
MANYCORE PARALLEL COMPUTING FOR A HYBRIDIZABLE
DISCONTINUOUS GALERKIN NESTED MULTIGRID METHOD

MAURICE S. FABIEN∗, MATTHEW G. KNEPLEY† , RICHARD T. MILLS‡ , AND

BÉATRICE M. RIVIÈRE∗

Abstract. We present a parallel computing strategy for a hybridizable discontinuous Galerkin
(HDG) nested geometric multigrid (GMG) solver. Parallel GMG solvers require a combination of
coarse-grain and fine-grain parallelism to improve time to solution performance. In this work we
focus on fine-grain parallelism. We use Intel’s second generation Xeon Phi (Knights Landing) many-
core processor. The GMG method achieves ideal convergence rates of 0.2 or less, for high polynomial
orders. A matrix free (assembly free) technique is exploited to save considerable memory usage and
increase arithmetic intensity. HDG enables static condensation, and due to the discontinuous nature
of the discretization, we developed a matrix vector multiply routine that does not require any costly
synchronizations or barriers. Our algorithm is able to attain 80% of peak bandwidth performance
for higher order polynomials. This is possible due to the data locality inherent in the HDG method.
Very high performance is realized for high order schemes, due to good arithmetic intensity, which
declines as the order is reduced.

Key words. finite elements, discontinuous Galerkin, multigrid, high performance computing

AMS subject classifications. 65M55,65N30,35J15

1. Introduction. Multigrid methods are among the most efficient solvers for
linear systems that arise from the discretization of partial differential equations. The
effectiveness of this multilevel technique was first observed by Fedorenko ([21]) in
1964, and popularized by Brandt ([11]) in 1977. Traditionally, multigrid methods
have been applied to low order finite difference, finite volume, and continuous fi-
nite element approximations discretizations ([53], [56], [25], [12]). The discontinuous
Galerkin (DG) discretization brings with it many advantages: can handle complex
geometries, has access to hp-adaptivity, is capable of satisfying local mass balance
(ideal for flow problems and hyperbolic PDEs), and highly parallelizable due to the
lack of continuity constraints between elements. However, DG methods often have
more degrees of freedom than their continuous counterpart. In addition, high order
discretizations rapidly increase the condition number of the discretization operator,
which poses a challenge for any linear solver ([7]).

Originally multigrid methods were developed at a time when access to parallelism
was limited, and iterative methods that had less concurrency but better convergence
rates were favored. The multilevel nature of multigrid can cause challenges in its par-
allelization; load balancing problems occur due to fine grids have ample data to work
with, but coarser levels do not. Moreover, traditional multigrid is a multiplicative
method, that is, each level must be completely processed before moving to the next.
Additive multigrid methods allow for the simultaneous processing of all levels, but
the trade off between concurrency and robustness is often not ideal [8].

Multiplicative multigrid is well known to have sequential complexity, for N data
points a single cycle costs O(N) floating point operations. However, the parallel
complexities of V- and F-cycles are polylogarithmic. For multiplicative multigrid, a
natural heterogeneous computing strategy is to process fine levels up to a threshold
on an coprocessor (or accelerator), and have the remaining coarse levels be processed
by coarse-grain parallelism. In this paper all computations are done on a single Xeon
Phi coprocessor (Knights Landing), as we only focus on the fine-grain parallelism.
However, an offloading model is a natural extension of this work.

In this paper we consider a nested multigrid technique for high order hybridizable
discontinuous Galerkin methods; which combines p-multigrid and h-multigrid. The
HDG method is capable of static condensation, which significantly reduces the total

∗Department of Computational and Applied Mathematics, Rice University, Houston, TX.
†Department of Computer Science and Engineering, University of Buffalo, Buffalo, NY.
‡Laboratory for Advanced Numerical Simulations, Argonne National Laboratory.

1

ar
X

iv
:1

70
5.

09
90

7v
3 

 [
m

at
h.

N
A

] 
 1

7 
Ju

l 2
01

9



2 M. S. FABIEN, M. G. KNEPLEY, R. T. MILLS, AND B. M. RIVIERÈ

number of degrees of freedom compared to classical DG methods. This has impor-
tant consequences for linear solvers like multigrid, since the cost of multigrid grows
with the number of degrees of freedom. Moreover, due to the discontinuous nature of
HDG methods, we show that we can efficiently leverage the massive parallelism that
many-core processors offer. Through roofline performance modeling and tuning, we
show that our implementation results in efficient device utilization as well as signifi-
cant speedups over a serial implementation. An interesting benefit of the Xeon Phi
coprocessor is that it allows us to use traditional parallel programming paradigms like
OpenMP, MPI, and pthreads. Consequently, we can take advantage of the massive
fine-grain parallelism that the Xeon Phi offers by utilizing these traditional parallel
paradigms with significantly limited software intrusion.

The remainder of the paper is organized as follows. Section 2 introduces the
model PDE. The relevant finite element notations and HDG discretization is described
in section 3. In section 4, we explain how we implement the nodal tensor product
basis, quadrature, and barycentric interpolation. Numerical experiments verifying the
correct convergences rates for the HDG discretization is conducted in section 5. The
core components of the multigrid solver we use is discussed in section 6. This includes
the description of intergrid transfer operators, relaxation, coarse grid operators, and
the standard multigrid cycle. In section 7 we show through computational experiments
that our multigrid method obtains very good convergence rates and error reduction
properties. The performance of our algorithm in a parallel setting is evaluated in
section 8.

2. Model problem. Consider the elliptic problem

−∇ · (K∇u) = f, in Ω,(1)

u = gD, on ∂Ω.(2)

where Ω is an open domain in R2 and ∂Ω denotes the boundary of the domain. Dirich-
let datum gD is imposed on the boundary. The function f is the prescribed source
function and the matrix K is symmetric positive definite with piecewise constant en-
tries. The div-grad operator in (1) appears in several problems in engineering such
as multiphase flow in porous media. It will provide insight into how a DG multigrid
solver performs on modern architectures. Moreover, it acts as a gateway to construct
very efficient numerical methods for time dependent PDEs that require pressure solves
or implicit time stepping.

3. Discretization. HDG methods were designed to address the concern that
DG schemes generate more degrees of freedom (DOFs) when compared to continuous
Galerkin techniques. For standard DG methods, each degree of freedom is coupled
with all other degrees of freedom on a neighboring element. By introducing additional
unknowns along element interfaces, the HDG method is able to eliminate all degrees
of freedom that do not reside on the interfaces. As such, a significantly smaller linear
system is generated, and HDG gains much of its efficiency at higher orders ([37]). It
turns out that the HDG method also has a number of attractive properties, namely,
the capability of efficient implementations, optimal convergence rates in the potential
and flux variables, as well as the availability of a postprocessing technique that results
in the superconvergence of the potential variable. HDG methods are a subset of DG
methods, so they still retain favorable properties, e.g., local mass balance, ease of
hp-adaptivity, and the discontinuous nature of the solution variables. A thorough
analysis of HDG methods can be found in [18], [20], and [17].

A number of works are available on multigrid for DG methods. Interior penalty
methods are the most commonly analyzed, for instance, see [14], [13], [23], [4], and
[3]. Most of these works are theoretical, and while they are able to prove convergence,
the numerical experiments show rates below what is typically expected from GMG
in this model setting. For the interior penalty class of DG methods, it was found
that specialized smoothers and careful tuning of the stability parameter was required
for better convergence results (see [34], [33]). Local Fourier analysis (local mode
analysis, [12]) was applied to interior penalty DG methods in [27], [29], and [28].
However, convergence rates were in the range of 0.4 to 0.6 for low order discretiztions



MANYCORE PARALLEL COMPUTING FOR HDG GMG 3

(p ≤ 2). In addition, local Fourier analysis is applied to a two level multigrid scheme,
and is used as a heuristic to estimate GMG performance. Further, it is well known
that two grid optimality does not always imply V-cycle optimality (see [44]).

It should be noted that the HDG class of discretizations is quite large, similar
to that of standard DG methods. In [20], a unified framework is developed (similar
to the work of Arnold et al. in [6]) to create a taxonomy of HDG methods. For
instance, one can obtain HDG methods by utilizing one of: Raviart–Thomas DG,
Brezzi–Douglas–Marini DG, local DG, or interior penalty DG. In this work we have
no need to distinguish between the various HDG methods, because we employ the
LDG family of hybridizable methods ([17]). As such, since the LDG method is a
mixed technique, one needs to reformulate the underlying equation (1) as a first order
system by introducing an auxiliary variable q:

q = −K∇u, in Ω,(3)

K−1q +∇u = 0, in Ω,

∇ · q = f, in Ω,

u = gD, on ∂Ω.(4)

We now describe the HDG method. Let Eh be a subdivision of Ω, made of
quadrilaterals, K, of maximum diameter h. The unit normal vector outward of K
is denoted by nK . The mesh skeleton is denoted by Γh, that is the union of all the
edges. We further decompose the mesh skeleton as Γh = Γoh ∪ Γ∂h, where Γ∂h denotes
the set of all edges on the boundary of the domain, and Γoh the set of all interior
edges. The broken Sobolev space is represented by H1(Eh); it consists of piecewise
H1 functions on each mesh element. We use the following short-hand notation for L2

inner-product on mesh elements and edges:

(u, v)Eh =
∑
K∈Eh

∫
K

uv dx, 〈u, v〉Γh
=
∑
K∈Eh

∫
∂K

uv ds, ∀u, v ∈ H1(Eh),(5)

〈w · n, v〉Γh
=
∑
K∈Eh

∫
∂K

w|K · nKv|Kds, ∀(w, v) ∈ H1(Eh)2 ×H1(Eh).(6)

The underlying approximation spaces for the HDG method are as follows:

Wh = {w ∈ L2(Ω) : w|K ∈ Qp(K) ∀K ∈ Eh}, Vh = Wh ×Wh,

Mh = {µ ∈ L2(Γh) : µ|e ∈ Qp(e) ∀e ∈ Γh}, Mp
h = Mh,

where Qp(K) is the standard finite element space for quadrilaterals. That is, Qp(K)
is the tensor product of polynomials of degree p on each variable. The same definition
(6) applies to 〈w · n, µ〉Γh

for functions w ∈ H1(Eh)2 and µ ∈Mh.
The HDG method seeks an approximation (qh, uh, λh) ∈ Vh ×Wh ×Mh of the

exact solution (q|Ω, u|Ω, u|Γh\∂ΩD
) such that

(qh,v)Eh − (uh,∇ · v)Eh + 〈λh,v · n〉Γo
h

= −〈PhgD,v · n〉∂Ω,(7)

−(qh,∇w)Eh + 〈qh · n, w〉Γh
+ 〈τ(uh − λh), w〉Γo

h
+ 〈τuh, w〉∂Ω = (f, w)Eh + 〈τPhgD, w〉∂Ω,

(8)

〈qh · n, µ〉Γh
+ 〈τ(uh − λh), µ〉Γo

h
+ 〈τuh, µ〉∂Ω = 〈τPhgD, µ〉∂Ω,(9)

for all (v, w, µ) ∈ Vh ×Wh ×Mh. The factor τ is a local stabilization term that is
piecewise constant on Eh. In the above, PhgD is the L2–projection of gD, defined by:∫

e

PhgD µ =

∫
e

gD µ, ∀µ ∈ Qp(e), ∀e ∈ ∂Ω.



4 M. S. FABIEN, M. G. KNEPLEY, R. T. MILLS, AND B. M. RIVIERÈ

Introducing additional unknowns at first glance does not appear to add much
benefit. However, the HDG method allows us to eliminate the unknowns qh and uh
using equations (7) and (9) in an element by element manner to arrive at a weak
formulation in terms of λh only. Let Q, U and Λ denote the vectors of degrees of
freedom for the numerical solutions qh, uh and λh respectively. Since the solutions
qh and uh are discontinuous, we can denote by QK and UK the part of the vectors
Q, U corresponding to the degrees of freedom located on K. We also denote by ΛK
the part of the vector Λ that corresponds to the degrees of freedom located on the
boundary of K. We can express equations (7), (8) in matrix form:

AKQK −BT
KUK + CKΛK = RK , ∀K ∈ Eh,(10)

BKQK + DKUK + EKΛK = FK , ∀K ∈ Eh.(11)

Further, one can obtain the local degrees of freedom:

(12)

[
QK

UK

]
=

[
AK −BT

K

BK DK

]−1(
−

[
CK

EK

]
ΛK +

[
RK

FK

])
.

The above inverse is well defined and elimination of the local degrees of freedom for
q and u can be done in parallel, independently of one another [20]. Equation (9) can
be written in matrix form. Fix an interior edge e ∈ Γh that is shared by elements K1
and K2 and denote by ΛK1K2

the set of degrees of freedom for the unknown λh, that
lies on the edge e.

(13) GK1eQK1
+ GK2eQK2

+ τHK1eUK1
+ τHK2eUK2

− 2τMeΛK1K2
= 0.

If the edge e lies on the boundary ∂Ω ∩ ∂K we have

GKeQK + τHKeUK = Se.

Now we summarize a general HDG assembly and solve procedure:

(i) Use equation (12) to assemble the local problems for ΛK .

(ii) Assemble the local problems for ΛK into a global system matrix using (13).

(iii) Solve the global system matrix for Λ.

(iv) Using the newly solved for Λ in equation (13), reconstruct U and Q.

(v) Postprocess U and Q to obtain superconvergence.
Step (ii) in our framework is technically assembly free, we do not directly assem-

ble and store the global system matrix. Instead, we exploit the unassembled local
problems from equation (12) to generate a matrix vector multiplication routine. The
resulting routine utilizes many small but dense matrices, instead of a large sparse
matrix. See [54] for a survey of different finite element assembly strategies (matrix
free or otherwise). Although the focus of our paper is not assembly, an algorithm was
developed in [36] to accelerate the assembly of the HDG global system matrix.

4. Basis functions. We select a tensor product basis for the space Qp(K). To
easily facilitate high order approximations, we invoke a nodal basis with nodes that
correspond to roots of Jacobi polynomials (Gauss-Legendre-Lobotto (GLL)). Various
operators in the HDG discretization and multigrid method may require evaluation
of the nodal basis at points that are not nodal. Some authors use a modal–nodal
transformation to deal with such evaluations (see [35]). Another technique is to simply
use the fast and stable barycentric interpolation (see [10]). This allows one to stay
in the Lagrange basis and not have to resort to a generalized Vandermonde matrix.
That is, barycentric interpolation allows for the stable evaluation of the Lagrange
basis at any point in its domain. Given N grid points, the setup cost is O(N2)
to generate the barycentric weights, and a O(N) cost for each evaluation. Due do



MANYCORE PARALLEL COMPUTING FOR HDG GMG 5

the discontinuous nature of the HDG approximation, evaluations occur element-wise,
so the stability of barycentric interpolation is perhaps more important than cost of
revaluation. Since barycentric interpolation allows for arbitrary evaluation, one can
select quadrature points that differ from the nodal interpolation points. Below we
introduce the barycentric interpolation formula used in this work.

Let v be a polynomial of degree n, that interpolates the scattered data {f0, f1, . . . , fn}
through the points {x0, x1, . . . , xn}. The second form of the barycentric formula is

v(x) =

n∑
j=0

Wj

x− xj
fj

n∑
j=0

Wj

x− xj

,

where Wj are the barycentric weights. Interpolation points xi arising from classi-
cal orthogonal polynomials have explicit formulas for their barycentric weights ([52],
[55]). As an example, GLL and GL nodes have the following barycentric weights:

WGLL
j = (−1)j

√
wGL
j WGL

j = (−1)j
√
xGL
j wGL

j ,

where wj and xj (with appropriate superscripts) are the GL and GLL quadrature
nodes and weights. On the reference element, nodal basis functions are defined using

a tensor product of a 1D spectral grid. In the case of GLL nodes, {ξ(p)
i }

p
i=0 are zeros

of a particular family of Jacobi polynomials (see [35]), where −1 ≤ ξi ≤ 1. We adopt
the standard that the reference element in is [−1, 1] in 1D, [−1, 1]× [−1, 1] in 2D, and
[−1, 1]× [−1, 1]× [−1, 1] in 3D. See Fig. 1 for a sample spectral grid. In 2D the tensor

Fig. 1: GLL nodes (open squares), GL nodes (open circles), GL surface nodes (open
triangles).

product can be written as

(ξi, ηj)
def
= (ξ

(p)
i , η

(p)
j ), i, j = 0, 1, . . . , p,

where p is the polynomial degree associated with Qp. On each element, we define
the basis functions as tensor products:

φeI(ξ, η) = `i(ξ)`j(η),

with I = i+ j(P + 1) (lexicographic ordering, and `i is the Lagrange polynomial
that is nodal at GLL node i). In one dimension, if there are p+1 GLL nodes, then there



6 M. S. FABIEN, M. G. KNEPLEY, R. T. MILLS, AND B. M. RIVIERÈ

are p+ 1 associated basis functions. In two dimensions, we take the tensor product of
the 1D GLL nodes, which results in (p+ 1)2 GLL nodes, and (p+ 1)2 associated basis
functions. In the index I, if i = j = p, then I = p+ p(p+ 1) = p2 + 2p, and including
the index contribution from i = j = 0, we have a total of p2 + 2p+ 1 = (p+ 1)2 basis
functions in 2D as well. For brevity, let the lexicographic ordering I = i+ j(p+ 1) =:
(i, j). Let the reference element be given by � = [−1, 1]× [−1, 1]. Just as in the 1D
case, we assume that

u(x, y)

∣∣∣∣
Ωe

≈
p∑
i=0

p∑
j=0

ueijφ
e
I(ξ, η), (ξ, η) ∈ �,

φeI(ξm, ηn) = δimδjn, i, j, n,m ∈ {0, . . . p},
(ξ, η) = GLL quadrature points ∈ �.

Using a change of variables to map from the physical element to the reference element
we have ∫∫

�
u(ξ, η) dξdη =

∫ 1

−1

(∫ 1

−1

u(ξ, η) dξ

)
dη

≈
P∑
i=0

P∑
j=0

wiwju(ξi, ηj),

where wi, wj are the GLL quadrature weights in the x and y directions. We want
to map an arbitrary element to this element, which requires a change of variables
ξ = ξ(x, y), η = η(x, y). The Jacobian of this mapping is

J e(ξ, η) =

∣∣∣∣∣∂x∂ξ ∂x
∂η

∂y
∂ξ

∂y
∂η

∣∣∣∣∣ =

∣∣∣∣∂x∂ξ ∂y∂η − ∂y

∂ξ

∂x

∂η

∣∣∣∣.
Hence, integrating over an arbitrary element Ωe (∪Ee=1Ωe),∫∫

Ωe

u(x, y) dx dy =

∫∫
�
ue(ξ, η)J e(ξ, η) dξ dη

≈
p∑
i=0

p∑
j=0

wiwju
e(ξi, ηj)J eij ,

where J e(ξi, ηj) = J e(ξ, η). The above approach assumed that the interpolation
points and quadrature points were the same (classic spectral element method). How-
ever, GLL quadrature rule for p + 1 points is only exact for polynomials of degree
2p− 1. If higher order quadrature is needed, the GL quadrature rule for p+ 1 points
is exact for polynomials of degree 2p + 1. Then, one can fix the GLL interpolation
points, and evaluate the Lagrange basis functions at GL quadrature points if desired.
To do this, we utilize the barycentric formula:

`j(x) =

WGL
j

x− xGLL
j

p∑
k=0

WGL
k

x− xGLL
k

.

Barycentric interpolation enables the stable and fast evaluation of the Lagrange poly-
nomial basis `j anywhere in its domain.



MANYCORE PARALLEL COMPUTING FOR HDG GMG 7

5. HDG discretization. Before proceeding with the results of the HDG GMG
method, we verify numerically that the HDG discretization provides the expected
optimal L2 convergence rates; p+1 for both the potential uh and its flux qh. Moreover,
with the use of a local postprocessing filter [18], we can achieve superconvergence of
the potential uh, so that it converges in the L2 norm with the rate p+ 2. HDG does
fall under the umbrella of stabilized DG methods, so the parameter τ in equations (8)
and (9) needs to be specified. The local stability parameter is piecewise constant,
defined facet-by-facet. For the model problem we set Ω = [0, 1] × [0, 1], ∂ΩD = ∂Ω
(∂ΩN = ∅), K(x, y) = tanh (x+ y) + 1. The domain Ω is partitioned into N × N
squares. A manufactured solution is used to examine the error: u(x, y) = x(x−1)y(y−
1) exp(−x2 − y2), and the corresponding forcing function f is determined from u.

For the model Poisson problem it turns out that τ ≡ 1 on every facet provides
optimal convergence rates. In Table (1), it is apparent that the expected convergence
rates are met. Moreover, the postprocessed potential u∗h results in a rate of p + 2.
The postprocessed flux q∗h converges in a rate of p+ 1, but the errors are smaller than
that of qh.

‖uh − u‖L2(Ω) ‖u∗h − u‖L2(Ω) ‖qh − q‖L2(Ω) ‖q∗h − q‖L2(Ω)

p N Error Rate Error Rate Error Rate Error Rate
6 2 1.05e-07 - 3.02e-09 - 2.39e-07 - 1.12e-07 -

4 8.51e-10 6.95 1.13e-11 8.06 1.95e-09 6.94 8.41e-10 7.06
8 6.97e-12 6.93 4.45e-14 7.99 1.61e-11 6.92 6.65e-12 6.98
16 5.60e-14 6.96 7.12e-16 5.97 1.41e-13 6.84 6.36e-14 6.71
32 8.79e-16 5.99 5.35e-16 4.12 2.11e-13 -5.82 1.47e-13 -1.21

5 2 7.53e-07 - 3.50e-08 - 1.77e-06 - 9.80e-07 -
4 1.69e-08 5.47 3.03e-10 6.85 3.91e-08 5.50 1.81e-08 5.76
8 2.90e-10 5.87 2.43e-12 6.96 6.72e-10 5.86 2.95e-10 5.94
16 4.72e-12 5.94 1.92e-14 6.98 1.10e-11 5.94 4.69e-12 5.97
32 7.52e-14 5.97 3.68e-16 5.70 2.05e-13 5.74 1.01e-13 5.53

4 2 1.46e-05 - 7.04e-07 - 3.32e-05 - 1.79e-05 -
4 4.92e-07 4.89 1.09e-08 6.02 1.13e-06 4.88 5.49e-07 5.03
8 1.65e-08 4.90 1.73e-10 5.97 3.80e-08 4.89 1.76e-08 4.96
16 5.37e-10 4.94 2.75e-12 5.98 1.24e-09 4.94 5.62e-10 4.97
32 1.71e-11 4.97 4.33e-14 5.99 3.98e-11 4.97 1.78e-11 4.98

3 2 8.61e-05 - 7.58e-06 - 2.05e-04 - 1.35e-04 -
4 7.78e-06 3.47 2.63e-07 4.85 1.80e-05 3.52 9.86e-06 3.78
8 5.49e-07 3.82 8.63e-09 4.93 1.27e-06 3.82 6.59e-07 3.90
16 3.63e-08 3.92 2.77e-10 4.96 8.43e-08 3.91 4.28e-08 3.95
32 2.33e-09 3.96 8.80e-12 4.98 5.43e-09 3.96 2.73e-09 3.97

Table 1: Errors and convergence rates of the HDG scheme, on a Cartesian mesh of
N ×N elements.

6. Multigrid algorithm. Multigrid methods work by eliminating a wide range
of frequencies from the estimated error between the exact solution, and the multigrid
iterate. Any multigrid method has three key components: relaxation, grid transfers,
and coarse grid operators (course grid correction). In the following subsections our
selection of these components is presented. The geometric multigrid method leverages
information about the underlying geometry, discretization, and PDE. This results in



8 M. S. FABIEN, M. G. KNEPLEY, R. T. MILLS, AND B. M. RIVIERÈ

an optimal solver ([53], [12]) that is coupled to the discretization; only O(N) float-
ing point operations are required to reduce the error to discretization level accuracy.
Moreover, GMG offers a uniform convergence rate. That is, the rate of convergence
of GMG is not dependent on the mesh size.

In direct contrast to GMG, algebraic (black box) solvers rely entirely on the dis-
cretization matrix. The trade off with algebraic solvers (e.g. Krylov methods) is that
they are decoupled from the discretization, but their convergence is very sensitive to
the condition number of the discretization matrix. Refinement in h or p increases said
condition number, and in turn the algebraic solver requires even more iterations to
reach a desired tolerance. In this context, very efficient preconditioners are needed to
assist the algebraic solvers. Multigrid methods are also very popular as precondition-
ers ([23]).

The finite element method brings with it two ways to potentially increase accu-
racy: h refinement and p refinement. Since GMG is coupled to the discretization,
it can leverage h refinement and/or p refinement (refinement in p means increas-
ing/decreasing the polynomial order). This implies that two different classes of multi-
grid operators are needed. One for h refinement, the other for p refinement. For
simplicity, we do not consider hp–GMG (refining h and p simultaneously). In h–
GMG the polynomial order p is fixed, and the hierarchy of grid spaces are determined
by increasing/decreasing the mesh size. In p–GMG the mesh size h is fixed, and the
hierarchy of grid spaces are determined by their increasing/decreasing the polynomial
order. The combination of these three refinement strategies offers interesting and
potentially efficient ways to deal with high order and very high order approximations
([3], [22]).

We use a nested multigrid strategy. The multigrid method starts with p-multigrid,
which fixes the mesh and the fine and coarse grids are formed by increasing/decreasing
the polynomial order. Once the polynomial order reaches p = 0, which corresponds
to a face-centered finite volume scheme, we continue with the h-multigrid scheme as
suggested in [24], [19], [?]. This technique exhibits h-independent convergence. It
projects the HDG p = 0 approximation into an appropriate space of continuous func-
tions, so that standard h-multigrid for continuous Galkerin can be used for the coarser
levels. A diagram of our general nested multigrid strategy is given in Fig. 2.

We use rediscretization for p-multigrid to form the hierarchical grids; this way
we do not store the sparse linear systems for the polynomial orders p > 0. The cor-
responding grid transfer operators are also implemented in a matrix free manner, as
the canonical grid transfer operators are discontinuous across element interfaces, they
are completely data parallel.

For p = 0, and subsequent h-multigrid levels, we store the linear systems in com-
pressed row storage format. On the coarsest level (matrix of about dimension 2000)
of the h-multigrid scheme, we employ the MKL optimized PARDISO direct solver
[48]. Other options are available for the coarse grid solve, for instance replacing the
direct solve with a number of relaxation steps, or continuing the multigrid hierarchy
with an algebraic multigrid method.

For problems where geometric multigrid is not suitable, or generating a mean-
ingful geometric hierarchy is not possible, one can replace h-multigrid with algebraic
multigrid or an appropriate coarse grid solver. In these cases, p-multigrid is still
applicable as the mesh is fixed.

6.0.1. p-multigrid grid transfer. Finite element methods pair well with mul-
tilevel methods, due to the flexibility in chose of underlying spaces. Consider the
nested discontinuous finite element spaces ΩH ⊂ Ωh. The mapping from a coarse
space (ΩH) to a fine space (Ωh) is called prolongation, or interpolation. There are
many ways to build a prolongation mapping, however, in the context of finite element
methods there is a canonical choice.

The canonical prolongation operator uses the fact that ΩH ⊂ Ωh. That is, any
coarse grid function can be expanded as a linear combination of fine grid functions.
Thus, we take the prolongation operator to be the natural embedding from ΩH into
Ωh. As such, P : ΩH → Ωh,

(14) P (uH) = uH ∀uH ∈ ΩH .



MANYCORE PARALLEL COMPUTING FOR HDG GMG 9

p-multigrid

h-multigrid

Direct solve

Fig. 2: Diagram of our hp-multigrid algorithm.

The mapping from a fine space to a coarse space is called restriction, or sub-sampling.
It is not as trivial to select a restriction operator. However, since finite element
methods are based on a weak formulation, a canonical restriction is defined by a L2

projection. The restriction is given by R : (Ωh)′ → (ΩH)′,

(15) (Rvh, uH) = (vh, uH), ∀vh ∈ (Ωh)′, ∀uH ∈ ΩH .

Notice that (Rvh, uH) = (vh, R
∗uH) = (vh, PuH). One can infer from this that

R∗ = P . Selecting the restriction operator in this way is deliberate; it is done to
ensure that the multigrid operator is symmetric. This allows the multigrid method
to be a suitable preconditioner for symmetric iterative methods.

The grid transfer operators are defined on the reference element, and for discon-
tinuous Galkerin methods the canonical prolongation and restriction operators are
data independent. For p-multigrid we apply the grid transfer operators in a matrix
free manner. These grid transfer operators are defined in equations (14) and (15),
where it is understood that for p ≥ 0, the coarse space is ΩH = Mp

h , and the fine

space is Ωh = Mp+1
h .

We note that for the HDG method the grid transfer operators are defined on a
lower dimension. This is due to static condensation reducing the unknowns (dimen-
sion d) to the mesh skeleton (dimension d − 1). For instance, classical DG methods
in 2D would have a prolongation operator P : Qp → Qp+1 of size (p+ 2)2 × (p+ 1)2.
For HDG in 2D, the prolongation operator would be P of size (p + 2) × (p + 1), as
static condensation reduces the unknowns to 1D. Nodal basis functions give rise to
dense grid transfer operators, whereas modal basis functions have sparse binary grid
transfer operators.

6.0.2. h-multigrid grid transfer. The h-multigrid scheme we use is taken from
[24], [19], [?]. The main idea is to project the p = 0 HDG solution into the space of
continuous functions, then continue with a standard geometric multigrid for piecewise
linear continuous finite elements. It is also possible to project the p = 1 HDG solution
to the piecewise linear finite element space. However, in [51] and [?], it is found that
this leads to larger iteration counts and poor convergence rates compared to the p = 0
projection. Our numerical experiments also agree with their findings.
Let Ek denote a uniform mesh of quadrilateral elements at level k. The coarsest mesh
is denoted by k = 0. Geometric refinements of the coarsest mesh are then made, for
a total of J meshes. The mesh for the original discretization (finest mesh) is denoted



10 M. S. FABIEN, M. G. KNEPLEY, R. T. MILLS, AND B. M. RIVIERÈ

by k = J − 1. For simplicity we use uniform meshes so that a geometric hierarchy
can be used. Set

Mk = {v : Ω→ R : v is continuous v|∂Ω = 0, v|K ∈ Q1(K), ∀K ∈ Ek+1},

for 0 ≤ k ≤ J − 1, and MJ = M0
h . Note that the spaces have a non-nested property

M0 ⊂ M1 ⊂ . . . ⊂ MJ−1 6⊂ MJ . As such, a specialized prolongation operator has to
be used [24]. It is defined as Pk : Mk−1 →Mk (2 ≤ k ≤ J),

(16) Pkv =

{
v, if k < J,
ΠMJ

(v|Γh
), if k = J,

where ΠMJ
is the L2-orthogonal projection onto MJ . The corresponding restriction

operator Rk−1 : Mk →Mk−1 follows from equation (14) (1 ≤ k ≤ J − 1),

(17) (Rk−1w, u)k−1 = (w,Pku)k, ∀u,w ∈Mk−1.

6.0.3. Coarse grid operator. The multigrid method utilizes a hierarchy of
grids. As such, there is a need for a hierarchy of discretizations. In other words, on
a coarse grid we have a reduced model of our original discretization. This reduced
model needs an appropriate discretization (coarse grid operator) for the coarse grid.
Two of the most common coarse grid operators are subspace inheritance and subspace
non-inheritance.

Subspace inheritance defines coarse grid operators by AH = RAhP, where AH

is the coarse grid operator, Ah is the fine grid operators, R and P are the restriction
and prolongation operators, respectively. On each coarse grid information from the
previous level is being inherited. This technique has the disadvantage that continuity
may be implicitly enforced for sufficiently coarse grids. Subspace non-inheritance
simply uses rediscretization, on each coarse grid ΩH the discretization operator is
built for the dimension associated with ΩH .

In the p-multigrid setting, the coarse grid problems are formed by discretizating
our problem for smaller polynomial degrees. With p-multigrid there is a subtle choice
that is to be made for its refinement strategy. The coarse spaces for p-multigrid
are obtained by decreasing the polynomial order p. How one should decrease the
polynomial order is not well agreed upon. A couple of coarsening ratios have been
proposed in the context of continuous hp-multigrid (see [43]):

• geometric: assumes p is a power of two, p, p/2, p/4, . . . , 2, 1, 2, 4, . . .,
• odd: assumes p is a an odd natural number,
• even: assumes p is a an even natural number,
• full arithmetic: p, p− 1, p− 2, . . . , 2, 1, 0, 1, 2, . . ..

The most flexible coarsening ratio is full arithmetic, which allows for arbitrary poly-
nomial degrees.

To define the p-multigrid hierarchy we use full arithmetic coarsening. We se-
lected full arithmetic coarsening since we are using multigrid as a solver, not as a
preconditioner. In this case, there are more opportunities to eliminate high frequency
modes. For high order DG methods, traditional parallelizable relaxation schemes do
not properly eliminate high frequency modes [33, 34, 23, 4, 14, 13]. Full arithmetic
coarsening was found to be as effective as more rapid coarsening for problems with
moderate polynomial degrees [43, 22].

For p > 0, we employ a matrix free procedure. In the h-multigrid setting, the
coarse grid problems are formed by subspace inheritance. For low order problems,
there is little benefit for matrix free operations, so we store the p = 0 matrix and any
subsequent matrices that arise from the h-multigrid algorithm. This amounts to the
Galerkin triple product Ak−1 = Rk−1AkPk (for 1 ≤ k ≤ J − 1), where Rk−1 and Pk
are as defined in equations (17) and (16), respectively.

6.0.4. Relaxation. Relaxation (also called smoothing) plays an integral part in
multigrid techniques. High frequencies are damped using a relaxation method, leaving
low frequencies to be resolved by coarse grid correction. In some sense, multigrid can



MANYCORE PARALLEL COMPUTING FOR HDG GMG 11

be thought of as a way to accelerate the convergence of a relaxation method; typically
the relaxation methods used in multigrid have poor (or no) convergence properties.
The main purpose of a relaxation method is to smooth the error, not necessarily
make it small. Standard choices for relaxation are pointwise/block stationary itera-
tive methods (Jacobi, damped Jacobi, Gauss-Seidel, Successive over relaxation, etc.),
and polynomial type preconditioners.

A general overview of iterative methods can be found in [46]. For lower order
discretizations, (in the context of this work, third order or less) standard relaxation
methods tend to work well. However, for higher order discretizations, loss of uniform
convergence is experienced. A larger number of relaxation steps, or more powerful
smoothers are required to retain uniform convergence in the high order case.

In a parallel setting, polynomial smoothers where shown in [1] to perform better
in terms of time-to-solution. With the advent of many-core devices, some authors
have examined parallel asynchronous iterations (see [2], [5]). Sparse approximate
inverses (SPAI) have exhibited promising results when used as preconditioners and
smoothers in multigrid (see [9], [15]). Moreover, the construction of SPAI operators
are inherently parallel, and only require a matrix vector product to apply.

Relaxation for high order discontinuous Galkerin methods typically require spe-
cialized treatment. This was found to be the case for HDG in our experiments, as
well as in [?] and [58]. In particular, block-type methods work better than pointwise
or polynomial smoothers. In the context of our work, we have found that SPAI and
additive Schwarz domain decomposition methods work very well as a smoother. In
Section 7 we present multigrid convergence results for an SPAI preconditioner. The
additive Schwarz smoother has similar convergence properties depending on the over-
lap size. These more expensive smoothers are used in our work as they able to retain
robust multigrid convergence. Section 7 discusses this matter further.

6.0.5. Sparse approximate inverse relaxation. Sparse approximate inverses
have exhibited promising results when used as preconditioners and smoothers in multi-
grid (see [9], [15]). Moreover, the construction of SPAI operators are inherently paral-
lel, and only require a matrix vector product to apply. SPAI seeks an approximation
M of A−1 such that

min
M∈S

‖I −MA‖F ,

where S is a set of sparse matrices. By using the Frobenius norm, a great deal of
concurrency is exposed:

‖I −MA‖2F =

n∑
i=1

‖~eTi −MT
i A‖22.

Each of the n least squares problems are independent of one another. Storage
and computational savings can be obtained by leveraging the sparsity of A and M .
In addition, since the HDG method gives rise to a symmetric operator, the factorized
sparse approximate inverse (FSAI) can be utilized to obtain further improvements.
The use of SPAI as a smoother will require its explicit storage, but the application is
that of a matrix vector multiply:

~x
(k+1)
SPAI = ~x

(k)
SPAI + M(~f −A~x

(k)
SPAI).

6.0.6. Additive Schwarz domain decomposition relaxation. Increasing
the polynomial order in finite element methods causes the condition number of the
discretization operator to grow. This stretches the spectrum of the discretization
operator, and traditional smoothers can no longer damp a sufficiently wide range of
high frequencies. To combat this, one can increase the number of smoothing steps,
or seek a more powerful smoother. In some cases, domain decomposition methods
can provide a very powerful smoother for multigrid techniques. In [41], [49], and
[50], variations of the Schwarz domain decomposition method is used as a multigrid
smoother for high order finite element discretizations.

The standard additive Schwarz method takes the form



12 M. S. FABIEN, M. G. KNEPLEY, R. T. MILLS, AND B. M. RIVIERÈ

M =

|Γh|∑
e=1

RT
eA
−1
e Re,

where Re is a binary restriction operator that transfers global datum to local
datum. The operator Ae is the discretization operator restricted on the facet e.
Notice that this is a single level Schwarz method, and as such, it is not as effective
as their two level counter parts. Weighting the single level Schwarz method has
been demonstrated to produce effective smoothers (see [41],[50], [40]). The weighting
appears to be successful, but is also somewhat experimental. The inverse of a diagonal
counting matrix is used in [41], and a type of bump function is used in [50] (both of
these weightings are used without a convergence theory). For a weighting matrix W ,
the additive Schwarz smoother is applied as follows:

~x
(k+1)
ASM = ~x

(k)
ASM + WM(~f −A~x

(k)
ASM).

On each level of the p-multigrid hierarchy we store smoother M as dense blocks,
and apply them in a unassembled manner. The size of these blocks depends on the
polynomial order and overlap size.

6.0.7. Standard multigrid V-cycle. Our nested multigrid V-cycle is pre-
sented in Algorithms 1 and 2. This is often referred to as the V -cycle. We use the
following notation: Sν(·) denotes ν steps of a relaxation method. In the p-multigrid
cycle the Smoother Sν(·) is either SPAI or the additive Schwarz relaxation. In Sec-
tion 7 we use SPAI, and in Section 8 we use the additive Schwarz relaxation. For
h-multigrid we use the Chebyshev smoother [46] as the problem is low order.

Algorithm 1 vh ← hMG(vh, rh)

Ah, R, P are stored in sparse matrix format
R and P are as defined in equations (17) and (16)
The Smoother S is a polynomial relaxation (Chebyshev).

1: vh ← Sν1(Ah, rh, vh)
2: if On coarsest level then
3: vH ← (AH)−1vH (bottom level solver, e.g. direct solve or AMG)
4: else
5: rH ← R(rh −Ahvh)
6: vH ← 0
7: vH ← hMG(vH , rH)

8: vh ← vh + PvH

9: vh ← Sν2(Ah, rh, vh)



MANYCORE PARALLEL COMPUTING FOR HDG GMG 13

Algorithm 2 vh ← pMG(vh, rh)

Ah, R, P are applied in a matrix free manner
R and P are as defined in equations (15) and (14)
The Smoother S is either SPAI or the additive Schwarz relaxation.

1: vh ← Sν1(Ah, rh, vh)
2: if On coarsest level (p = 0)) then
3: vH ← hMG(vH , rH) (bottom level solver, is h-multigrid)
4: else
5: rH ← R(rh −Ahvh)
6: vH ← 0
7: vH ← pMG(vH , rH)

8: vh ← vh + PvH

9: vh ← Sν2(Ah, rh, vh)

7. Multigrid convergence. In [3], uniform convergence in h and p was es-
tablished for a discontinuous Galerkin hp-multigrid algorithm. However, in order
to guarantee p (or h) independent convergence, the number of relaxation steps per
level grows quadratically in p. Numerical experiments suggest that for our HDG p-
multigrid, the relaxation steps per level need to grow linearly (in p) to guarantee p
independent convergence. In [19], h independent convergence was proven for the HDG
h-multigrid algorithm we use.

Fig. 3a and Fig. 3b display the results for 2 ≤ p ≤ 8 and fine mesh with (25)2

elements. We employ a FSAI smoother on each level, with ν1 = ν2 = 2 pre and
post smoothing steps. The FSAI smoother is constructed so that it results in an ap-
proximate inverse with a operator complexity of unity (nnz[M ]=nnz[A]). Subspace
non-inheritance is used to generate coarse grid operators. For the p-GMG phase of the
GMG method, we use full arithmetic coarsening. To measure the convergence rate,
we keep track of the two norm of the fine grid residual between successive iterations:

ρk =
‖(rh)(k)‖2
‖(rh)(k−1)‖2

.

We can see that the results are quite good, even for a modest FSAI smoother. All of
the convergence rates are under 0.22, and tend to cluster in the range 0.13-0.15 for
even polynomial degrees. This observation perhaps indicates that even-p coarsening
or geometric-p will not only be more efficient (more rapid coarsening), but also more
accurate.

Fig. 3 seems to suggest that our method is not exhibiting a p independent con-
vergence rate. However, we recall that according to [3], uniform convergence in p
guaranteed only if the number of relaxation steps per level grows quadratically in p
(we set ν1 = ν2 = 2). For multigrid methods there is a subtle observation to be made:
uniform convergence is an excellent property; but if the uniform convergence rate is
near one, this is not an efficient solver. Moreover, if the number of smoothing steps
is sufficiently large, a great deal of efficiency is lost. For reasonable smoothing steps,
in [14] and [3] the authors demonstrate convergence rates of 0.85 (or worse). In order
to drop the convergence rates down to 0.5, upwards of 20 smoothing steps every level
needs to be taken.

What is needed for efficiency is as follows: uniform convergence, a fast convergence
rate (problem dependent), and a small number of uniform smoothing steps. Satisfy-
ing these three properties in practice for high order discontinuous Galkerin methods
is not trivial. Some potential avenues to explore are stronger (but more expensive)
smoothers, different coarse grid transfer operators, different multigrid schedules, as
well as different grid hierarchies. This direction of inquiry is beyond the scope of our
paper. In Fig. 4 we do show that a more expensive smoother essentially yields uniform
convergence with a fast convergence rate and a fixed number of smoothing steps.



14 M. S. FABIEN, M. G. KNEPLEY, R. T. MILLS, AND B. M. RIVIERÈ

For the next set of experiments, we allow the FSAI operator complexity to grow
((nnz[M ]≈ 2.5 nnz[A]). In Figs. 4a, 4b, 4c, and 4d, display the results of this change.
For the V -cycle, the residual is reduced to machine precision after only 5 to 7 itera-
tions (Fig. 4a). The aggressive smoothing also yields stellar convergence rates, below
0.015, as can be ascertained from Fig. 4b.

The performance of the V-cycle is better than ideal, so we can easily extend our
HDG GMG method to leverage the full multigrid cycle (FMG). FMG is well known
to be the optimal multigrid schedule for linear problems; with a single FMG iteration,
the residual is reduced to discretization level error. Moreover, it only requires O(N)
floating point operations to achieve this accuracy ([11], [12], [53]). Indeed, Fig. 4c
numerically verifies that a single FMG iteration is enough to reach discretization
level error. There is something that particularly interesting about Fig. 4c - the FMG
iteration performs better for higher orders 6 ≤ p. This second experiment of course
comes at a price: the FSAI smoothers on each level have an operator complexity in
the rage of 2.65 to 2.85. Such a trade off may be valuable for problems with highly
varying or discontinuous coefficients. Also, the FSAI smoother can be easily tuned to
control how aggressively its operator complexity grows.

1 2 3 4 5 6 7 8 9 10
10−12

10−10

10−8

10−6

10−4

10−2

iteration

re
si

du
al

 

 
p=8
p=7
p=6
p=5
p=4
p=3
p=2

(a) V-Cycle.

1 2 3 4 5 6 7 8 9
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

iteration

co
nv

er
ge

nc
e 

ra
te

 

 
p=8
p=7
p=6
p=5
p=4
p=3
p=2

(b) Convergence rate (V-Cycle).

1 2 3 4 5 6 7 8 9 10
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

iteration

re
si

du
al

 

 
p=8
p=7
p=6
p=5
p=4
p=3
p=2

(c) W-Cycle.

1 2 3 4 5 6 7 8 9
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

iteration

co
nv

er
ge

nc
e 

ra
te

 

 
p=8
p=7
p=6
p=5
p=4
p=3
p=2

(d) Convergence rate (W-Cycle).

Fig. 3: GMG for HDG (SPAI-1 smoother).

8. Performance model. The storage and assembly of global matrices in finite
element methods can be exceedingly prohibitive, especially at higher orders. By
leveraging matrix free algorithms, one can save on memory, and, convert a memory
bound problem (sparse matrix vector multiplication) into a compute bound problem.
The authors in [45] found that to improve sparse matrix vector multiplication for



MANYCORE PARALLEL COMPUTING FOR HDG GMG 15

1 2 3 4 5 6 7 8 9 10
10−16

10−14

10−12

10−10

10−8

10−6

10−4

iteration

re
si

du
al

 

 
p=8
p=7
p=6
p=5
p=4
p=3
p=2

(a) V-Cycle.

1 1.5 2 2.5 3 3.5 4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

iteration

co
nv

er
ge

nc
e 

ra
te

 

 

p=8
p=7
p=6
p=5
p=4
p=3
p=2

(b) Convergence rate.

2 3 4 5 6 7 8
10−10

10−9

10−8

10−7

10−6

polynomial order

re
si

du
al

(c) Convergence rate.

2 3 4 5 6 7 8
2.6

2.65

2.7

2.75

2.8

2.85

polynomial order

op
er

at
or

 c
om

pl
ex

ity

(d) Operator complexity.

Fig. 4: FMG for HDG (aggressive FSAI).

HDG methods, specialized storage formats were needed. Since the HDG method can
be reduced to a problem on the trace space, this allows for a assembly (matrix free
or otherwise) of the discretization operator in a facet-by-facet manner, instead of a
element-by-element manner. The importance of this is that the element-by-element
approach requires a synchronization (barrier, atomic, etc.) in order to avoid race
conditions. A graph coloring algorithm is typically used in this situation, but only
allows for a group of colors to be utilized at any given time. The facet-by-facet
approach does not depend on the vertex degree, but only on the element type (how
many facets on a given element). Fig. 5 displays some example DOFs and connectivity
for HDG, DG, and continuous Galerkin methods.

The HDG method is able to exploit facet-by-facet connectivity; given an interior
facet, only the two elements that share said facet will contribute to its DOFs. An
element-to-facet mapping will allow one to gather and scatter the DOFs on a facet.
Pseudocode for our matrix vector multiply routine is given in Algorithm (3).

8.0.1. Knights Landing (KNL) many-core coprocessor. In this work we
use the second generation Xeon Phi designed by Intel R©. It is a many-core processor,
and the 7000 series has anywhere from 64 to 72 cores, with 4 threads per core. The
KNL is an example of a high throughput low memory device. The design of the KNL
is similar to other many-core devices and accelerators: a large number of cores with
lower clock speeds are packed into the unit, enabling a large vector width, as well as
having access to a user-manageable fast memory hierarchy. One interesting feature
of the KNL is that it can be programmed using traditional parallel paradigms like



16 M. S. FABIEN, M. G. KNEPLEY, R. T. MILLS, AND B. M. RIVIERÈ

Fig. 5: HDG, DG, and continuous Galerkin DOFs.

Algorithm 3 Algorithm for HDG matrix vector multiply (assembly free).

1: procedure matrix vector multiply
2: Algorithm for HDG matrix vector multiply (assembly free)
3: Load KK and x
4: eN ← Map0(tid) (Given thread id, find the edge it corresponds to)
5: (E1,E2) ← Map1(eN) (Find the elements that share edge).
6: (idx1) ← Map2(eN,E1) (load local index of DOF on element 1)
7: (idx2) ← Map3(eN,E2) (load local index of DOF on element 2)
8: y1 = 0
9: for j = 1 to size(KE1,eN) do

10: y1 ← y1 + KE1,eN( idx1(j), : ) · x
11: y2 = 0
12: for j = 1 to size(KE2,eN) do
13: y2 ← y2 + KE2,eN( idx2(j), : ) · x
14: y(tid) = y1 + y2

OpenMP, MPI, and pthreads. In addition, it operates as a native processor. Further
details regarding the KNL can be obtained in [32]. For specifications of the KNL used
in this work, see Table 2.

8.0.2. Local matrix generation. In order to make use of the assembly free
matrix vector multiply, one needs to generate the associated local matrices (in the
case of HDG, see (i), (iv), and (v) in Section 3). To generate the required local
matrices, for simplicity, we use a one core (thread) per element strategy. However, as
one increases the polynomial order (beyond p = 5), this strategy loses performance.
Further improvements may potentially be obtained by utilizing nested parallelism, or
linear algebra libraries dedicated for small or medium sized matrices ([26], [36]).

For all computational experiments we set the KNL in quadrant mode. Figs. 6
and 7 display the wall-clock and speed up as the polynomial order and number of
threads is varied. In Fig. 6, one can see that as we increase the number of threads
beyond 32 or 64, diminishing returns are very noticeable. To generate the results of
Fig. 7, we fix the number of threads to 64, and we vary the polynomial order. The
comparison with a serial implementation clearly shows that the additional parallelism
the KNL offers is beneficial; speed ups ranging from 2X to 32X are attained.



MANYCORE PARALLEL COMPUTING FOR HDG GMG 17

1 2 4 8 16 32 64 128 256

0.3
0.4
0.5

1
1.5
1.9

3
4
5

10

20

Number of threads

T
im

e
(s

ec
on

d
s)

p = 0
p = 1
p = 1
p = 3
p = 4

Fig. 6: Local matrix assembly
wall-clock.

0 1 2 3 4 5 6 7 8

6

10

17

22

28

31

35

Polynomial Order

S
p

ee
d

u
p

Fig. 7: Local matrix assembly
speedup.

8.1. Roofline analysis. The KNL (7210 processor number) used in this analysis
runs at 2.1 GHz (double precision), a double precision processing power of of 2,199
GFLOP/s, and the STREAM memory bandwidth benchmark (triad, see [42]) reports
a bandwidth of 300 GB/s. These two metrics provide the performance boundaries for
arithmetic throughput and memory bandwidth limits, respectively. For our numerical
experiments, the clustering mode is set as quadrant, and cache mode is set to flat.

Processor number 7210
# of cores 64

Processor base frequency 1.30 GHz
Cache 32 MB L2
RAM 384 GB DDR4

MCDRAM 16 GB
Instruction set 64-bit

Instruction set extension Intel R© AVX-512
Operating system CentOS 7.2

Compiler Intel R© Parallel Studio XE 16

Table 2: KNL testbed specifications.

8.1.1. Sparse Matrix Vector Multiply (SPMV). In general, matrix vector
multiplication is severely bandwidth bound. For a dense matrix of dimension N , we
can expect (2N2−N) FLOPs and 8(2N2 +N) MEMOPs (bytes). Thus, for large N ,
we can expect an arithmetic intensity of only limN→∞(2N2−N)/(8(2N2+N)) = 0.25.
For finite element problems the underlying discretization matrix is typically sparse,
which pushes SPMV further into the bandwidth bound region on the roof line chart.
Matrix free operation can remedy this situation by improving the arithmetic intensity.
That is, matrix free application can shift our bandwidth bound SPMV to a compute
bound (or less bandwidth bound) problem.

In Fig. 9a, we include a roofline analysis of our matrix vector multiply routine; in
the context of its performance on the Laplacian operator. The roofline analysis ([57])
allows us to identify bottlenecks, confirm algorithm limitations, as well as gives us
insight on what we should focus on in terms of optimization. Two different techniques



18 M. S. FABIEN, M. G. KNEPLEY, R. T. MILLS, AND B. M. RIVIERÈ

are studied. Sparse matrix storage (CSR format, see Fig. 9b) has the lowest perfor-
mance arithmetic intensity, with a theoretical limit of 0.25. The multithreaded Intel
MKL library is used for this approach ([31]). For high orders the HDG method has
hundreds of nonzeros per row. Slightly better but similar performance was obtained
in [45] by using a specialized block sparse matrix storage format on GPUs. The ma-
trix free technique shifts the arithmetic intensity favorably (see 9a); this behavior is
typical in spectral methods and spectral elements, due to near constant FLOP and
memory requirements per degree of freedom ([54], [16], [39]).

Fig. 8 displays the bandwidth measurements. From Fig. 8a, for lower order
polynomials (p < 5) on a fixed coarse mesh, we see that a maximum of 50% of the
peak bandwidth is achieved. The overhead costs of forking threads is dominating
computations for p < 5 on coarser meshes. As p increases beyond five, the cost
of forking threads is no longer dominant. Our algorithm reaches 80% of the peak
bandwidth reported by the STREAM benchmark.

Fig. 8b considers fixing the polynomial degree, and increasing the number of
elements in the mesh. Here it is evident that h-refinement improves the bandwidth
performance for lower polynomial degrees. To observe further improvements, a new
SPMV routine could be designed specifically for lower orders. For instance, in [38], the
authors group together the contributions from multiple elements into a thread block
in their SPMV-GPU kernel. Their technique is shown to be very high performing.

2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400

Polynomial Order

B
an

dw
id

th
 (

G
B

/s
)

 

 

Achieved Bandwidth
Peak
50% of peak
80% of peak

(a) Bandwidth (p-refinement).

1/32 1/64 1/128 1/256

Mesh spacing

50

100

150

200

250

300

350

400

B
an

dw
id

th
 (

G
B

/s
)

Peak
50% of peak
80% of peak
p = 3
p = 4
p = 5

(b) Bandwidth (h-refinement).

Fig. 8: Achieved bandwidth vs polynomial order for matrix-free SPMV.

8.1.2. Projection From Volume To Surface. The generation of the local
solvers from equation (12) is completely data parallel and needs no synchronizations
or thread communication. It requires a dense linear solve, two matrix vector mul-
tiplications and a single SAXPY. Roughly the complexity model for this projection
operator in terms of FLOPs can be estimated by

FLOPs = 2N2 −N + (2/3)N3 +M(2N − 1) + 2M),

MEMOPs = 8(N2 +NM +M +N).

where N = 4(p+ 1)2 and M = 4(k + 1). Table (3) collects the results for polynomial
order 0, 1, 2, 3, and 4. As we increase the polynomial order, performance increases
due to the compute bound nature of the local HDG solvers; as the dense linear solve
dominates with O(n3) FLOPs for O(n2) data. We again note that the focus of this
work is not on the generation of this local matrices, but we can still obtain reasonable
performance utilizing a straightforward implementation.

After solving the trace space system given by equation (13), if the volume solutions
u and q are desired, one can invoke equation (12) to reconstruct them. The cost of



MANYCORE PARALLEL COMPUTING FOR HDG GMG 19

10−2 10−1 100 101 102 103
100

101

102

103

104

Arithmetic Intensity

G
F

LO
P

/s

 

 

Roofline
p=2
p=3
p=4
p=5
p=6
p=7
p=8

(a) Roofline analysis for matrix-free SPMV.

10−2 10−1 100 101 102 103
100

101

102

103

104

Arithmetic Intensity

G
F

LO
P

/s

 

 

Roofline
p=2
p=3
p=4
p=5
p=6
p=7
p=8

(b) Roofline analysis for CSR SPMV.

Fig. 9: Roofline analysis for matrix-free SPMV and CSR SPMV.

this procedure depends on if one discards the local matrices. In this case, one has to
recompute and the cost is the same as the projection from the surface to volume. If
one instead keeps the local matrices, all that is needed is two matrix vector multiplies
and a single SAXPY. Ultimately this comes down to a preference of convenience over
memory concerns.

Polynomial Order AI GFLOP/s

0 0.84 0.0032

1 1.41 1.15

2 2.60 5.129

3 4.33 21.18

4 6.56 53.66

Table 3: Arithmetic intensity and GFLOP/s for the local solvers.

8.1.3. Cost analysis matrix-free vs matrix-stored. We consider the cost
of our matrix free approach compared to a matrix based approach. The previ-
ous sections discuss the memory considerations, but there are other measures one
can use. Most importantly, operation counts and time-to-solution. The operation
count (FLOPs) for sparse matrix vector multiplication is O(nnz), where nnz is the
number of nonzero entries in the sparse matrix in question. For the statically con-
densed HDG method on a structured Cartesian mesh, nnz for the stiffness matrix is
C1 = O(Nd(p+1)d−1×(4d−1)(p+1)d−1) [47], [30] (d is the dimension, N is the total
number of elements in the mesh). The operation count for our proposed matrix free
variant (Algorithm 3) is C2 = O(2|Γh|(2 · 4(p+ 1)− 1)). In 2D, as N →∞, the ratio
tends to C2/C1 → (16p+ 14)/(7(p+ 1)2). Which indicates that for higher orders, the
matrix free variant is cheaper in terms of operations than the sparse matrix format.

A second important measure is time-to-solution. Both the matrix free and matrix
based algorithm require the local solvers. In the matrix based approach, a non negli-
gible amount of time is spent on the matrix assembly, especially for higher orders. We
compare the wall-clock matrix based solve to the wall-clock of the (parallel) assembly.



20 M. S. FABIEN, M. G. KNEPLEY, R. T. MILLS, AND B. M. RIVIERÈ

See Fig. 10a. For p = 2, the assembly time is already more than 40% of the total
solve time. Increasing the polynomial order to p > 2, the assembly time ranges from
around 45% to 56% of the total solve time. Comparing the matrix free solve timings,
to the matrix based solve and assembly time, Fig. 10b shows for p > 2 we obtain
speedups of 1.5 to 2.3 in favor of the matrix free method.

1 2 3 4 5 6 7 8 9

Polynomial order

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

R
at

io
 o

f w
al

l-c
lo

ck
 a

ss
em

bl
y 

vs
 s

ol
ve

(a) Matrix-based solve and assembly.

1 2 3 4 5 6 7 8 9

Polynomial order

1

1.2

1.4

1.6

1.8

2

2.2

2.4

S
pe

ed
up

 o
f m

at
rix

-f
re

e 
vs

 m
at

rix
-b

as
ed

 s
ol

ve

(b) Matrix-free vs matrix-based solve.

Fig. 10: Figure (a): Ratio of wall-clock timings for the matrix-based solve and assem-
bly. Figure(b): Speedup for matrix-free vs matrix-based solve.

We acknowledge that the benefits of matrix free methods will vanish if efficient
preconditioners are not available. In such cases, in order to have more options for
robust preconditioners, the matrix will have to be stored.

9. Conclusions. We presented a highly efficient multigrid technique for solv-
ing a second order elliptic PDE with the HDG discretization. Both the multigrid
technique and the HDG discretization are amenable to high throughput low memory
environments like that provided by the KNL architecture; this was demonstrated by
using thorough profiling and utilizing a roofline analysis ([57]). The HDG method has
much of its computation localized due to the discontinuous nature of the solution tech-
nique. Moreover, the HDG method brings static condensation to DG methods, which
significantly reduces the number of nonzeros in the discretization operator. This in
turn means that less work is required for a linear solver to obtain solutions. Since the
HDG method converges with optimal orders for all of the variables it approximates,
a local element by element postprocessing is available.

Any iterative solver will require sparse matrix vector multiplication (matrix free
or otherwise); including multigrid. Two different approaches were examined for sparse
matrix vector multiplication: matrix based and matrix free. For high order HDG, the
matrix free technique better utilizes the resources available on the KNL, because of
increased arithmetic intensity. In the high order regime, the matrix based technique
requires a sparse matrix storage which increases time to solution. This is mainly
because of additional assembly time, having a low arithmetic intensity, and erratic
memory access patterns for sparse matrix vector multiplication.

Our algorithm is able to attain 80% of peak bandwidth performance for higher
order polynomials. This is possible due to the data locality inherent in the HDG
method. Very good performance is realized for high order schemes, due to good
arithmetic intensity, which declines as the order is reduced. The performance is lower
for polynomial orders p < 6. With an approach similar to the work done in [38],
where multiple cells are processed by a thread block, one would be able to increase
performance for lower order polynomials. We observed speedups when compared
to a multicore CPU for the HDG methods components, namely, volume to surface
mapping, surface to volume mapping, matrix free matrix vector multiplication, and
local matrix generation. The ratio of peak flop rates on the two target architectures



MANYCORE PARALLEL COMPUTING FOR HDG GMG 21

was roughly 100X, and peak bandwidths was 5X, so this figure fits with our model
of the computation. This is possible due to the data locality inherent in the HDG
method. Very good performance is realized for high order schemes, due to good
arithmetic intensity, which declines as the order is reduced.

An attractive feature of the KNL is that it can be programmed with traditional
parallel paradigms like OpenMP, MPI, and pthreads. Thus, one can harness the
massive fine-grain parallelism that the KNL offers by utilizing these traditional parallel
paradigms with significantly limited intrusion.

Acknowledgments. Fabien acknowledges the support from the Ken Kennedy
Institute and the Ken Kennedy–Cray graduate Fellowship. Fabien also acknowledges
the support from the Richard Tapia Center for Excellence & Equity, and the Rice
Graduate Education for Minorities program. This work used the Extreme Science
and Engineering Discovery Environment (XSEDE), which is supported by National
Science Foundation grant number ACI-1053575. The KNL used in this work was
provided to the RELACS research group by Richard T. Mills through the Intel R©

Parallel Computing Center at Rice University.

REFERENCES

[1] M. Adams, M. Brezina, J. Hu, and R. Tuminaro, Parallel multigrid smoothing: polynomial
versus Gauss–Seidel, Journal of Computational Physics, 188 (2003), pp. 593 – 610.

[2] H. Ali, Y. Shi, D. Khazanchi, M. Lees, G. D. van Albada, J. Dongarra, P. M. Sloot,
J. Dongarra, H. Anzt, S. Tomov, M. Gates, J. Dongarra, and V. Heuveline, Pro-
ceedings of the International Conference on Computational Science, ICCS 2012 Block-
asynchronous multigrid smoothers for GPU-accelerated systems, Procedia Computer Sci-
ence, 9 (2012), pp. 7 – 16.

[3] P. F. Antonietti, M. Sarti, and M. Verani, Multigrid algorithms for hp-discontinuous
Galerkin discretizations of elliptic problems, SIAM Journal on Numerical Analysis, (2015).

[4] P. F. Antonietti, M. Sarti, and M. Verani, Multigrid algorithms for high order discontinu-
ous Galerkin methods, Domain Decomposition Methods in Science and Engineering XXII,
(2016), pp. 3–13.

[5] H. Anzt, S. Tomov, J. Dongarra, and V. Heuveline, Weighted block-asynchronous iteration
on GPU-accelerated systems, (2013), pp. 145–154.

[6] D. N. Arnold, B. C. F. Brezzi, and L. D. Marini, Unified analysis of discontinuous Galerkin
methods for elliptic problems, SIAM J. Numerical Analysis, 39 (2002), pp. 1749–1779.

[7] P. Bastian, Load balancing for adaptive multigrid methods, SIAM Journal on Scientific Com-
puting, 19 (1998), pp. 1303–1321.

[8] P. Bastian, G. Wittum, and W. Hackbusch, Additive and multiplicative multi-grid; a com-
parison, Computing, 60 (1998), pp. 345–364.

[9] M. W. Benson, Frequency domain behavior of a set of parallel multigrid smoothing operators,
International Journal of Computer Mathematics, 36 (1990), pp. 77–88.

[10] J. P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Review, 46
(2004), pp. 501–517.

[11] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Mathematics of Com-
putation, 31 (1977), pp. 333–390.

[12] A. Brandt and O. Livne, Multigrid Techniques: 1984 Guide with Applications to Fluid Dy-
namics, Revised Edition, Classics in Applied Mathematics, Society for Industrial and Ap-
plied Mathematics, 2011.

[13] S. C. Brenner, J. Cui, and L.-Y. Sung, Multigrid methods for the symmetric interior penalty
method on graded meshes, Numerical Linear Algebra with Applications, 16 (2009), pp. 481–
501.

[14] S. C. Brenner and J. Zhao, Convergence of multigrid algorithms for interior penalty methods,
Applied Numerical Analysis & Computational Mathematics, 2 (2005), pp. 3–18.

[15] O. Bröker and M. J. Grote, Sparse approximate inverse smoothers for geometric and alge-
braic multigrid, Appl. Numer. Math., 41 (2002), pp. 61–80.

[16] C. Cantwell, S. Sherwin, R. Kirby, and P. Kelly, From h to p efficiently: Strategy selection
for operator evaluation on hexahedral and tetrahedral elements, Computers & Fluids, 43
(2011), pp. 23–28.

[17] B. Cockburn, J. G. B. Dong, M. Restelli, and R. Sacco, A hybridizable discontinuous
Galerkin method for steady-state convection-diffusion-reaction problems, SIAM J. Scientific



22 M. S. FABIEN, M. G. KNEPLEY, R. T. MILLS, AND B. M. RIVIERÈ

Computing, 31 (2009), pp. 3827–3846.
[18] B. Cockburn, B. Dong, and J. Guzmán, A superconvergent LDG-hybridizable Galerkin

method for second-order elliptic problems, Math. Comput., 77 (2008), pp. 1887–1916.
[19] B. Cockburn, O. Dubois, J. Gopalakrishnan, and S. Tan, Multigrid for an HDG method,

IMA Journal of Numerical Analysis, 34 (2013), pp. 1386–1425.
[20] B. Cockburn, J. Gopalakrishnan, and R. D. Lazarov, Unified hybridization of discontinu-

ous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems,
SIAM J. Numerical Analysis, 47 (2009), pp. 1319–1365.

[21] R. P. Fedorenko, The speed of convergence of one iterative process, U.S.S.R. Comput. Math.
Math. Phys., 4 (1964), pp. 559–564.

[22] K. J. Fidkowski, T. A. Oliver, J. Lu, and D. L. Darmofal, p-multigrid solution of high-
order discontinuous Galerkin discretizations of the compressible navier-stokes equations,
J. Comput. Phys., 207 (2005), pp. 92–113.

[23] J. Gopalakrishnan and G. Kanschat, A multilevel discontinuous Galerkin method, Nu-
merische Mathematik, 95 (2003), pp. 527–550.

[24] J. Gopalakrishnan and S. Tan, A convergent multigrid cycle for the hybridized mixed method,
Numerical Linear Algebra with Applications, 16 (2009), pp. 689–714.

[25] W. Hackbusch, Multi-Grid Methods and Applications, Springer Series in Computational Math-
ematics, Springer Berlin Heidelberg, 2013.

[26] A. Heinecke, H. Pabst, and G. Henry, LIBXSMM: A high performance library for small
matrix multiplications.

[27] P. Hemker, W. Hoffmann, and M. Van Raalte, Two-level fourier analysis of a multigrid
approach for discontinuous Galerkin discretization, SIAM Journal on Scientific Computing,
25 (2003), pp. 1018–1041.

[28] P. Hemker, W. Hoffmann, and M. Van Raalte, Fourier two-level analysis for discontinuous
Galerkin discretization with linear elements, Numerical linear algebra with applications,
11 (2004), pp. 473–491.

[29] P. Hemker and M. Van Raalte, Fourier two-level analysis for higher dimensional discontinu-
ous Galerkin discretisation, Computing and Visualization in Science, 7 (2004), pp. 159–172.

[30] A. Huerta, A. Angeloski, X. Roca, and J. Peraire, Efficiency of high-order elements
for continuous and discontinuous Galerkin methods, International Journal for Numerical
Methods in Engineering, 96 (2013), pp. 529–560.

[31] Intel Math Kernel Library. reference manual, 2009.
[32] J. Jeffers, J. Reinders, and A. Sodani, Intel Xeon Phi Processor High Performance Pro-

gramming: Knights Landing Edition, Morgan Kaufmann, 2016.
[33] K. Johannsen, Multigrid methods for NIPG, ICES Report, (2005), pp. 05–31.
[34] K. Johannsen, A symmetric smoother for the nonsymmetric interior penalty discontinuous

Galerkin discretization, ICES Report, 5 (2005), p. 23.
[35] G. Karniadakis and S. J. Sherwin, Spectral/hp Element Methods for CFD, Numerical math-

ematics and scientific computation, Oxford University Press, 1999.
[36] J. King, S. Yakovlev, Z. Fu, R. M. Kirby, and S. J. Sherwin, Exploiting batch process-

ing on streaming architectures to solve 2D elliptic finite element problems: A hybridized
discontinuous Galerkin (HDG) case study, Journal of Scientific Computing, 60 (2014),
pp. 457–482.

[37] R. M. Kirby, S. J. Sherwin, and B. Cockburn, To CG or to HDG: A comparative study,
Journal of Scientific Computing, 51 (2012), pp. 183–212.

[38] M. G. Knepley, K. Rupp, and A. R. Terrel, Finite element integration with quadrature on
the GPU, CoRR, abs/1607.04245 (2016).

[39] M. Kronbichler and K. Kormann, A generic interface for parallel cell-based finite element
operator application, Computers & Fluids, 63 (2012), pp. 135–147.

[40] S. Loisel, R. Nabben, and D. B. Szyld, On hybrid multigrid-Schwarz algorithms, Journal of
Scientific Computing, 36 (2008), pp. 165–175.

[41] J. W. Lottes and P. F. Fischer, Hybrid multigrid/Schwarz algorithms for the spectral ele-
ment method, Journal of Scientific Computing, 24 (2005), pp. 45–78.

[42] J. D. McCalpin, STREAM: Sustainable memory bandwidth in high performance computers.
https://www.cs.virginia.edu/stream/. Accessed: 2016-08-30.

[43] W. F. Mitchell, The hp-multigrid method applied to hp-adaptive refinement of triangular
grids, Numerical Linear Algebra with Applications, 17 (2010), pp. 211–228.

[44] A. Napov and Y. Notay, When does two-grid optimality carry over to the v-cycle?, Numerical
linear algebra with applications, 17 (2010), pp. 273–290.

[45] X. Roca, N. C. Nguyen, and J. Peraire, GPU-accelerated sparse matrix-vector product for
a hybridizable discontinuous Galerkin method, in Aerospace Sciences Meetings. American



MANYCORE PARALLEL COMPUTING FOR HDG GMG 23

Institute of Aeronautics and Astronautics, 2011, pp. 2011–687.
[46] Y. Saad, Iterative Methods for Sparse Linear Systems: Second Edition, Society for Industrial

and Applied Mathematics, 2003.
[47] A. Samii, N. Panda, C. Michoski, and C. Dawson, A hybridized discontinuous Galerkin

method for the nonlinear Korteweg–de Vries equation, Journal of Scientific Computing, 68
(2016), pp. 191–212.

[48] O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equations with
PARDISO, Future Generation Computer Systems, 20 (2004), pp. 475–487.

[49] J. Stiller, Nonuniformly weighted Schwarz smoothers for spectral element multigrid, CoRR,
abs/1512.02390 (2015).

[50] J. Stiller, Robust multigrid for high-order discontinuous Galerkin methods: A fast Poisson
solver suitable for high-aspect ratio cartesian grids, CoRR, abs/1603.02524 (2016).

[51] S. Tan, Iterative solvers for hybridized finite element methods, PhD Thesis, (2009).
[52] L. N. Trefethen, Approximation Theory and Approximation Practice, Siam, 2013.
[53] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic Press, 2001.
[54] P. E. Vos, S. J. Sherwin, and R. M. Kirby, From h to p efficiently: Implementing finite

and spectral/hp element methods to achieve optimal performance for low-and high-order
discretisations, Journal of Computational Physics, 229 (2010), pp. 5161–5181.

[55] H. Wang, D. Huybrechs, and S. Vandewalle, Explicit barycentric weights for polynomial
interpolation in the roots or extrema of classical orthogonal polynomials, Mathematics of
Computation, 83 (2014), pp. 2893–2914.

[56] P. Wesseling, An introduction to multigrid methods, Pure and applied mathematics, John
Wiley & Sons Australia, Limited, 1992.

[57] S. Williams, A. Waterman, and D. Patterson, Roofline: An insightful visual performance
model for multicore architectures, Commun. ACM, 52 (2009), pp. 65–76.

[58] S. Yakovlev, D. Moxey, R. M. Kirby, and S. J. Sherwin, To CG or to HDG: A comparative
study in 3D, Journal of Scientific Computing, 67 (2016), pp. 192–220.


	1 Introduction
	2 Model problem
	3 Discretization
	4 Basis functions
	5 HDG discretization
	6 Multigrid algorithm
	6.0.1 p-multigrid grid transfer
	6.0.2 h-multigrid grid transfer
	6.0.3 Coarse grid operator
	6.0.4 Relaxation
	6.0.5 Sparse approximate inverse relaxation
	6.0.6 Additive Schwarz domain decomposition relaxation
	6.0.7 Standard multigrid V-cycle


	7 Multigrid convergence
	8 Performance model
	8.0.1 Knights Landing (KNL) many-core coprocessor
	8.0.2 Local matrix generation

	8.1 Roofline analysis
	8.1.1 Sparse Matrix Vector Multiply (SPMV)
	8.1.2 Projection From Volume To Surface
	8.1.3 Cost analysis matrix-free vs matrix-stored


	9 Conclusions
	References

