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Abstract

Moreau’s seminal paper, introducing what is now called the Moreau envelope and the prox-
imity operator (also known as the proximal mapping), appeared in 1962. The Moreau enve-
lope of a given convex function provides a regularized version which has additional desirable
properties such as differentiability and full domain. Forty years ago, Attouch proposed using
the Moreau envelope for regularization. Since then, this branch of convex analysis has de-
veloped in many fruitful directions. In 1967, Bregman introduced what is nowadays known
as the Bregman distance as a measure of discrepancy between two points generalizing the
square of the Euclidean distance. Proximity operators based on the Bregman distance have
become a topic of significant research as they are useful in the algorithmic solution of opti-
mization problems. More recently, in 2012, Kan and Song studied regularization aspects of the
left Bregman–Moreau envelope even for nonconvex functions. In this paper, we complement
previous works by analyzing the left and right Bregman–Moreau envelopes and by providing
additional asymptotic results. Several examples are provided.

2010 Mathematics Subject Classification: Primary 90C25; Secondary 26A51, 26B25, 47H05, 47H09.
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1 Introduction

We assume throughout that

X := RJ , (1)

which we equip with the standard inner product 〈·, ·〉 and the induced Euclidean norm ‖ · ‖.

Let θ : X → ]−∞,+∞] be convex, lower semicontinuous, and proper1. The Moreau envelope
with parameter γ ∈ R++ is the function

envγ
θ : x 7→ inf

y∈X

(
θ(y) +

1
2γ
‖x− y‖2). (2)
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1See [41], [8], [36], and [42] for background material in convex analysis from which we adopt our notation which is

standard. We also set R++ := {x ∈ R
∣∣ x > 0}.
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Moreau only considered the case in which γ = 1; the systematic study involving the parameter γ
originated with Attouch (see [2] and [3]). If θ = ιC, the indicator function of a nonempty closed
convex subset C of X, then the corresponding Moreau envelope with parameter γ is 1

2γ d2
C, where

dC is the distance function of the set C. While the indicator function has (effective) domain C and
is differentiable only on int C, the interior of C, the Moreau envelope is much better behaved: for
instance, it has full domain and is differentiable everywhere.

Now assume that

f : X → ]−∞,+∞] is convex and differentiable on U := int dom f 6= ∅. (3)

The Bregman distance2 associated with f , first explored by Bregman in [18] (see also [25]), is

D f : X× X → [0,+∞] : (x, y) 7→
{

f (x)− f (y)− 〈∇ f (y), x− y〉 , if y ∈ U;
+∞, otherwise.

(4)

It serves as a measure of discrepancy between two points and thus gives rise to associated projec-
tors (nearest-point mappings) and proximal mappings which have been employed to solve convex
feasibility and optimization problems algorithmically; see, e.g., [1], [4], [6], [7], [9], [10], [11], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [30], [32], [33], [34], [39], [40], and [43]. The classical
case arises when f = 1

2‖ · ‖2 in which case D f (x, y) = 1
2‖x− y‖2 = D f (y, x). This clearly suggests

replacing the quadratic term in (2) by the Bregman distance. However, because different assign-
ments of f may allow for cases in which D f (x, y) 6= D f (y, x), we actually are led to consider two
envelopes: the left and right Bregman–Moreau envelopes are defined by

←−envγ
θ : X → [−∞,+∞] : y 7→ inf

x∈X

(
θ(x) +

1
γ

D f (x, y)
)

(5)

and

−→envγ
θ : X → [−∞,+∞] : x 7→ inf

y∈X

(
θ(y) +

1
γ

D f (x, y)
)
, (6)

respectively. It follows from the definition (see also Example 2.3 below) that if f = 1
2‖ · ‖2, then

D f : (x, y) 7→ 1
2‖x − y‖2, and ←−envγ

θ = −→envγ
θ = θ � ( 1

2γ‖ · ‖2) is the classical Moreau envelope of θ
of parameter γ; see [37], [38], and also [8, Section 12.4] and [42, Section 1.G]. When γ = 1, we
simply write ←−envθ for ←−env1

θ , and −→envθ for −→env1
θ , which were introduced in [9]. Bregman–Moreau

envelopes when γ 6= 1 were previously explored in [27] and [32] for the left variant; the authors
provided asymptotic results when γ ↓ 0.

The goal of this paper is to present a systematic study of regularization aspects of the Bregman–Moreau
envelope. Our results extend and complement several classical results and provide a novel way
to approximate θ. We also obtain new results on the asymptotic behaviour when γ ↑ +∞ and
on the right Bregman–Moreau envelope. This opens the door to regularization and smoothing of
functions by employing the right Bregman–Moreau envelope. We also provide visualizations and
examples.

The remainder of this paper is organized as follows. In Section 2, we collect various useful
properties and characterizations of Bregman–Moreau envelopes. In particular, the minimizers of
the envelopes are also minimizers of the original function (see Theorem 2.20). Section 3 is devoted
to the asymptotic behaviour of the Bregman–Moreau envelopes when γ ↓ 0 (Theorem 3.3) and
when γ ↑ +∞ (Theorem 3.5). Finally, Section 4 provides examples and comments on future work.

2Note that D f is not a distance in the sense of metric topology; however, this naming convention is now ubiquitous.
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2 Basic properties

In this section, we collect various useful properties of the Bregman–Moreau envelopes.

We start by describing the effect of scaling the function.

Proposition 2.1. Let θ : X → ]−∞,+∞], let γ ∈ R++, and let µ ∈ R++. Then ←−envµ
γθ = γ←−envγµ

θ and
−→envµ

γθ = γ−→envγµ
θ .

Proof. This is analogous to the proof of [8, Proposition 12.22(i)]. �

We now turn to regularization properties. (For a variant of Proposition 2.2(i), see [32, Theo-
rem 2.2 and Proposition 2.1(i)].)

Proposition 2.2. Let θ : X → ]−∞,+∞] be such that U ∩ dom θ 6= ∅ and let γ ∈ R++. Then the
following hold:

(i) dom ←−envγ
θ = U, and (∀y ∈ U)(∀µ ∈ ]γ,+∞[) inf θ(X) ≤ ←−envµ

θ (y) ≤
←−envγ

θ (y) ≤ θ(y).
Consequently, inf θ(X) ≤ inf ←−envγ

θ (X) ≤ inf θ(U), and ←−envγ
θ (y) ↓ inf θ(X) as γ ↑ +∞.

(ii) dom −→envγ
θ = dom f , and (∀x ∈ U)(∀µ ∈ ]γ,+∞[) inf θ(X) ≤ −→envµ

θ (x) ≤ −→envγ
θ (x) ≤ θ(x).

Consequently, inf θ(X) ≤ inf −→envγ
θ (X) ≤ inf θ(U), and −→envγ

θ (x) ↓ inf θ(X) as γ ↑ +∞.

Proof. (i): We first show that dom ←−envγ
θ = U. Let y ∈ dom ←−envγ

θ . Then ←−envγ
θ (y) = infx∈X

(
θ(x) +

1
γ D f (x, y)

)
< +∞, and hence there exists x ∈ X such that θ(x) + 1

γ D f (x, y) < +∞. Since θ(x) >
−∞, this yields y ∈ U.

From now on, let y ∈ U, and pick u ∈ dom θ ∩ U. Then − f (y) < +∞, ‖∇ f (y)‖ < +∞,
f (u) < +∞, θ(u) < +∞, and

←−envγ
θ (y) = inf

x∈X

(
θ(x) +

1
γ

(
f (x)− f (y)− 〈∇ f (y), x− y〉

))
, (7a)

≤ θ(u) +
1
γ

(
f (u)− f (y)− 〈∇ f (y), u− y〉

)
< +∞, (7b)

which gives y ∈ dom ←−envγ
θ . Hence, dom ←−envγ

θ = U.

Next, let µ ∈ ]γ,+∞[. Then 1
µ < 1

γ , θ ≤ θ + 1
µ D f (·, y) ≤ θ + 1

γ D f (·, y), and so

inf
x∈X

θ(x) ≤ ←−envµ
θ (y) ≤

←−envγ
θ (y) = inf

x∈X

(
θ(x) +

1
γ

D f (x, y)
)
≤ θ(y) +

1
γ

D f (y, y) = θ(y). (8)

Therefore,

inf θ(X) ≤ ←−envµ
θ (y) ≤

←−envγ
θ (y) ≤ θ(y). (9)

Taking now the infimum over y ∈ U yields inf θ(X) ≤ inf ←−envγ
θ (X) ≤ inf θ(U). Consequently,

inf θ(X) ≤ lim
γ→+∞

←−envγ
θ (y). (10)

On the other hand, (∀x ∈ X) ←−envγ
θ (y) ≤ θ(x) + 1

γ D f (x, y), which implies that (∀x ∈ X)

limγ→+∞
←−envγ

θ (y) ≤ θ(x) and thus limγ→+∞
←−envγ

θ (y) ≤ inf θ(X). Altogether, limγ→+∞
←−envγ

θ (y) =
inf θ(X) and the conclusion follows from (9).

(ii): This is similar to (i). �
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Denote by Γ0(X) the set of all proper lower semicontinuous convex functions from X to
]−∞,+∞]. From now on, we strengthen our assumptions by requiring that

f ∈ Γ0(X) is a convex function of Legendre type and U := int dom f . (11)

This will allow us to obtain a quite satisfying theory in which the envelopes are convex functions.
Note that f is essentially smooth and essentially strictly convex in the sense of [41, Section 26]. It
is well known that

∇ f : U → U∗ := int dom f ∗ is a homeomorphism with
(
∇ f
)−1

= ∇ f ∗. (12)

We will also work with the following standard assumptions:

A1 ∇2 f exists and is continuous on U;

A2 D f is jointly convex, i.e., convex on X× X;

A3 (∀x ∈ U) D f (x, ·) is strictly convex on U;

A4 (∀x ∈ U) D f (x, ·) is coercive, i.e., D f (x, y)→ +∞ as ‖y‖ → +∞.

We also henceforth assume that

all assumptions A1–A4 hold. (13)

Example 2.3 (see [11, Example 2.16]). Assumptions (11) and A1–A4 hold in the following cases,
where x = (ξ j)1≤j≤J and y = (ηj)1≤j≤J are two generic points in X = RJ .

(i) Energy: If f : x 7→ 1
2‖x‖2, then U = X and

D f (x, y) = 1
2‖x− y‖2. (14)

(ii) Boltzmann–Shannon3 entropy: If f : x 7→
J

∑
j=1

ξ j ln(ξ j)− ξ j, then U = {x ∈ X
∣∣ x > 0} and one

obtains the Kullback–Leibler divergence

D f (x, y) =

{
∑J

j=1 ξ j ln(ξ j/ηj)− ξ j + ηj, if x ≥ 0 and y > 0;

+∞, otherwise.
(15)

(iii) Fermi–Dirac entropy: If f : x 7→
J

∑
j=1

ξ j ln(ξ j)+ (1− ξ j) ln(1− ξ j), then U = {x ∈ X
∣∣ 0 < x < 1}

and

D f (x, y) =

{
∑J

j=1 ξ j ln(ξ j/ηj) + (1− ξ j) ln
(
(1− ξ j)/(1− ηj)

)
, if 0 ≤ x ≤ 1 and 0 < y < 1;

+∞, otherwise.
(16)

The following result relates the Bregman–Moreau envelopes to Fenchel conjugates.

3When dealing with the Boltzmann–Shannon entropy and Fermi–Dirac entropy, it is understood that 0 · ln(0) := 0.
For two vectors x and y in X, expressions such as x ≤ y, x · y, and x/y are interpreted coordinate-wise.
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Proposition 2.4. Let θ : X → ]−∞,+∞] be such that U ∩ dom θ 6= ∅ and let γ ∈ R++. Then the
following hold4:

(i) γ←−envγ
θ ◦ ∇ f ∗ = f ∗ − (γθ + f )∗.

(ii) γ−→envγ
θ = f − ( f ∗ + (γθ ◦ ∇ f ))∗.

Proof. (i): This follows from [32, Theorem 2.4] and (12). Note also that the case in which γ = 1 is
related to [29, Theorem 1(i)] applied to ( f ∗, θ∗) instead of ( f , θ).

(ii): Let x ∈ X. Using the fact that f ∗(∇ f (y)) = 〈∇ f (y), y〉 − f (y) (see, e.g., [41, Theorem 23.5])
and that

(
∇ f
)−1

= ∇ f ∗ (see (12)), we obtain

−→envγ
θ (x) = inf

y∈X

(
θ(y) +

1
γ

(
f (x)− f (y)− 〈∇ f (y), x− y〉

))
(17a)

=
f (x)

γ
+

1
γ

inf
y∈U

(
γθ(y) + f ∗(∇ f (y))− 〈∇ f (y), x〉

)
(17b)

=
f (x)

γ
+

1
γ

inf
y∗∈U∗

(
γθ(∇ f ∗(y∗)) + f ∗(y∗)− 〈y∗, x〉

)
(17c)

=
f (x)

γ
− 1

γ
sup
y∗∈X

(
〈x, y∗〉 −

(
(γθ ◦ ∇ f ∗) + f ∗

)
(y∗)

)
(17d)

=
f (x)

γ
− 1

γ

(
(γθ ◦ ∇ f ∗) + f ∗

)∗
(x). (17e)

This completes the proof. �

In what follows, we shall require the following two facts.

Fact 2.5. The following hold:

(i) (∀x ∈ X)(∀y ∈ U) D f (x, y) = 0 ⇔ x = y.
(ii) (∀y ∈ U) D f (·, y) is coercive, i.e., D f (x, y)→ +∞ as ‖x‖ → +∞.

Proof. (i): See [5, Theorem 3.7.(iv)]. (ii): See [5, Theorem 3.7.(iii)]. �

Fact 2.6. Let θ ∈ Γ0(X) be such that dom θ ∩U 6= ∅ and let γ ∈ R++. Consider the following properties:

(a) U ∩ dom θ is bounded.

(b) inf θ(U) > −∞.

(c) f is supercoercive, i.e., f (x)/‖x‖ → +∞ as ‖x‖ → +∞.

(d) (∀x ∈ U) D f (x, ·) is supercoercive.

Then the following hold:

(i) If any of the conditions (a), (b), or (c) holds, then

(∀y ∈ U) θ(·) + 1
γ

D f (·, y) is coercive (18)

4 Indeed, the proof does not require any of A1–A4.
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or, equivalently,

1
γ

ran∇ f ⊆ int dom
(

1
γ

f + θ

)∗
. (19)

(ii) If any of the conditions (a), (b), or (d) holds, then

(∀x ∈ U) θ(·) + 1
γ

D f (x, ·) is coercive. (20)

Proof. Since 1
γ D f = D 1

γ f , the result follows from [9, Lemma 2.12] applied to 1
γ f . �

The definition of proximal mappings relies on the following result. (For variants of Proposi-
tion 2.7(i), see [32, Theorems 2.2 and 4.3].)

Proposition 2.7. Let θ : X → ]−∞,+∞] be convex and such that U ∩ dom θ 6= ∅, and let γ ∈ R++.
Then the following hold:

(i) ←−envγ
θ is convex and continuous on U, and

(a) if (18) holds, i.e., (∀y ∈ U) θ(·) + 1
γ D f (·, y) is coercive, then ←−envγ

θ is proper;
(b) if θ ∈ Γ0(X) and θ(·) + 1

γ D f (·, y) is coercive for a given y ∈ U, then there exists a unique
point z ∈ U such that ←−envγ

θ (y) = θ(z) + 1
γ D f (z, y).

(ii) −→envγ
θ is convex and continuous on U, and

(a) if (20) holds, i.e., (∀x ∈ U) θ(·) + 1
γ D f (x, ·) is coercive, then −→envγ

θ is proper;
(b) if θ ∈ Γ0(X) and θ(·) + 1

γ D f (x, ·) is coercive for a given x ∈ U, then there exists a unique
point z ∈ U such that −→envγ

θ (z) = θ(z) + 1
γ D f (x, z).

Proof. Since 1
γ D f = D 1

γ f , the result follows from [9, Propositions 3.4 and 3.5] applied to 1
γ f . �

In view of Proposition 2.7, we define the following operators on U; see also [9, Definition 3.7].

Definition 2.8 (Bregman proximity operators). Let θ ∈ Γ0(X) be such that U ∩ dom θ 6= ∅. If (18)
holds for γ = 1, then the left proximity operator associated with θ is

←−
Pθ : U → U : y 7→ argmin

x∈X

(
θ(x) + D f (x, y)

)
. (21)

If (20) holds for γ = 1, then the right proximity operator associated with θ is

−→
Pθ : U → U : x 7→ argmin

y∈X

(
θ(y) + D f (x, y)

)
. (22)

Remark 2.9. Suppose that f = 1
2‖ · ‖2 and let θ ∈ Γ0(X). Then U = int dom f = X and hence

U ∩ dom θ = dom θ 6= ∅. Since f (x)/‖x‖ = 1
2‖x‖ → +∞ as ‖x‖ → +∞, Fact 2.6 implies that (18)

and (20) hold for all γ ∈ R++. In this case, D f : (x, y) 7→ 1
2‖x − y‖2 and

←−
Pθ =

−→
Pθ = Proxθ is the

classical Moreau proximity operator of θ [37].

Given a closed convex subset C of X with C ∩U 6= ∅, we have that ιC ∈ Γ0(X), dom ιC = C,
and hence U ∩ dom ιC = U ∩ C 6= ∅ and also inf ιC(U) = 0 > −∞, which together with Fact 2.6
imply that (18) and (20) hold for all γ ∈ R++. This leads to the following definition.
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Definition 2.10 (Bregman projectors). Let C be a closed convex subset of X such that U ∩ C 6= ∅.
Then

←−
PC :=

←−
PιC is the left Bregman projector onto C and

−→
PC :=

−→
PιC is the right Bregman projector

onto C.

Remark 2.11. In view of Remark 2.9, if f = 1
2‖ · ‖2, then

←−
PC =

−→
PC = PC is the orthogonal projector

onto C. Note that
←−
PC,
−→
PC, and PC are not, in general, the same when f 6= 1

2‖ · ‖2. Before we give a
corresponding example, let us show that these projectors are the same when X = R.

Proposition 2.12. Suppose that X = R and let C be a closed convex subset of R such that U ∩ C 6= ∅.
Then

←−
PC =

−→
PC = PC on U.

Proof. Let y ∈ U. Because X = R, (∀z ∈ C) (∃ λz ∈ [0, 1]) PCy = λzz + (1− λz)y. Since D f (·, y) is
convex, nonnegative, and D f (y, y) = 0, it follows that

(∀z ∈ C) D f (PCy, y) ≤ λzD f (z, y) + (1− λz)D f (y, y) = λzD f (z, y) ≤ D f (z, y). (23)

This combined with Definition 2.10 yields
←−
PC(y) = PC(y). The proof that

−→
PC = PC is similar. �

Example 2.13. Here we illustrate how Bregman projectors may differ from the orthogonal projec-
tor. We adapt [5, Example 6.15], which illustrates the setting in which f is an entropy function on
RJ and C is the “probabilistic hyperplane” {x ∈ RJ

∣∣∑j ξ j = 1}. For simplicity, we work in X = R2.
Suppose that f1 is the energy from Example 2.3(i) while f2 is the negative Boltzmann–Shannon en-
tropy from Example 2.3(ii). Since we work in R2, the probabilistic hyperplane is described by
ξ2 = 1− ξ1. We compute

←−
PC(1, 0) by substituting η1 = 1, η2 = 0, ξ2 = 1− ξ1 and minimizing the

resulting Bregman distance over ξ1. We obtain

(i)
←−
PC(1, 2) = (0, 1) for D f1 ,

(ii)
←−
PC(1, 2) = (1/3, 2/3) for D f2 .

We illustrate this in Figure 1. For i ∈ {1, 2}, we sketch the contour plot of D fi(·, (1, 2)) for the level

given by D fi(
←−
PC(1, 2), (1, 2)) together with the set C.

Remark 2.14. Let θ ∈ Γ0(X) be such that U ∩ dom θ 6= ∅ and let γ ∈ R++. Proposition 2.1 implies
that ←−envγθ = γ←−envγ

θ and −→envγθ = γ−→envγ
θ . We thus derive from the definition that if (18) holds,

then

←−envγ
θ (y) = θ

(←−
Pγθ(y)

)
+

1
γ

D f
(←−

Pγθ(y), y
)

(24a)

and, by combining with Proposition 2.2(i),

θ
(←−

Pγθ(y)
)
≤ ←−envγ

θ (y) ≤ θ(y). (24b)

Similarly, if (20) holds, then

−→envγ
θ (x) = θ

(−→
Pγθ(x)

)
+

1
γ

D f
(
x,
−→
Pγθ(x)

)
(25a)

and

θ
(−→

Pγθ(x)
)
≤ −→envγ

θ (x) ≤ θ(x). (25b)

7



Figure 1: Example 2.13 is illustrated

The next result provides information on the proximal mapping when the parameter is varied.
For a variant of the last inequality in (26), see [32, Proposition 2.1(ii)].

Proposition 2.15. Let θ ∈ Γ0(X) be such that U ∩ dom θ 6= ∅ and let γ ∈ R++.

(i) If (18) holds, then (∀y ∈ U)(∀µ ∈ ]γ,+∞[)

θ
(←−

Pµθ(y)
)
≤ θ

(←−
Pγθ(y)

)
and D f

(←−
Pµθ(y), y

)
≥ D f

(←−
Pγθ(y), y

)
. (26)

(ii) If (20) holds, then (∀x ∈ U)(∀µ ∈ ]γ,+∞[)

θ
(−→

Pµθ(x)
)
≤ θ

(←−
Pγθ(x)

)
and D f

(←−
Pµθ(x), x

)
≥ D f

(←−
Pγθ(x), x

)
. (27)

Proof. This follows from Remark 2.14 and [35, Proposition 7.6.1]. �

The left and right proximal mappings can be characterized in various ways:

Proposition 2.16. Let θ ∈ Γ0(X) be such that dom θ ∩U 6= ∅ and let γ ∈ R++.

(i) Suppose that (18) holds. Then for every (x, y) ∈ U ×U, the following conditions are equivalent:
(a) x =

←−
Pγθ(y),

(b) 0 ∈ γ∂θ(x) +∇ f (x)−∇ f (y),
(c) (∀z ∈ X) 〈∇ f (y)−∇ f (x), z− x〉+ γθ(x) ≤ γθ(z).

Moreover,
←−
Pγθ = (∇ f + γ∂θ)−1 ◦ ∇ f (28)

is continuous on U.
(ii) Suppose that (20) holds. Then for every (x, y) ∈ U ×U, the following conditions are equivalent:

8



(a) y =
−→
Pγθ(x),

(b) 0 ∈ γ∂θ(y) +∇2 f (y)(y− x),
(c) (∀z ∈ X)

〈
∇2 f (y)(x− y), z− y

〉
+ γθ(y) ≤ γθ(z).

Moreover,
−→
Pγθ is continuous on U.

Proof. Apply [9, Proposition 3.10] to γθ. �

Remark 2.17. Consider Proposition 2.16 and its notation.

(i) In the case of item (i) and when U∗ = X, we note that, by (12),

←−
Pγθ ◦ ∇ f ∗ =

(
∇ f + γ∂θ

)−1
= ∂

(
f + γθ

)∗ is maximally (cyclically) monotone; (29)

see also [32, Theorem 4.2] for a more general result.
(ii) In the case of item (ii), let us prove the variant of [32, Theorem 4.1] stating that

∇ f ◦ −→Pγθ is monotone. (30)

Indeed, let x1 and x2 be in U, and set yi =
−→
Pγθ(xi) for i ∈ {1, 2}. Then θ(y1) +

1
γ D f (x1, y1) ≤

θ(y2) +
1
γ D f (x1, y2) and θ(y2) +

1
γ D f (x2, y2) ≤ θ(y1) +

1
γ D f (x2, y1). Adding and simplifying

yields

0 ≤ D f (x1, y2) + D f (x2, y1)− D f (x1, y1)− D f (x2, y2). (31)

A direct expansion (or the four-point identity from [10, Remark 2.5]) shows that (31) is the
same as

0 ≤ 〈∇ f (y1)−∇ f (y2), x1 − x2〉 ; (32)

therefore, (30) follows. We do not know whether or not in general the operator in (30) is the
gradient of a convex function.

Corollary 2.18. Let C be a closed convex subset of X such that U ∩ C 6= ∅, let (x, y) ∈ U ×U, and let
p ∈ U ∩ C. Then the following hold:

(i) p =
←−
PCy ⇔ (∀z ∈ C) 〈∇ f (y)−∇ f (p), z− p〉 ≤ 0.

(ii) p =
−→
PCx ⇔ (∀z ∈ C)

〈
∇2 f (p)(x− p), z− p

〉
≤ 0.

Proof. In light of Definition 2.10, we apply Proposition 2.16 (see also [5, Proposition 3.16]). �

The derivatives of the left and right Bregman–Moreau envelopes feature the corresponding
proximal mappings as follows.

Proposition 2.19. Let θ ∈ Γ0(X) be such that U ∩ dom θ 6= ∅ and let γ ∈ R++. Then the following
hold:

(i) If (18) holds, then ←−envγ
θ is differentiable on U and

(∀y ∈ U) ∇←−envγ
θ (y) =

1
γ
∇2 f (y)(y−←−Pγθ(y)). (33)
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(ii) If (20) holds, then −→envγ
θ is differentiable on U and

(∀x ∈ U) ∇−→envγ
θ (x) =

1
γ
∇ f (x)− 1

γ
∇ f (
−→
Pγθ(x)). (34)

Proof. Combine Remark 2.14 with [9, Proposition 3.12]. �

The following result, which is a variant of [31, Theorem XV.4.1.7], highlights the connection to
convex optimization.

Theorem 2.20. Let θ ∈ Γ0(X) be such that U ∩ dom θ 6= ∅, let γ ∈ R++, and let x, y ∈ U.

(i) Suppose that (18) holds. Then the following are equivalent:
(a) y ∈ argmin θ,
(b) y ∈ Fix

←−
Pγθ ,

(c) y ∈ argmin ←−envγ
θ ,

(d) θ(
←−
Pγθ(y)) = θ(y),

(e) ←−envγ
θ (y) = θ(y).

Consequently,

U ∩ argmin θ = Fix
←−
Pγθ = argmin ←−envγ

θ . (35)

(ii) Suppose that (20) holds. Then the following are equivalent:
(a) x ∈ argmin θ,
(b) x ∈ Fix

−→
Pγθ ,

(c) x ∈ argmin −→envγ
θ ,

(d) θ(
−→
Pγθ(x)) = θ(x),

(e) −→envγ
θ (x) = θ(x).

Consequently,

U ∩ argmin θ = Fix
−→
Pγθ = U ∩ argmin −→envγ

θ . (36)

Proof. (i): Using Proposition 2.16(i), we have

y ∈ argmin θ ⇔ 0 ∈ ∂θ(y)⇔ 0 ∈ γ∂θ(y) +∇ f (y)−∇ f (y) (37a)

⇔ y =
←−
Pγθ(y)⇔ y ∈ Fix

←−
Pγθ . (37b)

This proves that (i)(a)⇔ (i)(b).

Assume that (i)(b) holds, i.e., y =
←−
Pγθ(y). Then∇←−envγ

θ (y) = 0 by Proposition 2.19(i), and thus
(i)(c) holds by the convexity of ←−envγ

θ shown in Proposition 2.7(i). Next, (i)(d) is obvious and (i)(e)
holds due to (24a).

Now recall from (24) that

θ
(←−

Pγθ(y)
)
≤ θ

(←−
Pγθ(y)

)
+

1
γ

D f
(←−

Pγθ(y), y
)
= ←−envγ

θ (y) ≤ θ(y). (38)

If (i)(c) holds, then since inf ←−envγ
θ (X) ≤ inf θ(U) (see Proposition 2.2(i)), combining with (38) yields

inf θ(U) ≤ θ(
←−
Pγθ(y)) ≤ ←−envγ

θ (y) = min ←−envγ
θ (X) ≤ inf θ(U), (39)
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which implies that D f (
←−
Pγθ(y), y) = 0, so y =

←−
Pγθ(y) due to Fact 2.5(i), and we get (i)(b).

If (i)(d) holds, then by (38), D f (
←−
Pγθ(y), y) = 0, and (i)(b) thus holds.

Finally, if (i)(e) holds, then ←−envγ
θ (y) = θ(y) + 1

γ D f (y, y), and using Proposition 2.7(i) and (24a),

we must have y =
←−
Pγθ(y) and therefore get (i)(b).

(ii): This is proved similarly to (i) by using Proposition 2.2(ii), Proposition 2.7(ii), Propo-
sition 2.16(ii), Proposition 2.19(ii), and (25a). The difference between (35) and (36) is because
dom ←−envγ

θ = U while dom −→envγ
θ = dom f . �

3 Asymptotic behaviour properties

The results in this section, almost all of which are new, extend or complement results for the classi-
cal energy case and for left variants studied in [27] and [32]. We will require the following lemma.

Lemma 3.1. Let C be a compact subset of a Hausdorff space X , let φ : X → [−∞,+∞] be lower semi-
continuous, let (xa)a∈A be a net in C, and suppose that φ(xa) → inf φ(X ). Then argmin φ 6= ∅ and all
cluster points of (xa)a∈A lie in argmin φ. Consequently, if φ attains its minimum at a unique point u, then
xa → u.

Proof. This follows from the lower semicontinuity of φ and [8, Lemma 1.14]. �

What is the behaviour of Bregman–Moreau envelopes and proximity operators when γ ↓ 0?
The next two results provide answers.

Proposition 3.2. Let θ ∈ Γ0(X) be such that U ∩ dom θ 6= ∅ and let x, y ∈ U. Then the following hold:

(i) If (18) holds for some µ ∈ R++ instead of γ, then
←−
Pγθ(y)→ y as γ ↓ 0.

(ii) If (20) holds for some µ ∈ R++ instead of γ, then
−→
Pγθ(x)→ x as γ ↓ 0.

Proof. (i): Noting that (∀γ ∈ ]0, µ]) θ + 1
γ D f (·, y) ≥ θ + 1

µ D f (·, y), we have that (18) holds for all

γ ∈ ]0, µ]. In particular, g := θ + 1
µ D f (·, y) is coercive. By Proposition 2.2(i) and (24a),

(
∀γ ∈ ]0, µ]

)
θ(y) ≥ ←−envγ

θ (y) = θ
(←−

Pγθ(y)
)
+

1
γ

D f
(←−

Pγθ(y), y
)
≥ g

(←−
Pγθ(y)

)
(40)

and so
←−
Pγθ(y) ∈ lev≤θ(y) g. The coercivity of g and [8, Proposition 11.12] imply that ν :=

supγ∈]0,µ] ‖
←−
Pγθ(y)‖ < +∞. Now by [8, Theorem 9.20], there exist u ∈ X and η ∈ R such that

θ ≥ 〈·, u〉+ η. Using (40) and Cauchy–Schwarz yields

(
∀γ ∈ ]0, µ]

)
θ(y) ≥ θ

(←−
Pγθ(y)

)
+

1
γ

D f
(←−

Pγθ(y), y
)

(41a)

≥
〈←−

Pγθ(y), u
〉
+ η +

1
γ

D f
(←−

Pγθ(y), y
)

(41b)

≥ −ν‖u‖+ η +
1
γ

D f
(←−

Pγθ(y), y
)
, (41c)
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which gives

0 ≤ D f
(←−

Pγθ(y), y
)
≤ γ

(
θ(y) + ν‖u‖ − η

)
→ 0 as γ ↓ 0, (42)

and thus D f (
←−
Pγθ(y), y) → 0 as γ ↓ 0. Observing that D f (·, y) = f (·)− f (y)− 〈∇ f (y), · − y〉 is

lower semicontinuous, that argmin D f (·, y) = {y} by Fact 2.5(i), and that supγ∈]0,1[ ‖
←−
Pγθ(y)‖ <

+∞, it follows from Lemma 3.1 that
←−
Pγθ(y)→ y as γ ↓ 0.

(ii): This is similar to (i). �

Theorem 3.3. Let θ ∈ Γ0(X) be such that U ∩ dom θ 6= ∅ and let x, y ∈ U. Then the following hold:

(i) If (18) holds for some µ ∈ R++ and γ ↓ 0, then ←−envγ
θ (y) ↑ θ(y), θ(

←−
Pγθ(y)) ↑ θ(y), and

1
γ D f (

←−
Pγθ(y), y)→ 0.

(ii) If (20) holds for some µ ∈ R++, and γ ↓ 0, then −→envγ
θ (x) ↑ θ(x), θ(

−→
Pγθ(x)) ↑ θ(x), and

1
γ D f (x,

−→
Pγθ(x))→ 0.

Proof. (i): According to Proposition 2.2(i), there exists β ∈ R such that ←−envγ
θ (y) ↑ β ≤ θ(y) as γ ↓ 0.

Combining with (24a), we have(
∀γ ∈ ]0, µ]

)
θ(y) ≥ β ≥ ←−envγ

θ (y) = θ
(←−

Pγθ(y)
)
+

1
γ

D f
(←−

Pγθ(y), y
)
≥ θ

(←−
Pγθ(y)

)
. (43)

This together with the fact that limγ↓0
←−
Pγθ(y) = y by Proposition 3.2(i), and the lower semiconti-

nuity of θ implies

θ(y) ≥ β ≥ lim
γ↓0

θ
(←−

Pγθ(y)
)
≥ θ(y) ≥ lim

γ↓0
θ
(←−

Pγθ(y)
)
, (44)

and then β = θ(y) = limγ↓0 θ(
←−
Pγθ(y)). Now recall (43) and Proposition 2.15(i).

(ii): This is similar to (i). �

For a variant of the result from Theorem 3.3(i) that ←−envγ
θ (y) ↑ θ(y) as γ ↓ 0, see [32, Theo-

rem 2.5]. Note that D f (
←−
Pγθ(y), y) is monotone with respect to γ, as shown in Proposition 2.15(i),

but the same is not necessarily true for 1
γ D f (

←−
Pγθ(y), y) (see Figure 2).

The two following results describe the behaviour when γ ↑ +∞.

Proposition 3.4. Let θ ∈ Γ0(X) be such that U ∩ dom θ 6= ∅ and let x, y ∈ U. Then the following hold:

(i) If (18) holds for all γ ∈ R++, then θ(
←−
Pγθ(y))→ inf θ(X) as γ ↑ +∞.

(ii) If (20) holds for all γ ∈ R++, then θ(
−→
Pγθ(x))→ inf θ(X) as γ ↑ +∞.

Proof. We shall just prove (i) because the proof of (ii) is similar. Assume that (18) holds for all
γ ∈ R++. Combining (24b) with Proposition 2.2(i) yields

inf θ(X) ≤ θ
(←−

Pγθ(y)
)
≤ ←−envγ

θ (y)→ inf θ(X) as γ ↑ +∞, (45)

which implies that θ(
←−
Pγθ(y))→ inf θ(X) as γ ↑ +∞. �
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Figure 2: D f
(←−

Pγθ(y), y
)

(left) and 1
γ D f

(←−
Pγθ(y), y

)
(right) when X = R, f is the energy, and θ is the

function x 7→ |x− 1
2 |

Theorem 3.5. Let θ ∈ Γ0(X) be coercive such that U ∩ dom θ 6= ∅ and let x, y ∈ U. Then the following
hold:

(i) The net (
←−
Pγθ(y))γ∈R++ is bounded with all cluster points as γ ↑ +∞ lying in argmin θ. Moreover,

(a) if argmin θ is a singleton, then
←−
Pγθ(y)→ argmin θ as γ ↑ +∞;

(b) if argmin θ ⊆ U, then
←−
Pγθ(y)→

←−
Pargmin θy as γ ↑ +∞.

(ii) The net (
−→
Pγθ(x))γ∈R++ is bounded with all cluster points as γ ↑ +∞ lying in argmin θ. Moreover,

(a) if argmin θ is a singleton, then
−→
Pγθ(x)→ argmin θ as γ ↑ +∞;

(b) if argmin θ ⊆ U, then
−→
Pγθ(x)→ −→Pargmin θx as γ ↑ +∞.

Proof. First, by assumption, [8, Proposition 11.15(i)] gives argmin θ 6= ∅. This combined with [8,
Lemma 1.24 and Corollary 8.5] implies that argmin θ = lev≤inf θ(X) θ is a nonempty closed convex
subset of X. Now since θ is coercive and since D f ≥ 0, we immediately get that (18) and (20) hold
for all γ ∈ R++.

(i): It follows from (24b) that

(∀γ ∈ R++)
←−
Pγθ(y) ∈ lev≤θ(y) θ, (46)

and then from the coercivity of θ and [8, Proposition 11.12] that (
←−
Pγθ(y))γ∈R++ is bounded. In

turn, Proposition 3.4(i) and Lemma 3.1 imply that all cluster points of (
←−
Pγθ(y))γ∈R++ as γ ↑ +∞

lie in argmin θ, and we get (i)(a).

Now assume that argmin θ ⊆ U. Let y′ be a cluster point of (
←−
Pγθ(y))γ∈R++ as γ ↑ +∞. Then

y′ ∈ argmin θ ⊆ U and there exists a sequence (γn)n∈N in R++ such that γn ↑ +∞ and
←−
Pγnθ(y)→

y′ as n→ +∞. Let z ∈ argmin θ. We have (∀n ∈N) θ(z) ≤ θ(
←−
Pγnθ(y)), and by Proposition 2.16(i),〈

∇ f (y)−∇ f
(←−

Pγnθ(y)
)
, z−←−Pγnθ(y)

〉
≤ γn

(
θ(z)− θ

(←−
Pγnθ(y)

))
≤ 0. (47)
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Taking the limit as n→ +∞ and using the continuity of ∇ f yield〈
∇ f (y)−∇ f (y′), z− y′

〉
≤ 0. (48)

Since z ∈ argmin θ was chosen arbitrarily and since argmin θ is a closed convex subset of X with
U ∩ argmin θ 6= ∅, in view of Corollary 2.18(i), y′ =

←−
Pargmin θy, and

←−
Pargmin θy is thus the only

cluster point of (
←−
Pγθ(y))γ∈R++ as γ ↑ +∞. Hence, (i)(b) holds.

(ii): The proof is similar to the one of (i). �

Remark 3.6. Suppose that f = 1
2‖ · ‖2 and let θ ∈ Γ0(X) be coercive. By Remark 2.11 and Theo-

rem 3.5,

(∀x ∈ X) Proxγθ(x)→ Pargmin θx and γ ↑ +∞. (49)

Corollary 3.7. Let θ ∈ Γ0(R) be coercive such that argmin θ ⊆ U and let z ∈ U. Then
←−
Pγθ(z) →

Pargmin θz and
−→
Pγθ(z)→ Pargmin θz as γ ↑ +∞.

Proof. As shown in the proof of Theorem 3.5, argmin θ is a nonempty closed convex subset of X
and hence U ∩ argmin θ 6= ∅. It now suffices to apply Theorem 3.5(i)(b) and (ii)(b) and to use
Proposition 2.12. �

4 Examples and function minimization

In this final section, we illustrate our theory by considering the case in which θ is the nonsmooth
function x 7→ |x− 1

2 |.

Example 4.1. Suppose that X = R and let θ : R → R : x 7→ |x− 1
2 |. Then θ ∈ Γ0(X), dom θ = X,

and θ is coercive with argmin θ = { 1
2}. It follows that U ∩ dom θ = U 6= ∅ and, by Fact 2.6, the

assumptions (18) and (20) hold for all γ ∈ R++. We revisit Example 2.3 (with J = 1) to illustrate
Theorem 2.20, Proposition 3.2, and Theorem 3.5. Let γ ∈ R++. We recall from Proposition 2.16
that

←−
Pγθ = (∇ f + γ∂θ)−1 ◦ ∇ f (50)

and that

(∀(x, y) ∈ U ×U) y =
−→
Pγθ(x) ⇔ 0 ∈ γ∂θ(y) +∇2 f (y)(y− x). (51)

Note that

∂θ(x) =


1, if x > 1

2 ;

−1, if x < 1
2 ;

[−1, 1] , if x = 1
2 .

(52)
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Figure 3: Bregman envelope from Example 4.1(i)

(i) Energy: Suppose that f is the energy. Then U = int dom f = R. Since ∇ f = Id, by Re-
mark 2.9 and (50),

←−
Pγθ =

−→
Pγθ = (Id+γ∂θ)−1. We have that

(
Id+γ∂θ

)
(x) =


x− γ, if x < 1

2 ;

x + γ, if x > 1
2 ;[ 1

2 − γ, 1
2 + γ

]
, if x = 1

2 .

(53)

Then (∇ f + γ∂θ)−1(y) amounts to solving (∇ f + γ∂θ)(x) = y piecewise. For example,
solving x− γ = y for x < 1

2 yields x = y + γ for y + γ < 1
2 , so (∇ f + γθ)−1(y) = y + γ for

y < 1
2 − γ. Continuing in this fashion,

←−
Pγθ(y) =

−→
Pγθ(y) = (Id+γ∂θ)−1(y) =


y + γ, if y < 1

2 − γ;

y− γ, if y > 1
2 + γ;

1
2 , otherwise

(54)

and by (24a),

←−envγ
θ (y) =

−→envγ
θ (y) =


−y + 1−γ

2 , if y < 1
2 − γ;

y− 1+γ
2 , if y > 1

2 + γ;

4y2−4y+1
8γ , otherwise.

(55)

It is clear that
←−
Pγθ(

1
2 ) = 1

2 , while (∀y ∈ R r { 1
2})
←−
Pγθ(y) 6= y, and so Fix

←−
Pγθ = { 1

2} =

argmin θ. As expected,
←−
Pγθ(y) → y as γ ↓ 0, and

←−
Pγθ(y) → 1

2 = argmin θ as γ ↑ +∞.
Moreover, ←−envγ

θ (y)→ θ(y) as θ ↓ 0; this is illustrated in Figure 3.
(ii) Boltzmann–Shannon entropy: Suppose that f is the Boltzmann–Shannon entropy. Then

dom f = R+, U = int dom f = R++, ∇ f (x) = ln x, and ∇2 f (x) = 1/x. Again employ-
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Figure 4: Left Bregman envelope from Example 4.1(ii)

ing (50) and (24a), we have

(∇ f + γ∂θ)−1(y) =


exp(y + γ), if y < − ln 2− γ;

exp(y− γ), if y > − ln 2 + γ;

1
2 , otherwise,

(56a)

←−
Pγθ(y) =


y exp(γ), if 0 < y < 1

2 exp(−γ);

y exp(−γ), if y > 1
2 exp(γ);

1
2 , otherwise,

(56b)

←−envγ
θ (y) =


y(1−eγ)

γ + 1
2 , if 0 < y < 1

2 exp(−γ);

y(1−e−γ)
γ − 1

2 , if 1
2 exp(γ) < y;

2y−ln(y)−1−ln(2)
2γ , otherwise.

(56c)

Clearly Fix
←−
Pγθ = { 1

2} = argmin θ. It can also be seen that
←−
Pγθ(y) → y as γ ↓ 0, and

←−
Pγθ(y) → 1

2 = argmin θ as γ ↑ +∞. Moreover, once again ←−envγ
θ (y) → θ(y) as θ ↓ 0. This

example is illustrated in Figure 4.
Now (51) implies that for every (x, y) ∈ R++ ×R++,

y =
−→
Pγθ(x) ⇔ 0 ∈ γ∂θ(y) +

1
y
(y− x) ⇔ x ∈ y

(
1 + γ∂θ(y)

)
. (57)

Solving the induced system of equations yields

−→
Pγθ(x) =


x

1−γ , if 0 < x < 1−γ
2 ;

x
1+γ , if x > 1+γ

2 ;

1
2 , otherwise.

(58)
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Figure 5: Right Bregman envelope from Example 4.1(ii)

Using (25a) and noting that x
1−γ < 1

2 if x < 1−γ
2 and x

1+γ > 1
2 if x > 1+γ

2 , we obtain

−→envγ
θ (x) =


ln(1−γ)

γ x + 1
2 , if 0 < x < 1−γ

2 ;

ln(1+γ)
γ x− 1

2 , if x > 1+γ
2 ;

1
γ

(
x ln(2x)− x + 1

2

)
, otherwise.

(59)

The right envelope is shown in Figure 5.
(iii) Fermi–Dirac entropy: Suppose that f is the Fermi–Dirac entropy. Then dom f = [0, 1], U =

int dom f = ]0, 1[, ∇ f (x) = ln
( x

1−x

)
, and ∇2 f (x) = 1

x(1−x) . Again by (50),

(∇ f + γ∂θ)−1(y) =


exp(y+γ)

exp(y+γ)+1 , if y < −γ;

exp(y−γ)
exp(y−γ)+1 , if y > γ;

1
2 , otherwise,

(60a)

←−
Pγθ(y) =


y exp(γ)

y exp(γ)+1−y if 0 < y < exp(−γ)
1+exp(−γ)

;

y exp(−γ)
y exp(−γ)+1−y , if exp(γ)

1+exp(γ) < y < 1;

1
2 , otherwise.

(60b)

A formula for ←−envγ
θ may be once again obtained by using (24a):

←−envγθ =


− 2 ln(y exp(γ)−y+1)−γ

2γ , if 0 < y < exp(−γ)
1+exp(−γ)

;

− 2 ln(y exp(−γ)−y+1)+γ
2γ , if 1 > y > exp(γ)

1+exp(γ) ;

− 2 ln(2)+ln(1−y)+ln(y)
2γ , if exp(−γ)

1+exp(−γ)
≤ y ≤ exp(γ)

1+exp(γ) .

(61)

We illustrate this envelope in Figure 6.
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Figure 6: Left Bregman envelope from Example 4.1(iii)

Next we have from (51) that for every (x, y) ∈ ]0, 1[× ]0, 1[,

y =
−→
Pγθ(x) ⇔ 0 ∈ γ∂θ(y) +

1
y(1− y)

(y− x) ⇔ x ∈ γy(1− y)∂θ(y) + y. (62)

Solving the induced system of equations gives

−→
Pγθ(x) =


γ−1+
√

(γ−1)2+4γx
2γ , if 0 < x < 2−γ

4 ;

γ+1−
√

(γ+1)2−4γx
2γ , if 2+γ

4 < x < 1;

1
2 , otherwise

(63)

and, in turn, (25a) gives

−→envγθ(x) =



2 ln
(

2γxx(γ+1−
√

γ2+4γx−2γ+1)x−1

(γ−1+
√

γ2+4γx−2γ+1)x(1−x)x−1

)
+1−
√

γ2+4γx−2γ+1

2γ , if 0 < x < 2−γ
4 ;

2 ln
(

2γxx(γ−1+
√

γ2−4γx+2γ+1)x−1

(1−x)x−1(γ+1−
√

γ2−4γx+2γ+1)x

)
+1−
√

γ2−4γx+2γ+1

2γ , if 2+γ
4 < x < 1;

x ln(x)+(1−x) ln(1−x)+ln(2)
γ , otherwise.

(64)

The right envelope is shown in Figure 7.

We conclude this section with some remarks concerning the minimization of the (nonlinear)
functional

Iτ : L1[0, 1]→ R : x 7→
∫ 1

0
τ
(
x(s)

)
ds, (65)

where τ is a convex, lower semicontinuous, and proper, and subject to finitely many constraints

〈ak, x〉 =
∫ 1

0
ak(s)x(s)ds = bk, for k ∈ {1, . . . , n}, (66)
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Figure 7: Right Bregman envelope from Example 4.1(iii)

and where ak ∈ L∞[0, 1] and ρ was used to generate the (consistent) data: 〈ak, ρ〉 = bk. Under
appropriate assumptions (for details, see [12], [13], [14, Section 7], [15, Theorem 6.3.4], [16], [17,
Section 4.7]), recovering the (primal) solution x = xτ amounts to first obtaining a dual solution by
solving the finite system of nonlinear equations

∫ 1

0
(τ∗)′

(
n

∑
j=1

µjaj(s)

)
ak(s)ds = bk, where k ∈ {1, . . . , n}, (67)

followed by computing

xτ =
(
τ∗
)′( n

∑
j=1

µjaj(s)
)

. (68)

As a numerical illustration, we assume that τ = ←−envγ
θ is the left Bregman envelope from Exam-

ple 4.1(iii) and ρ is the step function pictured in Figure 8 (right). We clearly observe the influence of
the parameter γ; smaller values of γ lead to primal solutions that are closer to the step function that
was used to generate the data. Were a different, smoother ρ to be used, a larger value of γ might
be more appropriate. The reason for the varying extent to which the primal solutions for different
choices of γ resemble step functions may be gleaned from Figure 8 (left), where (τ∗)′—upon which
the primal solution (68) depends—is shown.

Similarly attempting to compute with τ as the right envelope from Example 4.1(iii), we are
unable to symbolically invert the gradient. We leave the numerical attempt at inversion as future
work.
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Figure 8: (←−envγ
θ )
∗′ for γ ∈ [0, 2] (left). Primal solutions (68) for selected γ values in [0, 1] (right).

References

[1] F. Alvarez, R. Correa, and M. Marechal, Regular self-proximal distances are Bregman, Journal
of Convex Analysis 24 (2017), 135–148.

[2] H. Attouch, Convergence de fonctions convexes, des sous-différentiels et semi-groupes as-
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