’,4>0,

3 5// 3 5//
21t

Viee < =Cfoon [0,T] x {4

] , where C' > 0.
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Additionally, since we have the condition on G

G(2) <z—i> >Oforz€(0,1)\{z},

we will make sure to have

V(t, 2) (;;-i) <0 Y(t,2) € (0,T) x ((0,1)\{3})

Let us now compute V and its first, second, and third derivatives:

3 2

_ . DY A\ — 2)2 A
Uy = Zfigi - 2fizxg£ —fi (Z)\QQ: —2° <)\> 92’) .

i=0

3
Upe = A2 foG+ Y fix gl

i=1

NPV = —(1 - 22}\2)f()G + )\2f090 - 2f()2}\)\96 -z (A}\ - 2).\2) fog(/)
3

1=1
= —(1 = 22X?) foG + N fogo — 2foz \Ngh — z(AX — 20%) fog)
3
+ Z ()\Qf,igi — 2f¢z/.\)\gg — fi [z()\)\ — 2)'\2)91{ + (1 — 22/.\2) gz’-’]) )

i=1

Now, for e small enough (note that this depends on the value of §),
. 1

(3.10) 1— (e2)0(t))? > 3 V(t,z) €[0,T] x [0,1]

and, using the notation A,

1

(3.11) T

< 10.

C2([0,77)

Now, if we impose

gt =0Vie{1,2,3},j€{0,1,2} (4,5) # (1,2),
(3.12) .

g1 =1

NG U OV

and if we define f; by
(3.13)

1 3\ . 3. 3\ . 3 . . 3
A= g (o (5) 230 (§) o J0% 280