The Geodetic Hull Number is Hard for Chordal Graphs

Stéphane Bessy¹ Mitre C. Dourado² Lucia D. Penso³ Dieter Rautenbach³

¹ Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier Université de Montpellier, Montpellier, France, stephane.bessy@lirmm.fr

² Departamento de Ciência da Computação, Instituto de Matemática Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, mitre@dcc.ufrj.br

³ Institute of Optimization and Operations Research Ulm University, Ulm, Germany, {lucia.penso,dieter.rautenbach}@uni-ulm.de

Abstract

We show the hardness of the geodetic hull number for chordal graphs.

Keywords: Geodetic convexity; shortest path; hull number; chordal graphs

1 Introduction

One of the most well studied convexity notions for graphs is the shortest path convexity or geodetic convexity, where a set X of vertices of a graph G is considered convex if no vertex outside of S lies on a shortest path between two vertices inside of S. Defining the convex hull of a set S of vertices as the smallest convex set containing S, a natural parameter of G is its hull number h(G) [7], which is the minimum order of a set of vertices whose convex hull is the entire vertex set of G. The hull number is NP-hard for bipartite graphs [2], partial cubes [1], and P_9 -free graphs [5], but it can be computed in polynomial time for cographs [4], (q, q - 4)-graphs [2], {paw, P_5 }-free graphs [3, 5], and distance-hereditary graphs [9]. Bounds on the hull number are given in [2, 6, 7].

In [9] Kanté and Nourine present a polynomial time algorithm for the computation of the hull number of chordal graphs. Unfortunately, their correctness proof contains a gap described in detail at the end of the present paper. As our main result we show that computing the hull number of a chordal graph is NP-hard, which most likely rules out the existence of a polynomial time algorithm.

Before we proceed to our results, we collect some notation and terminology. We consider finite, simple, and undirected graphs. A graph G has vertex set V(G) and edge set E(G). A graph G is *chordal* if it does not contain an induced cycle of order at least 4. A *clique* in G is the vertex set of a complete subgraph of G. A vertex of a graph G is *simplicial* in G if its neighborhood is a clique. The *distance* dist_G(u, v) between two vertices u and v in G is the minimum number of edges of a path in G between u and v. The *diameter* diam(G) of G is the maximum distance between any two vertices of G. The *eccentricity* $e_G(u)$ of a vertex u of G is the maximum distance between u and any other vertex of G. For a positive integer k, let [k] be the set of the positive integers at most k.

Let G be a graph, and let S be a set of vertices of G. The *interval* $I_G(S)$ of S in G is the set of all vertices of G that lie on shortest paths in G between vertices from S. Note that $S \subseteq I_G(S)$, and that S is *convex* in G if $I_G(S) = S$. The set S is *concave* in G if $V(G) \setminus S$ is convex. Note that S is concave if and only if $S \cap I_G(\{v, w\}) = \emptyset$ for every two vertices v and w in $V(G) \setminus S$. The hull $H_G(S)$ of S in G, defined as the smallest convex set in G that contains S, equals the intersection of all convex sets that contain S. The set S is a hull set if $H_G(S) = V(G)$, and the hull number h(G) of G [5, 7] is the smallest order of a hull set of G.

2 Result

We immediately proceed to our main result.

Theorem 2.1. For a given chordal graph G, and a given integer k, it is NP-complete to decide whether the hull number h(G) of G is at most k.

Proof. Since the hull of a set of vertices of G can be computed in polynomial time, the considered decision problem belongs to NP. In order to prove NP-completeness, we describe a polynomial reduction from a restricted version of SATISFIABILITY. Therefore, let C be an instance of SATISFIABILITY consisting of m clauses C_1, \ldots, C_m over n boolean variables x_1, \ldots, x_n such that every clause in C contains at most three literals, and, for every variable x_i , there are exactly two clauses in C, say $C_{j_i^{(1)}}$, and $C_{j_i^{(2)}}$, that contain the literal x_i , and exactly one clause in C, say $C_{j_i^{(3)}}$, that contains the literal \bar{x}_i , and these three clauses are distinct. Using a polynomial reduction from [LO1] [8], it has been shown in [5] that SATISFIABILITY restricted to such instances is still NP-complete.

Figure 1: The vertices and edge added for the variable x_i , where $j_i^{(1)} = j$, $j_i^{(2)} = k$, and $j_i^{(3)} = \ell$.

Let the graph G be constructed as follows starting with the empty graph:

- For every $j \in [m]$, add a vertex c_j .
- For every $i \in [n]$, add three y_i, \bar{y}_i , and z_i .
- Add edges such that $B \cup Z$ is a clique, where

$$B = \{c_j : j \in [m]\} \cup \{y_i : i \in [n]\} \cup \{\bar{y}_i : i \in [n]\} \text{ and}$$

$$Z = \{z_i : i \in [n]\}, \text{ and}$$

• For every $i \in [n]$, add 9 vertices and 25 edges to obtain the subgraph indicated in Figure 2.

Note that $\operatorname{dist}_G(x_i, \bar{x}'_i) = \operatorname{dist}_G(\bar{x}_i, {x'_i}^1) = 3$ for every *i* in [*n*]. Since every vertex of *G* has a neighbor in the clique $B \cup Z$, the diameter of *G* is 3. Furthermore, since no vertex is universal, all vertices in $B \cup Z$ have eccentricity 2.

Let k = 4n.

Note that the order of G is 12n + m.

It remains to show that G is chordal, and that C is satisfiable if and only if $h(G) \leq k$.

In order to show that G is chordal, we indicate a *perfect elimination ordering*, which is a linear ordering v_1, \ldots, v_{12n+m} of its vertices such that v_i is simplicial in $G - \{v_1, \ldots, v_{i-1}\}$ for every i in [12n + m]. Such an ordering is obtained by

- starting with the vertices $x_i'^1, x_i'^2$, and \bar{x}_i'' for all $i \in [n]$ (in any order),
- continuing with the vertices x_i^1, x_i^2 , and \bar{x}_i' for all $i \in [n]$,
- continuing with the vertices x'_i for all $i \in [n]$,
- continuing with the vertices x_i and \bar{x}_i for all $i \in [n]$, and
- ending with the vertices in the clique $B \cup Z$.

Now, let \mathcal{S} be a satisfying truth assignment for \mathcal{C} .

Let

$$S = \bigcup_{i \in [n]} \left\{ x_i'^1, x_i'^2, \bar{x}_i'' \right\} \ \cup \ \bigcup_{i \in [n]: \ x_i \ true \ in \ S} \left\{ x_i \right\} \ \cup \ \bigcup_{i \in [n]: \ x_i \ false \ in \ S} \left\{ \bar{x}_i \right\}$$

Clearly, |S| = k = 4n. For every *i* in [n], we have $\{z_i, \bar{y}_i\} \subseteq I_G(\{x_i, \bar{x}''_i\}), \{z_i, y_i\} \subseteq I_G(\{\bar{x}_i, x'^1_i\}), y_i \in I_G(\{\bar{y}_i, x'^1_i\}), and <math>\bar{y}_i \in I_G(\{y_i, \bar{x}''_i\}), which implies \{z_i, y_i, \bar{y}_i\} \subseteq H_G(S)$. Since S is a satisfying truth assignment, for every *j* in [m], there is a neighbor, say *v*, of c_j in

$$\bigcup_{i \in [n]: x_i \text{ true } in \mathcal{S}} \{x_i\} \cup \bigcup_{i \in [n]: x_i \text{ false } in \mathcal{S}} \{\bar{x}_i\}.$$

If $v \in \bigcup_{i \in [n]: x_i \text{ true in } \mathcal{S}} \{x_i\}$, then $c_j \in I_G(\{v, \bar{x}''_i\})$, otherwise $c_j \in I_G(\{v, x'^1_i\})$. Hence, $B \cup Z \subseteq H_G(S)$.

Now, for some *i* in [*n*], let c_j , c_k , and c_ℓ be the neighbors in $B \setminus \{y_i, \bar{y}_i\}$ of x_i^1 , x_i^2 , and \bar{x}'_i , respectively, similarly as in Figure 2. We have $x_i^1 \in I_G(\{x'_i^1, c_j\}), x_i^2 \in I_G(\{x'_i^2, c_k\}), x'_i \in I_G(\{x_i^1, x_i^2\}), \bar{x}'_i \in I_G(\{\bar{x}''_i, c_\ell\}), x_i \in I_G(\{x'_i, z_i\})$, and $\bar{x}_i \in I_G(\{\bar{x}'_i, z_i\})$.

Altogether, we obtain that S is a hull set of G of order 4n.

Finally, let S be a hull set of G of order at most 4n.

Claim 1. For every $i \in [n]$, the set $\{x_i, z_i, \bar{x}_i\}$ is concave.

Proof of Claim 1: For a contradiction, suppose that some vertex in $S' = \{x_i, z_i, \bar{x}_i\}$ lies on a shortest path P in G between two vertices v and w in $V(G) \setminus S'$. Since the diameter of G is 3, the path Pcontains at most 2 vertices of S'. Since the neighbors outside of S' of each vertex in S' form a clique, the path P contains exactly 2 adjacent vertices of S', that is, either $P = vx_i z_i w$ or $P = v\bar{x}_i z_i w$. In both cases, the vertex w has eccentricity at least 3. However, every neighbor w of z_i outside S' belongs to $B \cup Z$, and thus, has eccentricity 2, a contradiction. \Box **Claim 2.** For every $j \in [m]$, the set

$$V_{j} = \{c_{j}\} \cup \bigcup_{i \in [n]: j = j_{i}^{(1)}} \{x_{i}, x_{i}', x_{i}^{1}\} \cup \bigcup_{i \in [n]: j = j_{i}^{(2)}} \{x_{i}, x_{i}', x_{i}^{2}\} \cup \bigcup_{i \in [n]: j = j_{i}^{(3)}} \{\bar{x}_{i}, \bar{x}_{i}'\}$$

is concave.

Proof of Claim 2: First, suppose that C_j contains the positive literal x_i . By symmetry, we may assume that $j = j_i^{(1)}$ and $j_i^{(2)} = k$ for some k in $[m] \setminus \{j\}$.

First, suppose that some shortest path P between two vertices v and w in $\overline{V}_j = V(G) \setminus V_j$ contains x_i . Choosing P of minimum length, it follows that v and w are the only vertices of P in \overline{V}_j . Since the diameter of G is 3, the length of P is at most 3, and we may assume that v is a neighbor of x_i , which implies $v \in \{z_i, c_k, y_i\}$. Since $\{z_i, c_k, y_i\}$ is a clique, the vertex w is not a neighbor of x_i , and P contains exactly one vertex u of V_j different of x_i , which implies $P = vx_iuw$ and $u \in \{x'_i, c_j\}$. Suppose that $u = x'_i$. This implies $w \in \{x_i^2, c_k, y_i\}$. Since $c_k, y_i \in N_G(x_i)$, we obtain $w = x_i^2$ and $v = z_i$. However, dist_G(z_i, x_i^2) = 2, which is a contradiction. Hence, $u = c_j$ and $w \in B \cup Z$. However, every vertex in $B \cup Z$ has eccentricity 2, which is a contradiction. Hence, no shortest path between two vertices in \overline{V}_j contains x_i .

Next, suppose that some shortest path P between two vertices v and w in \bar{V}_j contains x'_i . Similarly as above, we may assume that v and w are the only vertices of P in \bar{V}_j , the length of P is at most 3, and v is a neighbor of x'_i , which implies $v \in \{x^2_i, y_i, c_k\}$. Since $\{x^2_i, y_i, c_k\}$ is a clique, the path Pcontains exactly one vertex u of V_j different of x'_i , which implies $P = vx'_i uw$ and $u \in \{x^1_i, c_j\}$, where we use that P does not contain x_i . Suppose that $u = x^1_i$. This implies $w \in \{x'^1_i, y_i\}$. Since $y_i \in N_G(x'_i)$, we obtain $w = x'^1_i$ and $v = x^2_i$. However, $\operatorname{dist}_G(x^2_i, x'^1_i) = 2$, which is a contradiction. Hence, $u = c_j$ and $w \in B \cup Z$. However, every vertex in $B \cup Z$ has eccentricity 2, which is a contradiction. Hence, no shortest path between two vertices in \bar{V}_j contains x'_i .

Next, suppose that some shortest path P between two vertices v and w in \bar{V}_j contains x_i^1 . Similarly as above, we may assume that v and w are the only vertices of P in \bar{V}_j , the length of P is at most 3, and v is a neighbor of x_i^1 , which implies $v \in \{x_i'^1, y_i\}$. Since $\{x_i'^1, y_i\}$ is a clique, the path P contains exactly one vertex u of V_j different of x_i^1 , which implies $P = vx_i^1c_jw$ and $w \in B \cup Z$, where we use that P does not contain x_i' . However, every vertex in $B \cup Z$ has eccentricity 2, which is a contradiction. Hence, no shortest path between two vertices in \bar{V}_j contains x_i^1 .

Next, suppose that C_j contains the negative literal \bar{x}_i , that is, $j = j_i^{(3)}$.

First, suppose that some shortest path P between two vertices v and w in \bar{V}_j contains \bar{x}_i . Similarly as above, we may assume that v and w are the only vertices of P in \bar{V}_j , the length of P is at most 3, and v is a neighbor of \bar{x}_i , which implies $v \in \{z_i, \bar{y}_i\}$. Since $\{z_i, \bar{y}_i\}$ is a clique, the vertex w is not a neighbor of \bar{x}_i , and P contains exactly one vertex u of V_j different of \bar{x}_i , which implies $P = v\bar{x}_i uw$ and $u \in \{\bar{x}'_i, c_j\}$. Suppose that $u = \bar{x}'_i$. This implies $w \in \{\bar{x}''_i, \bar{y}_i\}$. Since $\bar{y}_i \in N_G(\bar{x}_i)$, we obtain $v = z_i$ and $w = \bar{x}''_i$. However, dist_G(z_i, \bar{x}''_i) = 2, which is a contradiction. Hence, $u = c_j$ and $w \in B \cup Z$. However, every vertex in $B \cup Z$ has eccentricity 2, which is a contradiction. Hence, no shortest path between two vertices in \bar{V}_j contains \bar{x}_i .

Next, suppose that some shortest path P between two vertices v and w in \bar{V}_j contains \bar{x}'_i . Similarly as above, we may assume that v and w are the only vertices of P in \bar{V}_j , the length of P is at most 3, and v is a neighbor of \bar{x}'_i , which implies $v \in {\bar{x}''_i, \bar{y}_i}$. Since ${\bar{x}''_i, \bar{y}_i}$ is a clique, the path P contains exactly one vertex u of V_j different of \bar{x}'_i , which implies $P = v\bar{x}'_i c_j w$ and $w \in B \cup Z$, where we use that P does not contain \bar{x}_i . However, every vertex in $B \cup Z$ has eccentricity 2, which is a contradiction. Hence, no shortest path between two vertices in \bar{V}_i contains \bar{x}'_i .

Finally, since the neighbors of c_j outside of V_j form a clique, no shortest path between two vertices in \overline{V}_j contains c_j , which completes the proof of the claim. \Box

Note that all 3n simplicial vertices in $\bigcup_{i \in [n]} \{x_i'^1, x_i'^2, \bar{x}_i''\}$ belong to S.

Since S contains at most n non-simplicial vertices, Claim 1 implies that, for every i in [n], the set S contains exactly one of the three vertices in $\{x_i, z_i, \bar{x}_i\}$, and that these are the only non-simplicial vertices in S. Now, Claim 2 implies that, for every j in [m], there is some $i \in [n]$ such that

- either C_i contains the literal x_i and the vertex x_i belongs to S
- or C_j contains the literal \bar{x}_i and the vertex \bar{x}_i belongs to S.

Therefore, setting the variable x_i to true if and only if the vertex x_i belongs to S yields a satisfying truth assignment S for C, which completes the proof.

As pointed out in the introduction, the correctness proof in [9] contains a gap. In lines 14 and 15 on page 322 of [9] it says

"At iteration i + 1, the vertex x_{i+1} is a simplicial vertex in G_{i+1} . We first claim that there exists no functional dependency of the form $zt \to x_{i+1}$ in Σ ."

Consider applying the algorithm from [9] to the graph in Figure 2. In iteration 1, it would decide to add x_1 to K. In iteration 2, it would decide not to add x_2 to K, because of $t \to x_2$. Furthermore, because of $t \to x_2$ and $z, x_2 \to x_3$, it would replace $z, x_2 \to x_3$ within Σ with $z, t \to x_3$. Therefore, in iteration 3, Σ would actually contain $z, t \to x_3$, contrary to the claim cited above.

Figure 2: A small chordal graph.

References

- M. Albenque, K. Knauer, Convexity in partial cubes: The hull number, Lecture Notes in Computer Science 8392 (2014) 421-432.
- [2] J. Araujo, V. Campos, F. Giroire, N. Nisse, L. Sampaio, R. Soares, On the hull number of some graph classes, Theoretical Computer Science 475 (2013) 1-12.
- [3] J. Araujo, G. Morel, L. Sampaio, R. Soares, V. Weber, Hull number: P₅-free graphs and reduction rules, Discrete Applied Mathematics 210 (2016) 171-175.
- [4] M.C. Dourado, J.G. Gimbel, J. Kratochvíl, F. Protti, J.L. Szwarcfiter, On the computation of the hull number of a graph, Discrete Mathematics 309 (2009) 5668-5674.
- [5] M.C. Dourado, L.D. Penso, D. Rautenbach, On the geodetic hull number of P_k -free graphs, Theoretical Computer Science 640 (2016) 52-60.

- [6] M.C. Dourado, F. Protti, D. Rautenbach, J.L. Szwarcfiter, On the hull number of triangle-free graphs, SIAM Journal of Discrete Mathematics 23 (2010) 2163-2172.
- [7] M.G. Everett, S.B. Seidman, The hull number of a graph, Discrete Mathematics 57 (1985) 217-223.
- [8] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman & Co., New York (1979).
- [9] M.M. Kanté, L. Nourine, Polynomial time algorithms for computing a minimum hull set in distance-hereditary and chordal graphs, SIAM Journal on Discrete Mathematics 30 (2016) 311-326.