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Abstract

We show the hardness of the geodetic hull number for chordal graphs.
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1 Introduction

One of the most well studied convexity notions for graphs is the shortest path convexity or geodetic

convexity, where a set X of vertices of a graph G is considered convex if no vertex outside of S lies

on a shortest path between two vertices inside of S. Defining the convex hull of a set S of vertices

as the smallest convex set containing S, a natural parameter of G is its hull number h(G) [7], which

is the minimum order of a set of vertices whose convex hull is the entire vertex set of G. The hull

number is NP-hard for bipartite graphs [2], partial cubes [1], and P9-free graphs [5], but it can be

computed in polynomial time for cographs [4], (q, q − 4)-graphs [2], {paw, P5}-free graphs [3, 5], and

distance-hereditary graphs [9]. Bounds on the hull number are given in [2, 6, 7].

In [9] Kanté and Nourine present a polynomial time algorithm for the computation of the hull

number of chordal graphs. Unfortunately, their correctness proof contains a gap described in detail

at the end of the present paper. As our main result we show that computing the hull number of a

chordal graph is NP-hard, which most likely rules out the existence of a polynomial time algorithm.

Before we proceed to our results, we collect some notation and terminology. We consider finite,

simple, and undirected graphs. A graph G has vertex set V (G) and edge set E(G). A graph G is

chordal if it does not contain an induced cycle of order at least 4. A clique in G is the vertex set of a

complete subgraph of G. A vertex of a graph G is simplicial in G if its neighborhood is a clique. The

distance distG(u, v) between two vertices u and v in G is the minimum number of edges of a path in

G between u and v. The diameter diam(G) of G is the maximum distance between any two vertices

of G. The eccentricity eG(u) of a vertex u of G is the maximum distance between u and any other

vertex of G. For a positive integer k, let [k] be the set of the positive integers at most k.

Let G be a graph, and let S be a set of vertices of G. The interval IG(S) of S in G is the set of all

vertices of G that lie on shortest paths in G between vertices from S. Note that S ⊆ IG(S), and that

S is convex in G if IG(S) = S. The set S is concave in G if V (G)\S is convex. Note that S is concave
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if and only if S ∩ IG({v,w}) = ∅ for every two vertices v and w in V (G) \ S. The hull HG(S) of S in

G, defined as the smallest convex set in G that contains S, equals the intersection of all convex sets

that contain S. The set S is a hull set if HG(S) = V (G), and the hull number h(G) of G [5, 7] is the

smallest order of a hull set of G.

2 Result

We immediately proceed to our main result.

Theorem 2.1. For a given chordal graph G, and a given integer k, it is NP-complete to decide whether

the hull number h(G) of G is at most k.

Proof. Since the hull of a set of vertices of G can be computed in polynomial time, the considered

decision problem belongs to NP. In order to prove NP-completeness, we describe a polynomial reduc-

tion from a restricted version of Satisfiability. Therefore, let C be an instance of Satisfiability

consisting of m clauses C1, . . . , Cm over n boolean variables x1, . . . , xn such that every clause in C

contains at most three literals, and, for every variable xi, there are exactly two clauses in C, say C
j
(1)
i

and C
j
(2)
i

, that contain the literal xi, and exactly one clause in C, say C
j
(3)
i

, that contains the literal x̄i,

and these three clauses are distinct. Using a polynomial reduction from [LO1] [8], it has been shown

in [5] that Satisfiability restricted to such instances is still NP-complete.
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Figure 1: The vertices and edge added for the variable xi, where j
(1)
i = j, j

(2)
i = k, and j

(3)
i = ℓ.

Let the graph G be constructed as follows starting with the empty graph:

• For every j ∈ [m], add a vertex cj .

• For every i ∈ [n], add three yi, ȳi, and zi.

• Add edges such that B ∪ Z is a clique, where

B = {cj : j ∈ [m]} ∪ {yi : i ∈ [n]} ∪ {ȳi : i ∈ [n]} and

Z = {zi : i ∈ [n]}, and

• For every i ∈ [n], add 9 vertices and 25 edges to obtain the subgraph indicated in Figure 2.

2



Note that distG(xi, x̄
′
i) = distG(x̄i, x

′1
i ) = 3 for every i in [n]. Since every vertex of G has a neighbor

in the clique B ∪ Z, the diameter of G is 3. Furthermore, since no vertex is universal, all vertices in

B ∪ Z have eccentricity 2.

Let k = 4n.

Note that the order of G is 12n +m.

It remains to show that G is chordal, and that C is satisfiable if and only if h(G) ≤ k.

In order to show that G is chordal, we indicate a perfect elimination ordering, which is a linear ordering

v1, . . . , v12n+m of its vertices such that vi is simplicial in G − {v1, . . . vi−1} for every i in [12n + m].

Such an ordering is obtained by

• starting with the vertices x′1i , x
′2
i , and x̄′′i for all i ∈ [n] (in any order),

• continuing with the vertices x1i , x
2
i , and x̄′i for all i ∈ [n],

• continuing with the vertices x′i for all i ∈ [n],

• continuing with the vertices xi and x̄i for all i ∈ [n], and

• ending with the vertices in the clique B ∪ Z.

Now, let S be a satisfying truth assignment for C.

Let

S =
⋃

i∈[n]

{

x′1i , x
′2
i , x̄

′′
i

}

∪
⋃

i∈[n]: xi true in S

{xi} ∪
⋃

i∈[n]: xi false in S

{x̄i} .

Clearly, |S| = k = 4n. For every i in [n], we have {zi, ȳi} ⊆ IG({xi, x̄
′′
i }), {zi, yi} ⊆ IG({x̄i, x

′1
i }),

yi ∈ IG({ȳi, x
′1
i }), and ȳi ∈ IG({yi, x̄

′′
i }), which implies {zi, yi, ȳi} ⊆ HG(S). Since S is a satisfying

truth assignment, for every j in [m], there is a neighbor, say v, of cj in

⋃

i∈[n]: xi true in S

{xi} ∪
⋃

i∈[n]: xi false in S

{x̄i} .

If v ∈
⋃

i∈[n]: xi true in S

{xi}, then cj ∈ IG({v, x̄
′′
i }), otherwise cj ∈ IG({v, x

′1
i }). Hence, B ∪Z ⊆ HG(S).

Now, for some i in [n], let cj , ck, and cℓ be the neighbors in B \ {yi, ȳi} of x1i , x2i , and x̄′i,

respectively, similarly as in Figure 2. We have x1i ∈ IG({x
′1
i , cj}), x

2
i ∈ IG({x

′2
i , ck}), x

′
i ∈ IG({x

1
i , x

2
i }),

x̄′i ∈ IG({x̄
′′
i , cℓ}), xi ∈ IG({x

′
i, zi}), and x̄i ∈ IG({x̄

′
i, zi}).

Altogether, we obtain that S is a hull set of G of order 4n.

Finally, let S be a hull set of G of order at most 4n.

Claim 1. For every i ∈ [n], the set {xi, zi, x̄i} is concave.

Proof of Claim 1: For a contradiction, suppose that some vertex in S′ = {xi, zi, x̄i} lies on a shortest

path P in G between two vertices v and w in V (G) \ S′. Since the diameter of G is 3, the path P

contains at most 2 vertices of S′. Since the neighbors outside of S′ of each vertex in S′ form a clique,

the path P contains exactly 2 adjacent vertices of S′, that is, either P = vxiziw or P = vx̄iziw. In

both cases, the vertex w has eccentricity at least 3. However, every neighbor w of zi outside S
′ belongs

to B ∪ Z, and thus, has eccentricity 2, a contradiction. �
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Claim 2. For every j ∈ [m], the set

Vj = {cj} ∪
⋃

i∈[n]:j=j
(1)
i

{

xi, x
′
i, x

1
i

}

∪
⋃

i∈[n]:j=j
(2)
i

{

xi, x
′
i, x

2
i

}

∪
⋃

i∈[n]:j=j
(3)
i

{

x̄i, x̄
′
i

}

is concave.

Proof of Claim 2: First, suppose that Cj contains the positive literal xi. By symmetry, we may assume

that j = j
(1)
i and j

(2)
i = k for some k in [m] \ {j}.

First, suppose that some shortest path P between two vertices v and w in V̄j = V (G)\Vj contains

xi. Choosing P of minimum length, it follows that v and w are the only vertices of P in V̄j . Since

the diameter of G is 3, the length of P is at most 3, and we may assume that v is a neighbor of xi,

which implies v ∈ {zi, ck, yi}. Since {zi, ck, yi} is a clique, the vertex w is not a neighbor of xi, and P

contains exactly one vertex u of Vj different of xi, which implies P = vxiuw and u ∈ {x′i, cj}. Suppose

that u = x′i. This implies w ∈ {x2i , ck, yi}. Since ck, yi ∈ NG(xi), we obtain w = x2i and v = zi.

However, distG(zi, x
2
i ) = 2, which is a contradiction. Hence, u = cj and w ∈ B ∪ Z. However, every

vertex in B ∪ Z has eccentricity 2, which is a contradiction. Hence, no shortest path between two

vertices in V̄j contains xi.

Next, suppose that some shortest path P between two vertices v and w in V̄j contains x
′
i. Similarly

as above, we may assume that v and w are the only vertices of P in V̄j , the length of P is at most

3, and v is a neighbor of x′i, which implies v ∈ {x2i , yi, ck}. Since {x2i , yi, ck} is a clique, the path P

contains exactly one vertex u of Vj different of x
′
i, which implies P = vx′iuw and u ∈ {x1i , cj}, where we

use that P does not contain xi. Suppose that u = x1i . This implies w ∈ {x′1i , yi}. Since yi ∈ NG(x
′
i),

we obtain w = x′1i and v = x2i . However, distG(x
2
i , x

′1
i ) = 2, which is a contradiction. Hence, u = cj

and w ∈ B ∪ Z. However, every vertex in B ∪ Z has eccentricity 2, which is a contradiction. Hence,

no shortest path between two vertices in V̄j contains x′i.

Next, suppose that some shortest path P between two vertices v and w in V̄j contains x
1
i . Similarly

as above, we may assume that v and w are the only vertices of P in V̄j , the length of P is at most 3,

and v is a neighbor of x1i , which implies v ∈ {x′1i , yi}. Since {x′1i , yi} is a clique, the path P contains

exactly one vertex u of Vj different of x
1
i , which implies P = vx1i cjw and w ∈ B∪Z, where we use that

P does not contain x′i. However, every vertex in B ∪ Z has eccentricity 2, which is a contradiction.

Hence, no shortest path between two vertices in V̄j contains x1i .

Next, suppose that Cj contains the negative literal x̄i, that is, j = j
(3)
i .

First, suppose that some shortest path P between two vertices v and w in V̄j contains x̄i. Similarly

as above, we may assume that v and w are the only vertices of P in V̄j , the length of P is at most

3, and v is a neighbor of x̄i, which implies v ∈ {zi, ȳi}. Since {zi, ȳi} is a clique, the vertex w is not

a neighbor of x̄i, and P contains exactly one vertex u of Vj different of x̄i, which implies P = vx̄iuw

and u ∈ {x̄′i, cj}. Suppose that u = x̄′i. This implies w ∈ {x̄′′i , ȳi}. Since ȳi ∈ NG(x̄i), we obtain v = zi

and w = x̄′′i . However, distG(zi, x̄
′′
i ) = 2, which is a contradiction. Hence, u = cj and w ∈ B ∪ Z.

However, every vertex in B ∪ Z has eccentricity 2, which is a contradiction. Hence, no shortest path

between two vertices in V̄j contains x̄i.

Next, suppose that some shortest path P between two vertices v and w in V̄j contains x̄
′
i. Similarly

as above, we may assume that v and w are the only vertices of P in V̄j , the length of P is at most 3,

and v is a neighbor of x̄′i, which implies v ∈ {x̄′′i , ȳi}. Since {x̄′′i , ȳi} is a clique, the path P contains

exactly one vertex u of Vj different of x̄
′
i, which implies P = vx̄′icjw and w ∈ B∪Z, where we use that
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P does not contain x̄i. However, every vertex in B ∪ Z has eccentricity 2, which is a contradiction.

Hence, no shortest path between two vertices in V̄j contains x̄′i.

Finally, since the neighbors of cj outside of Vj form a clique, no shortest path between two vertices

in V̄j contains cj , which completes the proof of the claim. �

Note that all 3n simplicial vertices in
⋃

i∈[n]

{

x′1i , x
′2
i , x̄

′′
i

}

belong to S.

Since S contains at most n non-simplicial vertices, Claim 1 implies that, for every i in [n], the set

S contains exactly one of the three vertices in {xi, zi, x̄i}, and that these are the only non-simplicial

vertices in S. Now, Claim 2 implies that, for every j in [m], there is some i ∈ [n] such that

• either Cj contains the literal xi and the vertex xi belongs to S

• or Cj contains the literal x̄i and the vertex x̄i belongs to S.

Therefore, setting the variable xi to true if and only if the vertex xi belongs to S yields a satisfying

truth assignment S for C, which completes the proof.

As pointed out in the introduction, the correctness proof in [9] contains a gap. In lines 14 and 15 on

page 322 of [9] it says

“At iteration i+1, the vertex xi+1 is a simplicial vertex in Gi+1. We first claim that there

exists no functional dependency of the form zt → xi+1 in Σ.”

Consider applying the algorithm from [9] to the graph in Figure 2. In iteration 1, it would decide to

add x1 to K. In iteration 2, it would decide not to add x2 to K, because of t → x2. Furthermore,

because of t → x2 and z, x2 → x3, it would replace z, x2 → x3 within Σ with z, t → x3. Therefore, in

iteration 3, Σ would actually contain z, t → x3, contrary to the claim cited above.

t t t t t
x1 x2 x3 t z

Figure 2: A small chordal graph.
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