The Geodetic Hull Number is Hard for Chordal Graphs

Stéphane Bessy ${ }^{1} \quad$ Mitre C. Dourado ${ }^{2} \quad$ Lucia D. Penso ${ }^{3} \quad$ Dieter Rautenbach 3

${ }^{1}$ Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier Université de Montpellier, Montpellier, France, stephane.bessy@lirmm.fr
${ }^{2}$ Departamento de Ciência da Computação, Instituto de Matemática
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, mitre@dcc.ufrj.br
${ }^{3}$ Institute of Optimization and Operations Research
Ulm University, Ulm, Germany, \{lucia.penso,dieter.rautenbach\}@uni-ulm.de

Abstract

We show the hardness of the geodetic hull number for chordal graphs.

Keywords: Geodetic convexity; shortest path; hull number; chordal graphs

1 Introduction

One of the most well studied convexity notions for graphs is the shortest path convexity or geodetic convexity, where a set X of vertices of a graph G is considered convex if no vertex outside of S lies on a shortest path between two vertices inside of S. Defining the convex hull of a set S of vertices as the smallest convex set containing S, a natural parameter of G is its hull number $h(G)$ [7], which is the minimum order of a set of vertices whose convex hull is the entire vertex set of G. The hull number is NP-hard for bipartite graphs [2], partial cubes [1], and P_{9}-free graphs [5], but it can be computed in polynomial time for cographs [4], $(q, q-4)$-graphs [2], \{paw, $\left.P_{5}\right\}$-free graphs [3, 5], and distance-hereditary graphs [9]. Bounds on the hull number are given in [2, 6, 7].

In [9] Kanté and Nourine present a polynomial time algorithm for the computation of the hull number of chordal graphs. Unfortunately, their correctness proof contains a gap described in detail at the end of the present paper. As our main result we show that computing the hull number of a chordal graph is NP-hard, which most likely rules out the existence of a polynomial time algorithm.

Before we proceed to our results, we collect some notation and terminology. We consider finite, simple, and undirected graphs. A graph G has vertex set $V(G)$ and edge set $E(G)$. A graph G is chordal if it does not contain an induced cycle of order at least 4. A clique in G is the vertex set of a complete subgraph of G. A vertex of a graph G is simplicial in G if its neighborhood is a clique. The distance $\operatorname{dist}_{G}(u, v)$ between two vertices u and v in G is the minimum number of edges of a path in G between u and v. The diameter $\operatorname{diam}(G)$ of G is the maximum distance between any two vertices of G. The eccentricity $e_{G}(u)$ of a vertex u of G is the maximum distance between u and any other vertex of G. For a positive integer k, let $[k]$ be the set of the positive integers at most k.

Let G be a graph, and let S be a set of vertices of G. The interval $I_{G}(S)$ of S in G is the set of all vertices of G that lie on shortest paths in G between vertices from S. Note that $S \subseteq I_{G}(S)$, and that S is convex in G if $I_{G}(S)=S$. The set S is concave in G if $V(G) \backslash S$ is convex. Note that S is concave
if and only if $S \cap I_{G}(\{v, w\})=\emptyset$ for every two vertices v and w in $V(G) \backslash S$. The hull $H_{G}(S)$ of S in G, defined as the smallest convex set in G that contains S, equals the intersection of all convex sets that contain S. The set S is a hull set if $H_{G}(S)=V(G)$, and the hull number $h(G)$ of G [5, 7] is the smallest order of a hull set of G.

2 Result

We immediately proceed to our main result.
Theorem 2.1. For a given chordal graph G, and a given integer k, it is NP-complete to decide whether the hull number $h(G)$ of G is at most k.

Proof. Since the hull of a set of vertices of G can be computed in polynomial time, the considered decision problem belongs to NP. In order to prove NP-completeness, we describe a polynomial reduction from a restricted version of Satisfiability. Therefore, let \mathcal{C} be an instance of Satisfiability consisting of m clauses C_{1}, \ldots, C_{m} over n boolean variables x_{1}, \ldots, x_{n} such that every clause in \mathcal{C} contains at most three literals, and, for every variable x_{i}, there are exactly two clauses in \mathcal{C}, say $C_{j_{i}(1)}$ and $C_{j_{i}^{(2)}}$, that contain the literal x_{i}, and exactly one clause in \mathcal{C}, say $C_{j_{i}^{(3)}}$, that contains the literal \bar{x}_{i}, and these three clauses are distinct. Using a polynomial reduction from [LO1] [8], it has been shown in [5] that Satisfiability restricted to such instances is still NP-complete.

Figure 1: The vertices and edge added for the variable x_{i}, where $j_{i}^{(1)}=j, j_{i}^{(2)}=k$, and $j_{i}^{(3)}=\ell$.
Let the graph G be constructed as follows starting with the empty graph:

- For every $j \in[m]$, add a vertex c_{j}.
- For every $i \in[n]$, add three y_{i}, \bar{y}_{i}, and z_{i}.
- Add edges such that $B \cup Z$ is a clique, where

$$
\begin{aligned}
B & =\left\{c_{j}: j \in[m]\right\} \cup\left\{y_{i}: i \in[n]\right\} \cup\left\{\bar{y}_{i}: i \in[n]\right\} \text { and } \\
Z & =\left\{z_{i}: i \in[n]\right\}, \text { and }
\end{aligned}
$$

- For every $i \in[n]$, add 9 vertices and 25 edges to obtain the subgraph indicated in Figure 2,

Note that $\operatorname{dist}_{G}\left(x_{i}, \bar{x}_{i}^{\prime}\right)=\operatorname{dist}_{G}\left(\bar{x}_{i}, x_{i}^{\prime 1}\right)=3$ for every i in $[n]$. Since every vertex of G has a neighbor in the clique $B \cup Z$, the diameter of G is 3 . Furthermore, since no vertex is universal, all vertices in $B \cup Z$ have eccentricity 2 .

Let $k=4 n$.
Note that the order of G is $12 n+m$.
It remains to show that G is chordal, and that \mathcal{C} is satisfiable if and only if $h(G) \leq k$.
In order to show that G is chordal, we indicate a perfect elimination ordering, which is a linear ordering $v_{1}, \ldots, v_{12 n+m}$ of its vertices such that v_{i} is simplicial in $G-\left\{v_{1}, \ldots v_{i-1}\right\}$ for every i in $[12 n+m]$. Such an ordering is obtained by

- starting with the vertices $x_{i}^{\prime 1}, x_{i}^{\prime 2}$, and $\bar{x}_{i}^{\prime \prime}$ for all $i \in[n]$ (in any order),
- continuing with the vertices x_{i}^{1}, x_{i}^{2}, and \bar{x}_{i}^{\prime} for all $i \in[n]$,
- continuing with the vertices x_{i}^{\prime} for all $i \in[n]$,
- continuing with the vertices x_{i} and \bar{x}_{i} for all $i \in[n]$, and
- ending with the vertices in the clique $B \cup Z$.

Now, let \mathcal{S} be a satisfying truth assignment for \mathcal{C}.
Let

$$
S=\bigcup_{i \in[n]}\left\{x_{i}^{\prime 1}, x_{i}^{\prime 2}, \bar{x}_{i}^{\prime \prime}\right\} \cup \bigcup_{i \in[n]: x_{i} \text { true in } \mathcal{S}}\left\{x_{i}\right\} \cup \bigcup_{i \in[n]: x_{i} \text { false in } \mathcal{S}}\left\{\bar{x}_{i}\right\}
$$

Clearly, $|S|=k=4 n$. For every i in $[n]$, we have $\left\{z_{i}, \bar{y}_{i}\right\} \subseteq I_{G}\left(\left\{x_{i}, \bar{x}_{i}^{\prime \prime}\right\}\right),\left\{z_{i}, y_{i}\right\} \subseteq I_{G}\left(\left\{\bar{x}_{i}, x_{i}^{\prime 1}\right\}\right)$, $y_{i} \in I_{G}\left(\left\{\bar{y}_{i}, x_{i}^{\prime 1}\right\}\right)$, and $\bar{y}_{i} \in I_{G}\left(\left\{y_{i}, \bar{x}_{i}^{\prime \prime}\right\}\right)$, which implies $\left\{z_{i}, y_{i}, \bar{y}_{i}\right\} \subseteq H_{G}(S)$. Since \mathcal{S} is a satisfying truth assignment, for every j in $[m]$, there is a neighbor, say v, of c_{j} in

$$
\bigcup_{i \in[n]: x_{i} \operatorname{true} \text { in } \mathcal{S}}\left\{x_{i}\right\} \cup \bigcup_{i \in[n]: x_{i} \text { false in } \mathcal{S}}\left\{\bar{x}_{i}\right\}
$$

If $v \in \bigcup_{i \in[n]: x_{i} \text { true in } \mathcal{S}}\left\{x_{i}\right\}$, then $c_{j} \in I_{G}\left(\left\{v, \bar{x}_{i}^{\prime \prime}\right\}\right)$, otherwise $c_{j} \in I_{G}\left(\left\{v, x_{i}^{\prime 1}\right\}\right)$. Hence, $B \cup Z \subseteq H_{G}(S)$.
Now, for some i in $[n]$, let c_{j}, c_{k}, and c_{ℓ} be the neighbors in $B \backslash\left\{y_{i}, \bar{y}_{i}\right\}$ of x_{i}^{1}, x_{i}^{2}, and \bar{x}_{i}^{\prime}, respectively, similarly as in Figure2, We have $x_{i}^{1} \in I_{G}\left(\left\{x_{i}^{\prime 1}, c_{j}\right\}\right), x_{i}^{2} \in I_{G}\left(\left\{x_{i}^{\prime 2}, c_{k}\right\}\right), x_{i}^{\prime} \in I_{G}\left(\left\{x_{i}^{1}, x_{i}^{2}\right\}\right)$, $\bar{x}_{i}^{\prime} \in I_{G}\left(\left\{\bar{x}_{i}^{\prime \prime}, c_{\ell}\right\}\right), x_{i} \in I_{G}\left(\left\{x_{i}^{\prime}, z_{i}\right\}\right)$, and $\bar{x}_{i} \in I_{G}\left(\left\{\bar{x}_{i}^{\prime}, z_{i}\right\}\right)$.

Altogether, we obtain that S is a hull set of G of order $4 n$.
Finally, let S be a hull set of G of order at most $4 n$.
Claim 1. For every $i \in[n]$, the set $\left\{x_{i}, z_{i}, \bar{x}_{i}\right\}$ is concave.
Proof of Claim [1: For a contradiction, suppose that some vertex in $S^{\prime}=\left\{x_{i}, z_{i}, \bar{x}_{i}\right\}$ lies on a shortest path P in G between two vertices v and w in $V(G) \backslash S^{\prime}$. Since the diameter of G is 3 , the path P contains at most 2 vertices of S^{\prime}. Since the neighbors outside of S^{\prime} of each vertex in S^{\prime} form a clique, the path P contains exactly 2 adjacent vertices of S^{\prime}, that is, either $P=v x_{i} z_{i} w$ or $P=v \bar{x}_{i} z_{i} w$. In both cases, the vertex w has eccentricity at least 3 . However, every neighbor w of z_{i} outside S^{\prime} belongs to $B \cup Z$, and thus, has eccentricity 2 , a contradiction.

Claim 2. For every $j \in[m]$, the set

$$
V_{j}=\left\{c_{j}\right\} \cup \bigcup_{i \in[n]: j=j_{i}^{(1)}}\left\{x_{i}, x_{i}^{\prime}, x_{i}^{1}\right\} \cup \bigcup_{i \in[n]: j=j_{i}^{(2)}}\left\{x_{i}, x_{i}^{\prime}, x_{i}^{2}\right\} \cup \bigcup_{i \in[n]: j=j_{i}^{(3)}}\left\{\bar{x}_{i}, \bar{x}_{i}^{\prime}\right\}
$$

is concave.
Proof of Claim [2: First, suppose that C_{j} contains the positive literal x_{i}. By symmetry, we may assume that $j=j_{i}^{(1)}$ and $j_{i}^{(2)}=k$ for some k in $[m] \backslash\{j\}$.

First, suppose that some shortest path P between two vertices v and w in $\bar{V}_{j}=V(G) \backslash V_{j}$ contains x_{i}. Choosing P of minimum length, it follows that v and w are the only vertices of P in \bar{V}_{j}. Since the diameter of G is 3 , the length of P is at most 3 , and we may assume that v is a neighbor of x_{i}, which implies $v \in\left\{z_{i}, c_{k}, y_{i}\right\}$. Since $\left\{z_{i}, c_{k}, y_{i}\right\}$ is a clique, the vertex w is not a neighbor of x_{i}, and P contains exactly one vertex u of V_{j} different of x_{i}, which implies $P=v x_{i} u w$ and $u \in\left\{x_{i}^{\prime}, c_{j}\right\}$. Suppose that $u=x_{i}^{\prime}$. This implies $w \in\left\{x_{i}^{2}, c_{k}, y_{i}\right\}$. Since $c_{k}, y_{i} \in N_{G}\left(x_{i}\right)$, we obtain $w=x_{i}^{2}$ and $v=z_{i}$. However, $\operatorname{dist}_{G}\left(z_{i}, x_{i}^{2}\right)=2$, which is a contradiction. Hence, $u=c_{j}$ and $w \in B \cup Z$. However, every vertex in $B \cup Z$ has eccentricity 2, which is a contradiction. Hence, no shortest path between two vertices in \bar{V}_{j} contains x_{i}.

Next, suppose that some shortest path P between two vertices v and w in \bar{V}_{j} contains x_{i}^{\prime}. Similarly as above, we may assume that v and w are the only vertices of P in \bar{V}_{j}, the length of P is at most 3, and v is a neighbor of x_{i}^{\prime}, which implies $v \in\left\{x_{i}^{2}, y_{i}, c_{k}\right\}$. Since $\left\{x_{i}^{2}, y_{i}, c_{k}\right\}$ is a clique, the path P contains exactly one vertex u of V_{j} different of x_{i}^{\prime}, which implies $P=v x_{i}^{\prime} u w$ and $u \in\left\{x_{i}^{1}, c_{j}\right\}$, where we use that P does not contain x_{i}. Suppose that $u=x_{i}^{1}$. This implies $w \in\left\{x_{i}^{\prime 1}, y_{i}\right\}$. Since $y_{i} \in N_{G}\left(x_{i}^{\prime}\right)$, we obtain $w=x_{i}^{\prime 1}$ and $v=x_{i}^{2}$. However, $\operatorname{dist}_{G}\left(x_{i}^{2}, x_{i}^{\prime 1}\right)=2$, which is a contradiction. Hence, $u=c_{j}$ and $w \in B \cup Z$. However, every vertex in $B \cup Z$ has eccentricity 2 , which is a contradiction. Hence, no shortest path between two vertices in \bar{V}_{j} contains x_{i}^{\prime}.

Next, suppose that some shortest path P between two vertices v and w in \bar{V}_{j} contains x_{i}^{1}. Similarly as above, we may assume that v and w are the only vertices of P in \bar{V}_{j}, the length of P is at most 3, and v is a neighbor of x_{i}^{1}, which implies $v \in\left\{x_{i}^{\prime 1}, y_{i}\right\}$. Since $\left\{x_{i}^{\prime 1}, y_{i}\right\}$ is a clique, the path P contains exactly one vertex u of V_{j} different of x_{i}^{1}, which implies $P=v x_{i}^{1} c_{j} w$ and $w \in B \cup Z$, where we use that P does not contain x_{i}^{\prime}. However, every vertex in $B \cup Z$ has eccentricity 2, which is a contradiction. Hence, no shortest path between two vertices in \bar{V}_{j} contains x_{i}^{1}.
Next, suppose that C_{j} contains the negative literal \bar{x}_{i}, that is, $j=j_{i}^{(3)}$.
First, suppose that some shortest path P between two vertices v and w in \bar{V}_{j} contains \bar{x}_{i}. Similarly as above, we may assume that v and w are the only vertices of P in \bar{V}_{j}, the length of P is at most 3, and v is a neighbor of \bar{x}_{i}, which implies $v \in\left\{z_{i}, \bar{y}_{i}\right\}$. Since $\left\{z_{i}, \bar{y}_{i}\right\}$ is a clique, the vertex w is not a neighbor of \bar{x}_{i}, and P contains exactly one vertex u of V_{j} different of \bar{x}_{i}, which implies $P=v \bar{x}_{i} u w$ and $u \in\left\{\bar{x}_{i}^{\prime}, c_{j}\right\}$. Suppose that $u=\bar{x}_{i}^{\prime}$. This implies $w \in\left\{\bar{x}_{i}^{\prime \prime}, \bar{y}_{i}\right\}$. Since $\bar{y}_{i} \in N_{G}\left(\bar{x}_{i}\right)$, we obtain $v=z_{i}$ and $w=\bar{x}_{i}^{\prime \prime}$. However, $\operatorname{dist}_{G}\left(z_{i}, \bar{x}_{i}^{\prime \prime}\right)=2$, which is a contradiction. Hence, $u=c_{j}$ and $w \in B \cup Z$. However, every vertex in $B \cup Z$ has eccentricity 2, which is a contradiction. Hence, no shortest path between two vertices in \bar{V}_{j} contains \bar{x}_{i}.

Next, suppose that some shortest path P between two vertices v and w in \bar{V}_{j} contains \bar{x}_{i}^{\prime}. Similarly as above, we may assume that v and w are the only vertices of P in \bar{V}_{j}, the length of P is at most 3, and v is a neighbor of \bar{x}_{i}^{\prime}, which implies $v \in\left\{\bar{x}_{i}^{\prime \prime}, \bar{y}_{i}\right\}$. Since $\left\{\bar{x}_{i}^{\prime \prime}, \bar{y}_{i}\right\}$ is a clique, the path P contains exactly one vertex u of V_{j} different of \bar{x}_{i}^{\prime}, which implies $P=v \bar{x}_{i}^{\prime} c_{j} w$ and $w \in B \cup Z$, where we use that
P does not contain \bar{x}_{i}. However, every vertex in $B \cup Z$ has eccentricity 2, which is a contradiction. Hence, no shortest path between two vertices in \bar{V}_{j} contains \bar{x}_{i}^{\prime}.

Finally, since the neighbors of c_{j} outside of V_{j} form a clique, no shortest path between two vertices in \bar{V}_{j} contains c_{j}, which completes the proof of the claim.
Note that all $3 n$ simplicial vertices in $\bigcup_{i \in[n]}\left\{x_{i}^{\prime 1}, x_{i}^{\prime 2}, \bar{x}_{i}^{\prime \prime}\right\}$ belong to S.
Since S contains at most n non-simplicial vertices, Claim $\mathbb{1}$ implies that, for every i in $[n]$, the set S contains exactly one of the three vertices in $\left\{x_{i}, z_{i}, \bar{x}_{i}\right\}$, and that these are the only non-simplicial vertices in S. Now, Claim 2 implies that, for every j in $[m]$, there is some $i \in[n]$ such that

- either C_{j} contains the literal x_{i} and the vertex x_{i} belongs to S
- or C_{j} contains the literal \bar{x}_{i} and the vertex \bar{x}_{i} belongs to S.

Therefore, setting the variable x_{i} to true if and only if the vertex x_{i} belongs to S yields a satisfying truth assignment \mathcal{S} for \mathcal{C}, which completes the proof.

As pointed out in the introduction, the correctness proof in 9] contains a gap. In lines 14 and 15 on page 322 of [9] it says
"At iteration $i+1$, the vertex x_{i+1} is a simplicial vertex in G_{i+1}. We first claim that there exists no functional dependency of the form $z t \rightarrow x_{i+1}$ in Σ."

Consider applying the algorithm from [9] to the graph in Figure 2. In iteration 1, it would decide to add x_{1} to K. In iteration 2, it would decide not to add x_{2} to K, because of $t \rightarrow x_{2}$. Furthermore, because of $t \rightarrow x_{2}$ and $z, x_{2} \rightarrow x_{3}$, it would replace $z, x_{2} \rightarrow x_{3}$ within Σ with $z, t \rightarrow x_{3}$. Therefore, in iteration $3, \Sigma$ would actually contain $z, t \rightarrow x_{3}$, contrary to the claim cited above.

Figure 2: A small chordal graph.

References

[1] M. Albenque, K. Knauer, Convexity in partial cubes: The hull number, Lecture Notes in Computer Science 8392 (2014) 421-432.
[2] J. Araujo, V. Campos, F. Giroire, N. Nisse, L. Sampaio, R. Soares, On the hull number of some graph classes, Theoretical Computer Science 475 (2013) 1-12.
[3] J. Araujo, G. Morel, L. Sampaio, R. Soares, V. Weber, Hull number: P_{5}-free graphs and reduction rules, Discrete Applied Mathematics 210 (2016) 171-175.
[4] M.C. Dourado, J.G. Gimbel, J. Kratochvíl, F. Protti, J.L. Szwarcfiter, On the computation of the hull number of a graph, Discrete Mathematics 309 (2009) 5668-5674.
[5] M.C. Dourado, L.D. Penso, D. Rautenbach, On the geodetic hull number of P_{k}-free graphs, Theoretical Computer Science 640 (2016) 52-60.
[6] M.C. Dourado, F. Protti, D. Rautenbach, J.L. Szwarcfiter, On the hull number of triangle-free graphs, SIAM Journal of Discrete Mathematics 23 (2010) 2163-2172.
[7] M.G. Everett, S.B. Seidman, The hull number of a graph, Discrete Mathematics 57 (1985) 217-223.
[8] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness, W.H. Freeman \& Co., New York (1979).
[9] M.M. Kanté, L. Nourine, Polynomial time algorithms for computing a minimum hull set in distance-hereditary and chordal graphs, SIAM Journal on Discrete Mathematics 30 (2016) 311326.

