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Abstract. Gaussian process (GP) models have become popular for approximating and exploring nonlinear
systems using scarce input/output samples and prior hypotheses done through mean and covariance
functions. While it is common to make stationarity assumptions and use variance-based criteria
for exploration, in realistic cases it is not rare that systems under study exhibit a heterogeneous
behavior depending on regions of the parameter space. We consider a class of problems where high
variations occur along unknown noncanonical directions and we tackle the problem of accommodating
nonstationarity from two angles. First we define a novel class of covariances (WaMI-GP) that
simultaneously generalizes kernels of multiple index and of tensorized warped GPs, and second, we
introduce derivative-based sampling criteria dedicated to the exploration of high-variation regions.
The novel GP class is investigated through both mathematical analysis and numerical experiments,
and it is shown that it allows encoding much expressiveness while keeping the number of parameters
to be inferred moderate. Criteria and models are compared on a mechanical test case from safety
studies conducted by IRSN. On this application some of the proposed criteria outperform usual
variance-based criteria in the case of a stationary GP model; however, variance-based criteria with
WaMI-GP perform even better. Our method is also compared with the treed Gaussian processes
(TGP) on this application and on a NASA test case. In the IRSN application, WaMI-GP dominates
TGP in static and sequential settings. In the NASA application, while TGP clearly dominates in
the static case, for small designs it is outperformed by WaMI-GP in the sequential setup.
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1. Introduction. Many systems abruptly change regime: in materials sciences and fluid
mechanics, with percolation in porous media, in epidemiology, with outbreak of a pathogen
depending on population characteristics, in thermodynamics with phase transition, etc. This
situation is also encountered in nuclear safety analysis where, for instance, slight variations
in input parameters of computer codes may strongly impact responses quantifying system
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Figure 1. Illustration of the concentration of prediction errors around high-variation regions. Top: func-

tions with heterogeneous variations (sample paths of a nonstationary GP) interpolated based on five evaluations.

Predictions from a GP model with mean zero and stationary covariance of type Matérn v = g Bottom: absolute

differences between predictions and true values, averaged on a moving window of width 11—0

safety due to a steep transition between competing mechanical phenomena. Let us focus
on one real-valued response of some system with respect to d variables, formally a function
f:xeDcCR!— f(x) € R. For differentiable f’s, abrupt changes of regime are reflected
in the evolving magnitude of the gradient norm depending on regions of D or, to take one
alternative viewpoint, by spatially varying main local frequencies. Here we informally refer to
f’s exhibiting such behavior as “functions with heterogeneous variations.” As illustrated in
Figure 1, regions with abrupt variations of the response can lead to increased prediction errors.
Allocating more evaluations in these regions is a natural idea. However, practitioners often
only guess the existence of such heterogeneities without much precise information regarding
their location, shape, or orientation. If the function f is expensive to evaluate it is reasonable
to appeal to modeling and sampling approaches that allow for uncovering such regions based
on data and, ultimately, for better approximating f. In sequential design of experiments,
the choice of evaluation points is typically guided by a (cheap) surrogate model of f. Often
surrogate model predictions come with prediction uncertainties, and sampling criteria rely
upon them in order to determine the next evaluation point(s). Evaluations of f at points
deemed most promising and surrogate model updates are then repeated until some stopping
condition is met, e.g., depletion of the evaluation budget.

Gaussian process (GP) models have become a popular surrogate class, especially for the
design and analysis of computer experiments (see, e.g., [37], [21], and [39]). GP modeling
consists in assuming that the unknown objective function f is a priori a sample path of a
GP, denoted by Y, indexed by the source space of f, leading to posterior distributions when
taking function evaluation results into account. The quality of the model depends both on the
evaluation points and on the adequacy between the prior GP (parametrized by its mean and
covariance functions) and the function to be predicted. Adapting the prior covariance of Y to
specific classes of objective functions f has inspired several contributions in GP modeling. For
example, for objective functions with a better representation in polar coordinate, [26] proposes
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GP models that incorporate the geometry of the disk. Similarly, appropriate prior covariances
exist for functions known to satisfy degeneracies such as symmetries or harmonicity [13], and
for functions with a sparse ANOVA decomposition [11, 14]. In the absence of such specific
prior assumption on f, it is common to take stationary covariance functions [43]. Consider a
constant-mean GP model; then a stationary prior covariance means that the distribution of
outputs (Yz, Yz) ' solely depends on (x,z') € D? via the difference  —«’. Among stationary
kernels, the Matérn class is quite popular as it allows one to tune the order of (almost sure)
differentiability of associated GP realizations. Note that both tensor product Matérn kernels
(e.g., in [36]) and their radial counterparts (such as in [33]) have been used. For sequential
settings it is interesting to keep in mind, however, that a number of properties including
stationarity vanish when conditioning on data, as discussed notably in [35].

Yet, when f is known to possess heterogeneous variations, it is sensible to consider non-
stationary prior covariances that account for this property. Various nonstationary GP models
were proposed in the literature, notably convolution methods (see [25, 12]) and input space
warping approaches [38]. In warping approaches, nonstationarity comes from the chaining of a
GP with a warping function. A strongly consistent approach for estimating deformations of a
bivariate isotropic GP from dense evaluations of a single (deformed) realization is provided by
[1]. In contrast, challenges considered here rather call for estimating nonnecessarily bijective
warpings from scarce evaluations in order to build nonstationary surrogates for functions with
arbitrary d-dimensional source space. Gibbs [12] tackled this problem using parametric warp-
ings relying on linear combinations of basis functions. Following this idea, Xiong et al. [47]
drastically reduced the number of parameters by taking tensor products of univariate warpings.

An additional popular model, the treed Gaussian process (TGP) [15], consists in parti-
tioning the input space D into parallelepipeds on which individual GPs are defined and then
combined. While this method is very flexible and allows, by construction, accounting for het-
erogeneous variations, it requires appealing to the machinery of posterior sampling and does
not enjoy the convenient analytical tractability of the plain GP approach. In the context of
small data sets and heterogeneous variations driven by unknown directions, there is a need
of GP surrogate models that enjoy the sparsity of the axial warping of Xiong et al. while
keeping nice flexibility properties of TGP or the Gibbs approach without relying on canonical
axes. The last point notably refers to single index models (SIM) such as GP-SIM [19] and
more generally to multiple index models (MIM) [46]. We propose a kernel class inspired by
these considerations, as detailed in the next sections.

From a different perspective, GPs have been used for sequential design of computer ex-
periments, notably with variance-based sampling criteria like the mean squared error (MSE)
and integrated MSE (IMSE) that allow allocating evaluations to unexplored regions. While
strategies based on such criteria tend to fill the design space [44], in cases where covariance
parameters are not reestimated it is done nonadaptively, as the MSE does not depend on
observations but solely on the location of points. In contrast, GP-based adaptive criteria have
been tackled for estimating target regions such as contour lines, excursion sets, and related
[45, 32, 29, 2, 4]. On a different note, adaptive design criteria have been used for global op-
timization (see notably [23, 21, 42]). In particular, input warping has been recently shown to
improve Bayesian optimization in nonstationary cases [41].
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Our contributions concern the problem of learning functions with heterogeneous varia-
tions along unknown directions both from the modeling and the sequential design point of
view. First we introduce the warped multiple index (WaMI) GP model, relying on a new
family of nonstationary covariance kernels that combines features from multiple index GPs
and tensorized warpings. A nice aspect of this kernel family is that the number of hyperpa-
rameters increases affinely with d (with slope 1). Besides this, the model can incorporate any
orientation of heterogeneous variations. Regarding the sequential design aspect, we develop
targeted criteria based on GP gradient norms that make a trade-off between space-fillingness
and intensifying exploration in high-variation regions.

We apply these contributions on functions from two mechanical engineering case studies.
The first test case stems from numerical simulations of fracture dynamics arising in risk studies
at the French Institute for Radioprotection and Nuclear Safety (IRSN). On this test case,
the WaMI-GP model outperforms both a stationary GP model and a TGP model in static
prediction from a class of initial designs. Moreover the same test case is used to compare
performances of sequential design strategies by varying both criteria (MSE and IMSE versus
introduced derivative-based criteria) and surrogate models. Best results are obtained using
WaMI-GP (and to a lesser extent, TGP) combined with classical variance-based criteria,
followed by a stationary GP model combined with one of the proposed gradient-based criteria.
In the second test case, we study a three-dimensional fluid dynamics application from NASA
that was used in seminal article about TGP. In this test case, TGP remains the best model at
fixed space-filling design of experiments, but when both surrogates are combined with MSE-
based sequential design, WaMI-GP catches up TGP by successfully detecting high-variation
regions and leading to better prediction performance.

The paper is organized as follows. Section 2 is devoted to an overview on GP models with
foci on nonstationarity and on GP-driven sequential design of experiments. Then we introduce
and investigate the WaMI-GP model in section 3, followed in section 4 by several proposals
of derivative-based criteria for exploring high-variation regions. Finally, experimental com-
parisons with classical approaches based on the two engineering test cases are presented in
section 5.

2. State of the art.
2.1. Stochastic modeling for the emulation of computer experiments.

2.1.1. Overview of Gaussian process modeling basics. In GP modeling, one assumes
that the objective function is a realization of a Gaussian random field Y ~ GP(m(-),c(-,-))
indexed by D, specified in distribution by its mean and covariance functions m(-), c(,-).
These functions are typically taken among some parametric families and parameters are either
estimated and plugged in or treated as random variables in the full Bayesian framework. Let
us denote m = mg, and ¢ = cg,, with an overall hyperparameter 8 = (61,02). In this
article, we adopt an empirical Bayes viewpoint, i.e., that the Bayesian paradigm is used
when seeing f as a random element with a GP prior, but the hyperparameter @ is treated as
deterministic even if it is estimated from data. In other words, given 8, V x1,...,x, € D, the
corresponding response vector (Yg,, ..., Y, )" (standing for values of the objective functions
at those points) is a priori distributed as a multivariate normal distribution N (m,,, C'), with
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True function Initial design GP model prediction Standard deviation

Figure 2. Stationary GP modeling of a toy function (3). From left to right: f; locations and responses of
eight initial evaluations; posterior GP mean; posterior GP standard deviation.

m, = (mg, (x:)){<;<, and C = (cg,(xi, T;))1<i j<n- Estimators for 6 can notably be defined by
cross-validation minimization or by maximum likelihood (see [27]) and then simply plugged in.
Details about mean and covariance parameter estimation can be found in [36]. Note that even
though we stick to the empirical Bayes setup for simplicity, most results presented throughout
the paper could be extended naturally to the full Bayesian framework.

Now given n arbitrary points @1, ...x, € D and observed values (y,...,y,) of Y at those
points, the so-called kriging formulas and the underlying posterior GP model are obtained by
conditioning Y on the event A, = {Yz, = y1,..., Yo, = Yn}:

(1) mp(x) = E (Yz| An) = me, (x) + CIC_l(yl:n —my) and
(2) cn(@,x') = cov (Ya, Yar | An) = co,(x, ') — ¢, C7 ey,

where ¥y, = (Yi){<jcns ¢ = (o, (%, ®:)){<;c, and C is assumed nonsingular here. Figure 2
shows a bivariate stationary GP model with

(3) f:xel0,1]® = (sin(15z1) + cos(10x3))/ 5 + arctan (10(z1 + x2) — 15/2).

A model is built from eight observations at a Latin hypercube design (optimized with a
maximin distance criterion; see, e.g., [10]). While trends are parametrized by basis functions
coefficients in the case of universal kriging, here we focus mostly on the role of the covariance
and the trend is typically taken as a constant (estimated in the ordinary kriging setting, as
discussed in [36]). The covariance kernel used in Figure 2 is an anisotropic stationary Matérn
with v = 5/2 and 0 € (R:\{0})?", i.e., co(x, @) = O441(1 + v/5h + 3h?) exp(—+/bh), where
h = Zle (I’;ifg)g (see [43, 33]). In this example the function f has heterogeneous variations
across the input space in the sense that there is a steep region in a band around the line of
equation zg = 3/4 —x1. Localized features question the choice of a stationary covariance, and
actually a nonstationary model may improve the model by fitting the heterogeneous behavior

of f.

2.1.2. Nonstationary approaches: From warped GP to TGP. There are several ap-
proaches to inject prior knowledge about spatial-dependency. A trivial way is vertical scaling:
c(x,x') = o(x)o(x')R(x,x’), where R is a correlation function and ¢ a nonnegative (non-
constant) function is a valid nonstationary covariance (see, e.g., [22]). Moreover, Paciorek and
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Schervish [25] address the issue by extending a convolution method proposed in [12] from a
squared exponential kernel to any covariance structure. Warping stationary GPs for creating
nonstationary GPs is also a common method (see, e.g., [38]). In this approach, called the
nonlinear map method, the nonstationary covariance c is derived from  — Yz = Zp(4,), with
Z a (stationary) GP of covariance k(-,-) on R x RP and T a function from D to RP. The
covariance of Y is then Va, &' € D, ¢(z,x’) = k(T(x),T(z')).

The nonlinear map method’s flexibility turns out to be challenging in practice as it requires
one to estimate from data a warping 7" among the set of all injections on D. A first restriction,
implicitly assumed in almost all applications, is to consider only continuous bijections. The
estimation of T is often simplified to a finite-dimensional problem, taking T = T, with 7
a parameter vector. Gibbs’ method [12], for example, formulates T as a multidimensional
integral of nonnegative density functions that ensures continuity (and bijectivity in the case of
positive densities; see also Appendix A for more details and an illustration). In this method,
keeping the same level of spatial precision, say, r basis functions for each direction, the number
of weights is dr?. This reduces the applicability of the method in contexts with drastically
limited numbers of evaluations. For this reason, further work focused on reducing the number
of parameters while preserving some flexibility.

In the axial warping method of [47], it is assumed that for € D, T'(x) = (T;(2;)){ << g»
with (T;)1<i<q continuous univariate bijections. The functions T;, i = 1,...,d, are taken
piecewise second degree polynomials, with differentiability constraints and equally spaced
nodes. In Figure 3 we display the results of applying this method to the synthetic example
(3), along with the estimated axial warping densities. In some situations, warping only along
canonical axes can be questioned. For instance, if the expected, or “real,” warping is of the
form T'(x) = z+T}(x " w)u, with u an arbitrary noncanonical direction in R?, an axial warping
cannot incorporate that orientation. Although this warping is simple, and potentially useful
in many applications, the general Gibbs approach needs a lot of parameters to approximate
T. In Xiong et al. the number of parameters is reduced but this simplification appears to be
too rigid in some applications.

Using a TGP is another strategy for modeling functions with heterogeneous variations.
This method is based on partitioning the input space. Independent GP models defined over

Density functions Warping Prediction mean Standard deviation
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Figure 3. GP model with azial warping, applied to the example fuction Equation (3). From left to right:
estimated warping density functions for the axes; corresponding surface warping of [0, 1]2 (represented by de-
formation of a 10 x 10 regular orthogonal grid); prediction mean and standard deviation.
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True function Partitions Prediction mean Standard deviation

-1 std. deviation: 0.172
range: 0.816

std. deviation: 0.238
v range: 0.011

T T T T
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Figure 4. Bayesian treed GP model. From left to right: the objective function with an initial design; a
sketch of the input space partition, where the red line divides the space into two regions with different range and
scale parameters for different GP models; the TGP prediction mean and standard deviation.

the different subregions are combined, allowing highly heterogeneous behavior across the input
space. A strength of this method is that partitions are automatically determined based
on data. The discontinuities resulting from partitioning could sound like a drawback, but
Bayesian averaging mitigates their detrimental effects in terms of prediction error. Figure 4
shows the application on the toy function obtained with the R package tgp [16, 20].

We observe in this example that the TGP model leads to a partition of the input space
in two zones. Indeed the region x5 > 0.434 appears to have fewer variations than the region
r9 < 0.434. The partitions are implemented to be defined in terms of the canonical axes.
Here, it can be expected that partitioning the space with respect to the line x1 + z9 = 3/4
could constitute an improvement, because it takes into account the transition region. If the
direction of the line were known a priori, TGP could accomplish an estimation of its position
by putting 3 = 1 + x2 in as a third predictor and allowing partitioning only along that
dimension.

2.1.3. Dimension reduction with the multiple index model. In most anisotropic GP
models, the dimension of 0 increases rapidly with d. Geometric anisotropies in dimension d
require one to parametrize a rotation (d(d — 1)/2 parameters) and length-scale parameters
for each relevant direction (see, e.g., [33, p. 10] for a presentation of the squared exponential
anisotropic GP). To avoid this quadratic increase in the number of parameters, one can con-
sider alternatives like the SIM [3]. In GP modeling, Gaussian process-SIM (GP-SIM [6, 19])
has for prior covariance cg(x, @') = kg(a'z,a' x'), where kg is a covariance kernel over R x R
and is hence parametrized by a vector 3 and a € R%. In an empirical Bayesian setting, this
model produces constant predictions in all hyperplanes orthogonal to a. Relaxing this con-
straint, the MIM is an extension proposed by [46]. It extends the scalar product to a matrix
product, resulting in the GP framework to covariance kernels of the form

(4) co(x,x') = kg (Az, Ax')

with ¢ € N\{0}, A a ¢ x d matrix, and kg a covariance kernel on R? parametrized by 8. With
this covariance function, the dimension of 8 = {3, a} increases affinely in d with slope ¢q. An
important advantage of MIM is its neutrality toward the canonical axes: any invertible linear
pretreatment of the data intrinsically leads to the same estimation problem, which is not the
case for many models relying on the canonical axes.
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2.2. Sampling: Principle and classic criteria. Once a GP model has been built from
an initial, e.g., space-filling, design of Nj,; evaluations (commonly used designs are opti-
mized Latin hypercube sample (LHS) designs and minimax-distance designs; see [30] for an
overview), the sequential design itself involves a loop over n, the current number of evaluations
n = Ny + 1,..., N. Sequential sampling is typically driven by successive optimizations of
infill criteria J,,, evaluations of the objective function at resulting points, and model updates.
More precisely, in fully sequential settings, the next evaluation x,41 is selected as a point
maximizing a criterion Jy,:

(5) Tpy1 € argmax Jy(x).
xeD

A criterion depends on past evaluations and is defined in terms of the mean m,(-) and the
covariance ¢, (-, -) of the GP at step n.

A common principle to several design classes is to sequentially evaluate f at points chosen
with the aim to maximally reduce GP prediction uncertainty, often defined with the help of
posterior variance functions. MSE and IMSE criteria are based on this rationale. These crite-
ria focus on zones where prediction variance is the highest (or where its integral is susceptible
of being maximally reduced in expectation), i.e., where the function is still (relatively) poorly
explored in the sense of the GP model. For IMSE, the aim is to reduce the integral of the
MSE over the whole domain D. Thus minimizing the IMSE corresponds to looking for a point
« minimizing the integral of the future MSE if x is added:

(6) J,IZMSE(:I:) = / ene (v, u)du,
ueD

with ¢, 2 (u, u) = var(Yy| A, z), Anz = An U {(z,m,(x))}. The term ¢, 5 can theoretically
be obtained using the kriging formula (2), but substantial computational savings are made
using an “update formula”; see [5] for details.

Figure 5 illustrates the first step of a sequential sampling procedure on our running toy
function under the three previously recalled models (stationary, nonstationary with axial

TGP

True function

ol

Stationary GP Axial warping GP

0.8

X2

0.2

0 02 X1 0.8 10 02 X1 0.8 10 02 X1 08 10 02 X1 08 1

Figure 5. MSE criterion in the first step of a sequential sampling procedure of f : & € [0,1]> —
w + arctan(W) (left), according to the model, stationary anisotropic GP, Xiong’s
azial warping GP, and treed GP. The blue triangles represent the mazximum of MSE, i.e., the next evaluation

point.
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warpings, and TGP). Three MSE maximizers that depend on the model can be seen as
proposals for the next evaluations.

Nonstationary modeling appears to be a promising choice to tackle the problem of de-
signing experiments in the case of objective functions exhibiting heterogeneous variations.
However, as mentioned in subsection 2.1.2, existing methods appear to not be fully satisfac-
tory for reducing evaluation budget in some situations.

3. WaMI-GP: A nonstationary multiple index model. We now present WaMI-GP, a
novel GP model dedicated to multivariate functions with heterogeneous variations along non-
canonical axes. This class of models involves a number of parameters describing the axes
as well as the deformations coming into play; however, their cardinality is kept moderate
thanks to the tensorial nature of the involved warping, i.e., by writing the warping as a vector
of univariate deformations. In this section we introduce the model, illustrate its flexibility,
and prove some of its important properties. Finally we show how WaMI outperforms other
considered GP classes on our running example both statically and when combined with a
state-of-the-art sequential design of experiments approach.

3.1. Formulation of the WaMI covariance. We focus on the covariance kernel of the
proposed GP class as, without loss of generality, the GP mean is assumed constant.

Definition 3.1 (WaMI kernel: combining deformations and multiple index modeling).  Let
q € N\{0}, A € R4 Ti(-,7;) : R > R be functions parametrized by 7; (i = 1,...,q) and
kg be a positive definite kernel on RY parametrized by B. Assuming that the parametric form
of the T;’s is given and denoting by 6 a hyperparameter consisting of A, the T;’s, and 3, we
define the associated WaMlI kernel on D by

(7) co: (x,@') € D x D — co(x, ') = kg (T'(Ax), T(Ax"))

with T'(w) = (T;(ui; T4))1<i<q-

The symmetry and positive definiteness (in the wide sense) of the WaMI kernel are inher-
ited from the basis kernel kg through the overall warping, consisting of A and the univariate
deformations (or univariate warpings) T;. More is established below in subsection 3.3 after
some examples. Before we get there, let us get a feeling about how the WaMI kernel fits into
the axial warping and MIM frameworks:

1. As an axial warping method, WaMI allows noncanonical directions for orientation of
the univariate deformations by acting on the input space via a linear map with matrix
A. Note that this kernel also accommodates dimension reduction (and thus reducing

the number of axial warpings) in case ¢ < d.
2. From the MIM perspective, we introduce nonstationarity into the covariance by ap-
plying nonlinear deformations to the result of each scalar product a;—m (with A =

[al, ce ,aq]T).

Naturally, it is possible to take identity 7;’s for one to several dimensions, hence reducing
the number of deformations and also of covariance parameters. Besides this, the class can
theoretically be generalized to cases where the warpings are not scalar but rather defined on
subspaces of R?. With this parametrization the total number of parameters is qd + #8 +
1, #7;, where #a stands for the dimensionality of & where « is an arbitrary parameter.
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Let us now focus on the identifiability of the covariance parameters. We first consider the
case of linear T}’s and stationary GP prior for kg, written as kg(u,u’) = BoR(B™(u — u'))
(where R is a positive definite kernel on R?, By > 0 is the variance, and B is an invertible
d x d matrix), and ¢ = d. We see from (7) why the model is overparameterized as we identify
B7'A and not B and A separately. To address this issue, one can restrict A to be a rotation
matrix (parametrized by angles) and B~! to be a diagonal matrix. This reduces the count of
parameters to

q
(8) dd—-1)/2+ _d +_1 +Z#”'
#diagB  #B =1

Another identifiability issue appears in case of an isotropic R: B~'A is estimated up to
an orthogonal matrix. This means the parameter space for A and B can be further reduced,
with restrictions on the sign of the diagonal terms of B and on the interval of the angles of A.
However, these additional restrictions do not reduce the number of parameters and the values
of A and B are not of direct interest. What matters here is the overall warping @ — BT (Ax)
up to a composition with an isometry.

When the T;’s are not assumed linear, there is in general no redundancy between A and
the parameters of kg. However, to limit the number of parameters, in the rest of the article
we keep A and B as rotation and diagonal matrices, respectively.

For example, fixing the T;’s to some prescribed linear or nonlinear warpings, a two-
dimensional instance of the WaMI kernel class of Definition 3.1 can be obtained by putting

_ [cos(By) —sin(by) N (1 p
(9) A= <sin (93) cos (90[; ) and kg(u, w) = Soaatern (ﬂ1 uTu>

with @ = (0o, Bo, 51, T1,T2), Bo,B1 > 0, and Kppatern is the Matérn kernel with smoothness
parameter v = 5/2. This particular class of WaMI kernels will be illustrated in the next

section with a specific choice of nonlinear warpings involving cumulative distribution functions
(CDFs) of beta distributions.

3.2. Examples. The flexibility of the WaMI-GP as a generative model is depicted in this
section with various examples. In what follows we take for the base kernel kg a radial kernel
of the Matérn class with v = 5/2.

Stationary subcase. Here all univariate deformations are the identity. In Figure 6 we
illustrate the warped space (here the overall warping amounts to A), the WaMI kernel, and
corresponding GP sample paths with

(10) A= (7?5 21(35> '

Note that in case of an isotropic base kernel kg, the first eigenvectors of AAT, ordered
with increasing eigenvalues, give the directions of high variations appearing in the sample
paths. This simple property could be used in a step-by-step parameter estimation procedure
for choosing directions in which warping should be employed.
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Figure 6. WaMI-GP model in the case of a stationary base kernel and no azial deformation. From left
to right: warping represented by mapping of the grid (15, 75 )o<ij<10, the covariance function c(, (0, 0)7), and
two corresponding WaMI-GP realizations.

Axial warping subcase. Before composing T' with A, we now illustrate the case of axial
deformations alone. We take A equal to the identity matrix. We keep T5 as the identity
function but 77 = I(-;5,5), where I(-;d1,02) is a CDF of a beta distribution. When it is
not U-shaped, the density of the beta distribution is unimodal. We restrict here to this class
of warpings in order to limit the number of parameters. For large designs, it is possible to
increase the model flexibility, by considering more complicated parametrized warpings (as
we illustrate later with a warping for modeling two high-variation regions) or using basis
functions for warping estimation (as in, e.g., Xiong et al. [47]). Nonetheless, the CDF of a
beta distribution provides a relatively diverse family of nonlinear deformations of a segment
with only two shape parameters, §1,d2. This function also has been used in other situations
for defining univariate deformations, e.g., in [41].

Moreover the warping may produce a very strong contraction of [0, 1] at the endpoints, as
its derivative can be zero at 0 and 1 (for 71, 73,2 > 1). To avoid such singularity, and relax
this strong assumption, I(-;7;1,7;2) is combined with a linear function as

(11) Ti(;7i) i —

1+ Tis (7—@3‘% + ITi,lyTi,2 (x))

with 7;3 > 0. This parameter is empirically set to 1 here. In Figure 7, we observe that
this covariance setting allows high variations in the vertical direction, at x9 = 1/2 where the
density of the axial warping is the highest.

Example of noncanonical orientation and two high-variation zones. Having a neutral
parametrization toward canonical axes is the key idea for estimating arbitrary directions of
heterogeneous variations. We now take

_ (cos(m/12) —sin(n/12) B _ )
(12) A= (sin(ﬂ/12) cos(r/12) and Tp = x 4+ I(2x;15,15) + I(2(z — 1/2);15,15),
which creates two variation zones. One can observe in Figure 8 the links between high-variation
regions of realizations and the overall warping appearing in the corresponding WaMI kernel.
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Figure 7. WaMI-GP with axial deformations. From left to right: density function of the deformations in

each direction, warping of the grid (l—i07 %)09,]—510, the covariance function c(-,x')) for different values of x’,

and three corresponding WaMI GP realizations.
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Figure 8. Ezample of a WaMI-GP with two regions of high variations. From left to right: density functions
of the deformations in each direction after the linear transformation, warping of the grid ({5, {5 )o<ij<10, the
covariance function c(-, ")) for different values of @', and three corresponding WaMI-GP realizations.
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3.3. Strict positive-definiteness and differentiability properties. We prove here some
properties of the WaMI kernel and the associated (centered) WaMI-GP. First we ensure that
under conditions on kg, A, and T;’s, the WaMI kernel is strictly positive definite. Although
the strict definiteness is not necessary for a covariance function, this property is useful for
avoiding singularity issues with covariance matrices.

Proposition 3.2 (strict positive definiteness). Assume that kg is strictly positive definite, that
the T;(-; T;) are injective, and that the rank of A is equal to d. Then the WaMI kernel of (7)
is strictly positive definite.

Proof. The injectivity of T; ¥V i = 1,.. ., p implies the injectivity of T. Since A is injective,
the composition of T' with & — Az is injective, and the strict positive definiteness of cg results
from the same property of kg. |

Let us now focus on differentiability questions. We give conditions for getting mean-
squared differentiability and sample path differentiability of the WaMI-GP. We say that Z
is mean-squared differentiable at a point & € D in the ith canonical direction if there is a
random variable Zi(l) of order 2 (€ L?) such that

2
(B2 o)) <o

The random vector VZ, = (Zi(l)7 ce Z(gl))—r, the gradient of Z at x, will be used later in
section 4 for the definition of new criteria.

13 li
(13) lim

Proposition 3.3 (mean-squared differentiability). The centered GP with covariance ¢ defined
in (7) is mean-squared differentiable (i.e., is mean-squared differentiable in any direction) as
soon as
1. Vie{l,...,q}, T;(:;T;) have regularity C* on R,

2 /
2. V4,7 €e{l,...,q} and u € RY, %{;@))ku’u) exists and is finite.

Proof. The warping T, whose components are the T;(-; 7;) functions, is C' on R¢. Using

the regularity of kg and T, the chain rule applied to (7) gives that V& € D, 882%:;,)\
exists and is finite. Thus the corresponding GP is mean-squared differentiable (see, e.g., [24,
p. 49)). [ |

Another relevant property when defining a covariance function is the almost sure differen-
tiability of sample paths of the associated GP. In general finite-dimensional distributions of a
stochastic process do not determine sample paths, and studying sample path properties from a
covariance function calls for additional assumptions such as separability, as assumed here. In
more generality, existence of separable versions is discussed in [8]; see, e.g., [24] for a summary.

Proposition 3.4 (sample path differentiability). With the same assumptions on T;(-;7;)’s
and kg as in Proposition 3.3, and assuming in addition that D is compact and that there

exist Cy,no,c0 > 0 such that Vj,j' € {1,...,q}, and Vu,u' € RY, ||lu — /|| < g9, we have
8%kg(v,v') 0%kg(v,v) 0%ks(v,0) Ch .
"0, l(w,u) + “Dv, 00, () — 278%81;;, l(uu) < Tt Ta—w/ 770 - Then the covariance c

provides a centered GP possessing a version with differentiable sample paths.
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Proof. We denote by T the derivative of T;. Let us take C, n > 0, and 0 < ¢ < 1/Cp
(with Cr a Lipschitz constant of @ — T'(Ax)) such that
L C=CoX i X4 ajiajn supgep(T)(al ) supge p(T) (af @),
2. Va,2' € D, ||z — 2'|| < e implies ||T(Ax) — T(Ax')|| < g9 (by continuity of T'),
3. Vx,x' € D, ||z — || < € implies (by existence of the

T In|ln|h
limit hmh_ﬂ)(M(l +n0) —1) =mn9 > 0).

Then we have V&, 2’ € D, ||z — &'|| < ¢,
0?c(u,u’) 0?c(u,u’)

Ouq0u} Ouq 0u)

<
|In(Crlle—a'[[)|* 10 = [In[lz—a'[]["*"

_q 0?c(u,u’)

14
( ) (m/,m/) 8“18”’1

(x,x) (x,x')

7 q 2 '
0%kg(v,v

= E E ajlaquJ{ (alT:c) Tj/»/ (aIw’) 35-(31/ )
j=14'=1 I

0%*kg(v,v")
821]-81;;.,

(T(Az')>
T(Az'))

Ly *kg(v,0’)

/
(T(Az)s 3vj87)j, (T(A)>
T(Ax)) T(Az'))

< ¢ < ¢
" [In||T(Az) — T(Az")|||" ™ |In ||z — /|||
Using the theorem of sample path continuity for GP derivatives (see, e.g., [40, p. 55], or the

supplementary material with the notations of the article), we get the sample path continuity
for the GP 0Y/0z, and thus VY by generalizing to all components. |

Remark 1. These properties can be extended to a higher order of differentiation with
equivalent hypotheses on a higher order of differentiability for the T;(-; 7;)’s and kg.

Remark 2. In this article, the estimation of A and of the 7; parameters (i = 1,...,p) are
performed by maximum likelihood; gradients are calculated analytically and the numerical
optimization relies on the BFGS algorithm with one or several initial points, using the R
package kergp [7].

3.4. WaMI-GP interpolation and sequential design on the running example. Let us
now come back to our running example function (3). For the sake of brevity, we directly
look at the results of an MSE-driven sequential design of experiments under the WaMI-
GP model compared to three competing models covered in the last section: stationary GP,
GP with axial warping, and TGP. The WaMI covariance is parametrized with the T;’s as
in (11) and with A and kg as in (9). In Figure 9, we display the absolute difference be-
tween the real function and predictions from the four models after 20 sequential design
steps based on the MSE criterion. The sequential sampling procedures start with models
built on an initial design of size 8 (an LHS maximized with maximin distance). Looking at
the selected points along the four competing sequential designs, we see that the MSE de-
sign relying on the WaMI-GP model allocates more evaluations in the high-variation region
(around the line of equation 0.75 = x1 + x2) and fewer evaluations in the flat regions (upper
right). For the other models, prediction errors tend to occur in the high-variation region.



WARPED GP AND SEQUENTIAL DESIGN WITH DERIVATIVES 1005

WaMI-GP
-

0.8

X2

0.2

0 02 X1 08 1 0 02 X1 08 1 0 02 X1 08 1 0 02 X1 08 1

Figure 9. Prediction errors of four competing models on the running example function. The different
models are a stationary anisotropic GP, an axial warping GP, TGP, and WaMI-GP. For each method, we see
the 20th step of a sequential design driven by the MSE criterion (shared initial design).
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Figure 10. Prediction error of the running example function by the four considered models at each step of
MSE-driven sequential designs. Estimated overall warping (i.e., x — T(Ax)) extracted from the WaMI model.

Hence our model, by detecting the high-variation region and also associating a higher MSE
there, enables us to comparatively achieve enhanced prediction performance as illustrated in
Figure 10.

We investigate how the choice of the WaMI covariance function influences the uncertainty
on the predictions. From the synthetic example, we consider the coverage probability over 50
LHS designs of size 20. The 95% confident intervals provided by the stationary model on a
40x40 grid contain the true value for 65.6% of the points (in average over the point location
and the 50 designs of size 20), while the WaMI model is less permissive with a ratio of 90.0%.

These first results illustrate that WaMI-GP is able to account for heterogeneous regions
in a semiautomated way (here all parameters including axes are estimated by MLE but the
base kernel and the number of warping dimensions is fixed in advance). Two applications,
presented in subsection 5.1 and 5.2, will be used to complement these results in subsection 5.3.

Here the performance of variance-based sequential criteria is improved with WaMI-GP
provided that some prior knowledge is available regarding the heterogeneities of the unknown



1006 MARMIN, GINSBOURGER, BACCOU, AND LIANDRAT

function. In contrast, available information on the objective function might be limited.
For this reason we explore in the next section an approach where the prior covariance is
arbitrary and the emphasis is put instead on sampling criteria. Later on in subsection 5.4 the
two approaches of working on kernels or on the sampling criteria for learning functions with
heterogeneous variations will be combined within a numerical benchmark.

4. Novel sampling criteria for detection of high variations. The example in the previous
section showed that exploring high-variation regions is key to quickly reducing the overall
approximation error. We explore here classes of strategies to do so, where the prior covariance
is arbitrary (it may be a stationary one, a WaMI, or any other kind of kernel) and the targeted
exploration is driven by specifically designed sampling criteria.

The goal of intensifying exploration in high-variation regions encourages us to invest more
credit in regions where the posterior distribution indicates more local variability (or where
sampling could reduce relevant measures of variability). A limitation with usual variance-
based criteria, however, is that they are homoscedastic in the observations, i.e., they depend
solely on the geometry of the experimental design and not on the response values. Hence trying
to locate high-variation regions with variance-based criteria does not make much sense, unless
the model accounts for heterogeneities through estimated parameters that reflect them, such as
with WaMI-GP. Our approach here, assuming that the GP possesses sufficient differentiability
properties, is to rely instead on the gradient of the GP in order to add points in unexplored
regions with potentially high slopes.

The starting point is to acknowledge that, under sufficient regularity conditions, (VYz)zeD
is a vector-valued GP and that its conditional distribution knowing A,, is driven by derivatives
of my, and ¢, (see, e.g., Theorem 5.3.10 of [40]). Assuming indeed the differentiability of m,,
and the existence V ¢ of derivatives %gt;cn(t, t)|i—p—a V@, &’ € D,

62

(1) B(V¥: | Ax) = Vma(e), and cov (V¥el An) = | 550

cn(t,t)

t=x,t'=x' 1<i,j<d

By exploiting the distribution in (15), several scalar indicators can be defined to quan-
tify local variations and related uncertainties. In this work we chose to focus essentially on
variance-based criteria for (exponentiated) gradient norms. Therefore, we consider the squared
gradient norm process (Qz)zep defined by

(16) Qu = ||VYz|[2a = VY, VY,

Although the squared gradient norm is obtained by applying a simple operation (taking the
squared Euclidean norm) to a vector-valued GP, working out its distribution is not straightfor-
ward. Actually, even by fixing x, working out the probability distribution of quadratic forms
in arbitrary Gaussian variables is involved and while it is tempting to build on such a distri-
bution for sequential design, coming up with tractable sampling criteria is more demanding
than in the Gaussian case. Yet, as we develop next, some (fractional) moments of ()5 can be
calculated in closed form or computed efficiently, leading to practical infill sampling criteria.
Let us generalize indeed MSE and IMSE criteria to the (exponentiated) gradient norm.



WARPED GP AND SEQUENTIAL DESIGN WITH DERIVATIVES 1007

Definition 4.1 (gradient norm variance criterion and generalizations). Given n function eval-
uation results and x € D, we define the gradient norm variance (GNV) criterion as

(17) TNV () = vax (|| VY |7 | Ay) = var ( QY ‘An) ,

where the norm is elevated to some power n > 0. Note that while the transformed norm loses
its homogeneity, we abusively refer to this criterion as “GNV with exponent n” or “GNV(n).”
Besides this, this class of criteria can also be generalized in the same way as IMSE generalizes
MSE by integration, defining IGNV by

(18) J,ILGNV’”(:E) = / DIE (Var <QZ/2 ‘.An,Yw>
ue

The following property gives a close formula for GNV in the case n = 2 and semianalytical in
the case n = 1, followed by integral formulas for the corresponding IGNV criteria.

n) du.

Proposition 4.2. Let & € D and denote by (\i(x))1<i<q the eigenvalues of V&V e, (x, ).
Then, the the GNV(2) and GNV(1) criteria can be written as follows:

(19) JENVI=2 () = 4 Vi, (2) "VOV " ¢ (2, 2)Vin, () + 2ZA
(20) TV () = ||V (@)|[2 + tr (V9 o, ) ) - (@\A) .

The corresponding integral criteria can be expanded as

Nt a) = [ (I0m@IP + o malwe) ewe) ) du
+/D <tr (V®vTcn,m(u,u)) ) (E <@|An,Yw)2’An>> du,

J}]GNV’HZQ(Q) :/ . <4vmn( ) V@VTCnm(u ’u, an +2Z>\zm ) du
ue

4
+ var (Yz| Ay)

(21)

(22)
/ kin(w, 2) ' VOV " ez (w, w) i (u, ) du,
ucD

where \; z(u) are the eigenvalues of V®VTcn7m(u,u) = cov(VYy|An, Yz) and k,(u, ) is the
vector of covariances between the components of VY, and Yy knowing A,.

A proof is provided in Appendix B.

Remark 3. For u,  in D, the expectation terms are approximated by quadrature formulas
of univariate or bivariate integrals:

(23) B (Vo) = [ Vafo (s Vmu(@). VoV e (w.2)) do,
E<E <\/@\Ame)2|An> =/R(/Rﬂfcz (q;un(y;ww),Fn(uaw))dq)an(y;w)dy,
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—my, ()

with p,,(y;u, ) = Vm,(u) + ycn(w,w) kn(u,x), Tp(u,x) = VaV e, z(u,u), and ¢, ()
the normal probability density function of Y (mean my,(x) and variance ¢, (x,x)). We used
the R package package CompQuadForm [9] for computing the distribution fg(; p,I') of the
quadratic form Q = Z'Z, Z ~ N(u,T).

Remark 4. When focusing on the variance of the gradient, a criterion may unfortunately
evaluate preferably in regions with low amplitude, if these regions have high variations. As the
variance of the gradient is proportional to the variance of the GP, this effect may be limited,
but it seems important to be aware of it when using derivative-based criteria.

Figure 11 displays the values of the four criteria, GNV and IGNV for n = 1,2, for the
running example test function (3) with the GP model of Figure 2. Integrated criteria (IMSE,
IGNV) require more computational resources but can be preferred for their generally smoother
variations, and also lower values at the edges of the input space compared to MSE and GNV.
As expected from variance-based criteria, they do not provide a higher criterion value for
the high-variation region in the bottom left quarter of the input space. On the contrary,
gradient-based criteria provide higher values where f has high variations. In case of integrated
gradient-based criteria, surroundings of evaluation points are penalized. These observations
suggest that integrated gradient-based criteria should be useful in order to perform some kind
of compromise between global uncertainty reduction and a focus on high variations. These
criteria will be tested with two applications in subsection 5.4, to illustrate their ability to
detect heterogeneous regions.

0.8
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0.2

0.8

X2

0.2

0 0.2 X1 0.8 10 0.2 X1 0.8 10 0.2 X1 0.8 1

Figure 11. Classical and proposed criteria according to a stationary GP modeling.
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5. Applications. We consider two applications coming from an IRSN case study on nu-
clear safety and from a NASA case study on fluid mechanics. A special attention is devoted
to the assessment of the capability of the methodological contributions developed in this pa-
per for the approximation of functions with heterogeneous variations and to their comparison
with existing approaches, either in terms of criteria (MSE, IMSE, GNV,—1 2, IGNV,_;2) or
in terms of surrogate models (stationary anisotropic, TGP, WaMI-GP). This assessment is
achieved by focusing on estimates of the L? prediction error: A = ([}, (u(x) — f(x))2dx)'/?,
with p one or the other predictor based on some experimental design strategy. Experimental
design strategies are replicated by starting from different initial designs, as detailed next.

We also consider a simplification of the IGNV,_1 2 criteria, where the mean value of Y,
is plugged into the integrand, more precisely,

IGNV

(24) e () =/ var ([[VYyul|"| An, Yo = my(x)) du.
ueD

5.1. Cracking simulation of heterogeneous materials. This test case concerns mechani-
cal studies in nuclear installations. Their objective is to analyze the crack propagation inside a
heterogeneous material such as concrete using the IRSN Xper code [28]. Two input variables,
related to geometrical and mechanical properties of the material, are considered here: the
ratio of interface energy W and the inclusion length L. The output of interest is the cracking
energy, i.e., the smallest energy required to break the material apart. Simulation times are
long, from one day to one week, and therefore evaluations should be chosen carefully in order
to capture the function behavior. The available dataset includes 216 points corresponding
to the simulation of the response on a 36 x 6 grid (Figure 12). We observe a region where
a small variation of the inputs impacts drastically the output. This high-variation zone is
located along a straight line, slightly nonaligned to the canonical axes. Several series of tests

inclusion
crackings \\. . h
[ %

matrix — Cracking energy E

<
5
S 80000
o 70000
o
g S 60000
W - g 50000
T 3 40000
g | o 30000
o o
(&) o

log(W) log(W)

Figure 12. Cracking energy of a heterogeneous material depending on mechanical parameters. The images
(top left) represent three different crackings of a component. We see that it propagates around (left) or through
(right) the inclusion depending on the input. These two modes correspond respectively to low or high cracking
energy. A transition zone appears in between with high variations.
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L2 prediction error
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Figure 13. Comparison of L? prediction errors on the IRSN test case between the three candidate models:
stationary anisotropic GP, TGP, and WaMI-GP. The boxplots are obtained from repetitions with 5000 different
wnitial designs (more detail in the text).
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Figure 14. Some features of models with median prediction errors. Left: estimated warping of the WaMI-
GP model; middle: lines of mazimal distortion for five (most) median models; right: lines of partitioning for
five median TGP models.

are conducted. For the sake of simplicity, the input variables are rescaled between 0 and 1
and are denoted by x1 and xo.

We first compare the predictive performances of stationary GP, WaMI-GP, and TGP
methods. The WaMI covariance is parametrized with the 7;’s as in (11) and with A and kg
as in (9). We built 5000 space filling designs of size 20 (optimized with a maximin criterion;
see, e.g., [10]). For each initial design, predictions are performed with the three competing
models, in a noise-free setting. Figure 13 shows that our approach outperforms the other two
in terms of L? prediction errors.

The estimated (overall) warpings are displayed in Figure 14 (we take the warping from
the design giving a median prediction errors). It appears that, as expected, our model dilates
the space around the high-variation region. We also display in the input space, the lines of
maximal distortion (where the determinant of the Jacobian matrix of the warping is maximal),
and the lines partitioning the input space in the TGP method. These lines are both in the
same area, meaning that both methods can detect the high-variation region. However, since
the method allows linear transformation of the input space, they are not exactly vertical in
the case of the WaMI-GP, adapting with more freedom their directions to the shape of the
actual high-variation region.
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Figure 15. Simple three-dimensional interpolation of the available data on the Langley Glide-Back Booster
stmulation test case (only three slices of the input cube are displayed).

5.2. The Langley Glide-Back Booster simulation. The Langley Glide-Back Booster is a
rocket booster developed at NASA. Its behavior is studied via numerical simulations. More de-
tails on the system behavior and purpose are provided in [34]. Three input variables (rescaled
between 0 and 1) are considered: mach number (z1), angle of attack (x2), and sidelip angle
(z3). The output of interest is the lift force. An interpolation of the available data is displayed
in Figure 15. We see that variations are mainly directed by canonical axes. A high-variation
region is concentrated around the plane of equation z; = 0.1 (i.e., around mach 1). This calls
for a nonstationary model. All models are considered in noisy settings in order to smooth
out the prediction errors, as some discontinuity is observed, for example, at the bottom right
of the first plot (region x; ~ 0.5,22 > 0.5,23 < 0.5). This is due to the complexity of the
simulator whose convergence depends on a solver which sometimes returns inaccurate values
despite automatic checks [17].

On this test case, the WaMI covariance is parametrized with the 7;’s as in (11) and kg is
as in (9). The rotation matrix A is fixed to the identity: allowing rotation was tested first but
it does not improve the results as on this data set the heterogeneous variations are mainly
aligned with canonical axes.

5.3. Benchmark with nonsequential designs. We now make a study of the three data
sets (the synthetic function (3), the IRSN test case, and the NASA test case) to evaluate the
WaMI-GP model separately from the sampling approaches.

Several tests are performed for nonsequential designs including from 5 to 80 points in
two-dimensional test cases and from 50 to 700 points for the three-dimensional test case. To
account for stochastic effects due to the choice of the design, all experiments are repeated 50
times with different optimized space-filling designs. We then focus on the 5%, 50%, and 95%
quantiles of the errors. The results are displayed in Figure 16.

We observe that in most cases, the WaMi-GP model has the lowest prediction error.
Focusing on the NASA test case, it turns out that for a small training dataset, WaMI-GP
leads to similar predictive performance as TGP in terms of median error. When increasing
the number of points in the initial design, TGP clearly outperforms WaMI-GP. This makes
sense as TGP model increases its complexity (i.e., its number of partitions and estimated
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Figure 16. Prediction error on the three datasets (one synthetic and two real) which randomizes over 50
LHS training sets of various sizes (0.05, 0.5, and 0.95 quantiles).

parameters) according to the data while, in its present form, WaMI-GP has a fixed structure
prescribed by the user.

On the computational effort, as we use the WaMI covariance within a standard form
of GP modeling, the training cost has O(n3) complexity. TGP is an exception, where the
division of the dataset leads generally to a much faster parameter estimation. Significant
efforts have been made to reduce computing efforts for standard GP models (see, e.g., [31] and
references therein), and this aspect was not a priority during our developments as we targeted
applications with expensive-to-evaluate functions. For both WaMI-GP and TGP models, it
takes a few seconds to estimate the model from 20 points and make 1600 predictions. However,
for a design of about 100 points, estimation and predictions take about a couple of minutes
for a WaMI-GP model (and about 10 times less under a TGP model). Work is in progress to
optimize the current implementation of the WaMI-GP model.

5.4. Sequential designs for the IRSN and NASA test cases.

5.4.1. IRSN test case. For each criterion (MSE/IMSE, GNV,—1 2/IGNV,_; 2), we repeat
10 steps of the sequential design: point selections coupled with model updates. We choose to
take as GP models a stationary isotropic and a WaMI one. The whole workflow is replicated
100 times with a space-filling initial design of n = 20 points uniformly drawn among optimized
LHS designs. The results are displayed in Figure 17 and Table 1.

Let us first notice that the WaMI-GP model leads generally to the smallest prediction
errors since it is adapted to the function f exhibiting a steep transition region.

When the model is stationary, the MSE and IMSE criteria do not focus on adding points
in the steep transition region (one can say these methods explore D in a space-filling way).
On the contrary, the IGNV, —; criterion detects regions where the gradient’s norm is high,
leading to a better model training and to a reduction of 50% of the number of points (and
therefore of simulations with the computer code) required to reach the same median error.
When the model is nonstationary and well-adapted to the behavior of f, the IMSE focuses
naturally on the high-variation zone and allows a reduction of about 30% in the number of
simulations compared to the stationary framework. Finally, coupling WaMI-GP modeling and
gradient-based criterion leads to rather poor results in Figure 17 since, by construction, both
aspects contribute to exploitation with detrimental consequences on the exploration side.
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Figure 17. Distribution of the prediction error after different sequential design of experiments. Sampling

criteria are compared in both stationary and our nonstationary models.

Table 1
Required number of steps for reaching a median error (computed from the 100 initial designs) below a
reference value of 1.405 (the value of the median error after siz evaluations sampled with IMSE criterion and
stationary model), with respect to the choice of model and criterion.

MSE IMSE GNV, IGNV, GNV, IGNV,
n=1 n=1 n=2 n=2

plugin plugin
Stationary GP model 10 6 >10 3 9 4
WaMI-GP model 5 4 >10 4 9 4

5.4.2. NASA test case. From initial designs of size 50, we perform 20 new evaluations
chosen by MSE maximization. Results obtained in prediction with TGP and the WaMI-GP
model are presented in Figure 18. We see that the prediction errors are reduced faster using
our model. Indeed, the estimated warping allows us to dilate the input space in the region of
high variations (around mach 1). It results in an increased model variance in this area and
thus a denser exploration of it via MSE maximization. Note that the TGP method combined
with the MSE criterion also leads to search patterns focusing in high-variation regions, as
each partition has a GP with different variance levels (see, e.g., [18]). We also compare a
gradient-based criterion, IGNV, n = 2, with a classical criterion IMSE relying on a stationary
anisotropic GP model (Figure 18).

The IGNV (n = 2) criterion leads to slightly lower prediction errors than the IMSE criterion
based on the small budget of 20 points in dimension 3. Even if moderate, this improvement can
be attributed to a more intense sampling of the high-variation region with the gradient-based
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Figure 18. Medians (bold line) and quartiles of prediction errors during sequential designs of experiments.
Left: comparison of models TGP and WaMI-GP with a common criterion MSE. Right: comparison of criterion
IMSE and IGNV, n = 2, with a standard stationary GP model.

criterion. To conclude this experimental section, reinforcing exploration in high-variation
regions appears to be a sound option to improve predictivity of surrogate models such as GPs,
be it through adapted nonstationary covariances or via sampling criteria dedicated to this goal.

6. Conclusion. In this paper we introduced a nonstationary GP model and sampling
approaches for prediction and design of experiments when the expensive-to-evaluate function
presents heterogeneous variations. The proposed WaMI-GP (warped multiple index Gaussian
process) model extends existing modeling approaches such as multiple index modeling and
the nonlinear map method. We presented conditions under which the WaMI kernel is strictly
positive definite and the corresponding centered GP is mean-squared differentiable or possesses
differentiable sample paths almost surely. We applied the model on toy examples and on
engineering case studies in dimensions 2 and 3. Although the number of parameters of WaMI-
GP is kept affine (rather than exponential) with the dimension, the component-by-component
univariate warpings lead to competitive performances with respect to stationary GP and TGP
modeling. With larger data sets, we observed better performances of the TGP model in the
second engineering test case. For smaller initial data sets, WaMI-GP and TGP obtained
comparable performances at the start, but WaMI-GP proved better at approximating the
response as more points were added by MSE maximization. It is also relevant to point out
that in the case of a high-variation zone slightly not aligned with a canonical axis, our model is
favored because its linear component can estimate an appropriate rotation of the data before
the nonlinear warping (note that nonaxial partition in TGP is possible). In contrast, our
method directly inherits from the nonlinear map method the ability to estimate an input
space warping. This change of variables, dilating the space where there are high variations,
and contracting smooth areas, can be used by practitioners as a tool for working out and
visualizing “stationarization.”

From a different viewpoint, we developed novel criteria in the sequential design of exper-
iments for exploring functions with high-variation regions. These criteria are based on the
GNV of the modeling GP. They are designed to sample preferably in high-variation regions,
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where prediction errors are typically higher, but still performing a global exploration of the
input space. We applied them to adaptively approximate functions arising from the two en-
gineering case studies. When the covariance of the GP model is a priori stationary, some of
the proposed criteria lead to a better prediction than MSE and IMSE thanks to their focus
on steep regions. When combining the novel criteria with WaMI-GP, however, the effects are
somehow cumulated and new evaluations are mostly concentrated around the high-variation
region, leading to predictions that are less trustworthy when looking at performances over the
whole domain.

This work paves the way to further research on sequential design of experiments for func-
tions with heterogeneous variations, be it through the incorporation of nonstationarity within
the models themselves, through targeted sampling criteria, or combinations of both. Perspec-
tives include the definition of additional classes of criteria, relying, for instance, on higher GP
derivatives, the stepwise uncertainty reduction paradigm [2], weighted IMSE approaches [29],
or other. Also, batch-sequential versions of the proposed criteria and their extensions ought to
be defined and worked out. Further work is needed to benchmark performances of the novel
criteria in higher dimensions. Finally, the WaMi-GP model could be improved along several
directions. This notably includes investigations into its relevance in higher dimensions as well
as its estimation by efficient algorithms beyond brute force likelihood maximization. Notably,
the estimation of the coefficients here is computed with likelihood maximization, while a full
Bayesian approach might lead to more sensible results.

Appendix A. Nonlinear map with Gibbs’ method. The warping to estimate is defined as
T-(x) =xo+ (me gi(u)ds)&igd, with Pp; a predefined path between x¢ and x, for example,
the corresponding segment. These density functions are expressed as linear combinations of
radial basis functions. We see in Figure 19 how this method allows an approximation of a
given deformation. We observe a degradation of the warping approximation with decreasing
numbers of parameters to estimate: with a grid of 16 basis functions, i.e., with 32 parameters
in dimension 2, the approximation fails. Here about 100 basis functions are needed to capture
the nonstationarity in the whole domain.

True warping Nbasis = 402 Nbasis = 302 Nbpasis = 1 02

0.8

T
T
1T
T

E _

X2

0.0
1
1
1

X1 X1 X1 X1 X1

Figure 19. Warping approzimation with Gibbs’ method, for different numbers of basis functions. An
arbitrary warping (To(x) = « 4+ 1/10 arctan(30(x3 + 22 — 1))) is represented on the left by the deformation of
the grid (l—i87 118)09-,]513. Then we display its approximations with different levels of precision. In this example,
the basis functions were chosen as radial Gaussian functions with centers positioned on a regular grid of size
Niasis and with range obesis = 3/(5Nbasis). The weights were computed directly with the values of the true

warping.
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Appendix B. Derivation of the gradient-based sampling criteria.

Proof of Proposition 4.2. Let us first address the case n = 1 using the notation Z; =
Zyz — mg with mg = Vm,(x). The first step is to expand the criterion as follows:

var (HZZ||2) = var <ZIZm) = var <2m;—Z; + Z;TZ;)

= 4 var (mlzg> + 2 cov <ml—Z;, Z;ng> + var (Z;ng) .

=0 (nullity of 3t! order moments)

1
The term var(ZS ' ZS) can be further expanded as ZS = UpDZN with U, an orthogonal
matrix, D, the diagonal matrix of eigenvalues, and IN a standard Gaussian vector:

var (ZC;ZCz) = var ((U N)T D, (U, ) Z/\ 2var (N2) .
=2

For n = 1, considering the variance of || Z.|| in terms of raw moments gives

var (|| Zs||) = E (Z;Zm) —E <\/Z;Zm)2
— mimg + 2mlE (Z, — my)+ Zd:var (Za),) —E (@)2
i=1

=0

For the proof of IGNV;—1 2, we focus on the integrand. We formulate the case n = 2:

x)

E (var (Qu | An, Ya)| Ayn) =4E (E (VY| An, V) VOV ¢y o(u, w)E (VY| Ay, Ya)
(25) 42> Nia(u)’

We get the result with E(VYy|A,, Yz) = Vm,(u) + %@é)m)ﬁn(u, x).
For n = 1, we obtain

E (var (\/@ ‘An,Ym) An
(26) _E (E (\/@\An,Ym)2’An> .

Finally, replacing E(VY,|A,, Yz) by its analytic formula gives the result. [ |

) —E (||E (VYu| An, Ya) ||| An) + tr (ww%mm(u, u))
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