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Abstract

This paper presents an efficient preconditioner for the Lippmann-Schwinger equation that
combines the ideas of the sparsifying and the sweeping preconditioners. Following first the
idea of the sparsifying preconditioner, this new preconditioner starts by transforming the dense
linear system of the Lippmann-Schwinger equation into a nearly sparse system. The key novelty
is a newly designed perfectly matched layer (PML) stencil for the boundary degrees of freedoms.
The resulting sparse system gives rise to fairly accurate solutions and hence can be viewed as
an accurate discretization of the Helmholtz equation. This new PML stencil also paves the way
for applying the moving PML sweeping preconditioner to invert the resulting sparse system
approximately. When combined with the standard GMRES solver, this new preconditioner
for the Lippmann-Schwinger equation takes only a few iterations to converge for both 2D and
3D problems, where the iteration numbers are almost independent of the frequency. To the
best of our knowledge, this is the first method that achieves near-linear cost to solve the 3D
Lippmann-Schwinger equation in high frequency cases.
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1 Introduction

This paper concerns the time-harmonic scattering problem
(
−∆− ω2

c(x)2

)
(u(x) + uI(x)) = 0, x ∈ Rd,

lim
r→∞

r(d−1)/2

(
∂

∂r
− iω

)
u(x) = 0,

(1)

where uI(x) is the given incoming wave, u(x) is the scattered field to solve, ω is the angular
frequency and c(x) = Θ(1) is the velocity field such that c(x) = 1 outside some bounded region
Ω. See Figure 1 for an example. The incoming wave uI(x) satisfies the homogeneous Helmholtz
equation

(−∆− ω2)uI(x) = 0, x ∈ Ω. (2)
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Figure 1: An example of the incoming wave uI(x) and the scattered field u(x).

Let m(x) = 1− 1/c(x)2 be the perturbation field. Rewriting (1) in terms of m(x) we have

(−∆− ω2 + ω2m(x))u(x) = −ω2m(x)uI(x), x ∈ Rd. (3)

Let G(x) be the Green’s function of the free space Helmholtz equation

G(x) =


i

4
H

(1)
0 (ω|x|), d = 2,

exp( iω|x|)
4π|x|

, d = 3.

Convolving both sides of (3) with G(x) gives

u(x) + ω2

∫
Ω

G(x− y)m(y)u(y) dy = −ω2

∫
Ω

G(x− y)m(y)uI(y) dy, (4)

which is known as the Lippmann-Schwinger equation written in terms of the scattered field u(x).
Solving the integral equation (4) has several advantages compared to solving (1). First, since

m(x) is compactly supported, we only need to solve (4) in Ω. The scattered field u(x) for x ∈ Ωc is
explicitly given by (4) once u(x) in Ω is known. More importantly, the resulting wave field u(x) in
Rd automatically satisfies the Sommerfeld radiation condition. On the contrary, for (3) one has to
truncate the domain Rd to some bounded region and impose appropriate boundary conditions to
simulate the radiation condition. Second, most local discretizations of (3) suffer from the pollution
effect [4] due to inaccurate dispersion relations. (4) avoids this problem by leveraging the Green’s
function explicitly in the equation.

However, discretizing (4) also raises several issues. First, the resulting linear system is dense.
By the Nyquist theorem, a constant number of points per wavelength is needed to capture the
oscillations, thus the number of degrees of freedom N is at least Θ(ωd). In high frequency cases,
N can be rather large where it is impractical to solve general dense linear systems with direct
method. Second, the discretized system can have very large condition number for non-negligible
perturbations m(x) due to multiple scattering when ω is large. As a result, most standard iterative
solvers require a large number of iterations to converge.

Recently, several progresses have been made to solve the Lippmann-Schwinger equation [2, 7, 8,
1, 28, 18, 24, 27, 31, 33]. [28] proposes a numerical scheme that has spectral accuracy for smooth
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media by truncating the interactions on the physical domain. [1] presents an adaptive method
for the Lippmann-Schwinger equation in 2D. [8] solves the 2D Lippmann-Schwinger equation with
a technique which is now often referred to as recursive interpolative factorization or recursive
skeletonization, where the setup cost is O(N3/2) and the solve cost is O(N logN). [31] approximates
the discretized dense system by a sparse system, and applies the nested dissection factorization [15]
to the sparse system as a preconditioner to the original dense system. The costs are dominated
by merely the nested dissection solver, which are O(N3/2) and O(N logN) for setup and solve
in 2D, O(N2) and O(N4/3) for setup and solve in 3D respectively. [33] combines the sparsifying
preconditioner [31] with the method of polarized traces [32] to design a preconditioner for the
Lippmann-Schwinger equation in 2D, which achieves O(N) setup and O(N logN) solve costs. As
far as we know, [33] is the first to achieve near-linear cost in 2D high frequency cases.

Meanwhile, a series of domain decomposition methods were developed to solve the Helmholtz
equation with Sommerfeld radiation condition [13, 14, 25, 9, 10, 32, 29, 19]. The idea is to divide
the domain into slices and impose suitable transmission conditions between these slices. These
methods reduce the computational costs to O(N) for setup and O(N) for solve in 2D, and O(N4/3)
for setup and O(N logN) for solve in 3D, which is a notable improvement over the nested dissection
method. A recursive technique [20] further reduces both the setup and solve costs in 3D to O(N).

This work combines the sparsifying preconditioner in [31] with the sweeping preconditioner in
[14] to develop a new preconditioner which solves the Lippmann-Schwinger equation in near-linear
cost. The sketch of the method is as follows. We first construct two types of compact sten-
cil schemes to approximate the discretized dense system by a sparse system, and then apply the
sweeping factorization to the sparse system. The solving process of the sweeping factorization in-
duces an approximating solution, which defines a preconditioner to the original system. The setup
and application costs are O(N) and O(N) in 2D and O(N4/3) and O(N logN) in 3D respectively.
Furthermore, the costs in 3D can be reduced to O(N) for setup and O(N) for application by a re-
cursive sweep similar to [20]. When combined with the standard GMRES solver, the preconditioner
only needs a few iterations to converge, where the iteration number is almost independent of the
angular frequency ω as shown by the numerical results. To the best of our knowledge, this is the
first algorithm to solve the Lippmann-Schwinger equation in near-linear cost in 3D high frequency
cases.

Another highlight of this work is the newly designed compact stencil introduced for the precon-
ditioner. The design approach focuses on fitting the stencils to the wave data given by the analytic
expressions such as the Green’s function. This approach is quite different from the state-of-the-art
methods [26, 17, 3, 5] to design compact stencils, which focus more on the analytic property of
the underlying differential operator. Numerical results show that, when used as a method for solv-
ing the Helmholtz equation, this scheme is comparably as accurate as the Quasi-Stabilized FEM
(QSFEM) method in [5] in terms of the phase error.

The rest of the paper is organized as follows. Sections 2 and 3 present the preconditioners
and the numerical results in 2D and 3D respectively, where the detailed approach is explained in
Section 2 for the 2D case, and Section 3 generalizes it to 3D with necessary modifications. Section 4
presents numerical results to show the validity of the compact stencil sparsifying scheme presented
in this work when used as a direct method. Conclusions and future work are given in Section 5.
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2 Preconditioner in 2D

This section describes the preconditioner for the 2D Lippmann-Schwinger equation. Starting by for-
malizing the dense linear system obtained from discretization, we transform it into an approximately
sparse one by introducing two types of compact stencils. After that, the sweeping factorization is
used to solve the truncated sparse system approximately. The whole process can then be treated
as a preconditioner for the original dense system of the Lippmann-Schwinger equation.

2.1 Problem formulation

Without loss of generality, we assume that Ω = (0, 1)2 and that m(x) is supported in Ω. The task
is to discretize the Lippmann-Schwinger equation (4) and solve for u(x) in Ω.

The domain Ω is discretized by a uniform Cartesian grid, which allows for the rapid evaluation
of the convolution in (4) by FFT. Let n be the number of grid points per unit length, h := 1/(n+1)
be the step size, and N := n2 be the number of degrees of freedom.

Denote i as the 2D index point and pi as the grid point with step size h by

i := (i1, i2), i1, i2 ∈ Z,
pi := ih = (i1h, i2h).

Let I be the index set of the grid points in Ω and D be the set of the corresponding grid points,
given by

I := {i = (i1, i2) : 1 ≤ i1, i2 ≤ n},
D := {pi : i ∈ I}.

We also introduce Ī as the index set for Ω̄ and ∂I as the boundary index set by

Ī := {i = (i1, i2) : 0 ≤ i1, i2 ≤ n+ 1},
∂I := Ī \ I,

and correspondingly we have D̄ and ∂D as

D̄ := {pi : i ∈ Ī},
∂D := {pi : i ∈ ∂I}.

Let ui be the numerical solution of (4) at pi for i ∈ I. To compute the integral in (4), we use
the Nyström method ∫

Ω

G(pi − y)m(y)u(y) dy ≈
∑
j∈I

ki−jmjuj ,

where

mi := m(pi), i ∈ I,
ki := G(pi)h

2, i 6= (0, 0),
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and k(0,0) is the weight given by a quadrature correction at the singular point of G(x) at x = 0,
which achieves O(h4 log(1/h)2) accuracy when m(x) is smooth [12]. This gives the discretized
equation

ui + ω2
∑
j∈I

ki−jmjuj = gi, i ∈ I, (5)

where

gi := −ω2
∑
j∈I

ki−jmj [uI ]j , i ∈ I,

and [uI ]j := uI(pj) is the discrete value of the incoming wave. Higher order quadrature can be
achieved by using more extended local quadrature correction [12].

With a slight abuse of the notations, we extend the discrete vectors m and g to the whole 2D
grid by zero padding

mi := 0, i ∈ Z2 \ I,
gi := 0, i ∈ Z2 \ I.

Introducing matrix K with Ki,j := ki−j , (5) can be written into a more compact form

(I + ω2KM)u = g, (6)

where M := diag(m).
A subtle difference between (5) and (6) is that, (5) is a set of equations for the unknowns with

indices i ∈ I, while (6) can be regarded as an equation set defined on the infinite index set Z2, where
the unknown vector u is also extended to the whole 2D grid with the extension value determined
by the equation implicitly. We have two observations for (6)

• The solution of (6) agrees with the one of (5) in I. To get the numerical solution of (4) in
Ω, we can solve (6) and then restrict the solution to I instead of solving (5).

• The solution of (6) does not match the numerical solution of (4) outside Ω since the zero
padding of g differs from the discretized value of the right-hand side of (4) in Ωc. Nonetheless,
this is not an issue as we only care about the solution of (4) in Ω.

One may ask: why do we extend the discrete domain to the infinite grid and consider a problem
with infinite size? Besides, the zero padding pattern of g seems rather irrational as it creates
discontinuities at ∂D. The answer is that, we are not going to actually solve the Z2-size problem.
The purpose of extending the unknown to a larger domain is to introduce the wave attenuation
by PML on the extended grid to simulate the Sommerfeld radiation condition as we shall see in
Section 2.2.2. The zero padding of g is to ensure that there is no source outside Ω such that the
PML approximation holds.

The reader may notice that, if we just use the discretized value of the right-hand side of (4)
defined on the whole plane, the solution will also satisfy the Sommerfeld condition, so it seems
meaningless to introduce the zero padding. It is true that the right-hand side of (4) on the whole
plane will induce a solution satisfying the radiation condition. However, in some cases, when
solving (5), we are only given g defined in I without knowing the actual incoming wave uI , and
it’s computationally impractical to get the extension of g determined by (4). This is especially true
when we develop preconditioners where the input only involves the right-hand side in the domain
of interest.

With the extended problem (6), we are now ready to build a sparse system to approximate (5).
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2.2 Sparsification

In this section, we adopt the idea of the sparsifying preconditioner [31] to build a sparse system
which serves as an approximation to (5). The sparse system to be constructed has the same sparsity
pattern as a compact stencil scheme, i.e., each equation only involves the unknowns at one grid
point and its neighbor points, unlike (5) where each equation is dense in I.

To be specific, we define µi as the neighborhood for the index i

µi := {j : ‖j − i‖∞ ≤ 1}.

Now the task is to build for each point i a local stencil supported only in µi. We shall build two
types of stencils in what follows. The first type is for the interior points, while the second type is
for the points near the boundary which are inside what we call “the PML region”.

The perfectly matched layer (PML) [6, 16, 11] is a technique to attenuate the waves exponentially
near the boundary of the domain so that the zero Dirichlet boundary conditions can be imposed
directly to simulate the radiation boundary condition without bringing in too much error. We will
explain the PML usage during the construction of the second type of the stencils.

Let’s start with extending our domain Ω. Denote Ωh as Ω with an h-size extension, Ωh+η as
the PML extension of Ωh with width η, given by

Ωh := (−h, 1 + h)2,

Ωh+η := (−h− η, 1 + h+ η)2.

Here η = bh is the PML width, where b = O(1) is the number of discrete layers in each side of the
PML region. η is typically around one wavelength. The PML region Ωh+η \ Ωh is where we will
attenuate the scattered field u(x) in Section 2.2.2. Note that there is a small h-distance between
the domain of interest Ω and the PML region Ωh+η \ Ωh. This small distance is introduced on
purpose and the reason will be clear later.

The corresponding index sets in these regions are

Ih := {i : 0 ≤ i1, i2 ≤ n+ 1},
Ih+η := {i : −b ≤ i1, i2 ≤ n+ 1 + b}.

Similar to the notations Ī, ∂I,D, ∂D and D̄, we introduce Īh, ∂Ih,Dh,Dh+η, ∂Dh, etc, as the
corresponding grid point sets, boundary sets, closures and so on. The meanings are straightforward
and we omit the formal definitions. See Figure 2 for an illustration.

We now describe how to design two types of stencils for the unknowns indexed by Ih+η: first
for the ones in Ih and then for the ones in Ih+η \ Ih. At the end, we assemble them together to
form our sparse system.

2.2.1 Stencils for the interior points in Ih

Following the approach in [31], we design the first type of the stencils for the neighborhood µi where
i ∈ Ih (see Figure 2, the 3× 3 green grids). Taking out the equations in (6) indexed by µi we have

ui + ω2
∑
j∈I

Ki,jmjuj = gi, i ∈ µi, (7)
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x1

x2

x1 = 1

x2 = 1

Figure 2: This figure is an illustration of Ω,Ωh,Ωh+η,D,Dh, etc where n = 18, b = 4. The inner
green box is the boundary of Ω, the outer green box (with blue points on it) is the boundary of
Ωh and the big blue box (with gray points on it) is the boundary of Ωh+η. The set of the all the
green points is Dh, and the set of all the blue points is Dh+η \ Dh. D is the set of all the green
points strictly inside the inner green box, while ∂D consists of the points exactly located on the
inner green box. The gray points form ∂Dh+η where we will impose the zero Dirichlet boundary
conditions after wave attenuation. Each of the 3× 3 green grid corresponds to a neighborhood µi
for some i ∈ Ih where we construct stencils of the first type. Correspondingly, the 3× 3 blue grids
are for µi with i ∈ Ih+η \ Ih where we build stencils of the second type.

which can be written as

uµi
+ ω2(Kµi,µi

[mu]µi
+Kµi,µc

i
[mu]µc

i
) = gµi

. (8)

Here are some explanations for the notations in (8):

• The subscript µi stands for the corresponding vector restricted to the index set µi, for example,
[mu]µi is the vector of the elementwise multiplication of m and u restricted to µi.

• µci := I \ µi, which is the complement of µi with respect to I.

• Kµi,µc
i

is the sub-matrix of K with row index set µi and column index set µci .

Let’s consider a linear combination of the equations in (8). Suppose α is a column vector
supported on µi. Multiplying both sides of (8) by α∗ gives

α∗uµi + ω2(α∗Kµi,µi [mu]µi + α∗Kµi,µc
i
[mu]µc

i
) = α∗gµi , (9)
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where α∗ is the conjugate transpose of α.
To design a local stencil, we hope that the resulting equation (9) only involves unknowns indexed

by µi. Observing the left-hand side of (9), we found if α∗Kµi,µc
i
≈ 0, then we can truncate the

terms involving uµc
i

and the resulting equation will be local. But does there exist an α such that
α∗Kµi,µc

i
≈ 0? The answer is yes. The reason is that the elements of K are defined by the Green’s

function G(x), which satisfies

(−∆− ω2)G(x) = 0, x ∈ R2 \ {(0, 0)}. (10)

Each column of the matrix Kµi,µc
i

can be treated as the Green’s function centered at some grid
point indexed by j ∈ µci and evaluated at the points indexed by the neighborhood µi, which does
not involve the singular point of G(x) at x = 0. Thus it’s reasonable to expect some local stencil α,
which can be thought of as a discretization of the local operator (−∆−ω2), such that α∗Kµi,µc

i
≈ 0.

By the translational invariance of the Green’s function, to find such α, it suffices to require that
α∗Kµ,µc ≈ 0, where

µ := µ0 = {j : ‖j‖∞ ≤ 1},
µc := {i : −n ≤ i1, i2 ≤ n} \ µ,

which means that we can translate the index i to the origin and consider an equivalent problem.
Here the complement of µ is taken with respect to a larger index set. The reason is that, when we
translate different indices i to the origin, the corresponding complement µci will also be translated.
The larger set is taken as the union of all those translated complements to ensure that the condition
is sufficient.

To minimize α∗Kµ,µc , we consider the optimization problem

min
α:‖α‖2

‖α∗Kµ,µc‖2. (11)

The solution is the left singular vector corresponding to the smallest singular value of Kµ,µc , which
can be solved in O(N).

Once we have α, we compute β by setting

β∗ := α∗Kµ,µ. (12)

Then (9) can be approximated as

α∗uµi
+ ω2β∗[mu]µi

≈ α∗gµi
. (13)

This defines the local stencil for each i ∈ Ih.
Note that, if we do the same thing for i /∈ Ih, the right-hand side α∗gµi

will be 0 due to
the zero padding of g. If we build the stencils for all i ∈ Z2 \ Ih and combine them with the
Sommerfeld radiation condition at infinity, it will induce a discrete DtN map at ∂Ih. This linear
map, though existing in theory, is dense and expensive to compute. Section 2.2.2 circumvents this
issue by exploiting PML on the extended domain and introducing the second type of stencils to
approximate this dense map efficiently.

Now why do we introduce the h-size padded domain Ωh and build the first type of stencils for
i ∈ Ih rather than just for I? The reason is that, for i ∈ ∂I, α∗gµi

is not necessarily zero, thus we
cannot assign ∂I to the second type where the corresponding right-hand side is zero. So we enlarge
Ω by h-size and build stencils of the first type for Ih = Ī. Figure 3 shows this subtlety in 1D as an
illustration.
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x1

Support of g

Support of f

Ω

Ωh

Ωh+η

h0−h−h− η 1 1 + h+ η

PMLPML

Figure 3: This figure is an illustration of the supports of the discrete vectors g and f in 1D where
n = 18, b = 4 and fi := α∗gµi

. We see that by introducing the stencil α, the support of g is enlarged
to the support of f by one grid point on each side.

2.2.2 Stencils for the PML points in Ih+η \ Ih

Next, we design the stencils for i ∈ Ih+η \ Ih (see Figure 2, the 3 × 3 blue grids). Define the
auxiliary function

σ(x) :=


−C
ω

(
x+ h

η

)2

, if − h− η < x ≤ −h,

0, if − h < x < 1 + h,

C

ω

(
x− 1− h

η

)2

, if 1 + h ≤ x < 1 + h+ η,

where C ∼ Θ(1) is some positive constant. We attenuate the scattered field u(x) in the PML region
Ωh+η \ Ωh by introducing the complex stretching

xσ := (xσ1 , x
σ
2 ) = (x1 + iσ(x1), x2 + iσ(x2)),

uσ(x) := u(xσ) = u(x1 + iσ(x1), x2 + iσ(x2)),

uσi := uσ(pi) = u(pσi ).

By changing variable from x to xσ, we know that the function uσ(x) satisfies the modified
Helmholtz equation in the PML region(

−
2∑
d=1

(
∂d

1 + iσ′(xd)

)2

− ω2

)
uσ(x) = 0, x ∈ Ωh+η \ Ωh, (14)

A simple way to build local stencils for Ih+η \ Ih is to discretize (14) explicitly with some local
scheme such as the central difference scheme. Unfortunately, it turns out to be not accurate enough
to do so. We adopt a different approach. The idea is similar to what we did in the previous section,
where we aim to find some local stencil to annihilate a set of given functions evaluated at the points
indexed by µi. In what above, we used the Greens function G(x) to design the stencil α. Here we
use a set of “modified plane waves” to achieve the same goal.
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Specifically, we first note that the plane wave function

F (x) := exp( iω(r · x)), ‖r‖2 = 1,

satisfies the free space Helmholtz equation(
−∆− ω2

)
F (x) = 0, x ∈ R2. (15)

Let Fσ(x) := F (xσ) be the complex stretching of F (x). We immediately have that Fσ(x) satisfies
(14) by definition. If we were to design a local stencil γ for µi where i ∈ Ih+η \ Ih, we would hope
that γ∗Fσµi

≈ 0, where Fσµi
is the function Fσ(x) evaluated at the grid points indexed by µi. Note

that any direction r such that ‖r‖2 = 1 induces a “modified plane wave” Fσ(x). We hope to solve
γ by annihilating as many r as possible. To be precise, Let R be a set of directions where the
elements are sampled uniformly from the unit circle {r : ‖r‖2 = 1}, and Fσµi,R

be a matrix of size
|µi| × |R|, each column of which is a modified plane wave function Fσ(x) with a direction r ∈ R,
evaluated at the grid points indexed by µi. Then we solve γ by

min
γ:‖γ‖2=1

‖γ∗Fσµi,R‖2. (16)

Intuitively, it’s better to increase the sample size |R| to improve the reliability of the stencil.
However, larger sample size also leads to more computational cost. Fortunately, it turns out that
not too many samples are needed for a reliable result. It suffices to use only the eight most common
directions – north, south, west, east, northwest, northeast, southwest and southeast – to form R,
and γ is given by the vector perpendicular to the eight corresponding vectors on µi. Note that the
solution is unique up to a coefficient ±1 since we have 8 independent modified plain waves and the
size of the neighborhood µi is 9.

In the PML region, we need to compute different stencils for different neighborhoods due to the
lack of translational invariance as a result of the complex stretching. Nevertheless, by the symmetry
of the stretching, we only need to compute the stencils near a corner of Ih+η \Ih, which takes only
O(b2) work in total. See Figure 4 for an illustration.

We denote γi as the stencil for µi, then the corresponding approximating equation is

γ∗i u
σ
µi
≈ 0. (17)

This defines the local stencil for each i ∈ Ih+η \ Ih.

2.2.3 Assemble together

Assembling (13) and (17) together and noting that uσi = ui for i ∈ Īh, we have{
α∗uσµi

+ ω2β∗[muσ]µi
≈ α∗gµi

, i ∈ Ih,
γ∗i u

σ
µi
≈ 0, i ∈ Ih+η \ Ih,

(18)

where α, β, and γ are given in (11), (12) and (16) respectively. Noticing also that uσ almost satisfies
the zero Dirichlet boundary conditions

uσi ≈ 0, i ∈ ∂Ih+η,

10
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Figure 4: By the symmetry and the translational invariance of the complex stretching along each
dimension, one only needs to compute the PML stencils for the points marked with red color near
the top right corner.

we can introduce the sparse linear system
α∗ũµi

+ ω2β∗[mũ]µi
= α∗gµi

, i ∈ Ih,
γ∗i ũµi

= 0, i ∈ Ih+η \ Ih,
ũi = 0, i ∈ ∂Ih+η.

for the unknown ũ defined on Dh+η that serves as an approximation to uσ. In what follows, we
write this system conveniently as

Hũ = f, (19)

where the right-hand side f is given by

fi :=

{
α∗gµi

, if i ∈ Ih,
0, if i ∈ Ih+η \ Ih.

The system (19) is defined on Dh+η. To get the unknowns on D, we simply solve (19) and
extract the solutions on D. The result is an approximation to the true solution of (5), and this
process can serve as a preconditioner for the linear system (5). In the next section, we present an
approach for approximating the solution of (19) efficiently by leveraging the idea of the sweeping
preconditioner.
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2.3 Sweeping factorization

In this section, we adopt the sweeping factorization to solve the sparse system (19) approximately.
The main idea of the sweeping factorization is to divide the domain into slices and eliminate
the unknowns slice by slice. An auxiliary PML region is introduced for each slice to build a
subproblem to approximate the inverse of the Schur complement during the Gaussian elimination
to save computational cost.

To be specific, we first divide the 2D grid into ` slices along the x1 direction. Each slice contains
only a few layers. The leftmost slice contains the left PML region and the rightmost one contains the
right PML region (see Figure 5). For simplicity, we assume that each of the middle slices contains
b layers and each of the two boundary slices contains 2b layers – b normal layers plus b attenuating
layers in the PML region. Let D1, . . . ,D` be the discrete points in each slice correspondingly, and
define ũ[i] and f[i] as the restrictions of ũ and f on Di respectively. The sparse system (19) can be
written as the block tridiagonal form

H[1,1] H[1,2]

H[2,1] H[2,2]

. . .

. . .
. . .

. . .

. . .
. . . H[`−1,`]

H[`,`−1] H[`,`]




ũ[1]

ũ[2]

...
ũ[`−1]

ũ[`]

 =


f[1]

f[2]

...
f[`−1]

f[`]

 ,

where H[i,j]’s are the corresponding sparse blocks. Note that we use the bracket subscripts [·] to
emphasize that the corresponding unknowns are grouped together in each slice.

We introduce the Schur complement S[i] and its inverse T[i] slice by slice recursively

S[1] = H[1,1], T[1] = S−1
[1] ,

S[i] = H[i,i] −H[i,i−1]T[i−1]H[i−1,i], T[i] = S−1
[i] , for i = 2, . . . , `.

Then we can solve ũ by the Gaussian elimination

ũ[1] = T[1]f[1],

ũ[i] = T[i](f[i] −H[i,i−1]ũ[i−1]), for i = 2, . . . , `,

ũ[i] = ũ[i] − T[i](H[i,i+1]ũ[i+1]), for i = `− 1, . . . , 1.

The expensive part of the above process is to compute T[i] and apply it to the vectors on Di. If
say we formed T[i] directly, the computation would take O(b3n3) steps and the application O(b2n2)
steps. The sweeping factorization reduces the cost by approximating T[i] with a subproblem. To
introduce the approximation, we first make a key observation of the operator T[i]: inverting the top
left i× i block of H, one notices that T[i] appears at the bottom right block of the resulting matrix.
In other words

H−1
[1:i,1:i] =



H[1,1] H[1,2]

H[2,1] H[2,2]

. . .

. . .
. . .

. . .

. . .
. . . H[i−1,i]

H[i,i−1] H[i,i]



−1

=


∗ ∗ . . . ∗ ∗
∗ ∗ . . . ∗ ∗
...

...
. . .

...
...

∗ ∗ . . . ∗ ∗
∗ ∗ . . . ∗ T[i]

 .

12



D1 D2 D3 D4 D5

Figure 5: The grid points are divided into 5 slices along the x1 direction. Each of the middle slices
contains 4 layers, and each of the two boundary ones contains 4 more attenuating layers in the
PML region.

This means T[i] is the restriction of H−1
[1:i,1:i] to Di. Think of T[i] as an operator from some input

vector v to T[i]v on the grid Di. Then given v, we can compute T[i]v by solving the equation

H[1,1] H[1,2]

H[2,1] H[2,2]

. . .

. . .
. . .

. . .

. . .
. . . H[i−1,i]

H[i,i−1] H[i,i]




∗
∗
...
∗
w

 =


0
0
...
0
v

 (20)

where w is exactly equal to T[i]v. That is to say, given v, we can find T[i]v by padding v with zeros
on D1:(i−1), solving the unknowns on D1:i by (20) and then extracting the solution on Di.

Note that the right-hand side of (20) is zero on D1:(i−1), thus the only role of the first i − 1
blocks of equations in (20) is to induce the radiation condition at the left boundary of Di implicitly.
To simulate this radiation condition, one can directly put the PML region to the left side of Di
instead of putting it far away on D1. That’s the key idea of the sweeping factorization: move the
PML region adjacent to the domain of interest Di and approximate the operator T[i] by solving a
much smaller system compared to (20) (see Figure 6).

By introducing the modified plain waves, we can build the local stencils for points in the auxiliary
PML region on the left of Di similar to what was done in Section 2.2.2. A subtle difference is that,
the local spacial frequency is perturbed to ω

√
1−m(x) instead of ω at location x, and we need to

use this local frequency to build the local stencil for each point.

13



D1 D2 D3 D4 D5

T[3]

D1 D2 D3 D4 D5

T̃[3]

Figure 6: This figure is an illustration of the moving PML method. Left: T[3] is the restriction

of H−1
[1:3,1:3] to the discrete domain D3. Right: We move the PML adjacent to D3 to induce the

approximation operator T̃[3] as the restriction to D3 of the corresponding subproblem on D2:3.

To save computational cost of the stencil construction, we do not use the exact value of the
local frequency. Though building local stencil in the PML region with the exact local frequency
takes only constant steps per point in theory, the constant is not small since it involves finding the
kernel of a 8× 9 matrix. Instead, we consider the square frequency range:

[ ω2(1−max{m(x)}) , ω2(1−min{m(x)}) ].

We choose some samples uniformly from this range interval, and build local stencils only for those
samples. Then for each point in the PML region, we assign the stencil to be the one from the
samples with the closest local square frequency value, a technique introduced earlier in [21]. In
practice, only n samples will be enough for an accurate approximation. So it only takes O(bn)
steps to build these stencils, which is negligible compared to the problem size O(n2). An intuition
of why we only need n samples is that, O(ω2/n) is the size of the variation in one neighborhood µi
on average, so there’s no need to make the sampling scale smaller than that.

With the auxiliary PML region on the left of Di, we can solve a much smaller system instead of
solving (20). In our setting, the set of the auxiliary PML points for Di is just Di−1 since the width
of the PML region is the same as Di−1. The auxiliary system can be written as[

H̃[i−1,i−1] H̃[i−1,i]

H[i,i−1] H[i,i]

] [
∗
w

]
=

[
0
v

]
, (21)

where the bottom block of equations is inherited from (20), and the top block is defined by the
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local stencils of the second type in the auxiliary PML region, the role of which is to simulate the
radiation boundary condition on the left of Di.

A minor problem here is that the auxiliary PML region for D2 consists only the normal layers in
D1 rather than all the layers, so (21) needs a slight modification for i = 2: we restrict the columns of
H[2,1] to the normal layers in D1 so that the two blocks are compatible. This problem is inessential
and the patch here is only to make the discussion strictly correct. In practice, the width of the
slices and the PML regions can be rather flexible.

Equation (21) defines an approximating operator T̃[i] : v → w for i ∈ 1 . . . , ` by restricting the

system (21) on D(i−1):i to Di. Note that for i = 1, T̃[1] is exactly equal to T[1] if we treat D0 as
∅ naturally. Compared to (20), Equation (21) is a much smaller quasi-1D problem, which can be
solved efficiently with the LU factorization.

2.4 Putting together

We now have all the tools needed to design a linear-complexity preconditioner for the discretized
Lippmann-Schwinger equation (5). The setup and application processes of the preconditioner are
given by Algorithms 1 and 2 respectively. The slice width b is typically a small integer less than
10, thus both the setup and the application costs are linear.

Algorithm 1 Setup of the preconditioner for the system (5). Complexity = O(b2N).

1: Compute the stencils α and β. Complexity = O(N).
2: Compute the PML stencils γ for different local frequency samples and different positions of

complex stretching. Complexity = O(bn).
3: Divide the domain into ` slices as D1 . . . ,D`.
4: Define the approximating operator T̃[i] by the sweeping factorization below from Step 5 to 8.

Complexity = O(b2N):
5: for i = 1, . . . , ` do
6: Pad Di with auxiliary PML points in Di−1 to form the subproblem (21) where the auxiliary

PML stencils are built with samples closet to the local square frequency values.
7: Compute the LU factorization of (21), which defines the solution operator. Restricting the

solution operator to Di induces T̃[i].
8: end for

We would like to make some comments below for the actual implementation of the algorithm.

1. The algorithm presented above constructs the sweeping factorization along the x1 direction
from left to right. Indeed, since we have radiation conditions on all sides of the domain, we
can construct the factorization from both sides and sweep toward the middle slice. The two
sweeping fronts can be processed independently until they meet in the middle, where they
exchange some local information in the middle slice and then sweep back to the boundaries
independently. This is potentially helpful for the parallelization of the algorithm.

2. The widths of the slices and the auxiliary PML regions are completely arbitrary. There are
two reasons why we set them to be b uniformly in what above. The first is for the simplicity
of discussion. The second is that, given the PML width b, it is optimal to set the width of
each slice to be also b to minimize the setup and application costs of the preconditioner. In
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Algorithm 2 Application of the preconditioner. Complexity = O(bN).

1: Form the right-hand side f of (19). Complexity = O(N).
2: Solve the linear system (19) approximately by the process below from Step 3 to 9.

Complexity = O(bN).
3: ũ[1] = T̃[1]f[1]

4: for i = 2, . . . , ` do
5: ũ[i] = T̃[i](f[i] −H[i,i−1]ũ[i−1])
6: end for
7: for i = `− 1, . . . , 1 do
8: ũ[i] = ũ[i] − T̃[i](H[i,i+1]ũ[i+1])
9: end for

10: Now ũ is an approximation to H−1f . Extract the solution of ũ on D as the output.

practice, it may not be possible to uniformly divide the domain where each slice contains b
layers exactly. In that case, we change the widths of one or two slices accordingly, which has
negligible effect to the cost and efficiency of the preconditioner.

3. The constructions of the stencils α, β and γ, though depending on n and ω, are essentially
independent of the velocity field c(x). First, the computation of α and β only involves the
free space Green’s function G(x), where the velocity field is completely irrelevant. Next, for
the local PML stencils γ, they might depend on c(x) slightly, but only on the range as we see
from the sampling process. In practice c(x) = Θ(1), so the range is actually bounded for fixed
ω. Thus we can precompute the stencils without given the velocity field. This means that the
stencil construction only needs a fixed cost for given problem size, which can be eliminated
from the setup process of the algorithm for the input c(x).

2.5 Numerical results

In this section we present the numerical results in 2D. The algorithm is implemented in MATLAB
and the tests are performed on a 2.4-GHz server. We force MATLAB to use only one computational
thread to test the sequential time cost. The preconditioner is combined with the standard GMRES
solver with relative tolerance 10−6 and restart value 20. The domain is discretized with h = λ/8
where λ = 2π/ω is the typical wavelength.

We choose b = 8 as the width of the slices and the auxiliary PML regions. This corresponds to
about one wavelength width for the PML regions and the slices used in the sweeping preconditioner.
The sweeping factorization is built with two fronts sweeping toward the middle slice, and the middle
slice is padded with auxiliary PMLs on both sides for the corresponding quasi-1D subproblem.

Four velocity fields are tested in 2D, which are

(i) A converging Gaussian centered at (0.5, 0.5).

(ii) A diverging Gaussian centered at (0.5, 0.5).

(iii) 32 randomly placed converging Gaussians with narrow width.

(iv) A random velocity field that is equal to 1 at ∂Ω.
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The incoming wave uI(x) for each test is a plane wave shooting downward at frequency ω. The
test results are given in Tables 1, 2, 3 and 4 respectively. The notations in the tables are listed as
follows.

• ω is the angular frequency.

• N is the number of unknowns.

• Tsetup is the setup cost of the preconditioner in seconds.

• Tapply is the application cost of the preconditioner in seconds.

• Niter is the iteration number.

• Tsolve is the solve cost of the preconditioner in seconds.
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ω/(2π) N Tsetup Tapply Niter Tsolve

16 1272 1.03e−01 1.47e−02 5 1.96e−01
32 2552 3.01e−01 4.85e−02 5 4.27e−01
64 5112 1.23e+00 1.82e−01 5 1.89e+00
128 10232 4.80e+00 7.29e−01 6 8.58e+00
256 20472 1.95e+01 2.90e+00 7 4.69e+01

Table 1: Numerical results for velocity field (i) in 2D. Top: The velocity field c(x) (left) and the
total wave field u(x) + uI(x) (right) for ω/(2π) = 64. Bottom: Table of the numerical results for
different problem sizes.

From the numerical tests we observe that both the setup time and the application time scale
linearly in N , which are in accordance with the complexity analyses. More importantly, the iteration
numbers change only slightly as the problem size grows, almost independent of ω.

We notice that the iteration number also depends on the velocity field. For simple fields such as
the diverging Gaussian, it requires less iterations compared to more complicated fields such as the
narrower converging Gaussians. This makes sense intuitively since converging lenses and velocity
fields with drastic local variations increase the oscillations and refractions of the wave field, thus
the corresponding systems are harder to solve. In addition, for the sweeping factorization to work
well, we need to assume that there are no strong reflections and refractions during the transmission
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ω/(2π) N Tsetup Tapply Niter Tsolve

16 1272 1.59e−01 2.73e−02 4 1.79e−01
32 2552 5.39e−01 4.86e−02 4 3.29e−01
64 5112 1.23e+00 1.82e−01 5 1.61e+00
128 10232 4.81e+00 7.04e−01 5 7.19e+00
256 20472 1.95e+01 2.89e+00 6 4.01e+01

Table 2: Numerical results for velocity field (ii) in 2D. Top: The velocity field c(x) (left) and the
total wave field u(x) + uI(x) (right) for ω/(2π) = 64. Bottom: Table of the numerical results for
different problem sizes.

of the waves so that the auxiliary PMLs in the intermediate slices can make correct approximations
to the true underlying DtN maps. In practice, moderate amount of wave-ray bendings can be taken
care of by a few more iterations as we see in the tests for the multiple diverging Gaussians and the
random field. If the velocity field is even worse, for example, if the field has large region of strong
discontinuities, then neither will the Nyström method be able to give an accurate discretization
scheme, nor can the sweeping factorization provide an accurate approximating solution due to the
strong reflections caused by the discontinuities. Thus for our preconditioner to work, we require
certain smoothness from the velocity fields. Nonetheless, as we can tell from the numerical examples,
the preconditioner works well even when the fields have drastic transitions in narrow regions. So
this approach can be widely applied to many use cases.
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ω/(2π) N Tsetup Tapply Niter Tsolve

16 1272 9.27e−02 1.39e−02 9 2.02e−01
32 2552 3.01e−01 4.88e−02 8 6.65e−01
64 5112 1.23e+00 1.82e−01 9 2.95e+00
128 10232 4.80e+00 7.08e−01 10 1.43e+01
256 20472 1.94e+01 2.96e+00 11 7.57e+01

Table 3: Numerical results for velocity field (iii) in 2D. Top: The velocity field c(x) (left) and the
total wave field u(x) + uI(x) (right) for ω/(2π) = 64. Bottom: Table of the numerical results for
different problem sizes.
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ω/(2π) N Tsetup Tapply Niter Tsolve

16 1272 9.05e−02 1.39e−02 7 1.54e−01
32 2552 2.98e−01 4.88e−02 7 5.80e−01
64 5112 1.23e+00 1.82e−01 8 2.65e+00
128 10232 4.83e+00 7.07e−01 9 1.26e+01
256 20472 1.95e+01 2.90e+00 9 6.09e+01

Table 4: Numerical results for velocity field (iv) in 2D. Top: The velocity field c(x) (left) and the
total wave field u(x) + uI(x) (right) for ω/(2π) = 64. Bottom: Table of the numerical results for
different problem sizes.
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3 Preconditioner in 3D

This section presents the preconditioner in 3D. As we see from Section 2, the approach is essentially
dimension independent and it can be easily generalized to 3D. We will keep the description short,
mainly emphasizing the differences compared to the 2D case so that the reader can get the central
idea effortlessly. The 3D numerical results for both the recursive approach and the non-recursive
approach of the sweeping factorization are provided in the second part of this section.

3.1 Problem formulation, sparsification and sweeping factorization

In this section we formulate the approach in 3D. All the notations in 2D can be easily reused
without causing any ambiguities. We will keep them unless otherwise stated.

We assume Ω = (0, 1)3 contains the support of m(x). The domain is discretized with step size
h = O(1/ω) in each dimension. A similar quadrature correction formula is used for the central
weight of the Green’s function, which gives an accuracy of O(h4).

For the sparsification process, the first type of stencils α and β can be constructed similarly,
where now each neighborhood µi has 27 points. For the second type of stencils in the PML region,
we use the modified plain waves in 3D, defined similarly as

Fσ(x) := exp( iω(r · xσ)), ‖r‖2 = 1,

where now xσ and r are in R3, and xσ is stretched to the complex plane from x for all three
coordinates. In 2D, the stencil γ is defined as the kernel vector which annihilates the independent
waves shooting toward the eight most common directions. This can be done similarly in 3D. We
now need a set of 26 directions, which is defined as

R :=

{
(r1, r2, r3)√
r2
1 + r2

2 + r2
3

: (r1, r2, r3) ∈ {−1, 0, 1}3 \ {(0, 0, 0)}

}
.

In other words, these are the directions shooting from the center of a neighborhood to the 26
boundary neighbor points.

The computational cost of constructing the stencils in 3D seems higher due to more degrees of
freedom and larger size of the neighborhoods. But indeed, the relative cost compared to the sweeping
factorization is lower than the 2D case, let alone that the stencil computations are independent of
the velocity field and they can be done by a once-in-a-life-time preprocessing.

For the sweeping factorization, the domain are now divided into ` quasi-2D slices. The aux-
iliary PMLs are padded to each slice similarly. Each subproblem is quasi-2D, which can be
solved efficiently by the nested dissection algorithm with O(b3n3) setup cost and O(b2n2 log n)
application cost. Consisting of ` ≈ n/b subproblems, the whole process has a total setup cost
O(b2n4) = O(b2N4/3) and application cost O(bn3 log n) = O(bN logN). Note that the direct use
of the nested dissection algorithm to the 3D sparse system costs O(N2) for setup and O(N4/3) for
solve. The sweeping factorization drastically reduces the costs by dimension reduction.

For each of the quasi-2D problem, we can sweep similarly along the x2 direction, reducing it to `
quasi-1D subproblems. This reduces the setup cost to O(b4N) and the application cost to O(b2N),
which are both linear in N , but more sensitive to the slice width b. We call this the recursive
approach [20] while the one in the previous paragraph as non-recursive.
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3.2 Numerical results

In this section we present the numerical results in 3D. The test configurations are the same as
Section 2.5 unless otherwise stated. In the 3D tests, we set b = 4 for the slice width and PML
width.

The four velocity fields tested are

(i) A converging Gaussian centered at (0.5, 0.5, 0.5).

(ii) A diverging Gaussian centered at (0.5, 0.5, 0.5).

(iii) 256 randomly placed converging Gaussians of narrow width.

(iv) A random velocity field that is equal to 1 at ∂Ω.

The right-hand side is a plain wave shooting downward at frequency ω.
The tests of the non-recursive approach are given in Tables 5,6, 7 and 8, and the ones of the

recursive approach are in Tables 9, 10, 11, 12, where the relative costs compared to the non-recursive
approach are also listed as percentages, together with the iteration numbers of the non-recursive
ones in the parentheses for the convenience of comparison.
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ω/(2π) N Tsetup Tapply Niter Tsolve

4 313 6.85e+00 4.20e−01 5 2.46e+00
8 633 5.74e+01 3.28e+00 5 1.78e+01
16 1273 5.97e+02 2.74e+01 5 1.57e+02
32 2553 7.24e+03 2.49e+02 6 1.68e+03

Table 5: Numerical results for velocity field (i) in 3D with the non-recursive approach. Top: The
velocity field c(x) (left) and the total wave field u(x) + uI(x) (right) in a cross-section view for
ω/(2π) = 32. Bottom: Table of the numerical results for different problem sizes.

From the numerical tests we see that, same as the 2D cases, the iteration numbers remain
essentially independent of the problem size. The preconditioner converges in a few iterations for
all the test cases. Another highlight is that, the recursive approach requires only zero or one
more iteration compared to the non-recursive approach, which means that the recursive sweeping
factorization for the quasi-2D linear systems keeps the total approximation error almost at the same
level.
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ω/(2π) N Tsetup Tapply Niter Tsolve

4 313 7.04e+00 4.27e−01 4 1.85e+00
8 633 5.85e+01 3.26e+00 5 1.77e+01
16 1273 5.99e+02 2.70e+01 5 1.54e+02
32 2553 7.24e+03 2.49e+02 5 1.41e+03

Table 6: Numerical results for velocity field (ii) in 3D with the non-recursive approach. Top: The
velocity field c(x) (left) and the total wave field u(x) + uI(x) (right) in a cross-section view for
ω/(2π) = 32. Bottom: Table of the numerical results for different problem sizes.
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ω/(2π) N Tsetup Tapply Niter Tsolve

4 313 6.84e+00 4.23e−01 6 2.92e+00
8 633 5.71e+01 3.31e+00 8 2.87e+01
16 1273 5.93e+02 2.75e+01 8 2.50e+02
32 2553 7.19e+03 2.48e+02 8 2.35e+03

Table 7: Numerical results for velocity field (iii) in 3D with the non-recursive approach. Top: The
velocity field c(x) (left) and the total wave field u(x) + uI(x) (right) in a cross-section view for
ω/(2π) = 32. Bottom: Table of the numerical results for different problem sizes.
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ω/(2π) N Tsetup Tapply Niter Tsolve

4 313 7.09e+00 4.33e−01 10 4.64e+00
8 633 5.85e+01 3.32e+00 10 3.60e+01
16 1273 5.99e+02 2.76e+01 9 2.81e+02
32 2553 7.20e+03 2.48e+02 9 2.65e+03

Table 8: Numerical results for velocity field (iv) in 3D with the non-recursive approach. Top: The
velocity field c(x) (left) and the total wave field u(x) + uI(x) (right) in a cross-section view for
ω/(2π) = 32. Bottom: Table of the numerical results for different problem sizes.

ω/(2π) N Tsetup Tapply Niter Tsolve

4 313 2.79e+00 (41%) 3.44e−01 (82%) 5 (5) 2.01e+00 (82%)
8 633 1.62e+01 (28%) 2.25e+00 (69%) 5 (5) 1.29e+01 (73%)
16 1273 1.10e+02 (18%) 1.64e+01 (60%) 5 (5) 1.01e+02 (65%)
32 2553 8.23e+02 (11%) 1.24e+02 (50%) 6 (6) 9.33e+02 (56%)

Table 9: Numerical results for velocity field (i) in 3D with the recursive approach.

ω/(2π) N Tsetup Tapply Niter Tsolve

4 313 2.81e+00 (40%) 3.38e−01 (79%) 5 (4) 1.84e+00 (100%)
8 633 1.63e+01 (28%) 2.27e+00 (70%) 5 (5) 1.28e+01 (72%)
16 1273 1.11e+02 (19%) 1.64e+01 (61%) 5 (5) 1.02e+02 (66%)
32 2553 8.18e+02 (11%) 1.24e+02 (50%) 6 (5) 9.31e+02 (66%)

Table 10: Numerical results for velocity field (ii) in 3D with the recursive approach.

ω/(2π) N Tsetup Tapply Niter Tsolve

4 313 2.80e+00 (41%) 3.36e−01 (79%) 6 (6) 2.19e+00 (75%)
8 633 1.63e+01 (29%) 2.25e+00 (68%) 8 (8) 2.02e+01 (70%)
16 1273 1.11e+02 (19%) 1.64e+01 (60%) 8 (8) 1.62e+02 (65%)
32 2553 8.20e+02 (11%) 1.24e+02 (50%) 8 (8) 1.24e+03 (53%)

Table 11: Numerical results for velocity field (iii) in 3D with the recursive approach.
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ω/(2π) N Tsetup Tapply Niter Tsolve

4 313 2.81e+00 (40%) 3.37e−01 (78%) 10 (10) 3.67e+00 (79%)
8 633 1.64e+01 (28%) 2.24e+00 (68%) 10 (10) 2.52e+01 (70%)
16 1273 1.12e+02 (19%) 1.64e+01 (60%) 9 (9) 1.82e+02 (65%)
32 2553 8.22e+02 (11%) 1.24e+02 (50%) 9 (9) 1.39e+03 (52%)

Table 12: Numerical results for velocity field (iv) in 3D with the recursive approach.
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4 Sparsifying scheme as a direct method

In this section, we show that the compact stencils acquired by the sparsifying scheme can be viewed
as accurate discretizations of the Helmholtz equation. Specifically, we will solve the 2D homogeneous
Helmholtz equation with the compact scheme introduced in the sparsification process, and compare
it with the Quasi-Stabilized FEM (QSFEM) method in [5]. As we shall see from the numerical tests,
both methods did comparably well at minimizing the pollution error with only a small number of
points per wavelength.

Let’s consider
(−∆− ω2)u(x) = f(x), x ∈ R2, (22)

where f(x) is a delta source centered at (0.5, 0.5). The exact solution is given by the Green’s
function with a shift of the center (see Figure 7 for an example).
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Figure 7: An example of the 2D Green’s function centered at (0.5, 0.5) with ω/(2π) = 8.

For the sparsifying scheme, we have the discrete equation

α∗uµi
= β∗fµi

for each of the interior point i, where α and β are 9-point stencils given by (11) and (12) respectively,
and f is the discrete delta function.

For the QSFEM method, the 9-point stencil for u is given by

A =

A2 A1 A2

A1 A0 A1

A2 A1 A2

 ,
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where

A0 = 4,

A1 = 2
c1(κ)s1(κ)− c2(κ)s2(κ)

c2(κ)s2(κ)(c1(κ) + s1(κ))− c1(κ)s1(κ)(c2(κ) + s2(κ))
,

A2 = 2
c2(κ) + s2(κ)− c1(κ)− s1(κ)

c2(κ)s2(κ)(c1(κ) + s1(κ))− c1(κ)s1(κ)(c2(κ) + s2(κ))
,

c1(κ) := cos
(
κ cos

π

16

)
, s1(κ) := cos

(
κ sin

π

16

)
,

c2(κ) := cos

(
κ cos

3π

16

)
, s2(κ) := cos

(
κ sin

3π

16

)
,

κ := ωh,

and h is the step size. The right-hand side is the discrete delta function with a scaling.
We solve the 2D homogeneous Helmholtz equation (22) and compare the phase errors against

the true solution. Specifically, we write the solutions u(x) as u(x) = A(x)e2π iφ(x) and compare the
phase φ(x) with the one acquired by the Green’s function. The boundary points are discretized by
a slowly turning-up PML such that the reflection error is negligible compared to the phase error.

Figure 8 shows the phase errors for a large test case (1024 waves across each dimension) with a
small number of points (3 to 5) per wavelength. From the tests we see that the phase error of the
sparsifying scheme is comparable to the one of the QSFEM method in [5].

We would like to comment that, as pointed out in [4], 2D compact stencils can be optimized to
reduce the pollution error, but cannot completely eliminate it. For example, in Figure 8, the phase
shifts near the four corners are about 1/6 for the 3 p.p.w. test cases, which is not negligible for
practical usage. Hence for large problems, one would eventually have to increase the stencil width,
or use more points per wavelength.
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(a) Sparsifying scheme at 5 p.p.w.
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(b) QSFEM at 5 p.p.w.

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(c) Sparsifying scheme at 4 p.p.w.
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(d) QSFEM at 4 p.p.w.
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(e) Sparsifying scheme at 3 p.p.w.
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(f) QSFEM at 3 p.p.w.

Figure 8: The phase errors of the two schemes for ω/(2π) = 1024. Phase error is defined as
φ(x)−φG(x) where φ(x) is computed from the numerical solution u(x) = A(x)e2π iφ(x), and φG(x)
is acquired by the phase of the Green’s function (exact solution). From top to bottom are test cases
for 5, 4 and 3 points per wavelength respectively. We see that both methods behave similarly in
terms of the phase error. For the hardest test cases (3 p.p.w with 1024 waves across each dimension),
the phase shifts at the far field (four corners) are about 1/6. This corresponds to about 2.3× 10−4

relative phase error. In other words, the distortion of each wavelength of both methods are on the
order of 10−4 with only three points per wavelength.
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5 Conclusions and future work

This paper presents the sparsify-and-sweep preconditioner for the Lippmann-Schwinger equation
in 2D and 3D. The preconditioner involves two steps. The first step is to sparsify the system by
introducing the compact stencil sparsifying scheme. The second step is to apply the sweeping fac-
torization to the sparsified system. Numerical results show that the iteration number is essentially
independent of the angular frequency ω.

Though the cost is reduced to linear, potential improvements can be made regarding paralleliza-
tions. First, the factorization of the auxiliary subproblems are completely independent, thus can
be done in parallel, especially when the recursive approach in 3D is adopted where there are O(n2)
quasi-1D subproblems that can be processed at the same time. Second, the setup and applica-
tion processes of the nested dissection algorithm can also be parallelized for independent skeleton
fronts (see [23] for example). Third, the two sweeping fronts during the application process are also
independent and can be processed in a parallel way.

Another future work is on the sparsification of dense systems by the data-fitting approach. This
approach was first proposed by Ying in [31, 30] for solving highly indefinite systems including time-
independent high frequency wave propagations with radiation conditions or periodic boundary
conditions. This paper generalizes it to incorporate the PML approach. There have been some
explorations and applications of this sparsification method, such as solving the nonlinear eigenvalue
problems in soliton systems [22]. This data-fitting approach to design local schemes is quite different
from most classical approaches, and could be potentially generalized to other types of integral
equations and dense systems.
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