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Abstract
We study the possibility of deterministic and randomness-efficient isolation in space-bounded
models of computation: Can one efficiently reduce instances of computational problems to equi-
valent instances that have at most one solution? We present results for the NL-complete problem
of reachability on digraphs, and for the LogCFL-complete problem of certifying acceptance on
shallow semi-unbounded circuits.

A common approach employs small weight assignments that make the solution of minimum
weight unique. The Isolation Lemma and other known procedures use Ω(n) random bits to
generate weights of individual bitlength O(logn). We develop a derandomized version for both
settings that uses O((logn)3/2) random bits and produces weights of bitlength O((logn)3/2) in
logarithmic space. The construction allows us to show that every language in NL can be accepted
by a nondeterministic machine that runs in polynomial time and O((logn)3/2) space, and has at
most one accepting computation path on every input. Similarly, every language in LogCFL can
be accepted by a nondeterministic machine equipped with a stack that does not count towards
the space bound, that runs in polynomial time and O((logn)3/2) space, and has at most one
accepting computation path on every input.

We also show that the existence of somewhat more restricted isolations for reachability on
digraphs implies that NL can be decided in logspace with polynomial advice. A similar result
holds for certifying acceptance on shallow semi-unbounded circuits and LogCFL.
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1 Introduction

Isolation is the process of singling out a solution to a problem that may have many solutions.
It is used in algorithms with an algebraic flavor in order to prevent cancellations from
happening. Examples include reductions of multivariate to univariate polynomial identity
testing [39, 2] and recent approaches to the hamiltonicity problem [11, 29, 20, 19]. The
process also plays an important role in the design of parallel algorithms, where it ensures that
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5:2 Derandomizing Isolation in Space-Bounded Settings

the various parallel processes all work towards a single global solution rather than towards
individual solutions that may not be compatible with one another. Both uses culminate in
the asymptotically best known parallel algorithms for finding perfect matchings in graphs [47]
and related problems [37, 1, 44]. A wide range of other algorithmic applications of isolation
exist [58, 9, 10, 35, 56, 63, 50, 3, 46, 21, 59, 7, 27, 36, 31, 14, 38, 54, 12, 22, 32, 23, 45, 33].
In complexity theory isolation constitutes a key tool to show that in some computational
models hard problems are no easier to solve on instances with unique solutions [16, and
references further in this section].

Becoming more precise, let us define a computational (promise)1 problem as a mapping
Π ∶ X ↦ 2Y from an instance x ∈ X to a set Π(x) of solutions y ∈ Y , where x and y are
strings that typically represent other types of objects. Given an instance x ∈X, the decision
version of Π asks to determine whether Π(x) is nonempty. We denote by L(Π) the set
(language) of all instances x ∈ X for which the decision is positive. The search version of
Π asks to to produce a solution y ∈ Π(x), or report that no solution exists. For example,
for the NP-complete problem of Satisfiability, x represents a Boolean formula, and Π(x)
its satisfying assignments. For the NL-complete problem of Reachability, x represents a
triple (G,s, t) consisting of a directed graph G, a start vertex s, and a target vertex t, and
Π(x) is the set of paths from s to t in G.

A nondeterministic machine M is said to accept Π (or L(Π)) if for every x ∈ X, M
on input x has an accepting computation path if and only if x ∈ Π. We say that the
machine M decides Π (or L(Π)) if M has an accepting computation path on every x ∈ X,
and on each such path M outputs a bit indicating whether Π(x) ≠ ∅. Note that the
existence of a nondeterministic machine M that decides L(Π) is equivalent to the existence
of nondeterministic machines M+ and M− of the same complexity that accept L(Π) and the
complement of L(Π), respectively. We say that M computes Π if it decides Π and on each
accepting computation paths additionally outputs some y ∈ Π(x) (which can depend on the
path).

Within this framework we formalize the notion of isolation and distinguish between two
types.

I Definition 1 (Notions of isolation). An isolation for a computational problem Π ∶X ↦ 2Y
is a mapping reduction f that transforms x ∈X into an “equivalent” instance f(x) ∈X with
∣Π(f(x))∣ ≤ 1. A disambiguation is an isolation where equivalence requires that Π(x) is empty
if and only if Π(f(x)) is. A pruning is a disambiguation where equivalence additionally
requires that Π(f(x)) ⊆ Π(x).

Disambiguations are isolations geared towards decision problems. Prunings are isolations
geared towards search problems. Actually, for search problems it suffices to have an inter-
mediate notion, namely a recoverable disambiguation f , i.e, one for which there exists an
efficient transformation f ′ that takes any solution y ∈ Π(f(x)) and turns it into a solution
f ′(x, f(x), y) ∈ Π(x).

A closely related notion in the machine realm is that of unambiguity. A nondeterministic
machine M is called unambiguous on an input x if it has at most one accepting computation
path on input x. The machine is called unambiguous if it is unambiguous on every input x.

A common way to achieve isolation is by introducing a weight function ω ∶ X × Y ↦ N
and restricting the set of solutions to those of minimum weight, in the hope that there is

1 We use the prefix “promise” when we want to make it clear that the domain X of Π may be restricted,
i.e., may not equal the set of all strings.
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unique solution of minimum weight (or none in the case where there are no solutions). We
use the following terminology.

I Definition 2 (Min-isolation). Given ω ∶X × Y ↦ N, the min-weight of x ∈X is defined as

ω(x) = { miny∈Π(x)(ω(x, y)) if Π(x) ≠ ∅
∞ otherwise.

We call ω min-isolating for x if there is at most one y ∈ Π(x) with ω(x, y) = ω(x).

In order to construct an actual isolation for Π, we need to express the restricted search on
input x for a solution of weight µ = ω(x) as an instance f(x) of Π.

In many cases a suitable min-isolating weight function can be obtained by viewing the
solutions y for a given instance x as subsets of a finite universe U = U(x), assigning small
weights w(u) ∈ N to the elements u ∈ U , and defining ω(x, y) as a linear combination of the
weights w(u) of the elements u ∈ y. In fact, the trivial linear combination (all coefficients
1) often suffices. If the linear combination is clear from context, we often abuse notation
and use w in lieu of ω, e.g., writing w(y) for ω(x, y), or w(x) for ω(x), or applying the term
“min-isolating” to w.

The known generic isolation procedures [60, 47, 18] are all randomized. A randomized
isolation with success probability p is a randomized mapping reduction f that, on every
instance x ∈X, satisfies the defining requirements for an isolation on input x with probability
at least p. In the min-isolation approach via a weight assignment to the underlying universe,
randomness comes into play in the construction of the weight assignment. The following
well-known mathematical fact (rephrased using our terminology) forms the basis.

I Fact 3 (Isolation Lemma [47]). Suppose that Π(x) ⊆ 2U and that ω(x, y) = ∑u∈y w(u) for
y ∈ Π(x). For any positive integer q, if w ∶ U ↦ [q ⋅ ∣U ∣] is picked uniformly at random then
ω is min-isolating for x with probability at least 1 − 1/q.

An important feature of the Isolation Lemma is that it keeps the range of the min-weight
small, namely within [c ⋅ ∣U ∣2]. Once we have a min-isolating weight assignment of small
range, we can further pick an integer µ uniformly at random within that range, and look for
a solution y ∈ Π(x) with ω(x, y) = µ. If µ happens to equal ω(x), there is a unique such y.
The small range of the min-weight guarantees a reasonable probability of success p.

We can apply this process to Satisfiability with U denoting the set of variables of the
formula x, and q = 2, say. The probability of success is Ω(1/n2), where n denotes the number
of variables of x. Since the weight restriction can be translated in polynomial time into a
Boolean formula on the variables of the original formula, the resulting randomized isolation
can be computed in polynomial time and is of the pruning type. The former implies that
NP ⊆ R ⋅PromiseUP [60].2 Intuitively, the result means that, in the randomized time-bounded
setting, having unique solutions does not make instances of NP-complete problems easier.
Formally, R denotes the one-sided error (no false positives) probabilistic operator on classes
C of languages: R ⋅ C is the class of languages L for which there exists a constant c ∈ N and a
language C ∈ C such that for all inputs x:

x ∈ L ⇒ Prρ[⟨x, ρ⟩ ∈ C] ≥ 1/nc
x /∈ L ⇒ Prρ[⟨x, ρ⟩ ∈ C] = 0,

2 The original argument in [60] uses a different randomized isolation for Satisfiability; it has a success
probability of Ω(1/n).
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where ρ is picked uniformly at random from {0, 1}n
c

, and n denotes the input length ∣x∣. The
operator extends to classes of promise problems in a natural way. PromiseUP represents the
class of promise decision problems that can be accepted by nondeterministic polynomial-time
machines that are unambiguous on every input satisfying the promise.

Isolation in Space-Bounded Settings. Gal and Wigderson [30] obtained a randomized
isolation for Reachability by applying the Isolation Lemma in a similar fashion with
the edges for the graph G as the universe U . Since the weighted reachability problem
with polynomially bounded weights is also in NL, one can translate the weight restricted
instance into an equivalent instance in logarithmic space, though on a graph with more
vertices. This results in a randomized disambiguation with success probability 1/poly(n)
that is computable in logarithmic space with two-way access to the random bits. (The
disambiguation is recoverable in deterministic logspace, but is not a pruning.) It follows that
NL ⊆ R ⋅PromiseUL, where PromiseUL is the logspace equivalent of PromiseUP. Thus, in
the randomized space-bounded setting, having unique solutions does not make instances of
NL-complete problems easier.

Reinhardt and Allender [51] strengthened this result to NL ⊆ R ⋅ (UL ∩ coUL). The class
UL consists of the problems in PromiseUL for which the promise holds for all inputs. In
other words, UL is the class of languages accepted by unambiguous logspace machines. The
significance of the strengthening is that within the class R ⋅ (UL ∩ coUL) the probability of
error can be reduced to exponentially small levels, allowing the randomness to be replaced by
polynomial advice, i.e., R ⋅ (UL ∩ coUL) ⊆ (UL ∩ coUL)/poly. It follows that Reachability
has a randomized disambiguation with exponentially small error that is computable in
logspace with two-way access to the random bits, as well as a disambiguation that is
computable in logspace with polynomial advice.

The construction in [51] needs a stronger property of the weight assignment w than
merely being min-isolating on the given input (G,s, t). It requires w to be min-isolating for
G, i.e., min-isolating for (G,s, t) for all choices of vertices s and t. By setting q = 2n2 in the
Isolation Lemma, a union bound guarantees that with probability at least 50%, a random
weight assignment w ∶ E ↦ [2n2m] is min-isolating for any given graph G = (V,E) with n
vertices and m edges. The randomness in NL ⊆ R ⋅ (UL ∩ coUL) is still only used to generate
random weight assignments. The new ingredients in [51] that enable the strengthening from
R ⋅PromiseUL to R ⋅ (UL ∩ coUL) are unambiguous logspace machines to (i) decide whether
or not a given weight assignment is min-isolating for a given graph G, and (ii) compute the
min-weight w(G,s, t) under a given min-isolating weight assignment w.

Gal and Wigderson [30] and Reinhardt and Allender [51] developed analogous results for
the complexity class LogCFL, where the role of Reachability is taken over by the problem
Circuit Certification of finding a certificate that a given Boolean circuit accepts a given
input. We refer to Section 3.1 for the definition of a certificate and for background, and defer
further discussion of this setting to that section.

Derandomizing Isolation. The number of random bits needed for an application of the
Isolation Lemma as stated is Θ(n log(qn)), namely Θ(log(qn)) bits for each of the n ≐
∣U ∣ elements of the universe U . In order to develop variants that require fewer random
bits, we introduce the notion of a weight assignment generator, which can be viewed as a
structured form of a pseudorandom generator geared towards the setting of the Isolation
Lemma. Whereas a pseudorandom generator is parameterized by the desired length of the
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pseudorandom sequence, a weight assignment generator is parameterized by the desired
domain D of the weight assignments.

I Definition 4 (Weight assignment generator). A weight assignment generator Γ for a family
of domains D is a family of mappings (ΓD)D∈D such that ΓD takes a string σ ∈ {0,1}s(D)

for some function s ∶ D ↦ N, and maps it to a weight assignment w ∶ D ↦ N. We say that
w is chosen uniformly at random from ΓD if it is obtained as w = ΓD(σ) where σ is chosen
uniformly at random from {0,1}s(D).

The family of domains D in Definition 4 is usually indexed by one or more integer parameters,
in which case we also index Γ that way. For example, for a derandomization of the Isolation
Lemma we can equate the universe U with [∣U ∣] ≐ {1, 2, . . . , ∣U ∣} by ordering the elements of
U in some way, e.g., lexicographically. We can then choose D = (Dn)n∈N with Dn ≐ [n], and
write Γn for ΓDn .

The relevant characteristics of a weight assignment generator are the following:
The seed length s(D), which is the number of random bits we need when we pick a weight
assignment from ΓD uniformly at random.
The maximum weight assigned by ΓD, the logarithm of the maximum weight is called the
bitlength of the generator. A bound on the weights is sometimes also used as a parameter
indexing the generator (in addition to the domain D).
The computational complexity of Γ, by which we mean the complexity of the deciding,
on input the parameters p, σ ∈ {0,1}s, z ∈D, i ∈ N, and b ∈ {0,1}, whether the ith bit of
w(z) for w = Γp(σ) is b.

The Isolation Lemma can be viewed as a generic weight assignment generator (for the
family of domains ([n])n∈N) that has seed length O(n log(qn)), bitlength O(logn), and
trivial complexity. By allowing weights that are polynomially larger than in the Isolation
Lemma, one can achieve seed length O(log(qn) + log(∣Π(x)∣)), which is provably optimal for
a generic Π(x) [18]. In our setting this yields seed length O(n) and bitlength O(logn). In
order to do better, one needs to exploit the specifics of the set systems. Doing so generically
in the time-bounded setting seems difficult. There are implications from derandomizing the
Isolation Lemma for generic Π(x) of small circuit complexity to circuit lower bounds of
various sorts [6], and vice versa [40]. The circuit lower bounds are arguably reasonable but
have been open for a long time. There may be ways to obtain deterministic or derandomized
isolations other than by derandomizing the Isolation Lemma, but for Satisfiability the
existence of a deterministic polynomial-time pruning implies that NP ⊆ P/poly. In fact, the
collapse follows from the existence of a randomized polynomial-time pruning that has success
probability p > 2/3 [26].

In the space-bounded setting there is more hope to obtain unconditional derandomizations.
An implication from lower bounds to derandomization still holds: If there exists a problem
in DSPACE(n) that requires Boolean circuits of linear-exponential size, then there exists a
logspace computable weight assignment generator with seed length and bitlength O(logn) [40,
4]. There is no known result showing that deterministic isolations in the space-bounded setting
imply circuit (or branching program) lower bounds that are open. Moreover, unconditional
results already exist for certain restricted classes of digraphs. For Reachability on directed
planar grid graphs, min-isolating weight assignments of bitlength O(logn) are known to be
computable in deterministic logspace [13]. Those assignments have been used to construct
disambiguations that are logspace computable and logspace recoverable for larger classes of
graphs [13, 57, 43].

CCC 2017
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There have also been related successes for isolating PerfectMatching, the problem of
deciding/finding perfect matchings in graphs, restricted to certain special types of graphs
[24, 25, 5]. Recently, Fenner, Gurjar, and Thierauf [28] constructed a weight assignment
generator with seed length and bitlength O((logn)2) that is computable in logspace and that
produces a min-isolating weight assignment for PerfectMatching on a given bipartite graph
with probability at least 1−log(n)/n. This allowed them to prove that PerfectMatching on
bipartite graphs has logspace-uniform circuits of polylogarithmic depth and quasi-polynomial
size.

Main Results. We present positive and negative results regarding the possibility of deran-
domized isolations for Reachability and for Circuit Certification.

The crux for our positive results are logspace min-isolating weight assignment generators
with seed length and bitlength O((logn)3/2). We actually shift the paradigm a bit – we
assign weights to the (internal) vertices rather than to the edges. This is not an essential
difference,3 but it facilitates a natural iterative/recursive approach towards the construction
of the weight assignment, and allows for a cleaner and unified treatment.

Recall that in the context of Reachability we call a weight assignment w min-isolating
for an instance (G,s, t) if G has at most one path from s to t of minimum weight under w. For
technical reasons we only consider the restriction of Reachability to layered digraphs G.

I Theorem 5. There exists a weight assignment generator Γ(reach) = (Γ(reach)
n,d )n,d∈N that is

computable in space O(logn) and has seed length and bitlength O(
√

log d logn) such that for
every layered digraph G of depth d with n vertices

Pr
w
[w is min-isolating for G] ≥ 1 − 1/n,

where w is chosen uniformly at random from Γ(reach)
n,d .

The domain underlying Γ(reach)
n,d is [n] × JdK ≐ {1,2, . . . , n} × {0,1,2, . . . , d}. We refer to

Section 2.1 for more details.
We use Theorem 5 to derive the following isolation result for NL, where the notation

UTISP(t, s) stands for the class of languages accepted by unambiguous nondeterministic
machines that run in time t and space s.

I Theorem 6. NL ⊆ UTISP(poly(n), (logn)3/2).

In words: Every language in NL can be accepted by a nondeterministic machine that runs in
polynomial time and O((logn)3/2) space, and has at most one accepting computation path
on every input.

Theorem 6 should be contrasted with the most space efficient simulation of NL on
deterministic machines, which is given by Savitch’s Theorem [53]: NL ⊆ DSPACE((logn)2).
That simulation does not run in polynomial time. In fact, the best upper bound on the
running time is the one for generic computations in DSPACE((logn)2), namely nO(logn).
Reachability can be solved in linear time and space using depth-first search or breadth-first
search. The smallest known space bound for an algorithm that decides Reachability in
polynomial time is only slightly sublinear, namely n/2Θ(

√
logn) [8].

On the “negative” side we show:

3 We could alternately assign the weight of a vertex to each of its outgoing edges without affecting the
total weight of any solution.
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I Theorem 7. Either one of the following hypotheses implies that NL ⊆ L/poly:
1. Reachability on layered digraphs has a logspace pruning.
2. Reachability on layered digraphs has a logspace weight function ω that is min-isolating,

and there exists a logspace function µ such that µ(x) equals the min-weight ω(x) of x
under ω on positive instances x.4

In fact, the conclusion holds even if the algorithms are randomized, as long as the probability
of success exceeds 2

3 +
1

poly(n) and the algorithms run in logspace when given two-way access
to the random bits.

It is not clear to us that Theorem 7 should be viewed as a roadblock towards reducing the
seed length and bitlength in Theorem 5 from O((logn)3/2) down to O(logn), and thereby
show that NL = UL. Regarding the first part of Theorem 7, none of the known randomized
isolations for Reachability are of the pruning type. This is because they map an instance
x ≐ (G,s, t) to an instance f(x) where the underlying graph contains more vertices than G,
which makes it impossible to meet the pruning requirement that Π(f(x)) ⊆ Π(x).

The corresponding results for Circuit Certification and the complexity class LogCFL
are stated in Section 3 (positive) and Section 4 (negative).

Techniques. The crux for our positive results is an iterative/recursive construction of a
min-isolating weight assignment generator Γ. In both settings there are Θ(logn) levels
of recursion. In the case of Reachability the subproblems at the kth level correspond
to the subgraphs induced by blocks of 2k successive layers of G. In the case of Circuit
Certification the kth level corresponds to the kth level of AND gates of the given circuit.

We develop several methods to build out of a min-isolating weight assignment wk at
the kth level, a min-isolating weight assignment wk+1 at the (k + 1)st level. The methods
represent different trade-offs between the seed length and the bitlength. Our starting point is
two simple constructions, namely one based on shifting, and one based on universal families
of hash functions. The shifting approach does not need any randomness at all but yields
bitlength Θ((logn)2). Hashing yields the smaller bitlength O(logn) but needs Θ((logn)2)
random bits. Either one of those simple approaches on its own is sufficient to establish weaker
versions of our positive results, namely where the randomness or space bound is increased
from O((logn)3/2) to O((logn)2), i.e.,

NL ⊆ UTISP(poly(n), (logn)2). (1)

The Θ((logn)2) bits of randomness in the hashing-based approach are composed of
Θ(logn) bits to describe a fresh hash function at each of the Θ(logn) levels of recursion.
The reason one needs a fresh hash function at each level is to avoid potential stochastic
dependencies. We show how to use shifting to preclude the existence of such dependencies,
allowing us to reuse the same hash function at Θ(

√
logn) levels. This combination of

shifting and hashing balances the seed length and bitlength to Θ((logn)3/2) each, and yields
Theorem 5 and its counterpart for Circuit Certification.

For Theorem 6 and its counterpart for LogCFL we need to get rid of the randomness
completely. We could do so by exhaustively trying all random seeds, and employing the
unambiguous logspace machine of [51] to select one that yields a min-isolating weight
assignment. However, given that the number of random bits is Θ((logn)3/2), an exhaustive

4 If µ(x) = ω(x) on all instances x, we can easily decide Reachability in logspace as there exists a path
from s to t in G if and only if ω(G, s, t) < ∞.

CCC 2017
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search would require time nΘ(
√

logn). In order to do better, we exploit the structure of
the randomness – it consists of Θ(

√
logn) hash functions requiring Θ(logn) random bits

each. Using the unambiguous logspace machines from [51] this allows us to pick the hash
functions one by one, maintaining the invariant that the resulting weight assignments are
min-isolating for the corresponding levels, and then use the final assignment to decide
reachability unambiguously. As we can cycle through all possibilities for a hash function at a
given level in polynomial time, this yields a full derandomization running in polynomial time
and space O((logn)3/2).

The “negative” results, Theorem 7 and its counterpart for Circuit Certification,
follow along the lines of the argument for a similar result from [26] in the time-bounded
setting. The first part is the space-bounded equivalent of the main result in [26]; it suffices
to verify that the argument from the time-bounded setting carries over to the space-bounded
setting. The second part does not have a counterpart in [26] but follows from a similar
argument and some additional observations.

Related Papers. There is a remarkable correspondence in terms of statements and high-
level approach between Theorem 6 and the result by Saks and Zhou [52] that BPL ⊆
DSPACE((logn)3/2). Both have a recursive structure, use hashing,5 need to get rid of
stochastic dependencies so as to enable the reuse of the same hash function at multiple
levels of recursion, exploit the leeway created by the discrepancy between the randomness
and processing space (bitlength), and ultimately balance them to Θ((logn)3/2) bits each.
In contrast to [52], we do obtain the equivalent of a pseudorandom generator. As another
contrast we are able to improve the running time to polynomial, which remains open in the
case of BPL [15]. Our high-level approach for the improvement is similar to the one for the
improvement from BPL ⊆ DSPACE((logn)2) in [48] to BPL ⊆ DTISP(poly(n), (logn)2) in
[49].

The recent derandomization results for PerfectMatching on bipartite graphs [28] and
for polynomial identity testing (PIT) for read-once arithmetic branching programs [2] also
employ a combination of hashing and shifting but no balancing. They need O((logn)2)
random bits as opposed to our O((logn)3/2). It is an open question whether our approach
can be used to reduce the number of random bits in those settings. This question is related
to the reduction from multivariate (multilinear) PIT to univariate PIT based on isolation: If
w ∶ [n] ↦ N is a weight assignment to the variables that is min-isolating for the monomials that
occur in a nonzero n-variate polynomial P (x1, x2, . . . , xn), then the substituted polynomial
Q(t) ≐ P (tw(1), tw(2), . . . , tw(n)) remains nonzero.

Recently, Kalampalli and Tewari [34] independently proved the weaker inclusion (1) that
follows from either of our starting points (the pure shifting approach that needs no randomness
and bitlength Θ((logn)2), and the pure hashing approach that needs Θ((logn)2) random
bits and yields bitlength O(logn)). In their construction both quantities are Θ((logn)2).

Very recently, Krishnan and Limaye [42] posted a report on ECCC in which they
independently prove part 1 of our “negative” results (Theorem 7 and its counterpart for
LogCFL), which follow from a space-bounded rendering of the main argument in [26].6

5 [52] does so via Nisan’s pseudorandom generator [48].
6 The current version of the report claims that the arguments also rely on [51], but the authors agree
that [51] is not needed there (personal communication).
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Organization. In Section 2 we derive our positive results for Reachability and NL.
The results essentially also follow as corollaries to the corresponding results for Circuit
Certification and LogCFL, which we prove from scratch in Section 3. This organization
allows us to develop our ideas in the more familiar setting of Reachability and NL in a
gradual and somewhat informal way, and suffice with a formal proof without much intuition
in the more general setting of Circuit Certification and LogCFL. In Section 4 we present
our negative results for both settings.

2 Reachability and NL

In this section we develop our min-isolating weight assignment generator for Reachability
(Theorem 5), and derive our positive isolation result for NL (Theorem 6).

2.1 Weight Assignment Generator
Recall the notion of min-isolation in the context of Reachability:

I Definition 8 (Min-isolating weight assignment for Reachability). Let G = (V,E) be a
digraph. A weight assignment for G is a mapping w ∶ V ↦ N. The weight w(P ) of a path
P in G is the sum of w(v) over all vertices v on the path. For s, t ∈ V , w(G,s, t) denotes
the minimum of w(P ) over all paths from s to t, or ∞ if no such path exists. The weight
assignment w is min-isolating for (G,s, t) if there is at most one path P from s to t with
w(P ) = w(G,s, t). For A ⊆ V × V , w is min-isolating for (G,A) if w is min-isolating for
(G,s, t) for each (s, t) ∈ A. We call w min-isolating for G if w is min-isolating for (G,V ×V ).

We restrict attention to layered digraphs. A layered digraph G = (V,E) of depth d consists
of d + 1 layers of vertices such that edges only go from one layer to the next. More formally,
with n ≐ ∣V ∣ we have that V ⊆ [n]×JdK ≐ {1, 2, . . . , n}×{0, 1, 2, . . . , d} and E ⊆ ⊍i∈[d](Vi−1×Vi).
We denote by Vi ≐ V ∩ [n] × {i} the ith layer of G.

In fact, we only need to consider layered digraphs of depths that are powers of two. For
d = 2` with ` ∈ N, and k ∈ J`K, such a digraph can be viewed as consisting of d/2k = 2`−k
consecutive blocks of depth 2k, where the ith block is the subgraph induced by the vertices
in layers (i − 1)2k through i2k, i.e., ∪i⋅2

k

j=(i−1)⋅2kVj .
We need to design a randomness efficient process that, given d = 2` and n, generates

small weight assignments w ∶ [n] × JdK ↦ N that are min-isolating for any layered digraph
G = (V,E) of depth d on n vertices with high probability. Note that the use of the domain
[n] × JdK rather than merely [n] enables the weight assignment to depend on the layer a
vertex is in.

Iterative Approach. Given the recursive nesting structure of the blocks, there is a natural
iterative/recursive approach towards the construction of w, based on the following simple
observation:

A min-weight path from s to t that passes through a vertex u is the concatenation of
a min-weight path from s to u and a min-weight path from u to t.

We present an iterative (i.e., bottom-up) version, where in the kth iteration we try to
construct a weight assignment wk that is min-isolating for each block of depth 2k and only
assigns nonzero weights to the vertices that are internal to those blocks, i.e., to V ∖∪2`−k

i=0 Vi⋅2k .
We start with w0 ≡ 0, and end with w = w`. Here is how we move from wk to wk+1 in

iteration k + 1 for k ∈ J`− 1K. Consider a block B of depth 2k+1. It consists of two consecutive
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blocks B1 and B2 of depth 2k that have the middle layer M of B in common (see Figure 1).
The assignment wk gives weights to all vertices of B except the initial layer, the middle layer
M , and the final layer. We construct the assignment wk+1 by extending wk, i.e., wk+1 keeps
the values of wk on the layers internal to B1 or B2, and additionally assigns weights to the
vertices in M . We refer to the union of the middle layers M over all blocks of depth 2k+1 as
the set Lk+1 of vertices at level k + 1, i.e.,

Lk+1 ≐ ∪odd i∈[2`−k]Vi⋅2k . (2)

The new weights are assigned so as the maintain the invariant – Assuming that wk is
min-isolating for B1 and B2 individually, we want to make sure that wk+1 is min-isolating
for all of B. Consider two vertices s and t in B such that s appears in an earlier layer than t.

If t is internal to B1 then wk+1 is min-isolating for (B,s, t) no matter how wk+1 assigns
weights to M . This follows from the hypothesis and the fact that wk+1 and wk agree on
the vertices of B1 other than M . The case where s is internal to B2 is similar.
Otherwise, s belongs to B1 and t belongs to B2. In that case every path from s to
t has to cross layer M . We claim that among the paths (if any) that cross M in a
fixed vertex v, there is a unique one of minimum weight with respect to wk+1, say
Pv. This follows from the above observation, the hypothesis, and the fact that wk+1
and wk agree on the vertices of B other than M . Indeed, any such path Pv is the
concatenation of a path Psv in B1 from s to v, and a path Pvt in B2 from v to t. Since
wk+1(Pv) = wk(Pv)+wk+1(v) = wk(Psv)+wk(Pvt)+wk+1(v), both Psv and Pvt need to be
min-weight with respect to wk. By hypothesis, both those min-weight paths are uniquely
determined, whence so is Pv.
Thus, in order to guarantee that wk+1 is min-isolating for (B,s, t), it suffices to ensure
that for all vertices u, v ∈M that are on a path from s to t,

µk(s, u) + µk(u, t) +wk+1(u) ≠ µk(s, v) + µk(v, t) +wk+1(v), (3)

where µk(s, t) ≐ wk(G,s, t) denotes the minimum weight of a path from s to t under wk,
or ∞ if no such path exists. We refer to condition (3) as a disambiguation requirement.
See Figure 1 for an illustration.

We now consider three ways to meet the disambiguation requirements: shifting, hashing,
and a combination of both. For each construction we track:
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the number Rk of random bits that wk needs, and
the maximum weight Wk of paths in G under wk.

The quantity R ≐ R` corresponds to the seed length of the weight assignment generator Γ.
The logarithm of the quantity W ≐W` equals the bitlength of Γ up to an additive term of
O(log d). As we will see in Section 2.2, the simulations of NL on unambiguous machines
that we obtain via Γ run in space O(R + log(W ) + log(n)). Thus, our aim is to minimize
the quantity R + log(W ) up to constant factors. We will ultimately succeed in making it
as small as O((logn)3/2). Ideally, we would like to reduce it further to O(logn) so as to
establish NL ⊆ UL.

Shifting. For v ∈M ⊆ Lk+1 we set wk+1(v) = index(u) ⋅ b, where b is an integer that exceeds
Wk, and index is an injective function from M to N. As the vertices in V are represented as
pairs (i, j) ∈ JdK × [n] and all vertices in M have the same first component, we can simply
use the projection (i, j) ↦ j as the index function. This guarantees distinct values for the
two sides of (3) for different u and v, irrespective of the values of µk(s, u) + µk(u, t) and
µk(s, v) + µk(v, t). In terms of binary representations, if b is a power of 2, this construction
can be interpreted as shifting the index function into a region of the binary representation
that has not been used before.

We have that Rk+1 = Rk and Wk+1 ≤ Wk + 2`−k−1 ⋅ n ⋅ b ≤ (dn + 1)(Wk + 1) − 1. When
we use shifting at all levels, we end up with R = 0 and W ≤ (dn + 1)` = nO(logn), so
R + log(W ) = O((logn)2).

Hashing. When wk+1(u) and wk+1(v) are picked uniformly at random from a sufficiently
large range, independently from each other and from the values µk(s, u) + µk(u, t) and
µk(s, v)+µk(v, t), the disambiguation requirement (3) holds with high probability. We make
use of universal hashing to obtain the random values we need using few random bits, and in
particular of the following well-known family and property. We cast the notion in terms of a
weight assignment generator with a bound on the weights as an additional parameter.

I Fact 9 (Universal hashing [17]). There exists a logspace computable weight assignment gen-
erator (Γ(hashing)

m,r )m,r∈N with seed length s(m,r) = O(log(mr)) such that Γ(hashing)
m,r produces

functions h ∶ [m] ↦ [r] with the following property: For every u, v ∈ [m] with u ≠ v, and
every a, b ∈ N

Pr
h
[a + h(u) = b + h(v)] ≤ 1/r, (4)

where h is chosen uniformly at random from Γ(hashing)
m,r .

We identify D ≐ JdK× [n] with [m] = [d ⋅n] in a natural way. If we pick h ∶D ↦ [r] uniformly
at random from Γ(hashing)

m,r and set wk+1 = h on Lk+1, (4) guarantees that each individual
disambiguation requirement (3) holds with probability at least 1 − 1/r. As there are at most
n4 choices for (s, t, u, v), a union bound shows that all disambiguation conditions are met
simultaneously with probability at least 1 − n4/r. It suffices to pick r as a sufficiently large
polynomial in n in order to guarantee high success probability. In particular, r = n6 suffices
for probability of success at least 1 − 1/n2.

Based on the charateristics of the family of hash functions Γ(hashing) from Fact 9, we have
that Rk+1 = Rk+O(log(dnr)) = Rk+O(logn) andWk=1 ≤Wk+2`−k−1 ⋅r ≤Wk+dr =Wk+nO(1).
When we use a fresh uniform sample h = hk from Γ(hashing) for each iteration k ∈ [`], we end up
with R = O(` log(n)) = O((logn)2), and W = ` ⋅ nO(1) = nO(1), so R + log(W ) = O((logn)2)
again.
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Combined Approach. The shifting approach is ideal in terms of the amount of randomness
R but leads to weights that are too large. The hashing approach is ideal in terms of the
bound W on the path weights but requires too many random bits. We now combine the two
approaches so as to balance R and log(W ). The construction can be viewed as incorporating
shifting into the hashing approach, or vice versa. Our presentation follows the former
perspective.

In order to reduce the number of random bits in the hashing approach, we attempt to
employ the same hash function h in multiple successive iterations, say iterations k+1 through
k′, going from wk to wk′ . This does not work as such because the minimum path weights in
the disambiguation requirements (3) for iterations above k + 1 depend on h, and we cannot
guarantee the bound (4) if a or b depend on h. However, the influence of the choice of h on
those minimum path weights is limited. More specifically, in iteration k + 2 we have that for
any s and t that belong to the same block of depth 2k+1

µk(s, t) ≤ µk+1(s, t) ≤ µk(s, t) + r. (5)

The first inequality follows because wk+1 ≥ wk. The second one follows by considering a
minimum-weight path P from s to t under wk and realizing that

µk+1(s, t) ≤ wk+1(P ) = wk(P ) + h(v) = µk(s, t) + h(v) ≤ µk(s, t) + r,

where v is the unique vertex in P ∩Lk+1.
Let b be a power of two to be determined later. Equation (5) implies that µk(s, t)

and µk+1(s, t) are the same after truncating the log b lowest-order bits, i.e., ⌊µk(s, t)/b⌋ =
⌊µk+1(s, t)/b⌋, unless adding r to µk(s, t) results in a carry into bit position log b (the
position corresponding to the power 2log b = b). Suppose we can prevent such carries
from happening. Conceptually, in iteration k + 2 we can then apply the hashing approach
with the same hash function h as in iteration k + 1 provided we use the truncated values
µ′k+1(s, t) ≐ ⌊µk(s, t)/b⌋ = ⌊µk+1(s, t)/b⌋ as the minimum path weights. Indeed, since the
values µ′k+1 are independent of h, (4) in Fact 9 shows that the disambiguations requirements
with respect to µ′k+1, i.e.,

µ′k+1(s, u) + µ′k+1(u, t) + h(u) ≠ µ′k+1(s, v) + µ′k+1(v, t) + h(v), (6)

hold with high probability. Undoing the truncation, (6) implies that

µk+1(s, u) + µk+1(u, t) + h(u) ⋅ b ≠ µk+1(s, v) + µk+1(v, t) + h(v) ⋅ b.

Thus, by setting wk+2(v) = h(v) ⋅ b for v ∈ Lk+2 we realize the actual disambiguation
requirements for iteration k + 2 with high probability in conjunction with the disambiguation
requirements for iteration k + 1. The setting of wk+2 on Lk+2 can be interpreted as using a
shifted version of the same hash function h instead of h itself.

We can repeat the process for iterations k + 3 through k′. In iteration k + i, the bound
(5) becomes

µk(s, t) ≤ µk+i−1(s, t) ≤ µk(s, t) + r ⋅ (bi−2 + 2bi−3 + . . . + 2i−2) ≤ µk(s, t) + 2rbi−2,

where the last inequality assumes that b ≥ 4. We set wk+i(v) = h(v) ⋅ bi−1 for v ∈ Lk+i, and
achieve our goal if h satisfies the disambiguation requirements

⌊µk(s, u)/bi−1⌋ + ⌊µk(u, t)/bi−1⌋ + h(u) ≠ ⌊µk(s, v)/bi−1⌋ + ⌊µk(v, t)/bi−1⌋ + h(v) (7)
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for all appropriate choices of s, t, u, v. Equation (4) in Fact 9 and a union bound show that
the requirements (7) are all met simultaneously by the same hash function h for all iterations
k + 1 through k′ with probability at least 1 −∆/n2 for r = n6, where ∆ ≐ k′ − k.

In iteration k + 2 we made the assumption that there are no carries into position log b
when adding r to the values µk. More generally, in iteration k + i, we assumed there are
no carries into position (i − 1) ⋅ log b when adding 2rbi−2 to the values µk. The assumption
holds if b ≥ 4r and the values µk have a 0 in the position right before each of the positions
(i−1)⋅ log b. We can maintain the latter condition as an invariant throughout the construction
by setting b = O(r) sufficiently large.

Alternately, b ≥ 2r is enough to ensure that the carries are no larger than 1. We can
handle such carries by strengthening the disambiguation requirements (7) and impose that
the left-hand side and right-hand side are not just distinct but are separated by a small
constant. This only involves a constant factor more of applications of (4) in the union bound,
and guarantees that the values remain distinct after undoing the truncation. In fact, it
suffices to require for all i ∈ [k′ − k] that

⌊(µk(s, u) + µk(u, t))/bi−1⌋ + h(u) /∈ ⌊(µk(s, v) + µk(v, t))/bi−1⌋ + h(v) + {−1,0,1}

for some b ≥ 4r. We refer to the formal proof of Lemma 15 in Section 3.2 for more details
(in the setting of Circuit Certification instead of Reachability), in particular to the
argument for Claim 16.

We obtain the following characteristics: Rk′ = Rk + O(log(dnr)) = Rk + O(logn) and
Wk′ ≤Wk + 2`−k

′

⋅ 2rb∆−1 ≤Wk + drb∆−1 =Wk +O(n∆), where ∆ ≐ k′ − k.

Final Construction. Starting from w0 ≡ 0, for any ∆ ∈ [`] we can apply the combined
construction `/∆ times consecutively to obtain w = w`. Each application uses a fresh
hash function to bridge the next ∆ levels. The setting ∆ = 1 corresponds to the pure
hashing approach, and the setting ∆ = ` essentially to the pure shifting approach.7 We can
interpolate between the parameters of the pure shifting and pure hashing approaches by
considering intermediate values of ∆. We have R = O(∆/` ⋅ logn) and W = O(∆/` ⋅ n∆),
so R + log(W ) = O((∆/` + ∆) logn). The latter expression is minimized up to constant
factors when ∆/` = `, i.e., when ∆ =

√
`, yielding a value of R + log(W ) = O(

√
` logn) =

O(
√

log d logn) = O((logn)3/2).
The above construction yields a weight assignment generator Γ(reach) that is indexed by

the number of vertices n and the depth d, with Dn,d ≐ [n] × JdK as the domain for the weight
functions given by Γ(reach)

n,d . The construction works for any d that is a power of 2 and any
n ∈ N, and has the properties stated in Theorem 5. We already analyzed the seed length and
bitlength. For any given layered digraph of depth d on n vertices, the failure probability at
each level of the construction is at most 1/n2. As there are ` ≐ log d ≤ logn levels, the overall
failure probability is at most log(n)/n2 ≤ 1/n. The logspace computability follows from the
logspace computability of the underlying universal family of hash functions and the fact that
iterated addition is in logspace (see, e.g., [62]).

Values of d that are not powers of 2 can be handled by first extending the given layered
digraph G with identity matchings (for each i connect the ith gate in the next layer with the
ith gate in the previous layer) until the depth reaches a power of 2, and then applying the
above construction.

7 In this setting the hash function h from the “combined” approach can be replaced by an index function.
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This concludes a somewhat informal proof of Theorem 5. Section 3.2 contains a more
formal proof (in the setting of Circuit Certification instead of Reachability).

2.2 Isolation
We now establish Theorem 6. The following proposition8 shows that it suffices to construct
a Turing machine that accepts Reachability unambiguously on layered digraphs in time
poly(n) and space O((logn)3/2).

I Proposition 10. Reachability on layered digraphs is hard for NL under logspace mapping
reductions that preserve the number of solutions.

Given our weight assignment generator Γ(reach), a natural approach towards computing
Reachability unambiguously on a given layered instance (G,s, t) is to go over the list of
all weight assignments w produced by Γ(reach), pick the first one that is min-isolating for
G, and use it to decide the given instance (G,s, t). In fact, the earlier improvement from
Reachability ∈ R ⋅PromiseUL [30] to Reachability ∈ R ⋅ (UL∩ coUL) [51] can be viewed
as following the same approach. Instead of the list of weight assignments obtained from
Γ(reach) (which is guaranteed to contain a min-isolating one), [51] uses a list of 2n2 random
weight assignments of bitlength O(logn) (which contains a min-isolating one with probability
at least 50%). The following ingredients are essential to get the approach to work.

I Lemma 11 ([51]). There exist unambiguous nondeterministic machines WeightEval(reach)

and WeightCheck(reach) such that for every digraph G = (V,E) on n vertices, weight as-
signment w ∶ V ↦ N, and s, t ∈ V :

WeightCheck(reach)(G,w) decides whether or not w is min-isolating for G, and
WeightEval(reach)(G,w, s, t) computes w(G,s, t) provided w is min-isolating for G.

Both machines run in time poly(log(W ), n) and space O(log(W )+ log(n)), where W denotes
an upper bound on the finite values of w(G,u, v) for u, v ∈ V .

Note that the machine WeightEval(reach) does not simply go over all integers µ from 0 to
W and check whether a path from s to t of weight µ exists (knowing that it is unique if it
exists) until the first success or the weight range is exhausted. That process would take at
least W steps in the worst case, whereas the machine WeightEval(reach) from Lemma 11
runs in time poly(log(W ), n).

Like [51], we call WeightCheck(reach)(G,w) for each w from the list up and until the
first success, and then call WeightEval(reach)(G,w, s, t) with that first successful w. This
describes a deterministic machine for Reachability on layered digraphs that makes calls to
the unambiguous nondeterministic machines WeightCheck(reach) and WeightEval(reach).
The result is an unambiguous nondeterministic machine assuming the following general
convention regarding the behavior of a machine M making a call to a nondeterministic
machine N : On any computation path on which N rejects, M halts and rejects; on any
accepting computation path of N , M continues the path assuming the output of N as the
result of the call.

Going over the list of all weight assignments produced by Γ(reach) is done by going
over all seeds σ, and producing the required bits of w = Γ(reach)(σ) from σ on the fly
whenever they are needed, without storing them. Given the logspace computability of

8 The property that the mapping reductions preserve the number of solutions is not needed here but will
be used later.
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Γ(reach), the resulting unambiguous machine for Reachability on layered digraphs runs
in time 2R ⋅ poly(log(W ), n) and space O(R + log(W ) + logn), where R denotes the seed
length of Γ(reach), and W the maximum path length under a weight assignment that Γ(reach)

produces. With the parameters of Γ(reach) stated in Theorem 5 this gives time nO(
√

logn)

and space O((logn)3/2).
In order to reduce the running time to nO(1) while keeping the space bound O((logn)3/2),

we improve over the exhaustive search over all seeds of Γ(reach) by exploiting the internal
structure of Γ(reach). Recall from the final construction in Section 2.1 that the seed σ consists
of ∆ = O(

√
logn) parts of O(logn) bits, each describing a hash function hi from the family

Γ(hashing) from Fact 9. The hash functions h1, . . . , hi define a weight assignment wi⋅∆ that is
intended to have the following property: wi⋅∆ is min-isolating for each block of depth 2i⋅∆
of G. We construct (the seeds σi for) the hash functions hi one by one, maintaining the
intended property as an invariant for i = 0,1, . . . ,∆. The invariant trivially holds for i = 0.
In the step from i − 1 to i for i ∈ [∆], we go over all possible seeds σi for Γ(hashing)

m,r , consider
hi ≐ Γ(hashing)

m,r (σi), check whether or not the weight assignment wi⋅∆ defined by the already
determined h1, . . . , hi−1 and the current choice for hi maintains the invariant, and select the
first σi for which it does. Each check is performed by running WeightCheck(reach)(B,w)
for each of the blocks B of depth 2i, passing if and only if all of them pass. The correctness
argument from Section 2.1 guarantees that the search always succeeds. Once we arrive at
w = w∆, we run WeightEval(reach)(G,w, s, t) as before. Note that the number of choices
for σi that need to be examined for each i ∈ [∆] is nO(1). It follows that the resulting machine
runs in time nO(1) and space O((logn)3/2), and unambiguously decides Reachability on
layered digraphs.

This finishes the proof of Theorem 6. A more formal proof in the setting of Circuit
Certification and LogCFL is given in Section 3.3.

3 Circuit Certification and LogCFL

We start this section with some background on Circuit Certification and LogCFL,
including known isolation results. We then state and formally prove our positive results for
this setting.

3.1 Background
Gal and Wigderson [30] applied their approach for isolating Reachability also to the
following computational problem.

I Definition 12 (Circuit certification). Circuit Certification denotes the computational
problem that maps an input x ≐ (C, z, g) composed of a Boolean circuit C, an input z for C,
and a gate g of C, to the set of certificates for g in C on input z.

A certificate for a gate g in a Boolean circuit C on an input z is a minimal9 subcircuit F
of C with output gate g that accepts z, written F (z) = 1. Based on De Morgan’s laws, one
can always push the negations in a circuit to the inputs without changing the input/output
behavior or the depth of the circuit, while at most doubling its size. On any given input z,

9 The restriction of minimality is imposed in some references (e.g., [51]) but not in others (e.g., [30]).
We impose it as it allows for a bijection between certificates and accepting computation paths in the
machine characterization of LogCFL.
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there is a simple bijection between the certificates for the transformed circuit and for the
original one. Thus, it suffices to consider circuits where negations appear on the inputs only.
In such a circuit C on input z, a certificate for a gate g satisfying g(z) = 1 can be constructed
in the following recursive fashion, starting from the subcircuit of C rooted at g: If g is an
AND gate, keep each incoming wire but replace its originating gate by a certificate for that
gate. If g is an OR gate, keep a single incoming wire from a gate v satisfying v(z) = 1, and
replace v by a certificate for v. If g is a leaf (necessarily evaluating to 1), keep it.

[30] assigns random weights w to the wires E of C. In order to facilitate the translation
of the search for a certificate F for x ≐ (C, z, g) of a given weight τ into an equivalent
instance f(x) of Circuit Certification, the certificate is conceptually first expanded into
an equivalent formula in the standard way by duplicating gates, wires, and their weights. The
weight of the certificate F is then defined as the weight of this formula seen as a weighted
tree. Equivalently, along the lines of the above process for constructing a certificate, the
weight of a certificate F for g can be defined recursively as the sum of the weights of the
wires feeding into g and the weights of the certificates that F induces for their originating
gates. Thus, the weight of a certificate is not merely the sum of the weights of the edges in
the certificate, but a linear combination of those weights with nonnegative integer coefficients.
The Isolation Lemma can be extended to this setting, namely to families of multisets over the
universe E, and guarantees with probability at least 1− 1/q that g has a unique certificate of
minimum weight when w ∶ E ↦ [q ⋅ ∣E∣] is chosen uniformly at random. The number of times
a wire can appear in the multiset (the coefficient in the linear combination) can be as large
as the maximum product of the fan-ins of the AND gates on a path in C from the inputs to
g. As a consequence, only circuits of low depth in which the fan-in of the AND gates is small
can be handled efficiently. More specifically, [30] considers shallow semi-unbounded circuits.
“Shallow” means that the depth is bounded by log2(n), where n denotes the number of gates.
“Semi-unbounded” means that the fan-in of the AND gates is bounded by two (and that
negations appear on the inputs only).

Shallow semi-unbounded circuits are intimately connected to the complexity class LogCFL
of languages that reduce to a context-free language under logspace mapping reductions. The
class can be defined equivalently as the languages accepted by logspace-uniform families
of shallow semi-unbounded circuits of polynomial size, the non-uniform version of which
is denoted as SAC1 [61]. The class LogCFL can also be characterized as the languages
accepted by nondeterministic machines that run in polynomial time and logarithmic space,
and are equipped with an auxiliary stack that does not count towards the space bound
[55]. Such machines are sometimes called auxiliary pushdown automata, and the class
of languages accepted by such machines running in time t and space s is denoted as
AuxPDA-TISP(t, s). The corresponding subclass for unambiguous machines is written
as UAuxPDA-TISP(t, s). For any given problem in LogCFL and any input x, there is a
logspace computable and logspace invertible bijection between the certificates for the circuits
underlying the logspace-uniform SAC1 characterization, and the accepting computation
paths of the machine underlying the AuxPDA-TISP(poly(n),O(logn)) characterization. It
follows that the restriction of Circuit Certification to shallow semi-unbounded circuits
is complete for LogCFL under logspace mapping reductions, and that logspace computable
and recoverable disambiguations for that problem and for the entire class are equivalent.

Gal and Wigderson obtained a randomized disambiguation for Circuit Certification
on shallow semi-bounded circuits that has success probability 1/poly(n), is computable in
logspace with two-way access to the random bits, and is recoverable in logspace. This implies
that LogCFL ⊆ R ⋅PromiseC where C ≐ UAuxPDA-TISP(poly(n),O(logn)). Reinhardt and
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Allender [51] strengthened this result to LogCFL ⊆ R ⋅ (C ∩ coC), replacing the condition on
the weight assignment w by the requirement that w is min-isolating for every gate of C on
input z (not just the specified gate g). This implies that LogCFL ⊆ (C ∩ coC)/poly and that
a disambiguation for Circuit Certification on shallow semi-unbounded circuits can be
computed in logspace with polynomial advice.

3.2 Weight Assignment Generator
Analogous to the setting of Reachability and NL, our isolations for Circuit Certifica-
tion and LogCFL hinge on an efficient min-isolating weight assignment generator. Although
not essential, it is more convenient for us to assign weights to the gates rather than the wires.

Let us formally define what min-isolation means in the context of Circuit Certifica-
tion. We view a Boolean circuit C as an acyclic digraph C = (V,E), where V represents
the gates of the circuit, and E the wires. Each leaf (vertex of indegree zero) is labeled with
a literal (input variable or its negation) or a Boolean constant (0 or 1); each other vertex is
labeled with AND or OR. We consider circuits with and without a single designated output
gate.

I Definition 13 (Min-isolating weight assignment for Circuit Certification). Let C =
(V,E) be a circuit. A weight assignment for C is a mapping w ∶ V ↦ N. The weight w(F )
of a certificate F with output v equals w(v) plus the sum over all gates u that feed into
v in F , of the weight of the certificate with output u induced by F . For an input z for C,
and g ∈ V , w(C, z, g) denotes the minimum of w(F ) over all certificates F for (C, z, g), or ∞
if no certificate exists. The weight assignment w is min-isolating for (C, z, g) if there is at
most one certificate F for (C, z, g) with w(F ) = w(C, z, g). For U ⊆ V , w is min-isolating for
(C, z,U) if w is min-isolating for (C, z, u) for each u ∈ U . We call w min-isolating for (C, z)
if w is min-isolating for (C, z, V ).

Note that the weight w(F ) of a certificate F for a gate g is a linear combination of the
weights w(v) for v ∈ V with coefficients that are natural numbers. The sum of the coefficients
in any given layer below g is at most 2`, where ` denotes the number of AND layers between
that layer and g (inclusive).

We restrict attention to semi-unbounded circuits that are layered and alternating. A
circuit is layered if the underlying digraph is layered and all leaves appear in the same layer.
A circuit is alternating if on every path the non-leaves alternate between AND and OR. More
formally, for a circuit C = (V,E) of depth d with n gates we have that V = ⊍i∈JdKVi where
Vi ⊆ [n] × {i} and E ⊆ ⊍i∈[d](Vi−1 × Vi). Vertices in V0 are labeled with literals and constants
only. Every other layer Vi contains only AND gates or only OR gates, depending on the
parity of i.

With the above conventions we can view weight assignments to the gates as mappings
w ∶ [n] × JdK ↦ N. We construct such assignments inside the following weight assignment
generator Γ(cert) = (Γ(cert)

n,d )n,d∈N, which is indexed by the number of gates n and the depth
d. The domain of the weight assignments given by Γ(cert)

n,d is Dn,d ≐ [n] × JdK, enabling the
weight assignment of a gate to depend on the layer the gate belongs to.

I Theorem 14. There exists a weight assignment generator Γ(cert) = (Γ(cert)
n,d )n,d∈N that is

computable in space O(logn) and has seed length and bitlength O(
√
d logn) such that for

every layered alternating semi-unbounded Boolean circuit C of depth d with n gates and any
input z for C,

Pr
w
[w is min-isolating for (C, z)] ≥ 1 − 1/n,

where w is chosen uniformly at random from Γ(cert)
n,d .

CCC 2017



5:18 Derandomizing Isolation in Space-Bounded Settings

The essential ingredient in the proof of Theorem 14 is the following formalization of the
combined approach from Section 2.1 for the setting of Circuit Certification. It turns
a weight assignment that is min-isolating for all gates up to some layer into one that is
min-isolating for all gates up to some higher layer, and only assigns new weights to the AND
gates of the layers in between. For ease of notation, we assume that the depth is even (say
d = 2` for some ` ∈ N), that we jump from an even layer 2k to some higher even layer 2k′,
and that the layer V1 next to the leaves consists of ANDs. Thus, odd layers consist of AND
gates, and positive even layers of OR gates.

I Lemma 15. There exists a weight assignment generator Γ(cert,step) = (Γ(cert,step)
n,`,k,k′ ) for

n, `, k, k′ ∈ N with k ≤ k′ ≤ ` and domain Dn,`,k,k′ ≐ [n] × J2`K that is computable in space
O(logn), has seed length O(logn) and bitlength O((k′ − k) logn), and has the following
property for every layered alternating semi-unbounded Boolean circuit C = (V,E) of depth
d ≐ 2` with n gates and layers V0, V1, . . . , Vd where layer V1 consists of AND gates, and for
every input z for C: If w ∶ V ↦ N is a weight assignment that is min-isolating for (C, z, V≤2k),
where V≤i ≐ ∪j≤iVj, then

Pr
σ
[w + Γ(cert,step)

n,`,k,k′ (σ) is min-isolating for (C, z, V≤2k′)] ≥ 1 − 1/n2,

where the seed σ is chosen uniformly at random. Moreover, Γ(cert,step)
n,`,k,k′ (σ) assigns nonzero

weights only to ∪j∈[k+1,k′]Lj, where Lj ≐ V2j−1 denotes the jth AND layer.

Proof. Let C be a circuit as in the statement of the lemma, z an input for C, and w ∶ V ↦ N
a weight assignment that is min-isolating for (C, z, V≤2k).

Pick h ∶ D ↦ [r] with D = Dn,`,k,k′ ≐ [n] × J2`K uniformly at random from Γ(hashing)
n(2`+1),r,

identifying [n(2`+ 1)] and [n] × J2`K in a natural way. For a given h, we define a sequence of
weight assignments wj ∶ V ↦ N for j = k, k + 1, . . . , k′ as follows: wk = w, and for i ∈ [k′ − k]
and g ∈ V :

wk+i(g) = { wk+i−1(g) + h(g) ⋅ bi−1 if g ∈ Lk+i
wk+i−1(g) otherwise,

where b is a positive integer to be determined.
For g ∈ V , we denote by µj(g) ≐ wj(C, z, g) the minimum weight of a certificate for

(C, z, g) with respect to wj , or ∞ if no certificate exists. We show that if b and r are
sufficiently large polynomials in n, then with probability at least 1 − 1/n2 the following
invariant holds for i ∈ Jk′ − kK:

wk+i is min-isolating for (C, z, V≤2(k+i)). (8)

We make the following observations:
By the hypothesis on w the invariant holds for i = 0.
For i ∈ [k′−k], the invariant for i−1 implies that wk+i is min-isolating for (C, z, V≤2(k+i−1)).
The reason is that for gates g ∈ V≤2(k+i−1), whether a weight assignment is min-isolating
for (C, z, g) only depends on the weights of the gates in V≤2(k+i−1). As wk+i−1 and wk+i
agree on that set, the invariant for i − 1 implies that wk+i is min-isolating for (C, z, g).
For i ∈ [k′−k], the invariant for i−1 implies that wk+i is min-isolating for (C, z, V2(k+i)−1).
This follows because V2(k+i)−1 is an AND layer. A certificate for an AND gate g ∈ V2(k+i)−1
is the AND of certificates for gates u, v ∈ V2(k+i−1) feeding into g, and wk+i(C, z, g) =
wk+i(g) + wk+i(C, z, u) + wk+i(C, z, v). Since wk+i and wk+i−1 agree on V2(k+i−1), the
invariant for i − 1 implies that wk+i is min-isolating for (C, z, g).
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Thus, in order to show that the invariant is maintained from i − 1 to i for i ∈ [k′ − k], it
suffices to show that wk+i is min-isolating for (C, z, V2(k+i)) assuming the invariant holds for
i − 1. The following claim provides a sufficient condition.

I Claim 16. Let i ∈ [k′ − k], and g ∈ V2(k+i) with g(z) = 1. Suppose that b ≥ 4r and that
wk+i−1 is min-isolating for (C, z, V≤2(k+i−1)). If for all distinct u, v ∈ Lk+i ≐ V2(k+i)−1 that
feed into g

⌊µk(u)
bi−1 ⌋ + h(u) /∈ ⌊µk(v)

bi−1 ⌋ + h(v) + {−1,0,1}, (9)

then wk+i is min-isolating for (C, z, g).

See Figure 2 for an illustration.

Proof of Claim 16. Since g is an OR gate, a certificate Fg for (C, z, g) consists of an
edge from g to one of its inputs v for which v(z) = 1, and a certificate Fv for v. As
wk+i(Fv) = wk+i−1(Fv) + h(v) ⋅ bi−1, it follows that the min-weight certificates for v under
wk+i−1 and under wk+i are the same. Thus, v has a unique min-weight certificate under wk+i,

µk+i(v) = µk+i−1(v) + h(v) ⋅ bi−1, (10)

and the following condition is sufficient to guarantee that wk+i is min-isolating for (C, z, g):
For all distinct inputs u, v ∈ Lk+i ≐ V2(k+i)−1 that feed into g

µk+i(u) ≠ µk+i(v). (11)

We argue that (11) follows from (9) as long as b ≥ 4r.
For v ∈ Lk+i with v(z) = 1, let Fv denote a min-weight certificate for v under wk. We

have that

µk(v) ≤ µk+i−1(v) ≤ wk+i−1(Fv) ≤ wk(Fv) + 4r ⋅ bi−2 = µk(v) + 4r ⋅ bi−2. (12)

The first inequality follows because wk+i−1 ≥ wk, and the second one and the last one from
the definition of µ. For the third inequality, note that wk+i−1 is obtained from wk by adding
weights to the vertices in the AND layers below Lk+i. In particular, for a u ∈ Lk+i−j we have
that wk+i−1(u) = wk(u) + h(v) ⋅ bi−1−j ≤ wk(u) + r ⋅ bi−1−j . The sum of the coefficients that
the weights of the vertices in Lk+i−j receive in wk+i−1(Fv) is at most 2j . Summing over all
such layers with j > 0 we have that

wk+i−1(Fv) ≤ wk(Fv) + r ⋅
i−1
∑
j=1

2jbi−1−j ≤ wk(Fv) + 4r ⋅ bi−2

for b ≥ 4.
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After division by bi−1, (12) shows that

µk(v)
bi−1 ≤ µk+i−1(v)

bi−1 ≤ µk(v)
bi−1 + 4r

b
,

which implies that

⌊µk(v)
bi−1 ⌋ ≤ ⌊µk+i−1(v)

bi−1 ⌋ ≤ ⌊µk(v)
bi−1 ⌋ + 1 (13)

for b ≥ 4r. In combination with the hypothesis (9), (13) implies that

⌊µk+i−1(u)
bi−1 ⌋ + h(u) ≠ ⌊µk+i−1(v)

bi−1 ⌋ + h(v),

which by (10) in turn implies (11) after undoing the division. This finishes the proof of
Claim 16. J

Each individual disambiguation requirement (9) can be written as three conditions of the
form (4). By Fact 9, each of these three conditions individually holds with probability at
least 1 − 1/r. There are at most n3 disambiguation requirements over all i ∈ [k′ − k], namely
n choices for each of g, u, and v. A union bound shows that they all hold simultaneously
with probability at least 1 − 3n3/r, which is at least 1 − 1/n2 for r ≥ 3n5. Whenever they
hold, we know that the invariant (8) holds for each i ∈ Jk′ − kK, and in particular that wk′ is
min-isolating for (C, z, V≤2k′).

This leads to the following definition of Γ(cert,step): Γ(cert,step)
n,`,k,k′ takes a seed σ for Γ(hashing)

n(2`+1),r,
considers h = Γ(hashing)

n(2`+1),r(σ) as a function h ∶ D ↦ [r] with D = Dn,`,k,k′ ≐ [n] × J2`K, and for
g ∈ [n] × {j} sets

(Γ(cert,step)
n,`,k,k′ (σ))(g) = { h(g) ⋅ b(j−1)/2−k for odd j ∈ [2k + 1,2k′ − 1]

0 otherwise.

The above analysis shows that Γ(cert,step) has the required min-isolating property. By
setting b to the first power of 2 that is at least 4r with r = 3n5, the bitlength becomes
O((k′−k) log b)) = O((k′−k) logn). The other required properties follow from the properties
of the universal family Γ(hashing)

m,r given in Fact 9. They imply that Γ(cert,step)
n,`,k.k′ has seed length

O(log(∣Dn,`,k,k′ ∣ ⋅r) = O(logn). As each bit of (Γ(cert,step)(σ))(g) equals an easily determined
bit of h(g), the logspace computability of the universal family of hash functions implies the
logspace computability of Γ(cert,step)

n,`,k,k′ . This completes the proof of Lemma 15. J

We now turn to the proof of the theorem.

Proof of Theorem 14. Let C be a circuit as in the statement of the theorem with layers
Vj ⊆ [n] × {j} for j ∈ JdK, and let z be an input for C. Consider first the case where the layer
V1 of C next to the leaves consists of ANDs.10

If d is even and of the form d = 2` with ` = ∆2 for some ∆ ∈ N, we can apply Lemma 15
∆ times successively, starting from an arbitrary weight assignment w0. The ith application
sets k = ki ≐ (i − 1) ⋅ ∆ and k′ = k′i ≐ i ⋅ ∆, uses a fresh seed σi for Γ(cert,step)

n,`,ki,k′i
, sets wi⋅∆ =

10This is the only case we need for the proof of Theorem 17.
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w(i−1)⋅∆ + Γ(cert,step)
n,`,ki,k′i

(σi), and tries to maintain the invariant that wi⋅∆ is min-isolating for

(C, z, V≤2i⋅∆). We end up with w` = w0 + Γ(cert,odd)
n,d (σ1, σ2, . . . , σ∆), where

Γ(cert,odd)
n,d (σ1, σ2, . . . , σ∆) ≐ ∑

i∈[∆]
Γ(cert,step)
n,`,ki,k′i

(σi). (14)

The superscript “odd” in Γ(cert,odd) refers to the fact that only odd layers receive nonzero
values under weight assignments generated by Γ(cert,odd). The probability that the ith
application breaks the invariant is at most 1/n2. By a union bound, the probability that
the invariant fails at the end is at most ∆/n2 ≤ 1/n. Thus, for any fixed w0 ∶ [n] × JdK↦ N,
w0 + Γ(cert,odd)

n,d is min-isolating for (C, z) with probability at least 1 − 1/n. The seed length
of Γ(cert,odd)

n,d is ∆ times the one of Γ(cert,step)
n,d,⋅,⋅ , i.e., O(∆ logn) = O(

√
d logn). The maximum

weight assigned by Γ(cert,odd)
n,d is at most ∆ times the one assigned by Γ(cert,step)

n,d,⋅,⋅ , so the
bitlength of Γ(cert,odd)

n,d is O(log(∆) +∆ ⋅ logn) = O(
√
d logn). The logspace computability of

Γ(cert,step) and the fact that iterated addition can be computed in logspace (see, e.g., [62]
imply that Γ(cert,odd)

n,d is computable in space O(logn).
Other values of d can be handled by conceptually extending the circuit with successive

matchings until the depth is of the form 2∆2, applying the above construction, and then
only using the part needed. As the smallest such ∆ still satisfies ∆ = Θ(

√
d), the parameters

remain the same up to constant factors. Thus, we have a weight assignment generator
Γ(cert,odd) with all the properties required of Γ(cert) in the case where the layer V1 of C
consists of ANDs.

To handle the case where V1 consists of ORs, we can conceptually split every wire (u, v)
from a leaf u to v ∈ V1 into two by inserting a fresh AND gate g and replacing (u, v) by
(u, g) and (g, v). We then apply the construction for the case where V1 consists of ANDs,
and finally undo the splitting again, transfering the weight of each fresh AND gate g to the
leaf u that feeds into it. This results in a weight assignment generator Γ(cert,even) that only
assigns nonzero weights to the even layers, and has all the properties required of Γ(cert) for
circuits C where the layer V1 next to the leaves consists of ORs. For any such circuit C,
input z for C, and any fixed w′

0 ∶ [n] × JdK↦ N, we have that w′
0 +Γ(cert,even)

n,d is min-isolating
for (C, z) with probability at least 1 − 1/n.

We claim that

Γ(cert)
n,d ≐ Γ(cert,odd)

n,d + Γ(cert,even)
n,d

satisfies all requirements irrespective of the type of V1, provided that we pick the seeds for
Γ(cert,odd)
n,d and Γ(cert,even)

n,d independently. This follows from the above analysis by setting
w0 = Γ(cert,even)

n,d and w′
0 = Γ(cert,odd)

n,d , and finishes the proof of Theorem 14. J

3.3 Isolation
We use the weight assignment generator from Theorem 14 to establish the following result

I Theorem 17. LogCFL ⊆ UAuxPDA-TISP(poly(n), (logn)3/2).

In words: Every language in the class LogCFL can be accepted by a nondeterministic machine
equipped with a stack that does not count towards the space bound, that runs in polynomial
time and O((logn)3/2) space, and has at most one accepting computation path on every
input.

By the following proposition, it suffices to construct such a machine for Circuit Certi-
fication on shallow layered alternating semi-unbounded circuits.
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I Proposition 18. Circuit Certification on shallow layered alternating semi-unbounded
Boolean circuits is hard for LogCFL under logspace mapping reductions that preserve the
number of solutions.

Our unambiguous machine for Circuit Certification hinges on our weight assignment
generator for the problem as well as the following unambiguous machines.

I Lemma 19. There exist unambiguous nondeterministic machines WeightCheck(cert)

and WeightEval(cert), each equipped with a stack that does not count towards the space
bound, such that for every layered semi-unbounded Boolean circuit C = (V,E) of depth d with
n gates, every input z for C, weight assignment w ∶ V ↦ N, and g ∈ V :

WeightCheck(cert)(C, z,w) decides whether or not w is min-isolating for (C, z), and
WeightEval(cert)(C, z,w, g) computes w(C, z, g) provided w is min-isolating for (C, z).

Both machines run in time poly(2d, log(W ), n) and space O(d + log(W ) + log(n)), where W
denotes an upper bound on the finite values w(C, z, g) for g ∈ V .

Lemma 19 is an improvement of a result in [51] that follows along the same lines but has
a better dependency of the running time on W , namely polynomial in log(W ) instead of
polynomial in W . As our weight assignment generator yields values of W = nΘ(

√
logn),

the improvement is necessary to make sure that our unambiguous machine for Circuit
Certification on shallow layered alternating semi-unbounded circuits run in polynomial
time.

We now have all the ingredients to establish our efficient unambiguous machines for
LogCFL.

Proof of Theorem 17. By way of Proposition 18, it suffices to construct an unambiguous
machine that decides11 Circuit Certification on layered alternating semi-unbounded
Boolean circuits C = (V,E) of size n and depth d ≤ log(n), and runs in time nO(1) and space
O((logn)3/2) when equipped with a stack that does not count towards the space bound. In
fact, thanks to simple manipulations described earlier, it suffices to consider the case where
the depth d is of the form d = 2∆2 for ∆ ∈ N, and where the layer next to the leaves consists
of ANDs. We claim that the machine CircuitEval described in Algorithm 1 does the job.

Consider the version of our weight assignment generator Γ(cert) from Theorem 14 that
is geared towards such circuits, namely Γ(cert,odd) given by (14). We know that on most
seeds Γ(cert,odd)

n,d produces a weight assgnment w that is min-isolating for (C, z). The
machine CircuitEval in Algorithm 1 constructs such a seed. In fact, it constructs the
lexicographically first such seed.

Recall that the seed σ consists of ∆ parts σi ∈ {0,1}s(n,d) for i ∈ [∆], where s(n, d)
denotes the seed length of Γ(cert,step)

n,d,⋅,⋅ . Note that w ≐ Γ(cert,odd)
n,d (σ1, . . . , σ∆) is min-isolating

for (C, z) if and only if

wi⋅∆ ≐
i

∑
j=1

Γ(cert,step)
n,d,(j−1)∆,j∆(σj) is min-isolating for (C,V≤2i∆) (15)

for each i ∈ [∆]. This enables a prefix search for the lexicographically first σ for which w is
min-isolating for (C, z). The first part of Algorithm 1 implements this search. In the ith
iteration it finds the lexicographically first σi satisfying the invariant (15), given values for

11 In fact, we only need to construct a machine that accepts the language, but we naturally get the stronger
notion of one that decides the language.
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Algorithm 1: CircuitEval(C, z, g)
Input :C = (V,E): layered semi-unbounded circuits of depth d with layers

V0, V1, . . . , Vd
z: input for C
g ∈ V

Promise : d = 2∆2 for ∆ ∈ N and V1 consists of ANDs
Output : g(z)

1 for i← 1 to ∆ do
2 foreach σi ∈ {0,1}s(n,d) in lex order do
3 isolating ← true;
4 foreach v ∈ V≤2i∆ in lex order do
5 if not WeightCheck(cert)(Cv, z,∑ij=1 Γ(cert,step)

n,d,(j−1)⋅∆,j⋅∆(σj)) then
6 isolating ← false;
7 exit the for loop over v;
8 end
9 if isolating then exit the loop over σi;

10 end
11 end
12 if WeightEval(cert)(C, z,∑∆

j=1 Γ(cert,step)
n,d,(j−1)⋅∆,j⋅∆(σj), g) < ∞ then

13 accept and return 1
14 else accept and return 0;

σ1, . . . , σi−1 from prior iterations. In order to check whether a given candidate σi works, it
runs the machine WeightCheck(cert)(Cv, z,wi⋅∆) for each v ∈ V≤2i∆, where Cv denotes the
subcircuit of C rooted at v.

Once σ is determined, CircuitEval calls WeightEval(cert)(C, z,w, g) to compute
w(C, z, g), which is finite if and only if g(z) = 1.

The correctness of CircuitEval follows from maintaining the invariant (15) and the
specifications of WeightCheck(cert) and WeightEval(cert). The unambiguity of Cir-
cuitEval follows from the unambiguity of WeightCheck(cert) and WeightEval(cert)

(and the usual conventions regarding composing unambiguous machines).
We end with a time and space analysis of CircuitEval. Each run of line 5 takes time

poly(2d, log(W ), n) and space O(d+log(W )+log(n)), whereW is a bound on the path weights
under w. This follows from the complexities of Γ(cert,odd) and WeightCheck(cert), and the
fact that iterated addition is in logspace (see, e.g., [62]). The three loops add a multiplicative
term of ∆ ⋅ 2s(n,d) ⋅ n to the running time, and an additive term of log(∆) + s(n, d) + log(W )
to the space bound. The time and space needed for the call to WeightEval(cert) at the end
is dominated by the rest of the computation. Since ∆ = Θ(

√
d) ≤

√
logn, s(n, d) = O(logn),

and W = 2O(∆⋅log(n)), the overall running time is poly(2d, n) and the space is O(
√
d log(n)).

This yields the stated complexities in the case of shallow circuits, for which d ≤ n. J

4 Limitations

In this section we prove our “negative result” for isolating Reachability (Theorem 7) and
a corresponding result for Circuit Certification.

Recall that we view a computational problem as a mapping Π ∶ X ↦ 2Y , where Π(x)
for x ∈X represents the set of solutions on input x. One can also think of Π as defining a
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relation π ∶X × Y ↦ {0,1}, where π(x, y) indicates whether y ∈ Π(x). We use the notation
L(Π) to denote the set (language) of instances x ∈X for which Π(x) ≠ ∅.

The first part of Theorem 7 follows by verifying that the main result of Dell, Kabanets,
Van Melkebeek, and Watanable [26] carries over to the space-bounded setting: If Π has an
efficient pruning and π is efficiently computable, then L(Π) can be decided efficiently. The
prunings in this statement are deterministic or, more generally, randomized with probability
of success at least 2

3 +
1

poly(n) . [26] showed that the statement holds when “efficient” means
polynomial-time for any Π that satisfies certain additional properties, which all the classical
problems like Satisfiability do. We observe that the argument in [26] also works when
“efficient” means logspace, and that both Reachability and Circuit Certification have
the required additional properties. This yields the first part of Theorem 7 and its counterpart
for Circuit Certification. The second part follows from a slight modification of the
argument.

The proof in [26] relies on a proposition of Ko’s [41].

I Proposition 20 ([41]). Suppose that there exists a predicate T ∶D ×D ↦ {0,1} for some
D ⊆X with the following properties:

(∀x, z ∈D ∩L(Π)) T (x, z) ∨ T (z, x) (16)
(∀x, z ∈D) z ∈ L(Π) ∧ T (z, x) ⇒ x ∈ L(Π) (17)

Then for some ` ∈ J⌈log(∣D∣ + 1)⌉K there exists a sequence z∗1 , . . . , z∗` ∈ D ∩ Π such that for
every x ∈D

x ∈ L(Π) ⇔ (∃i ∈ [`])T (z∗i , x). (18)

If the ∨ in (16) were replaced by an exclusive or, T would be a tournament, where T (z, x)
(an edge from z to x) means that x wins the duel between z and x. Equation (16) requires
the digraph T to contain a tournament (and have a selfloop at every vertex), so every duel
has at least one winner and can have two. Equation (17) can be interpreted as saying that
winners of duels are more likely be to in L(Π) in the following sense: If at least one of x or z
is in L(Π), then any winner of the duel between x and z is.

Proposition 20 follows from the fact that a tournament on D ∩Π has a dominating set
of logarithmic size. In the case where D represents all instances of a given size n (of which
there are at most 2n), Proposition 20 shows us via (18) how to decide L(Π) efficiently on D
with the help of the predicate T and the ` ⋅ n ≤ n2 bits of advice z∗i for i ∈ [`].

[26] constructs a (sufficiently) efficient predicate T satisfying (16) and (17) assuming the
existence of an efficient deterministic pruning f for Π, that π is efficiently computable, and
that Π allows an efficient disjoint union operator.

I Definition 21 (Disjoint union of computational problems). Let Π ∶X ↦ 2Y be a computa-
tional problem. A disjoint union operator for Π consists of a mapping ⊔ ∶X ×X ↦X and a
mapping τ ∶X ×X × [2] × Y ↦ Y such that for all x1, x2 ∈X, ∣Π(x1 ⊔ x2)∣ = ∣Π(x1)∣ + ∣Π(x2)∣
and Π(x1 ⊔ x2) = ⊍i∈[2]τ(x1, x2, i,Π(xi)), where τ(x1, x2, i,W ) ≐ ⊍y∈W {τ(x1, x2, i, y)} for
any W ⊆ Y .

⊔ maps a pair of instances (x1, x2) to an instance x1 ⊔ x2 whose solutions can be viewed
as the disjoint union of the solutions of x1 and of x2, where τ(x1, x2, i, yi) describes the
translation of the solution yi ∈ Π(xi) into the corresponding solution in Π(x1 ⊔ x2).

Several of the classical computational problems Π allow simple disjoint union operators
that are computable in logspace, meaning that both ⊔ and τ in Definition 21 are computable
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in logspace. Often times the underlying predicate π is computable in logspace as well. This is
the case, among others, for Satisfiability, Reachability, and Circuit Certification.

I Proposition 22. Reachability and Circuit Certification on shallow semi-unbounded
circuits have disjoint union operators as well as underlying predicates that are computable in
logspace. The same holds for their restrictions to layered digraphs, and to layered alternating
circuits, respectively.

The key insight in [26] is (i) that a pruning f applied to the disjoint union x1⊔x2 implicitly
selects an instance among x1 and x2 that is more likely to be positive in the above sense,
and (ii) that the corresponding predicate T satisfying Ko’s requirements (16) and (17) can
be decided sufficiently efficiently on instances with few solutions provided that f is efficiently
computable and that Π allows an efficient disjoint union operator. The corresponding
predicate T can formally be defined as follows on all pairs of instances (z, x) ∈X ×X:

T (z, x) ⇔ { τ(z, x,1,Π(z)) ∩Π(f(z ⊔ x)) = ∅ for z ≤lex x
τ(x, z,2,Π(z)) ∩Π(f(x ⊔ z)) = ∅ for x ≤lex z,

where ≤lex denotes the lexicographic ordering. The isolation property ∣Π(f(⋅))∣ ≤ 1 implies
condition (16). The pruning property Π(f(⋅)) ⊆ Π(⋅) implies condition (17). In the case of
an instance z∗ with a unique solution, say Π(z∗) = {y∗}, we can evaluate T (z∗, z) as

T (z∗, x) ⇔ { ¬π(f(z∗ ⊔ x), τ(z∗, x,1, y∗)) for z∗ ≤lex x
¬π(f(x ⊔ z∗), τ(x, z∗,2, y∗)) for x ≤lex z∗.

(19)

Given x, z∗, and y∗, the latter expression can be computed efficiently when all of π, f , ⊔, and
τ can. This leads to an efficient algorithm with advice for deciding L(Π) on the instances of
size n with at most one solution, where the advice consists of the strings (z∗i , y∗i ) for i ∈ [`].
In order to decide L(Π) on any instance x ∈X, we first apply the pruning f , and then run
the algorithm for instances with at most one solution on f(x). This results in an efficient
algorithm with polynomial advice for deciding L(Π).

The above argument works for polynomial-time efficiency as well as for logspace efficiency.
The polynomial-time incarnation yields the main result of [26] regarding the existence of
deterministic polynomial-time prunings for Satisfiability. The logspace incarnation yields
the first part of Theorem 7 regarding the existence of deterministic logspace prunings for
Reachability as well as a corresponding result for Circuit Certification.

As for the second part of Theorem 7 and its counterpart for Circuit Certification, a
min-isolating weight assignment ω(x, y) applied to the disjoint union x1 ⊔ x2 selects between
x1 and x2 in a similar way as a pruning does. Given a function µ(x) that agrees with the
min-weight ω(x) on positive instances x, this leads to the following predicate T satisfying
the requirements (16) and (17) on instances (z∗, x) where z∗ has a unique solution y∗:

T (z∗, x) ⇔ { ω(z∗ ⊔ x, τ(z∗, x,1, y∗)) ≠ µ(z∗ ⊔ x) for z∗ ≤lex x
ω(x ⊔ z∗, τ(x, z∗,2, y∗)) ≠ µ(x ⊔ z∗) for x ≤lex z∗.

(20)

As in the setting of part 1, we obtain an efficient algorithm with polynomial advice for
deciding L(Π) on instances with at most one solution. To handle all inputs, we no longer
have access to a pruning as we did in the case of part 1 of the theorem. However, whereas
access to the functions ω and µ does not immediately yield an efficient pruning, it does
yield an efficient disambiguation in case the search for a solution of a given weight can be
efficiently reduced to Π under a reduction that preserves the number of solutions. This is the
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case for each of Satisfiability, Reachability, and Circuit Certification on shallow
semi-unbounded circuits, both for polynomial-time efficiency and for logspace efficiency.

This completes the argument for parts 1 and 2 of Theorem 7 (as well as their counterparts
for Circuit Certification) in the case where the pruning f and the functions ω and µ are
deterministic. For the more general case where they can be randomized and have probability
of success at least 2

3 +
1

poly(n) , some additional properties of Π are needed and the predicate T
has to be generalized in the appropriate way. The following lemma captures the general case.
We view a randomized mapping as a determinstic one that gets a random bit string ρ ∈ {0, 1}r
as an additional input, and often write ρ as a subscript to the name of the procedure.

We state the lemma for logspace efficiency for concreteness, but the proof only requires
mild properties of the underlying notion of efficiency. In particular, it also applies to
polynomial-time efficiency.

I Lemma 23. Let Π ∶X ↦ 2Y be a computational problem with an underlying predicate π
that is computable in logspace and has the following additional properties:

Π has a disjoint union operator given by ⊔ and τ in Definition 21 where ⊔ and τ are
computable in logspace.
Π has a randomized disambiguation g with probability of success at least 1/poly(n) that
is computable and recoverable in logspace.
There exists a logspace mapping reduction h from the following decision problem to Π:
On input an instance x ∈X and an index i ∈ N, decide whether there exists y ∈ Π(x) such
that the ith bit of y is 1. Furthermore, the instances h(x, i) have at most one solution if
the instance x does, and there exists a constant c such that the solutions to instances of
Π of size n are strings of length nc.

For any p = 2
3 +

1
poly(n) either of the following hypotheses imply that L(Π0 can be decided

in logspace with polynomial advice, where ρ is chosen uniformly at random from {0,1}r for
some r = poly(n):
1. There exists a randomized mapping f ∶X ↦X computable in logspace such that for every

input x ∈X:

Pr
ρ
[ fρ satisfies the pruning requirement on input x ] ≥ p. (21)

2. There exist randomized mappings ω ∶X × Y × ↦ N and µ ∶X ↦ N that are computable in
space O(logn) such that for every x ∈ L(Π)

Pr
ρ
[ ωρ(x, ⋅) is min-isolating for x and µρ(x) = ωρ(x) ] ≥ p. (22)

Proof. Let us first focus on the instances of Π that have at most one solution. Consider the
predicate T defined as follows on input (z∗, x) whereΠ(z∗) = {y∗} and q denotes a fraction
to be set:

T (z∗, x) ⇔ { Prρ[ right-hand side of (19) holds ] > q for part 1
Prρ[ right-hand side of (20) holds ] > q for part 2, (23)

where ρ ∈ {0,1}r is chosen uniformly at random for some r = poly(n), and is used as the
randomness for all randomized mappings involved.

I Claim 24. Both (16) and (17) hold for q = 1/3 as long as p > 2/3, where D represents the
set of all instances of Π with at most one solution.
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Proof. We argue by contradiction that T satisfies condition (16). Consider part 1 first,
and suppose that neither T (x, z∗) nor T (z∗, x) hold for some x, z∗ ∈D ∩L(Π). Then with
probability at most 2q the translation of the unique solution for at least one of x or z∗ is
not a solution for f(x∗) where x∗ ≐ min(x, z∗) ⊔max(x, z∗) and max and min refer to the
lexicographic order ≤lex. By complementing, with probability at least 1 − 2q it is the case
that both are solutions for f(x∗), which therefore has at least two distinct solutions. Thus, f
fails the pruning condition on input x∗ with probability at least 1− 2q, which contradicts the
hypothesis that f has success probability p as long as q < p/2. In the case of part 2, a similar
argument by contradiction leads to the conclusion that with probability at least 1 − 2q two
distinct solutions for x∗ achieve the value µ(x∗) under ω, which contradicts the hypothesis
(22) as long as q < p/2.

We argue condition (17) by contradiction also. For part 1, consider z∗ ∈D ∩L(Π) and
x ∈D ∖L(Π), and let x∗ ≐ min(x, z∗) ⊔max(x, z∗). Note that if the right-hand side of (19)
holds then f fails the pruning property on input x∗. Thus, if T (z∗, x) holds, then f fails the
pruning property on input x∗ with probability more than q, which contradicts the hypothesis
(21) as long as q ≥ 1 − p. For part 2, a similar argument leads to a contradiction with the
hypothesis (22) as long as q ≥ 1 − p.

The conditions q < p/2 and q ≥ 1 − p imply that p > 2/3, which is where the bound of 2/3
in the statement of the lemma comes from. Setting q = 1/3 satisfies both requirements when
p > 2/3. This finishes the proof of Claim 24. J

Note that the statement of the lemma entails some leeway in that p does not just exceeds
2/3 but does so with some margin, namely p ≥ 2

3 +
1

poly(n) . We now exploit this leeway to
replace the randomness in the definition of T by advice. More specifically, an application
of the Chernoff bound shows that a subset R of a sufficiently large polynomial number
of random strings ρ ∈ {0,1}r has the following property with high probability: All of the
conditions (21) (in the case of part 1) or (22) (in the case of part 2) hold for all inputs x of
length n simultaneously when the uniform distribution of ρ over {0,1}r is replaced by the
uniform distribution over R, and p is replaced by p̃ for some p̃ = 2

3 +
1

poly(n) . By fixing a good
set R and giving it as advice, the predicates (23) become computable in logspace.

This shows the existence of an algorithm A that runs in logspace with polynomial advice
and correctly decides L(Π) on instances x ∈X with at most one solution. In order to handle
all instances x ∈ X we employ the randomized disambiguation g to reduce to the case of
at most one solution, the predicate h to retrieve a solution in case it is unique, and the
predicate π to check purported solutions.

Denoting by σ the random bit string of the randomized disambiguation g, another
application of the Chernoff bound shows that for every size n there exists a set S of poly(n)
strings of length poly(n) each such that for every instance x ∈X of size n there exists at least
one σ ∈ S such that gσ satisfies the disambiguation requirement on input x, i.e., xσ ≐ gσ(x)
is an instance of Π that is equivalent with respect to membership to L(Π), and has at most
one solution. Thus, we can apply our algorithm A to decide L(Π) on xσ.

We do not know which σ works but we do know that there is at least one and that for
anyone that does, the only possible solution for the instance xσ of Π is (L(Π)(h(xσ, i)))n

c

i=1.
This follows because if xσ has a unique solution then the ith bit of that solution is 1 if and
only if there exists a solution whose ith bit is 1, and by definition h(xσ, i) is an instance of
Π whose memberhip to L(Π) is equivalent to the latter decision. Moreover, the instances
h(xσ, i) of Π each have at most one solution themselves, so we can use our algorithm A to
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5:28 Derandomizing Isolation in Space-Bounded Settings

decide L(Π) on those instances and retrieve the only candidate solution for xσ as

yσ ≐ (A(h(xσ, i)))n
c

i=1.

Finally, we try all possible σ ∈ S, and check whether g′(x,xσ, yσ) is a valid solution for x,
where g′ ∶X ×X ×Y ↦ Y denotes the logspace recovery algorithm underlying the recoverable
disambiguation g. More formally, we evaluate the predicate

⋁
σ∈S

π(x, g′(x,xσ, yσ)). (24)

If x ∈ L(Π) then we know that for at least one σ ∈ S, yσ is the unique solution to xσ,
and g′(x,xσ, yσ) is a valid solution to x, so (24) evaluates to true. If x /∈ L(Π), then there
is no string y for which π(x, y) holds, so (24) evaluates to false no matter what. Thus,
(24) correctly decides L(Π) on all instances x ∈ X. As all the algorithms involved run in
logspace with access to their random bit strings, which are given as advice, it follows that
the predicate (24) can be evaluated in logspace with polynomial advice. This concludes the
proof of Lemma 23. J

Theorem 7 follows from an instantiation of Lemma 23 with Reachability on layered
digraphs as the computational problem Π.

Proof of Theorem 7. Since Reachability on layered digraphs is hard for NL under log-
space mapping reductions (see Proposition 10), it suffices to verify that Reachability
on layered digraphs has all the properties required of the computational problem Π in
Lemma 23. The properties regarding the predicate π and the disjoint union operator follow
from Proposition 22. The existence of the required randomized disambiguation g follows
from the Isolation Lemma (as explained in the introduction). Finally, here is how we can
compute the required retrieving predicate h(x, i) for x ≐ (G,s, t). The index i corresponds
to a bit position, say the jth one, of the label of an edge in some layer, say the `th one, of G.
The instance h(x, i) is obtained by removing from G all edges in layer ` whose jth bit is not
1. This operation can be performed in logspace. J

A similar argument for Circuit Certification on shallow layered alternating semi-
unbounded circuits yields the following equivalent to Theorem 7.

I Theorem 25. Either of the following hypotheses imply that LogCFL ⊆ L/poly:
1. Circuit Certification on shallow layered alternating semi-unbounded circuits has a

logspace pruning.
2. Circuit Certification on shallow layered alternating semi-unbounded circuits has a

logspace weight function ω that is min-isolating, and there exists a logspace function µ
such that µ(x) equals the min-weight ω(x) of x under ω on positive instances x.

In fact, the conclusion holds even if the algorithms are randomized, as long as the probability
of success exceeds 2

3 +
1

poly(n) and the algorithms run in logspace when given two-way access
to the random bits.
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