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REPRESENTATION OF HAMILTON-JACOBI EQUATION IN OPTIMAL

CONTROL THEORY WITH COMPACT CONTROL SET

ARKADIUSZ MISZTELA †

ABSTRACT. In this paper we study the existence of sufficiently regular representations

of Hamilton-Jacobi equations in optimal control theory with the compact control set. We

introduce a new method to construct representations for a wide class of Hamiltonians,

wider than it was achieved before. Our result is proved by means of these conditions on

Hamiltonian that are necessary for the existence of a representation. In particular, we

solve an open problem of Rampazzo (2005). We apply the obtained results to reduce a

variational problem to an optimal control problem.
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1. INTRODUCTION

The Hamilton-Jacobi equation

(1.1)
−Vt +H(t, x,−Vx) = 0 in (0,T )×Rn,

V(T, x) = g(x) in R
n,

with a convex Hamiltonian H in the gradient variable can be studied with connection to

optimal control problem. It is possible, provided there exists sufficiently regular triple

(A, f , l) satisfying the following equality

(1.2) H(t, x, p) = sup
a∈A
{ 〈 p , f (t, x,a)〉 − l(t, x,a) }.

Then the value function of the Bolza optimal control problem defined by the formula

V(t0, x0) = inf
(x,a)(·)∈S f (t0,x0)

{

g(x(T ))+

∫ T

t0

l(t, x(t),a(t))dt
}

is the unique viscosity solution of (1.1); see, e.g. [2, 3, 5, 6], where S f (t0, x0) denotes the

set of all trajectory-control pairs of the control system

(1.3)
ẋ(t) = f (t, x(t),a(t)), a(t) ∈ A a.e. t ∈ [t0,T ],

x(t0) = x0.

While working with control systems it is usually required from f to be such a function

that to every measurable control a(·) on [t0,T ] with values in a compact subset A of Rm

there corresponds a unique solution x(·) of (1.3) defined on [t0,T ]. It is guaranteed, for

instance, by the local Lipschitz continuity and the sublinear growth of f with respect to x.

The local Lipschitz continuity of l with respect to x is also necessary to prove regularities

of value functions.
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The triple (A, f , l) that satisfies the equation (1.2) and the conditions stated above is

called a faithful representation of H. The use of the name “faithful representation” is

justified by the fact that there are infinitely many triples (A, f , l), that satisfy the equation

(1.2), among with there are the ones with totally irregular functions f , l. The triple (A, f , l),

not necessarily regular, which satisfies the equality (1.2) is called a representation of H.

The main goal of our paper is to introduce a new method of construction of faithful

representations for a wide class of Hamiltonians. This class is wider than the one in the

papers [7, 8, 11]. Our result is proved by using only these conditions on Hamiltonian

that are necessary for the existence of a faithful representation. It means that the obtained

result is optimal. In particular, we solve an open problem of Rampazzo [11, Rem. 2.3].

Let the Lagrangian L be the Legendre-Fenchel transform of H in its gradient variable:

(1.4) L(t, x,v) = sup
p∈Rn

{ 〈v, p〉−H(t, x, p) }.

Here 〈v, p〉 denotes the inner product of v and p. It is possible for L to attain the value

+∞. The sets: domϕ = { x ∈ Rn | ϕ(x) 6= ±∞}, gphϕ = { (x,r) ∈ Rn ×R | ϕ(x) = r } and

epiϕ = { (x,r) ∈ Rn ×R | ϕ(x) 6 r } are called the effective domain, the graph and the

epigraph of ϕ, respectively.

In 1985 Ishii [8] proposed a representation (A, f , l) involving continuous functions f , l

with the infinite-dimensional control set A and expressed the solution of a stationary

Hamilton-Jacobi equation as the value function of an associated infinite horizon opti-

mal control problem. The lack of local Lipschitz continuity of functions f , l with respect

to the variable x in Ishii [8] paper causes a lot of trouble in applications. Moreover, in

general, not to every control u(·) there corresponds exactly one trajectory x(·). This means

that one can not control the system completely by selecting one of controls.

In 2005 Rampazzo [11] constructed a faithful representation by using set-valued and

convex analysis. His representation (A, f , l) of H is a graphical representation, i.e. a triple

(A, f , l) which satisfies e(t, x,A) = gphL(t, x, ·), where e = ( f , l ). Examples 3.5 and 3.6

show that a graphical representation is a faithful representation, if the Lipschitz-type con-

dition on L(t, ·, ·) is assumed. It is a strong assumption, because L(t, ·, ·) is usually a lower

semicontinuous function (see Exs. 2.7, 2.8, 2.9). Such strong condition in [11] is the

condition (H5). This problem was also noticed by Rampazzo (see [11, Rem. 2.3]).

In 2014 Frankowska-Sedrakyan [7] investigated faithful representations of Hamilto-

nians that are measurable with respect to the time variable. In this case Lipschitz con-

stants of Hamiltonians should depend on time. Frankowska-Sedrakyan [7] noticed that if

Lipschitz constants of Hamiltonians are measurable functions, then the results of Ram-

pazzo [11] do not allow to claim whether Lipschitz constants of faithful representations

of these Hamiltonians are also measurable. It is well-known that in applications one re-

quires not only measurability of Lipschitz constants of faithful representations but also

integrability. This problem was solved by Frankowska-Sedrakyan [7] by indicating the

precise Lipschitz constants of faithful representations depending on Lipschitz constants

of Hamiltonians. Besides, they studied stability of faithful representations. This result

allowed Sedrakyan [15] to prove appropriate convergence of value functions. However,

Frankowska-Sedrakyan [7] used a graphical representation similarly to Rampazzo [11].

Therefore, they also need such strong condition (see [7, (H5)]).
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In this paper we solve the above problem concerning a graphical representation from

[7, 11]. To this end, we introduced a new method of construction of a faithful repre-

sentation. Our representation (A, f , l) of H is an epigraphical representation, i.e. a triple

(A, f , l) which satisfies the condition gphL(t, x, ·) ⊂ e(t, x,A)⊂ epi L(t, x, ·), where e= ( f , l ).

An epigraphical representation is constructed by parametrizing epi L(t, x, ·) instead of

dom L(t, x, ·) as in the case of graphical representation. It implies that the dimension of the

control set in our construction increases by one comparing to the graphical construction.

The set epi L(t, x, ·) is not bounded as opposed to the set dom L(t, x, ·). This fact causes

new difficulties, but we are able to deal with them. Thus, we obtain results that do not

need such strong assumptions as in papers [7, 11]. Besides, we indicate precise Lipschitz

constants of faithful representations similarly to Frankowska-Sedrakyan [7]. In particular,

our results imply the stability of representations. In Subsection 3.1 we show that not every

Hamiltonian has a faithful representation with the compact control set. This property is

satisfied if Lagrangian is bounded on the effective domain (see Thm. 3.1). Moreover, our

construction of a faithful representation can be applied to Hamiltonians with unbounded

Lagrangians on effective domains. However, in that case we obtain faithful representa-

tions with the unbounded control set. Such results will be contained in [9].

We apply our results to reduce a variational problem to on optimal control problem

(see Subsect. 3.4). More precisely, let us consider a variational problem associated with

the given Lagrangian L. Let us define Hamiltonian H as the Legendre-Fenchel transform

of L in its velocity variable. Applying our result to Hamiltonian H we obtain its faithful

representation (A, f , l). Then the variational problem associated with Lagrangian L is equi-

valent to the optimal control problem associated with the triple (A, f , l) (see Thm. 3.13).

Ealier, Olech [10] and Rockafeller [12, 13] investigated the opposite problem that is a

reduction of an optimal control problem to a variational problem. More precisely, they

considered the optimal control problem associated with the given triple (A, f , l). Using

this triple they defined Lagrangian L in such a way that the optimal control problem as-

sociated with the triple (A, f , l) is equivalent to the variational problem associated with

Lagrangian L. The details concerning this reduction can also be found in the comprehen-

sive monograph of Clarke [4]. Therefore, the above results prove that there exists strong

correlation between variational problems and optimal control problems.

The outline of the paper is as follows. Section 2 contains hypotheses and preliminary

results. In Section 3 we gathered our main results. Sections 4, 5, 6, 7 contain proofs.

2. HYPOTHESES AND PRELIMINARY RESULTS

We shall consider the following assumptions on the Hamiltonian:

(H1) H : [0,T ]×Rn×Rn→R is Lebesgue measurable in t for any x, p ∈Rn;

(H2) H(t, x, p) is continuous with respect to (x, p) for every t ∈ [0,T ];

(H3) H(t, x, p) is convex with respect to p for every (t, x) ∈ [0,T ]×Rn;

(H4) There exists a measurable map c : [0,T ]→ [0,+∞) such that for every

t ∈ [0,T ] and x, p,q ∈Rn one has |H(t, x, p)−H(t, x,q)| 6 c(t)(1+ |x|)|p−q|.
An extended-real-valued function is called proper if it never attains the value −∞ and it

is not identically equal to +∞. If H(t, x, ·) is proper, convex and lower semicontinuous for
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each (t, x), then L(t, x, · ) := H∗(t, x, · ), where ∗ denotes the Legendre-Fenchel transform,

also has these properties. Moreover, the following equality H(t, x, · ) = L∗(t, x, · ) holds, cf.

[14, Thm. 11.1]. By means of the properties of the Legendre-Fenchel transform from

[14] we can prove an equivalent version of (H1)−(H4) in the Lagrangian terms:

Proposition 2.1. Assume that H satisfies (H1)−(H3). If L(t, x, · ) = H∗(t, x, · ), then

(L1) L : [0,T ]×Rn×Rn→R∪{+∞} is Lebesgue-Borel-Borel measurable;

(L2) L(t, x,v) is lower semicontinuous with respect to (x,v) for every t ∈ [0,T ];

(L3) L(t, x,v) is convex and proper with respect to v for every (t, x) ∈ [0,T ]×Rn;

(L4) ∀ (t, x,v) ∈ [0,T ]×Rn×Rn ∀ xi→ x ∃vi→ v : L(t, xi,vi)→ L(t, x,v);

Additionally, if H satisfies (H4), then

(L5) ∀ (t, x,v) ∈ [0,T ]×Rn×Rn : |v| > c(t)(1+ |x|) ⇒ L(t, x,v) = +∞;

Additionally, if H is continuous, then L is lower semicontinuous and

(L6) ∀ (t, x,v) ∈ [0,T ]×Rn×Rn ∀ (ti, xi)→ (t, x) ∃vi→ v : L(ti, xi,vi)→ L(t, x,v).

Actually, we can prove that (H1)−(H4) are equivalent to (L1)−(L5).

Let us define the set-valued map EL : [0,T ]×Rn ⊸R
n×R by the following formula

EL(t, x) := { (v,η) ∈Rn×R | L(t, x,v) 6 η }.

We say that a set-valued map F : [0,T ] ⊸ R
m is measurable, if for every open set

U ⊂Rm the inverse image F−1(U) := { t ∈ [0,T ] | F(t)∩U 6= ∅} is a Lebesgue measurable

set. The conditions (L1)−(L3) imply that a set-valued map t→ EL(t, x) is measurable for

every x ∈Rn and the set EL(t, x) is nonempty, closed and convex for all (t, x) ∈ [0,T ]×Rn.

The set gphF := { (z,y) | y ∈ F(z) } is called a graph of the set-valued map F. From (L2)

it follows that a set-valued map x→ EL(t, x) has a closed graph in R
n×R for all t ∈ [0,T ].

We say that a set-valued map F : Rn ⊸ R
m is lower semicontinuous in Kuratowski’s

sense, if for every open set U ⊂Rm the set F−1(U) is open. It is equivalent to the following

condition: ∀ (z,y) ∈ gphF ∀ zi→ z ∃ yi→ y : yi ∈ F(zi) for all large i ∈N. The condition

(L4) means that a set-valued map x→ EL(t, x) is lower semicontinuous in Kuratowski’s

sense for every t ∈ [0,T ].

For a nonempty subset K of Rn we define ‖K‖ := supx∈K |x|. The condition (L5) implies

that ‖dom L(t, x, ·)‖6 c(t)(1+ |x|) for every (t, x) ∈ [0,T ]×Rn.

If L is lower semicontinuous with respect to all variables and satisfies (L6) then the

set-valued map EL has a closed graph and is lower semicontinuous.

If we combine the above facts we obtain the following corollary:

Corollary 2.2. Assume that H satisfies (H1)−(H3). If L(t, x, · ) = H∗(t, x, · ), then

(E1) EL(t, x) is a nonempty, closed, convex subset of R
n+1 for all (t, x) ∈ [0,T ]×Rn;

(E2) x→ EL(t, x) has a closed graph for every t ∈ [0,T ];

(E3) x→ EL(t, x) is lower semicontinuous for every t ∈ [0,T ];

(E4) t→ EL(t, x) is measurable for every x ∈Rn;

Additionally, if H satisfies (H4), then

(E5) ‖dom L(t, x, ·)‖6 c(t)(1+ |x|) for every (t, x) ∈ [0,T ]×Rn;

Additionally, if H is continuous, then

(E6) (t, x)→ EL(t, x) has a closed graph and is lower semicontinuous.
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2.1. Lipschitz set-valued map x→ EL(t, x)x→ EL(t, x)x→ EL(t, x). In this subsection we present Hausdorff

continuity of a set-valued map in Lagrangian and Hamiltonian terms. Let IB(x̄,R) denote

the closed ball in R
n of center x̄ and radius R > 0. We set IBR := IB(0,R) and IB := IB(0,1).

Theorem 2.3. Assume (H1)−(H3). Let L(t, x, · ) = H∗(t, x, · ) and H(t, x, · ) = L∗(t, x, · ).
Then there are the equivalences (HLC)⇔ (LLC)⇔ (ELC):

(HLC) For any R > 0 there exists a measurable map kR : [0,T ]→ [0,+∞) such that

|H(t, x, p)−H(t,y, p) | 6 kR(t) (1+ |p|) |x− y| for all t ∈ [0,T ], x,y ∈ IBR, p ∈Rn.

(LLC) For any R > 0 there exists a measurable map kR : [0,T ]→ [0,+∞) such that for

all t ∈ [0,T ], x,y ∈ IBR, v ∈ dom L(t, x, ·) there exists u ∈ dom L(t,y, ·) satisfying inequalities

|u− v|6 kR(t)|y− x| and L(t,y,u) 6 L(t, x,v)+ kR(t)|y− x|.
(ELC) For any R > 0 there exists a measurable map kR : [0,T ]→ [0,+∞) such that

EL(t, x) ⊂ EL(t,y)+ kR(t) |x− y| (IB× [−1,1]) for all t ∈ [0,T ], x,y ∈ IBR.

Equivalences hold for the same map kR(·).

Theorem 2.3 follows from Propositions 2.5 and 2.6 that are proven below.

Let K be a nonempty subset of R
m. The distance from x ∈ Rm to K is defined by

d(x,K) := infy∈K |x− y|. For nonempty subsets K and D of Rm, the extended Hausdorff

distance between K and D is defined by

(2.1) H (K,D) :=max
{

sup
x∈K

d(x,D), sup
x∈D

d(x,K)
}

∈R∪{+∞}.

By Theorem 2.3 (ELC) we obtain the following corollary:

Corollary 2.4. Assume that H satisfies (H1)−(H3) and (HLC). If L(t, x, · ) = H∗(t, x, · ),
then the following inequality

(2.2) H (EL(t, x),EL(t,y)) 6 2kR(t) |x− y|

holds for any t ∈ [0,T ], x,y ∈ IBR and R > 0.

The epi-sum of functions φ, ψ : Rn → R∪ {+∞} is a function φ✜ψ : Rn → R∪ {±∞}
given by the formula

(φ✜ψ)(v) := inf
u∈Rn
{φ(u)+ψ(v−u)}.

Let functions φ, ψ : Rn → R∪ {+∞} be proper, convex and lower semicontinuous. We

also assume that domψ = R
n. Then the epi-sum φ∗✜ ψ∗ is a proper, convex and lower

semicontinuous function. Moreover, the following equality holds, cf. [14, Thm. 11.23],

(2.3) (φ+ψ)∗ = φ∗✜ ψ∗.

Proposition 2.5. Assume that p→H(t, x, p) and p→H(t,y, p) are two real-valued convex

functions. Assume further that L(t, x, · ) = H∗(t, x, · ) and L(t,y, · ) = H∗(t,y, · ). Then the

following conditions are equivalent:

(a)(a)(a) H(t, x, p) 6 H(t,y, p)+ kR(t) (1+ |p|) |x− y| for all p ∈Rn.

(b)(b)(b) For all v ∈ dom L(t, x, ·) there exists u ∈ dom L(t,y, ·) such that |u−v|6 kR(t) |x−y|
and L(t,y,u) 6 L(t, x,v)+ kR(t) |x− y|.
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Proof. We start with the proof of implication (a)⇒ (b). Let ψ(p) := kR(t) (1+ |p|) |x− y|
and φ(p) := H(t,y, p) for every p ∈Rn. It is not difficult to calculate that for every v ∈Rn

(2.4) ψ∗(v) =

{

−kR(t) |x− y| if |v|6 kR(t) |x− y|
+∞ if |v| > kR(t) |x− y|.

We notice that the function ψ is proper, convex, lower semicontinuous and domψ = R
n.

Therefore, by the equality (2.3) it follows that for every v ∈Rn

(2.5) (φ+ψ)∗(v) = (φ∗✜ψ∗)(v) = inf
u : |v−u|6kR(t) |x−y|

{L(t,y,u)− kR(t) |x− y| } .

The inequality (a) implies that H(t, x, p) 6 φ(p)+ψ(p) for every p ∈ Rn. Therefore, by

the property of the Legendre-Fenchel transform we obtain (φ+ψ)∗(v) 6 L(t, x,v) for all

v ∈Rn. By the equality (2.5) we get for all v ∈Rn

(2.6) L(t, x,v) > inf
u : |v−u|6kR(t) |x−y|

{L(t,y,u)− kR(t) |x− y|) }.

The function u→ L(t,y,u)−kR(t) |x−y| is proper and lower semicontinuous, so it achieves

its minimum on the compact set {u | |v−u|6 kR(t) |x− y| }. Using the inequality (2.6), we

obtain the condition (b). This completes the proof (a)⇒ (b).

Now, we prove the implication (b)⇒ (a). To this end, we fix p̄ ∈Rn and ε > 0. Because

of H(t, x, · ) = L∗(t, x, · ), there exists v̄ ∈ dom L(t, x, ·) such that

(2.7) H(t, x, p̄)−ε6 〈p̄, v̄〉−L(t, x, v̄).

By the condition (b) there exists ū ∈ dom L(t,y, ·) such that

(2.8) |ū− v̄|6 kR(t) |y− x| and L(t,y, ū) 6 L(t, x, v̄)+ kR(t) |y− x|.

By the inequalities (2.7) and (2.8) we obtain

H(t, x, p̄)−ε 6 〈p̄, v̄〉−L(t, x, v̄)+H(t,y, p̄)−〈p̄, ū〉+L(t,y, ū)

6 H(t,y, p̄)+ |p̄| |v̄− ū|+L(t,y, ū)−L(t, x, v̄)

6 H(t,y, p̄)+ kR(t) (1+ |p̄|) |x− y|.

As ε > 0 is an arbitrary number, we get H(t, x, p̄) 6 H(t,y, p̄)+ kR(t) (1+ |p̄|) |x− y|. Also,

p̄ ∈ Rn is arbitrary, so we have the inequality H(t, x, p) 6 H(t,y, p)+ kR(t) (1+ |p|) |x− y|
for every p ∈Rn. It complete the proof. �

Proposition 2.6. Assume that v→ L(t, x,v) and v→ L(t,y,v) are two proper extended-

real-valued functions. Then the following conditions are equivalent:

(a)(a)(a) For all v ∈ dom L(t, x, ·) there exists u ∈ dom L(t,y, ·) such that |u−v|6 kR(t) |y− x|
and L(t,y,u) 6 L(t, x,v)+ kR(t) |y− x|.

(b)(b)(b) EL(t, x) ⊂ EL(t,y)+ kR(t) |x− y| (IB× [−1,1]).

Proof. We start with the proof of implication (a)⇒ (b). Without loss of generality we

assume that x 6= y. Let (v,η) ∈ EL(t, x). Then L(t, x,v) 6 η. So v ∈ dom L(t, x, ·). By the

condition (a), there exists u ∈ dom L(t,y, ·) such that

(i) |u− v|6 kR(t) |y− x| and (ii) L(t,y,u) 6 L(t, x,v)+ kR(t) |y− x|.
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Let us define µ := η+ kR(t) |y− x|, s := −1 and

b := (v−u)/(kR(t) |y− x|) if kR(t) > 0, b := 0 if kR(t) = 0.

The inequality (i) implies that b ∈ IB. Besides, from (ii) we obtain

L(t,y,u) 6 L(t, x,v)+ kR(t) |y− x|6 η+ kR(t) |y− x| = µ.

Therefore, (b, s) ∈ IB× [−1,1] and (u,µ) ∈ epi L(t,y, ·) = EL(t,y). So, we get

(v,η) = (u,µ)+ kR(t) |y− x| (b, s)

∈ EL(t,y)+ kR(t) |x− y| (IB× [−1,1]).

Thus, the condition (b) of the proposition is proven.

Now, we prove the implication (b)⇒ (a). Let v ∈ dom L(t, x, ·). Then (v,L(t, x,v)) ∈
EL(t, x). Therefore, by the condition (b) we obtain

(v,L(t, x,v)) ∈ EL(t,y)+ kR(t) |x− y| (IB× [−1,1]).

So, there exists (u,µ) ∈ EL(t,y) and (b, s) ∈ IB× [−1,1] such that

(v,L(t, x,v)) = (u,µ)+ kR(t) |y− x| (b, s).(2.9)

Because of (u,µ) ∈ EL(t,y), L(t,y,u) 6 µ. Hence u ∈ dom L(t,y, ·). By the equality (2.9)

we have |u− v| = kR(t) |y− x| |b|6 kR(t) |y− x| and

L(t,y,u) 6 µ = L(t, x,v)+ kR(t) |y− x|(−s)

6 L(t, x,v)+ kR(t) |y− x|.

Thus, we have proven that for every v ∈ dom L(t, x, ·) there exists u ∈ epi L(t,y, ·) such that

|u− v| 6 kR(t) |y− x| and L(t,y,u) 6 L(t, x,v)+ kR(t) |y− x|. It completes the proof of the

proposition. �

2.2. Examples of Hamiltonians. In this subsection we present examples of Hamilto-

nians which satisfy (H1)−(H4) and (HLC). These examples have nonregular Lagrangians,

so they do not fulfill conditions of theorems contained in [7, 11].

Example 2.7. Let us define the Hamiltonian H : R×R→R by the formula

H(x, p) :=max{ |p| |x| −1,0 }.

This Hamiltonian satisfies conditions (H1)−(H4) and (HLC). The Lagrangian L :R×R→
R∪{+∞} given by the formula (1.4) has the form

L(x,v) =















+∞ if v 6∈ [−|x|, |x| ], x 6= 0,
∣

∣

v
x

∣

∣ if v ∈ [−|x|, |x| ], x 6= 0,

0 if v = 0, x = 0,

+∞ if v 6= 0, x = 0.

Obviously, dom L(x, ·) = [−|x|, |x| ] for all x ∈ R. Moreover, the function (x,v)→ L(x,v)

does not satisfy the assumption (H5) of [7, 11]. Indeed, it is not continuous on the set

dom L, because limi→∞ L (1/i,1/i) = 1 6= 0 = L(0,0).
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Example 2.8 (Rampazzo). Let us define the Hamiltonian H : R×R→R by the formula

H(x, p) :=
√

1+ p2− |x|.
This Hamiltonian satisfies conditions (H1)−(H4) and (HLC). The Lagrangian L :R×R→
R∪{+∞} given by the formula (1.4) has the following form

L(x,v) =

{

|x| −
√

1− v2 if v ∈ [−1,1],

+∞ if v 6∈ [−1,1].

Obviously, dom L(x, ·) = [−1,1] for all x ∈ R. We notice that the function (x,v)→ L(x,v)

is continuous on the set dom L, but it does not fulfill the condition (H5) of [7, 11].

Example 2.9. Let us define the Hamiltonian H : R×R→R by the formula

H(x, p) :=

{

(
√
|xp| −1)2 if |xp| > 1,

0 if |xp|6 1.

This Hamiltonian satisfies conditions (H1)−(H4) and (HLC). The Lagrangian L :R×R→
R∪{+∞} given by the formula (1.4) has the following form

L(x,v) =



















+∞ if v 6∈ (−|x|, |x| ), x 6= 0,

|v|
|x| − |v| if v ∈ (−|x|, |x| ), x 6= 0,

0 if v = 0, x = 0,

+∞ if v 6= 0, x = 0.

The set dom L(x, ·) = (−|x|, |x| ) is not closed and the function v→ L(x,v) is not bounded

on this set for every x ∈R \ {0}. Moreover, the function (x,v)→ L(x,v) is not continuous

on the set dom L.

3. MAIN RESULTS

In this section we describe main results of the paper that concern faithful representations

with the compact control set. We start with proving that representations are not deter-

mined uniquely. In addition to this, they can be totally irregular.

We consider the Hamiltonian H : R ×R → R given by the formula H(x, p) := |p|.
We notice that the triple ([−1,1], f , l) is a representation of this Hamiltonian if functions

f , l : R× [−1,1]→R satisfy the following conditions:

(3.1) | f (x,a)|6 1, f (x,1) = 1, f (x,−1) = −1 and l(x,a) > 0, l(x,1) = l(x,−1) = 0.

Let i(·) and j(·) be arbitrary functions on R with values in [0,∞). Then functions

(3.2) fi(x,a) := a (1+ |a| i(x))/(1+ i(x)), l j(x,a) := (1− |a|) j(x), x ∈R, a ∈ [−1,1]

satisfy conditions (3.1). Therefore, every triple ([−1,1], fi, l j), where fi, l j are given by

(3.2), is a representation of the Hamiltonian H(x, p) = |p|. There also exist representations

with nonmeasurable (with respect to the state variable) functions fi, l j, for instance if i(·)
and j(·) are not measurable. However, our results show that from the set of representations

one can always choose a faithful representation.
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3.1. Necessary condition for the existence of a faithful representation. We start

this subsection with introducing the condition for an upper bound of the Lagrangian on

its effective domain.

(BLC) There exists a map λ : [0,T ]×Rn → R measurable in t for every x ∈ Rn and

continuous in x for every t ∈ [0,T ] such that L(t, x,v) 6 λ(t, x) for every (t, x) ∈ [0,T ]×Rn

and v ∈ dom L(t, x, ·). Assume further that for any R > 0 there exists a measurable map

kR : [0,T ]→ [0,+∞) such that λ(t, ·) is kR(t)-Lipschitz on IBR for every t ∈ [0,T ].

Theorem 3.1. Let A be a nonempty compact set. We suppose that f : [0,T ]×Rn×A→R
n

and l : [0,T ]×Rn × A→ R are measurable in t for all (x,a) ∈ Rn × A and continuous

in (x,a) for all t ∈ [0,T ]. Furthermore, we assume that for every R > 0 there exists a

measurable map kR : [0,T ]→ [0,+∞) such that l(t, ·,a) is kR(t)-Lipschitz on IBR for every

t ∈ [0,T ] and a ∈ A. If the triple (A, f , l) is a representation of H, then L(t, x, · ) :=H∗(t, x, · )
satisfies the condition (BLC) with the same map kR(·). Moreover, if f , l are continuous,

then λ is also continuous.

The proof of Theorem 3.1 is given in Section 4.

Corollary 3.2. Let A be a nonempty compact set. Assume that f : [0,T ]×Rn ×A→ R
n

and l : [0,T ]×Rn ×A→ R are measurable in t for all (x,a) ∈ Rn ×A and continuous in

(x,a) for all t ∈ [0,T ]. Assume also the following:

(i) for every R > 0 there exists a measurable map kR : [0,T ] → [0,+∞) such that

| f (t, x,a)− f (t,y,a)| 6 kR(t) |x− y| and |l(t, x,a)− l(t,y,a)| 6 kR(t) |x− y| for every

t ∈ [0,T ], x,y ∈ IBR, a ∈ A;

(ii) there exists a measurable map c : [0,T ]→ [0,+∞) such that for every t ∈ [0,T ],

x ∈Rn, a ∈ A one has | f (t, x,a)|6 c(t)(1+ |x|).
If the triple (A, f , l) is a representation of H, then H satisfies (H1)−(H4), (HLC) and

L(t, x, · ) := H∗(t, x, · ) satisfies (BLC). Moreover, if f , l are continuous, then H and λ are

also continuous.

Remark 3.3. It follows from Theorem 3.1 that the condition (BLC) is necessary for the

existence of a continuous and t-measurable faithful representation (A, f , l) with a compact

control set A. Therefore, neither continuous nor t-measurable faithful representations

(A, f , l) with the compact control set A exists for the Hamiltonian from the Example 2.9

because the function v→ L(t, x,v) from this example is not upper bounded on the effective

domain.

3.2. Sufficient condition for the existence of a faithful representation. This sub-

section is devoted to a new representation theorem with the compact control set.

Theorem 3.4 (Representation). Assume (H1)−(H4), (HLC) and (BLC). Then there exist

f : [0,T ]×Rn×IB→R
n and l : [0,T ]×Rn×IB→R, measurable in t for all (x,a) ∈Rn×IB

and continuous in (x,a) for all t ∈ [0,T ], such that for every t ∈ [0,T ], x, p ∈Rn

H(t, x, p) = sup
a∈IB
{ 〈 p, f (t, x,a)〉− l(t, x,a) }

and f (t, x, IB)= dom H∗(t, x, ·), where IB is the closed unit ball in R
n+1. Moreover, we have:
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(A1) For any R > 0 and for all t ∈ [0,T ], x,y ∈ IBR, a,b ∈ IB

| f (t, x,a)− f (t,y,b)|6 10(n+1)(ωR(t)+3(1+R)kR(t)+1)(|x− y|+ |a−b|),
|l(t, x,a)− l(t,y,b)|6 10(n+1)(ωR(t)+3(1+R)kR(t)+1)(|x− y|+ |a−b|),
where ωR(t) := |λ(t,0)|+ |H(t,0,0)|+ c(t)(2+R).

(A2) | f (t, x,a)|6 c(t)(1+ |x|) for all t ∈ [0,T ], x ∈Rn, a ∈ IB.

(A3) gphH∗(t, x, ·) ⊂
⋃

a∈IB( f (t, x,a), l(t, x,a)) for all t ∈ [0,T ], x ∈Rn.

(A4) Furthermore, if H, λ(·, ·), c(·) are continuous, so are f , l.

The proof of Theorem 3.4 is given in Section 5. Now we point out the differences

between our construction of a faithful representation and the ones presented in [7, 11]. In

order to do this, we consider two following examples.

Example 3.5. Let the Hamiltonian H be as in Example 2.7. This Hamiltonian satisfies

assumptions (H1)−(H4), (HLC) and (BLC). Our construction of representation (A, f , l) of

this Hamiltonian leads to the set A = [−1,1]× [−1,1] and functions:

f (x,a1,a2) = a1|x|, l(x,a1,a2) = |a1|+ |a2|(1− |a1|),

that are the Lipschitz continuous. However, construction of representation (A, f , l) of this

Hamiltonian that is presented in [7, 11] leads to the set A = [−1,1] and functions:

f (x,a) = a|x|, l(x,a) = L(x, f (x,a)) =

{

|a| if x 6= 0

0 if x = 0.

We notice that the function l is discontinuous with respect to x for all a ∈ [−1,1] \ {0}.

Example 3.6. Let the Hamiltonian H be as in Example 2.8. This Hamiltonian satisfies

assumptions (H1)−(H4), (HLC) and (BLC). Our construction of representation (A, f , l) of

this Hamiltonian leads to the set A = {(a1,a2) ∈R×R | a2
1+a2

2 6 1} and functions:

f (x,a1,a2) = a1, l(x,a1,a2) = a2+ |x|,

that satisfy the Lipschitz continuity. However, construction of representation (A, f , l) of

this Hamiltonian that is presented in [7, 11] leads to the set A = [−1,1] and functions:

f (x,a) = a, l(x,a) = L(x, f (x,a)) = |x| −
√

1−a2.

We notice that the function l is continuous, but not Lipschitz continuous with respect to

the variable a.

Remark 3.7. If (H1)−(H4), (HLC), (BLC) hold for a.e. t ∈ [0,T ], then the conclusion of

Theorem 3.4 also holds for a.e. t ∈ [0,T ]. Indeed, to show this, we simply redefine the

Hamiltonian. More precisely, if H satisfies (H1)−(H4), (HLC), (BLC) for a.e. t ∈ [0,T ],

then there exist a measure zero set N and a Hamiltonian H̃ such that H̃(t, ·, ·) = 0 for

all t ∈ N and H̃(t, ·, ·) = H(t, ·, ·) for all t ∈ [0,T ] \N . Moreover, H̃ satisfies (H1)−(H4),

(HLC), (BLC) for all t ∈ [0,T ].
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3.3. Stability of representations. In this subsection we will see that the faithful rep-

resentation obtained in the previous subsection is stable.

Theorem 3.8. Let Hi,H : [0,T ]×Rn×Rn→R, i ∈N, satisfy (H1)−(H4), (HLC). Assume

that Li, L, i ∈N, are given by (1.4) and satisfy (BLC). Let Hi,λi,ci, i ∈N, be continuous

functions. We consider the representations (IB, fi, li) and (IB, f , l) of Hi and H, respectively,

defined as in the proof of Theorem 3.4. If Hi,λi,ci converge uniformly on compacts to

H,λ,c, respectively, then fi converge to f and li converge to l uniformly on compacts in

[0,T ]×Rn× IB.

Theorem 3.9. Let Hi,H : [0,T ]×Rn×Rn→R, i ∈N, satisfy (H1)−(H4), (HLC). Assume

that Li, L, i ∈ N, are given by (1.4) and satisfy (BLC). We consider the representations

(IB, fi, li) and (IB, f , l) of Hi and H, respectively, defined as in the proof of Theorem 3.4.

If Hi(t, ·, ·), λi(t, ·) converge uniformly on compacts to H(t, ·, ·), λ(t, ·) , respectively, and

ci(t) → c(t) for all t ∈ [0,T ], then fi(t, ·, ·) converge to f (t, ·, ·) and li(t, ·, ·) converge to

l(t, ·, ·) uniformly on compacts in R
n× IB for all t ∈ [0,T ].

The proofs of Theorems 3.8 and 3.9 are given in Section 6.

The following corollary is a consequence of Theorem 3.8 and Gronwall’s Lemma.

Corollary 3.10. Let Hi,H : [0,T ]×Rn×Rn→R, i ∈N, satisfy (H1)−(H4), (HLC). Assume

that Li, L, i ∈ N, are given by (1.4) and satisfy (BLC). Let Hi,λi,kRi,ci,gi, i ∈ N, be

continuous functions and converge uniformly on compacts to H,λ,kR,c,g, respectively. We

consider the representations (IB, fi, li) and (IB, f , l) of Hi and H, respectively, defined as in

the proof of Theorem 3.4. If Vi and V are the value functions associated with (IB, fi, li,gi)

and (IB, f , l,g), respectively, then Vi converge uniformly on compacts to V in [0,T ]×Rn.

Definition 3.11. A sequence of functions {ϕi}i∈N, is said to epi-converge to function ϕ

(e-limi→∞ϕi = ϕ for short) if, for every point x ∈Rn,

(i) liminfi→∞ϕi(xi) > ϕ(x) for every sequence xi→ x,

(ii) limsupi→∞ϕi(xi) 6 ϕ(x) for some sequence xi→ x.

The following corollary is a consequence of Theorem 3.9 and Gronwall’s Lemma.

Corollary 3.12. Let Hi,H : [0,T ]×Rn×Rn → R, i ∈ N, satisfy (H1)−(H4), (HLC) with

the same integrable functions c(·), kR(·). Assume that Li, L, i ∈N, are given by (1.4) and

satisfy (BLC) with the same integrable function kR(·). Let gi, g, i ∈ N, be proper, lower

semicontinuous and e-limi→∞ gi = g. Assume that there exists an integrable function µ(·)
such that |Hi(t,0,0)| 6 µ(t) and |λi(t,0)| 6 µ(t) for all t ∈ [0,T ], i ∈ N. We consider the

representations (IB, fi, li) and (IB, f , l) of Hi and H, respectively, defined as in the proof of

Theorem 3.4. Assume that Vi and V are the value functions associated with (IB, fi, li,gi)

and (IB, f , l,g), respectively. If Hi(t, ·, ·) converge to H(t, ·, ·) and λi(t, ·) converge to λ(t, ·)
uniformly on compacts for all t ∈ [0,T ], then e-limi→∞Vi = V.

3.4. Reduction a variational problem to an optimal control problem. The indica-

tor function ψS (·) of a set S is given by 0 on this set but +∞ outside. Let A([0,1],Rn) be

the space of all absolutely continuous functions.
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We consider the following generalized variational problem:

(Pv)
minimize Γ[x(·)] := φ(x(0), x(1))+

∫ 1

0
L(t, x(t), ẋ(t))dt,

subject to x(·) ∈A([0,1],Rn).

We consider the following optimal control problem:

(Pc)

minimize Λ[(x,a)(·)] := φ(x(0), x(1))+

∫ 1

0
l(t, x(t),a(t))dt,

subject to ẋ(t) = f (t, x(t),a(t)), a(t) ∈ IB a.e. t ∈ [0,1],

and x(·) ∈A([0,1],Rn), a(·) ∈ L1([0,1],Rn+1).

Theorem 3.13. Assume that (H1)−(H4), (HLC), (BLC) hold with integrable functions

c(·), kR(·), H(·,0,0), λ(·,0). We consider the representation (IB, f , l) of H defined as in

Theorem 3.4. Assume further that φ is a proper, lower semicontinuous function and there

exists M > 0 such that min{ |z|, |x| }6 M for all (z, x) ∈ domφ. Then

minΓ[x(·)] = minΛ[(x,a)(·)].

Besides, if x̄(·) is the optimal arc of (Pv) such that x̄(·) ∈ domΓ, then there exists ā(·) such

that (x̄, ā)(·) is the optimal arc of (Pc) and (x̄, ā)(·) ∈ domΛ. Conversely, if (x̄, ā)(·) is the

optimal arc of (Pc), then x̄(·) is the optimal arc of (Pv).

The proof of Theorem 3.13 is given in Section 7.

Applying Theorem 3.13 to φ(z, x) := ψ{x0}(z)+g(x), we obtain the following corollary:

Corollary 3.14. Assume that (H1)−(H4), (HLC), (BLC) hold with integrable functions

c(·), kR(·), H(·,0,0), λ(·,0). We consider the representation (IB, f , l) of H defined as in

Theorem 3.4. Assume further that g is a proper, lower semicontinuous function. If V is

the value function associated with (IB, f , l,g), then for all (t0, x0) ∈ [0,T ]×Rn

V(t0, x0) = min
x(·)∈A([t0,T ],Rn)

x(t0)=x0

{

g(x(T ))+

∫ T

t0

L(t, x(t), ẋ(t))dt
}

= min
(x,a)(·)∈S f (t0,x0)

{

g(x(T ))+

∫ T

t0

l(t, x(t),a(t))dt
}

.

Remark 3.15. Using Corollary 3.14 we can prove that if g is locally Lipschitz continu-

ous/continuous/lower semicontinuous, so is V .

4. PROOF OF THEOREM 3.1

At the beginning we prove three lemmas which will be used in the proof of Theorem 3.1.

Lemma 4.1. Assume that p→ H(t, x, p) is a real-valued convex function. If the triple

(A, f , l) is a representation of H with a nonempty set A, then L(t, x, · ) := H∗(t, x, · ) satisfies

the inequality L(t, x, f (t, x,a)) 6 l(t, x,a) for all a ∈ A.
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Proof. We assume, by contradiction, that the claim is false. Then there exists ā ∈ A

such that l(t, x, ā) < L(t, x, f (t, x, ā)). Therefore ( f (t, x, ā), l(t, x, ā)) 6∈ epi L(t, x, ·). Because

p → H(t, x, p) is finite and convex, the function v→ L(t, x,v) is proper, convex, lower

semicontinuous and H(t, x, · ) = L∗(t, x, · ). Hence the set epiL(t, x, ·) is nonempty, closed

and convex. By Epigraph Separation Theorem, there exists p̄ ∈Rn such that

(4.1) sup
(v,η)∈epi L(t,x,·)

〈 (v,η), (p̄,−1)〉 < 〈 ( f (t, x, ā), l(t, x, ā)), (p̄,−1)〉.

We note that (v,L(t, x,v)) ∈ epi L(t, x, ·) for all v ∈ dom L(t, x, ·). So, by the inequality (4.1)

and the equality H(t, x, · ) = L∗(t, x, · ) we obtain

H(t, x, p̄) = sup
v∈dom L(t,x,·)

〈(v,L(t, x,v)), (p̄,−1)〉

6 sup
(v,η)∈epi L(t,x,·)

〈 (v,η), (p̄,−1)〉

< 〈 ( f (t, x, ā), l(t, x, ā)), (p̄,−1)〉
6 H(t, x, p̄).

Thus, we have a contradiction, that completes the proof. �

Lemma 4.2. Assume that the set A is nonempty and compact. Let a → f (t, x,a) and

a→ l(t, x,a) be continuous functions and the set f (t, x,A) be convex. If the triple (A, f , l)

is a representation of H, then f (t, x,A) = dom L(t, x, ·), where L(t, x, · ) := H∗(t, x, · ).

Proof. Because p→ H(t, x, p) is finite and convex, the function v→ L(t, x,v) is proper,

convex and lower semicontinuous. By Lemma 4.1 we have L(t, x, f (t, x,a)) 6 l(t, x,a) for

every a ∈ A. Hence we obtain f (t, x,A) ⊂ dom L(t, x, ·). Now we show that dom L(t, x, ·) ⊂
f (t, x,A). We suppose that this inclusion is false. Then there exists an element v̄ ∈
dom L(t, x, ·) and v̄ 6∈ f (t, x,A). The set f (t, x,A) is nonempty, convex and compact, so

by the Separation Theorem, there exist an element p̄ ∈Rn and numbers α,β ∈R such that

〈 v̄, p̄ 〉6 α < β6 〈 f (t, x,a), p̄ 〉, ∀ a ∈ A.

We notice that by the above inequality we obtain

(4.2) β−α 6 〈 f (t, x,a)− v̄, p̄ 〉, ∀ a ∈ A.

Put ξ(t, x) := infa∈A l(t, x,a). Let n̄ ∈ N be large enough for the following inequality to hold

(4.3) L(t, x, v̄)− ξ(t, x) < n̄ · (β−α).

Our assumptions imply that for q̄ := −n̄ · p̄ there exists aq̄ ∈ A such that

(4.4) H(t, x, q̄) = 〈 q̄, f (t, x,aq̄)〉− l(t, x,aq̄).

From (4.3), (4.4) and (4.2), it follows that

n̄ · (β−α) > 〈 v̄, q̄ 〉−H(t, x, q̄)− ξ(t, x)

> 〈 v̄− f (t, x,aq̄), q̄ 〉
> n̄ · (β−α).

Thus, we obtain a contradiction, that completes the proof. �
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Lemma 4.3. Assume that the set A is nonempty and compact. Let f : [0,T ]×Rn×A→R
n

and l : [0,T ]×Rn ×A→ R be measurable in t for all (x,a) ∈ Rn ×A and continuous in

(x,a) for all t ∈ [0,T ]. If the triple (A, f , l) is a representation of H, then there exist a

nonempty, compact set Aand functions f : [0,T ]×Rn×A→R
n and l : [0,T ]×Rn×A→R,

measurable in t for all (x,a) ∈ Rn×A and continuous in (x,a) for all t ∈ [0,T ], such that

the triple (A,f,l) is a representation of H. Moreover, for all t ∈ [0,T ], x ∈Rn

f(t, x,A)= conv f (t, x,A), l(t, x,A)= conv l(t, x,A).(4.5)

Furthermore, if for any R > 0 there exists a measurable map kR : [0,T ]→ [0,+∞) such

that l(t, ·,a) is kR(t)-Lipschitz on IBR for every t ∈ [0,T ] and a ∈ A, then l(t, ·,a) is also

kR(t)-Lipschitz on IBR for every t ∈ [0,T ] and a∈ A.

Besides, if functions f , l are continuous, then functions f,lare also continuous.

Proof. We define a simplex in the space R
n+1 by

∆ := {(α0, . . . ,αn) ∈ [0,1]n+1 | α0+ · · ·+αn = 1}.

Obviously, the set ∆ is compact. Moreover, we define the set A by A := An+1 ×∆. We

notice that the set A is compact. The functions f, l are defined for every t ∈ [0,T ], x ∈Rn

and a= (a0, . . . ,an,α0, . . . ,αn) ∈ An+1×∆ = A by the formulas:

f(t, x,a) :=
n

∑
i=0

αi f (t, x,ai), l(t, x,a) :=
n

∑
i=0

αi l(t, x,ai).

We notice that f,lare measurable in t for all (x,a)∈Rn×Aand continuous in (x,a) for all

t ∈ [0,T ]. Besides, if functions f , l are continuous, then functions f,lare also continuous.

It is not difficult to show that the triple (A,f,l) is the representation of H and l(t, ·,a) is

kR(t)-Lipschitz on IBR for every t ∈ [0,T ] and a∈ A..

Equalities (4.5) follow from the definition of the triple (A,f,l) and Carathéodory’s The-

orem (convex hull), cf. [14, Thm. 2.29]. �

Proof of Theorem 3.1. By Lemma 4.3 there exist a nonempty, compact set A and func-

tions f, lmeasurable in t for all (x,a) ∈ Rn ×A and continuous in (x,a) for all t ∈ [0,T ]

such that the triple (A,f,l) is a representation of H and f(t, x,A)= conv f (t, x,A) for every

t ∈ [0,T ], x ∈Rn. Therefore, by Lemma 4.2 we have for all t ∈ [0,T ], x ∈Rn

f(t, x,A)= dom L(t, x, ·).(4.6)

Now, we prove that the condition (BLC) holds. Let us put

λ(t, x) := sup
a∈A

l(t, x,a)

Obviously, the function λ is measurable in t for all x ∈ Rn and continuous in x for all

t ∈ [0,T ]. Let us fix t ∈ [0,T ] and x ∈ Rn. If v̄ ∈ dom L(t, x, ·), then by the equality (4.6)

there exists ā∈ A such that v̄ = f(t, x, ā). Therefore by Lemma 4.1

L(t, x, v̄) = L(t, x,f(t, x, ā)) 6 l(t, x, ā) 6 λ(t, x).

It means that L(t, x,v) 6 λ(t, x) for every t ∈ [0,T ], x ∈Rn, v ∈ dom L(t, x, ·).
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By Lemma 4.3 we have that l(t, ·,a) is kR(t)-Lipschitz on IBR for any t ∈ [0,T ], a∈ A
and R> 0. Let us fix t ∈ [0,T ], x,y ∈ IBR and R > 0. Let ā∈ Abe such that λ(t, x)= l(t, x, ā).

Then we have

λ(t, x)−λ(t,y) = l(t, x, ā)− sup
a∈A

l(t,y,a)

6 l(t, x, ā)−l(t,y, ā) 6 kR(t) |x− y|.
Since t ∈ [0,T ], x,y ∈ IBR and R > 0 are arbitrary, so λ(t, ·) is kR(t)-Lipschitz on IBR for any

t ∈ [0,T ], x,y ∈ IBR and R > 0.

Besides, if functions f , l are continuous, then by Lemma 4.3, the functions f,lare also

continuous. Therefore, the function λ has to be continuous. �

5. PROOF OF REPRESENTATION THEOREM

In the beginning of this section we introduce some auxiliary definitions and lemmas. By

P f c(Rm) we denote a family of all nonempty, closed and convex subsets of Rm. Then, let

Pkc(Rm) be a family of all nonempty, convex and compact subsets of Rm.

Lemma 5.1 ([1, p. 369]). The set-valued map P : Rm×P f c(Rm) ⊸ Pkc(Rm) defined by

P(y,K) := K ∩ IB(y,2d(y,K))

is Lipschitz with the Lipschitz constant 5, i.e. for all K,D ∈ P f c(Rm) and x,y ∈Rm

H (P(x,K),P(y,D)) 6 5(H (K,D)+ |x− y|).

The support function σ(K, ·) : Rm→R of the set K ∈ Pkc(Rm) is a convex real-valued

function defined by

σ(K, p) :=max
x∈K
〈p, x〉, ∀ p ∈Rm.

Let ∑m−1 denotes the unit sphere in R
m and let µ be the measure on ∑m−1 proportional

to the Lebesgue measure and satisfying µ(∑m−1) = 1.

Definition 5.2. Let m ∈N \ {1}. For any K ∈ Pkc(Rm), its Steiner point is defined by

sm(K) := m

∫

∑m−1

pσ(K, p) µ(dp).

One can show that sm(·) is a selection in the sense that sm(K) ∈ K, cf. [1, p. 366].

Lemma 5.3 ([1, p. 366]). The function sm(·) is Lipschitz in the Hausdorff metric with the

Lipschitz constant m on the set of all nonempty, convex and compact subsets of Rm, i.e.

|sm(K)− sm(D)|6 mH (K,D), ∀K,D ∈ Pkc(Rm).

Lemma 5.4 ( [14, Chap. 5 and Chap. 14] ). Let a set-valued map E : [0,T ]×Rn ⊸ R
m

has nonempty, closed values. Assume that E(·, x) is measurable for every x ∈Rn and E(t, ·)
has a closed graph and is lower semicontinuous for every t ∈ [0,T ]. If a real-valued map

ω(t, x), (t, x) ∈ [0,T ]×Rn, is measurable in t for every x ∈ Rn and continuous in x for

every t ∈ [0,T ], then a real-valued map defined by

(t, x,a)→ d(ω(t, x)a,E(t, x)), ∀ (t, x,a) ∈ [0,T ]×Rn×Rm
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is t-measurable for every (x,a) ∈ Rn ×Rm and (x,a)-continuous for every t ∈ [0,T ]. In

addition to this, it is a (t, x,a)-continuous map if ω is continuous, E has a closed graph

and is lower semicontinuous.

Lemma 5.5 ( [14, Cor. 5.21] ). Let a set-valued map Φ : [0,T ]×Rk ⊸ R
m be locally

bounded and has nonempty, compact values. Then Φ is continuous in the sense of the

Hausdorff’s distance (H -continuous) if and only if Φ has a closed graph and is lower

semicontinuous.

The Hausdorff’s distance between closed balls can be estimated in the following way:

(5.1) H (IB(x,r), IB(y, s)) 6 |x− y|+ |r− s|, ∀x,y ∈Rn, ∀r, s > 0.

Theorem 5.6. Let a set-valued map E : [0,T ]×Rn ⊸ R
m has nonempty, closed and

convex values. Assume that E(·, x) is measurable for every x ∈Rn and E(t, ·) has a closed

graph and is lower semicontinuous for every t ∈ [0,T ]. Let a real-valued map ω(t, x) > 1,

(t, x) ∈ [0,T ]×Rn, be measurable in t for all x ∈Rn and continuous in x for all t ∈ [0,T ].

Then there exists a single-valued map e : [0,T ]×Rn ×Rm → R
m such that e(·, x,a) is

measurable for every (x,a) ∈Rn×Rm and e(t, ·, ·) is continuous for every t ∈ [0,T ].

Moreover, for all t ∈ [0,T ], x,y ∈Rn, a,b ∈Rm

(5.2) [E(t, x)∩ IBω(t,x)] ⊂ e(t, x, IB) ⊂ E(t, x),

(5.3) |e(t, x,a)− e(t,y,b)|6 5m[H (E(t, x),E(t,y))+ |ω(t, x)a−ω(t,y)b| ].
Additionally, a single-valued map e is continuous if ω is continuous, E has a closed

graph and is lower semicontinuous.

Proof. Let (t, x,a) ∈ [0,T ]×Rn×Rm. We consider the closed ball G(t, x,a) ⊂Rm with the

center ω(t, x)a and radius 2d(ω(t, x)a,E(t, x)), i.e.

G(t, x,a) := IB(ω(t, x)a,2d(ω(t, x)a,E(t, x))).

By the inequality (5.1), Lemma 5.4 and [1, Cor. 8.2.13] a set-valued map G(·, x,a) is

measurable for every x ∈ Rn, a ∈ Rm and a set-valued map G(t, ·, ·) is H -continuous for

every t ∈ [0,T ]. Moreover, ‖G(t, x,a)‖6 ϕ(t, x,a) for all t ∈ [0,T ], x ∈Rn, a ∈Rm, where

ϕ(t, x,a) := ω(t, x) |a|+2d(ω(t, x)a,E(t, x)).

By Lemma 5.4 and our hypotheses, we obtain that ϕ(·, x,a) is measurable for every x ∈Rn,

a ∈Rm and ϕ(t, ·, ·) is continuous for every t ∈ [0,T ].

Let P be the map defined in Lemma 5.1. We set

Φ(t, x,a) := P(ω(t, x)a,E(t, x)) = E(t, x)∩G(t, x,a).

By our hypotheses, the setΦ(t, x,a) is nonempty, compact and convex. The maps G(·, x,a)

and E(·,a) are measurable and have closed values, so the map Φ(·, x,a) which is their

intersection is also measurable for all x ∈Rn, a ∈Rm, cf. [1, Thm. 8.2.4].

Now we show that a map Φ(t, ·, ·) is H -continuous for every t ∈ [0,T ]. Because of

Lemma 5.5, it is sufficient to show that for each fixed t ∈ [0,T ] the map Φ(t, ·, ·) is locally

bounded, has a closed graph and is lower semicontinuous.
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The map Φ(t, ·, ·) has a closed graph, because it is an intersection of maps G(t, ·, ·) and

E(t, ·) which have closed graphs. Moreover, Φ(t, ·, ·) is locally bounded, because ϕ(t, ·, ·) is

continuous and ‖Φ(t, x,a)‖6 ‖G(t, x,a)‖6 ϕ(t, x,a) for every (t, x,a) ∈ [0,T ]×Rn×Rm.

We prove thatΦ(t, ·, ·) is lower semicontinuous. Let us fix (x,a) ∈Rn×Rm and the open

set O ⊂Rm such that Φ(t, x,a)∩O 6= ∅. We consider two cases.

Case 1. Let intG(t, x,a) = ∅. Then G(t, x,a) ⊂ O. We know that a map G(t, ·, ·) has

compact values and is H -continuous. So we have G(t, x′,a′) ⊂ O for all (x′,a′) near

(x,a). Thus Φ(t, x′,a′) ⊂ G(t, x′,a′) ⊂ O for all (x′,a′) near (x,a). Therefore for every

(x′,a′) sufficiently close to (x,a) we have Φ(t, x′,a′)∩O 6= ∅. It means that in this case,

Φ(t, ·, ·) is lower semicontinuous.

Case 2. Let intG(t, x,a) 6= ∅. Then by the definition of G(t, ·, ·) we deduce that there

exists z2 ∈ E(t, x)∩ intG(t, x,a). We assume that z1 ∈ Φ(t, x,a)∩O. Then the interval

(z1,z2] ⊂ E(t, x)∩ intG(t, x,a). Consequently, we can find an element z ∈ Rm satisfying

z ∈ O∩E(t, x)∩ intG(t, x,a). Hence, for some ε > 0 we have IB(z, ε) ⊂G(t, x,a)∩O. The

set-valued map G(t, ·, ·) is a ball whose center and radius are continuous functions. Hence,

for every (x′,a′) sufficiently close to (x,a) we have IB(z, ε/2) ⊂ G(t, x′,a′). On the other

hand, E is lower semicontinuous, so IB(z, ε/2)∩E(t, x′) 6= ∅ for all x′ near x. Therefore

for every (x′,a′) sufficiently close to (x,a) we have Φ(t, x′,a′)∩O 6= ∅. It means that also

in this case, Φ(t, ·, ·) is lower semicontinuous.

We define the single-valued map e from [0,T ]×Rn×Rm to R
m by

e(t, x,a) := sm(Φ(t, x,a)),

where sm in the Steiner selection. Since Φ is measurable with respect to t, using the

definition of sm, we deduce that e is also measurable with respect to t. By Lemma 5.3 we

have for all t, s ∈ [0,T ], x,y ∈Rn, a,b ∈Rm

(5.4) |e(t, x,a)− e(s,y,b)|6 mH (Φ(t, x,a),Φ(s,y,b)).

We have shown that Φ(t, ·, ·) is H -continuous for every t ∈ [0,T ]. By the inequality (5.4)

we have that e(t, ·, ·) is continuous for all t ∈ [0,T ]. Additionally, if E has a closed graph

and is lower semicontinuous, and ω is continuous, then similarly to the above, one can

prove that Φ is H -continuous. Then by the inequality (5.4) we have that a single-valued

map e is continuous.

We notice that by the inequality (5.4) and Lemma 5.1 for every t ∈ [0,T ], x,y ∈ Rn,

a,b ∈Rm we obtain the inequality (5.3).

Now we show that [E(t, x)∩ IBω(t,x)] ⊂ e(t, x, IB) for every (t, x) ∈ [0,T ]×Rn. For this

purpose, we fix (t, x) ∈ [0,T ]×Rn. Let z ∈ E(t, x)∩IBω(t,x). Setting a := z/ω(t, x), we derive

a ∈ IB, ω(t, x)a = z, Φ(t, x,a) = {z}.
The above properties and Definition 5.2 imply that

z = sm(Φ(t, x,a)) = e(t, x,a) ∈ e(t, x, IB).

We notice that by Definition 5.2 we obtain for all t ∈ [0,T ], x ∈Rn, a ∈Rm

e(t, x,a) = sm(Φ(t, x,a)) ∈Φ(t, x,a) ⊂ E(t, x).

This means that e(t, x, IB) ⊂ E(t, x) for every (t, x) ∈ [0,T ]×Rn. �
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Proposition 5.7. Let A be a nonempty set and let e(t, x, ·) be a single-valued map defined

on A into R
n×R. Assume that H(t, x, ·) is a real-valued convex function and

(5.5) gph L(t, x, ·) ⊂ e(t, x,A) ⊂ epi L(t, x, ·),

where L(t, x, · ) := H∗(t, x, · ). If e(t, x,a) = ( f (t, x,a), l(t, x,a)) for all a ∈ A, then the triple

(A, f , l) is a representation of H. Moreover, f (t, x,A) = dom L(t, x, ·).

Proof. Because H(t, x, ·) is finite and convex, the function L(t, x, · ) := H∗(t, x, · ) is proper,

convex, lower semicontinuous and H(t, x, · ) = L∗(t, x, · ).
Since e(t, x,a) ∈ epiL(t, x, ·) for every a ∈ A, we have ( f (t, x,a), l(t, x,a)) ∈ epi L(t, x, ·)

for all a ∈ A. From the definition of epi L(t, x, ·), it follows that L(t, x, f (t, x,a)) 6 l(t, x,a)

for all a ∈ A. Hence f (t, x,a) ∈ dom L(t, x, ·) for all a ∈ A. Thus, for all a ∈ A and p ∈Rn

〈p, f (t, x,a)〉− l(t, x,a) 6 〈 p, f (t, x,a)〉−L(t, x, f (t, x,a))

6 sup
v∈dom L(t,x,·)

{ 〈p,v〉−L(t, x,v) } = H(t, x, p).

Thus f (t, x,A) ⊂ dom L(t, x, ·) and for every p ∈Rn

(5.6) sup
a∈A
{ 〈 p, f (t, x,a)〉− l(t, x,a) }6 H(t, x, p).

Let us fix v̄ ∈ dom L(t, x, ·). Then (v̄,L(t, x, v̄)) ∈ gphL(t, x, ·). Because of (5.5), there

exists ā ∈ A such that (v̄,L(t, x, v̄)) = e(t, x, ā) = ( f (t, x, ā), l(t, x, ā)). Hence v̄ = f (t, x, ā) and

L(t, x, v̄) = l(t, x, ā). Moreover, for every p ∈Rn

〈p, v̄〉−L(t, x, v̄) = 〈 p, f (t, x, ā)〉− l(t, x, ā)

6 sup
a∈A
{ 〈 p, f (t, x,a)〉− l(t, x,a) }.

Thus dom L(t, x, ·) ⊂ f (t, x,A) and for every p ∈Rn

H(t, x, p) = sup
v∈dom L(t,x,·)

{ 〈p,v〉−L(t, x,v) }

6 sup
a∈A
{ 〈 p, f (t, x,a)〉− l(t, x,a) }.(5.7)

Combining inequalities (5.6) and (5.7) we obtain that the triple (A, f , l) is a representa-

tion of H. Additionally, we have that f (t, x,A) = dom L(t, x, ·). �

Theorem 5.8. Assume that H satisfies (H1)−(H4) and (HLC). Let L be given by (1.4) and

satisfy (BLC). Then there exists a single-valued map e : [0,T ]×Rn × IB→ R
n ×R such

that e(·, x,a) is measurable for every (x,a) ∈ Rn × IB and e(t, ·, ·) is continuous for every

t ∈ [0,T ]. Moreover, for all t ∈ [0,T ], x ∈Rn

(5.8) gph L(t, x, ·) ⊂ e(t, x, IB) ⊂ epi L(t, x, ·).

Furthermore, for any R > 0 and for all t ∈ [0,T ], x,y ∈ IBR, a,b ∈ IB

(5.9)
|e(t, x,a)− e(t,y,b)|6 10(n+1)[kR(t) |x− y|+ |ω(t, x)a−ω(t,y)b| ],
where ω(t, x) := |λ(t, x)|+ |H(t, x,0)|+ c(t)(1+ |x|)+1.

Additionally, if H, λ(·, ·), c(·) are continuous, so is e.
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Proof. Let ω(t, x) := |λ(t, x)|+ |H(t, x,0)|+ c(t)(1+ |x|)+1 and E(t, x) := EL(t, x) for every

(t, x) ∈ [0,T ]×Rn. Because of Corollaries 2.2 and 2.4, the functions ω and E satisfy

assumptions of Theorem 5.6. Therefore, there exists a map e : [0,T ]×Rn×Rn+1→R
n+1

such that e(·, x,a) is measurable for every (x,a) ∈ Rn × IB and e(t, ·, ·) is continuous for

every t ∈ [0,T ]. Moreover, it satisfies (5.2) and (5.3).

By the inequality (5.3) and Corollary 2.4 for all t ∈ [0,T ], x,y ∈ IBR, a,b ∈ IB and R > 0

|e(t, x,a)− e(t,y,b)| 6 5(n+1)[H (EL(t, x),EL(t,y))+ |ω(t, x)a−ω(t,y)b| ]
6 10(n+1)kR(t) |x− y|+5(n+1)|ω(t, x)a−ω(t,y)b|.

It means that the inequality (5.9) is satisfied. Moreover, if we assume that H, λ(·, ·), c(·) are

continuous, then ω is continuous and E has a closed graph and is lower semicontinuous.

Therefore, because of Theorem 5.6, we obtain that the map e is continuous.

Now we show that (5.8) holds. Because of (5.2), it is sufficient to show that for each

fixed (t, x) ∈ [0,T ]×Rn the following inclusion holds:

(5.10) gphL(t, x, ·) ⊂ [E(t, x)∩ IBω(t,x)].

Because H(t, x, ·) is finite and convex, the function L(t, x, · ) := H∗(t, x, · ) is proper,

convex and lower semicontinuous. Let (v,η) ∈ gphL(t, x, ·). Then from the definition of

gphL(t, x, ·), it follows that η = L(t, x,v). Hence (v,η) ∈ E(t, x) and v ∈ dom L(t, x, ·). By

Corollary 2.2 we get ‖dom L(t, x, ·)‖6 c(t)(1+ |x|). Therefore,

(5.11) |v|6 c(t)(1+ |x|).
Moreover, because of (1.4) and (BLC), we have

(5.12) − |H(t, x,0)| 6 L(t, x,v) = η = L(t, x,v) 6 |λ(t, x)|.
Combining inequalities (5.11) and (5.12) we obtain

|(v,η)|6 |v|+ |η|6 c(t)(1+ |x|)+ |λ(t, x)|+ |H(t, x,0)| 6 ω(t, x).

Consequently, we get (v,η) ∈ [E(t, x)∩ IBω(t,x)]. That completes the proof of (5.10). �

Remark 5.9. Let e : [0,T ]×Rn× IB→R
n+1 be the function from Theorem 5.8. We define

two functions f : [0,T ]×Rn× IB→R
n and l : [0,T ]×Rn× IB→R by formulas:

f (t, x,a) := π1(e(t, x,a)) and l(t, x,a) := π2(e(t, x,a)),

where π1(v,η) = v and π2(v,η) = η for all v ∈Rn and η ∈R. Then for all t ∈ [0,T ], x ∈Rn,

a ∈ IB the following equality holds

e(t, x,a) = ( f (t, x,a), l(t, x,a)).

Therefore, for all t ∈ [0,T ], x,y ∈Rn, a,b ∈ IB we obtain

| f (t, x,a)− f (t,y,b)| 6 |e(t, x,a)− e(t,y,b)|,
| l(t, x,a) − l(t,y,b) | 6 |e(t, x,a)− e(t,y,b)|.

From the above inequalities it follows that the properties of the function e are inherited

by functions f and l.

Remark 5.10. It is not difficult to show that Theorem 3.4 follows from Proposition 5.7,

Theorem 5.8, Remark 5.9 and Corollary 2.2.
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6. PROOFS OF STABILITY THEOREMS

We show here that the faithful representation obtained in this paper is stable. To do this,

we need a few auxiliary definitions and facts.

Definition 6.1. For a sequence {Ki}i∈N of subsets of Rm, the upper limit is the set

limsup
i→∞

Ki := { x ∈Rm | liminf
i→∞

d(x,Ki) = 0 },

while the lower limit is the set

liminf
i→∞

Ki := { x ∈Rm | limsup
i→∞

d(x,Ki) = 0 }.

The limit of a sequence exists if the upper and lower limit sets are equal:

lim
i→∞

Ki := limsup
i→∞

Ki = liminf
i→∞

Ki.

Remark 6.2. For nonempty, closed subsets Ki and K of Rm, one has

lim
i→∞

Ki = K if and only if lim
i→∞

d(x,Ki) = d(x,K) for all x ∈Rm,

cf. [14, Cor. 4.7]. Thus, by the inequality |d(x,K)−d(y,K)| 6 |x− y|, that is satisfied for

every x,y ∈Rm and every nonempty set K ⊂Rm, we obtain

(6.1) lim
i→∞

xi = x0, lim
i→∞

Ki = K =⇒ lim
i→∞

d(xi,Ki) = d(x0,K).

Lemma 6.3 ([14, Chap. 4, Sec C.]). If Ki and K are nonempty, closed subsets of a given

compact set in R
m, then we have

lim
i→∞

Ki = K ⇐⇒ lim
i→∞

H (Ki,K) = 0.

Lemma 6.4 ([14, Thm. 4.32]). Let Ki and Di be convex sets in R
m for all i ∈N. If convex

sets K and D satisfy K∩ intD 6= ∅, then the following implication holds:

lim
i→∞

Ki = K, lim
i→∞

Di = D =⇒ lim
i→∞

( Ki∩Di ) = K ∩D.

The following lemma is a consequence of Wijsman’s Theorem, cf. [14, Thm. 11.34],

Lemma 6.5. Assume that Hi : [0,T ]×Rn×Rn→R, i ∈N∪{0}, are continuous and satisfy

(H3). Let Li, i ∈N∪{0}, be given by (1.4). If Hi converge to H0 uniformly on compacts in

[0,T ]×Rn×Rn, then for every (t0, x0) ∈ [0,T ]×Rn we have

(6.2) lim
i→∞

ELi
(ti, xi) = EL0

(t0, x0) for every sequence (ti, xi)→ (t0, x0).

6.1. Proofs of stability theorems. Assume that Hi : [0,T ]×Rn×Rn→R, i ∈N∪{0},
are continuous and satisfy (H3). Let Li, i ∈ N∪ {0}, be given by (1.4). We consider

continuous real-valued maps ωi(t, x) > 1, (t, x) ∈ [0,T ]×Rn, i ∈N∪{0}.
Let (t, x,a) ∈ [0,T ]×Rn×Rn+1 and i ∈N∪{0}. We consider the closed balls

Gi(t, x,a) := IB(ωi(t, x)a,2d(ωi(t, x)a,ELi
(t, x))).

We notice that ‖Gi(t, x,a)‖6 ϕi(t, x,a), where

ϕi(t, x,a) := ωi(t, x) |a|+2d(ωi(t, x)a,ELi
(t, x)).
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Let P be the map defined in Lemma 5.1. We define the following sets

Φi(t, x,a) := P(ωi(t, x)a,ELi
(t, x)) = ELi

(t, x)∩Gi(t, x,a)

By Corollary 2.2 and our hypotheses, the sets Φi(t, x,a) are nonempty, compact, convex.

We define the single-valued maps ei, i ∈N∪{0}, from [0,T ]×Rn×Rn+1 to R
n+1 by

(6.3) ei(t, x,a) := sn+1(Φi(t, x,a))

where sn+1 is the Steiner selection. By Lemma 5.3 we have

(6.4) |ei(t, x,a)− e0(s,y,b)|6 (n+1)H (Φi(t, x,a),Φ0(s,y,b))

for all t, s ∈ [0,T ], x,y ∈Rn, a,b ∈Rn+1, i ∈N.

Theorem 6.6. Let Hi, Li, ωi, ei, i ∈N∪{0} be as above. If Hi converge to H0 uniformly on

compacts in [0,T ]×Rn×Rn and ωi converge to ω0 uniformly on compacts in [0,T ]×Rn,

then for every (t0, x0,a0) ∈ [0,T ]×Rn×Rn+1 we have

ei(ti, xi,ai)→ e0(t0, x0,a0) for every sequence (ti, xi,ai)→ (t0, x0,a0).

Proof. Because of inequality (6.4), it is sufficient to show that

(6.5) H (Φi(ti, xi,ai),Φ0(t0, x0,a0))→ 0, ∀ (ti, xi,ai)→ (t0, x0,a0).

Let (ti, xi,ai)→ (t0, x0,a0). Then, by our hypotheses, we haveωi(ti, xi)→ω0(t0, x0). The

latter, together with (6.1) and (6.2), implies that ϕi(ti, xi,ai)→ ϕ0(t0, x0,a0). Let C > 0 be a

constant such that ϕi(ti, xi,ai) 6 C for every i ∈N∪{0}. Since ‖Gi(ti, xi,ai)‖6 ϕi(ti, xi,ai)

for every i ∈N∪{0}, thus Φi(ti, xi,ai) ⊂Gi(ti, xi,ai) ⊂ IBC for every i ∈N∪{0}. Because of

Lemma 6.3, it is sufficient to show that

(6.6) lim
i→∞
Φi(ti, xi,ai) = Φ0(t0, x0,a0).

By the inequality (5.1) for all i ∈N we have

H (Gi(ti, xi,ai),G0(t0, x0,a0)) 6 |ϕi(ti, xi,ai)−ϕ0(t0, x0,a0)|+2|ωi(ti, xi)ai−ω(t0, x0)a0|.
Passing to the limit, we obtain limi→∞H (Gi(ti, xi,ai),G0(t0, x0,a0)) = 0. Therefore, by

Lemma 6.3 we have

(6.7) lim
i→∞

Gi(ti, xi,ai) =G0(t0, x0,a0).

Let intG0(t0, x0,a0) 6= ∅. Then EL0
(t0, x0)∩ intG0(t0, x0,a0) 6= ∅. Thus, by Theorem 6.4

and properties (6.2), (6.7), we have limi→∞Φi(ti, xi,ai) = Φ0(t0, x0,a0).

Let intG0(t0, x0,a0)= ∅. Then G0(t0, x0,a0)=Φ0(t0, x0,a0)= {ω0(t0, x0)a0}⊂EL0
(t0, x0).

Because of (6.7), limsupi→∞Φi(ti, xi,ai) ⊂ {ω(t0, x0)a0}. Let yi ∈ Φi(ti, xi,ai) for every

i ∈N. Then yi ∈ Gi(ti, xi,ai) for all i ∈N. Therefore, by definition of Gi(ti, xi,ai) we have

|yi−ωi(ti, xi)ai|6 2d(ωi(ti, xi)ai,ELi
(ti, xi)) for all i ∈N. Because of (6.1) and (6.2),

lim
i→∞

d(ωi(ti, xi)ai,ELi
(ti, xi)) = d(ω0(t0, x0)a,EL0

(t0, x0)) = 0.

Thus, yi→ ω0(t0, x0)a0. It means that ω(t0, x0)a0 ∈ liminfi→∞Φi(ti, xi,ai). Consequently,

{ω(t0, x0)a0} ⊂ liminf
i→∞

Φi(ti, xi,ai) ⊂ limsup
i→∞

Φi(ti, xi,ai) ⊂ {ω(t0, x0)a0}.

So, limi→∞Φi(ti, xi,ai) = {ω0(t0, x0)a0} = Φ0(t0, x0,a0), that completes the proof. �
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Remark 6.7. Let ei : [0,T ]×Rn×Rn+1→R
n+1, i ∈N∪{0}, be as above. For all i ∈N∪{0}

we define the functions fi : [0,T ]×Rn×Rn+1→R
n and li : [0,T ]×Rn×Rn+1→R by

fi(t, x,a) := π1(ei(t, x,a)) and li(t, x,a) := π2(ei(t, x,a)),

where π1(v,η) = v and π2(v,η) = η for all v ∈Rn and η ∈R. Then for all t ∈ [0,T ], x ∈Rn,

a ∈Rn+1, i ∈N∪{0} the following equality holds:

ei(t, x,a) = ( fi(t, x,a), li(t, x,a)).

Therefore, for all i ∈N we obtain:

| fi(ti, xi,ai)− f0(t0, x0,a0)| 6 |ei(ti, xi,ai)− e0(t0, x0,a0)|,
| li(ti, xi,ai)− l0(t0, x0,a0) | 6 |ei(ti, xi,ai)− e0(t0, x0,a0)|.

Remark 6.8. Theorem 6.6 and Remark 6.7 imply Theorem 3.8, if in the place of ωi(t, x)

we take ωi(t, x) := |λi(t, x)|+ |Hi(t, x,0)|+ ci(t)(1+ |x|)+1 for all i ∈N∪ {0}. Theorem 3.9

can be proven similarly as above, indeed, it is enough to fix t ∈ [0,T ].

7. PROOF OF THEOREM 3.13

Let ‖x‖ := sup { |x(t)| | t ∈ [0,1] }. Because of L(t, x, · ) = H∗(t, x, · ) we obtain −|H(t, x,0)|6
L(t, x,v) for all t ∈ [0,T ], x ∈ Rn, v ∈ Rn. Moreover, if H(t, ·,0) is kR(t)-Lipschitz on IBR

for all t ∈ [0,1] and R > 0, then for every x(·) ∈A([0,1],Rn) we have

(7.1) − k‖x‖(t)‖x‖− |H(t,0,0)| 6 L(t, x(t), ẋ(t)) a.e. t ∈ [0,1].

Lemma 7.1. Assume that (H1)−(H4) and (HLC) hold with integrable functions c(·), kR(·),
H(·,0,0). Assume further that φ is a proper, lower semicontinuous function and there

exists M > 0 such that min{ |z|, |x| } 6 M for all (z, x) ∈ domφ. Then there exist D,R > 0

such that for all x(·) ∈A([0,1],Rn) we have

(7.2) −D−R

∫ 1

0
kR(t)dt−

∫ 1

0
|H(t,0,0)|dt 6 Γ[x(·)].

Proof. Our assumptions and inequality (7.1) imply that the functional Γ[·] is well defined

and −∞ < Γ[x(·)] 6 +∞. Without loss of generality we can assume that Γ[x(·)] < +∞ for

some arc x(·) ∈A([0,1],Rn). Then we have

φ(x(0), x(1)) < +∞ and

∫ 1

0
L(t, x(t), ẋ(t))dt < +∞.

Therefore, (x(0), x(1)) ∈ domφ and ẋ(t) ∈ dom L(t, x(t), ·) for a.e. t ∈ [0,1]. The latter,

together with our assumptions, implies that min{ |x(0)|, |x(1)| } 6 M and c(t)(1+ |x(t)|) >
|ẋ(t)| for a.e. t ∈ [0,1]. Therefore, because of Gronwall’s Lemma,

‖x‖6
(

M+

∫ 1

0
c(t)dt

)

exp

(

∫ 1

0
c(t)dt

)

=: R.

Since φ is proper, lower semicontinuous function, there exists D> 0 such that −D6 φ(z, x)

for all z, x ∈ IBR. From the above and (7.1) we obtain the inequality (7.2). �
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If the triple (B, f , l) is a representation of H, then −|H(t, x,0)|6 l(t, x,a) for all t ∈ [0,T ],

x ∈ Rn, a ∈ IB. Moreover, if H(t, ·,0) is kR(t)-Lipschitz on IBR for all t ∈ [0,1] and R > 0,

then for all (x,a)(·) ∈A([0,1],Rn)×L1([0,1], IB) we have

(7.3) − k‖x‖(t)‖x‖− |H(t,0,0)| 6 l(t, x(t),a(t)) for all t ∈ [0,1].

Lemma 7.2. Assume that (H1)−(H4), (HLC) and (BLC) hold with integrable functions

c(·), kR(·), H(·,0,0), λ(·,0). We consider the representation (IB, f , l) of H defined as in

Theorem 3.4. Assume further that φ is a proper, lower semicontinuous function and there

exists M > 0 such that min{ |z|, |x| } 6 M for all (z, x) ∈ domφ. Then there exist D,R > 0

such that for all (x,a)(·)∈A([0,1],Rn)×L1([0,1], IB) satisfying ẋ(t)= f (t, x(t),a(t)) we have

(7.4) −D−R

∫ 1

0
kR(t)dt−

∫ 1

0
|H(t,0,0)|dt 6 Λ[(x,a)(·)].

Proof. Our assumptions and inequality (7.3) imply that the functionalΛ[·] is well defined

and −∞ < Λ[(x,a)(·)] 6 +∞. Without loss of generality we can assume that Λ[(x,a)(·)] <
+∞ for some arc (x,a)(·) ∈ A([0,1],Rn)× L1([0,1], IB) satisfying ẋ(t) = f (t, x(t),a(t)) for

a.e. t ∈ [0,1]. The latter, together with our assumptions, implies that min{ |x(0)|, |x(1)| } 6
M and |ẋ(t)|6 c(t)(1+ |x(t)|) for a.e. t ∈ [0,1]. Therefore, because of Gronwall’s Lemma,

‖x‖6
(

M+

∫ 1

0
c(t)dt

)

exp

(

∫ 1

0
c(t)dt

)

=: R.

Since φ is a proper, lower semicontinuous function, there exists D > 0 such that −D 6

φ(z, x) for all z, x ∈ IBR. From the above and (7.3) we obtain the inequality (7.4). �

Remark 7.3. Our assumptions and inequalities (7.1) and (7.2) imply that the functional

Γ[·] is well defined and −∞ < infΓ[x(·)]. Similarly, our assumptions and inequalities (7.3)

and (7.4) imply that the functional Λ[·] is well defined and −∞ < infΛ[(x,a)(·)].

Theorem 7.4. Assume that (H1)−(H4), (HLC) and (BLC) hold with integrable functions

c(·), kR(·), H(·,0,0), λ(·,0). We consider the representation (IB, f , l) of H defined as in

Theorem 3.4. Assume further that φ is a proper, lower semicontinuous function and there

exists M > 0 such that min{ |z|, |x| }6 M for all (z, x) ∈ domφ. Then

(7.5) infΓ[x(·)] = infΛ[(x,a)(·)].

Proof. We start with the proof of the inequality:

(7.6) infΓ[x(·)] > infΛ[(x,a)(·)].

Without loss of generality we can assume that −∞ < infΓ[x(·)] < +∞. Let us fix ε > 0.

Then there exists x̄(·) ∈A([0,1],Rn) such that infΓ[x(·)]+ ε > Γ[x̄(·)]. We define ū(·) ∈
A([0,1],R) by the formula

ū(t) :=

∫ t

0
L(s, x̄(s), ˙̄x(s))ds.

We notice that ˙̄u(t)= L(t, x̄(t), ˙̄x(t)) for a.e. t ∈ [0,1]. Therefore, ( ˙̄x(t), ˙̄u(t)) ∈ gph L(t, x̄(t), ·)
for a.e. t ∈ [0,1]. By (A3) of Theorem 3.4, gph L(t, x̄(t), ·) ⊂ e(t, x̄(t), IB) for all t ∈ [0,1],
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where e(t, x, ·) = ( f (t, x, ·), l(t, x, ·)). From the above and [1, Thm. 8.2.10] there exists a

measurable function ā(·) defined on [0,1] with values in IB such that for a.e. t ∈ [0,1],

( ˙̄x(t), ˙̄u(t)) = e(t, x̄(t), ā(t)) = ( f (t, x̄(t), ā(t)), l(t, x̄(t), ā(t))).

Consequently, we have

infΓ[x(·)]+ε > Γ[x̄(·)] = φ(x̄(0), x̄(1))+

∫ 1

0
L(t, x̄(t), ˙̄x(t))dt

= φ(x̄(0), x̄(1))+

∫ 1

0

˙̄u(t)dt

= φ(x̄(0), x̄(1))+

∫ 1

0
l(t, x̄(t), ā(t))dt

= Λ[(x̄, ā)(·)] > infΛ[(x,a)(·)].

Therefore, infΓ[x(·)]+ ε > infΛ[(x,a)(·)]. The latter inequality, together with the arbi-

trariness of ε > 0, implies (7.6).

Now we prove the inequality:

(7.7) infΓ[x(·)] 6 infΛ[(x,a)(·)].

Without loss of generality we can assume that −∞ < infΛ[(x,a)(·)] <+∞. Let us fix ε > 0.

Then there exists (x̄, ā)(·) ∈A([0,1],Rn)× L1([0,1], IB) satisfying ˙̄x(t) = f (t, x̄(t), ā(t)) for

a.e. t ∈ [0,1] and infΛ[(x,a)(·)]+ε> Λ[(x̄, ā)(·)]. From our assumptions and Lemma 4.1,

L(t, x̄(t), f (t, x̄(t), ā(t))) 6 l(t, x̄(t), ā(t)) for all t ∈ [0,1].

From the above, L(t, x̄(t), ˙̄x(t)) 6 l(t, x̄(t), ā(t)) for a.e. t ∈ [0,1]. Consequently, we have

infΛ[(x,a)(·)]+ε > Λ[(x̄, ā)(·)]

= φ(x̄(0), x̄(1))+

∫ 1

0
l(t, x̄(t), ā(t))dt

> φ(x̄(0), x̄(1))+

∫ 1

0
L(t, x̄(t), ˙̄x(t))dt

= Γ[x̄(·)] > infΓ[x(·)].

Therefore, infΛ[(x,a)(·)]+ ε > infΓ[x(·)]. The latter inequality, together with the arbi-

trariness of ε > 0, implies (7.7).

Combining inequalities (7.6) and (7.7) we obtain the equality (7.5). �

Remark 7.5. From the equality (7.5) and its proof it follows that if x̄(·) is the optimal arc

of (Pv) such that x̄(·) ∈ domΓ, then there exists ā(·) such that (x̄, ā)(·) is also the optimal

arc of (Pc) and (x̄, ā)(·) ∈ domΛ; conversely, if (x̄, ā)(·) is the optimal arc of (Pc), then x̄(·)
is also the optimal arc of (Pv).

Theorem 7.6. Assume that (H1)−(H4) and (HLC) hold with integrable functions c(·),
kR(·), H(·,0,0). Assume further that φ is a proper, lower semicontinuous function and

there exists M > 0 such that min{ |z|, |x| } 6 M for all (z, x) ∈ domφ. Then there exists the

optimal arc x̄(·) of the variational problem (Pv).
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Proof. Without loss of generality we can assume that −∞ < infΓ[x(·)] < +∞. Then there

exists a sequence { xi(·) } ⊂A([0,1],Rn) such that for all i ∈N we have

infΓ[x(·)] 6 Γ[xi(·)] 6 infΓ[x(·)]+1/i.

Since Γ[xi(·)] < +∞ for all i ∈N, we deduce that for all i ∈N

φ(xi(0), xi(1)) < +∞ and

∫ 1

0
L(t, xi(t), ẋi(t))dt < +∞.

Therefore, (xi(0), xi(1)) ∈ domφ and ẋi(t) ∈ dom L(t, xi(t), ·), for a.e. t ∈ [0,1] and for all

i ∈N. The latter, together with our assumptions, implies that min{ |xi(0)|, |xi(1)| }6 M and

|ẋi(t)|6 c(t)(1+ |xi(t)|) for a.e. t ∈ [0,1] and for all i ∈N. Therefore, because of Gronwall’s

Lemma, for all i ∈N

‖xi‖6
(

M+

∫ 1

0
c(t)dt

)

exp

(

∫ 1

0
c(t)dt

)

=: R.

From the above we obtain ‖xi‖ 6 R and |ẋi(t)| 6 c(t)(1+R) for a.e. t ∈ [0,1] and for all

i ∈N. Because of Arzelà-Ascoli and Dunford-Pettis Theorems, there exists a subsequence

(denoted again by {xi}) such that xi ⇒ x̄ and ẋi ⇀ ˙̄x in L1([0,1],Rn). Therefore, because

of [13, Semicontinuity Theorem],

liminf
i→∞

∫ 1

0
L(t, xi(t), ẋi(t))dt >

∫ 1

0
L(t, x̄(t), ˙̄x(t))dt.

Consequently, we have

infΓ[x(·)] = lim
i→∞
Γ[xi(·)]

> liminf
i→∞

φ(xi(0), xi(1))+ liminf
i→∞

∫ 1

0
L(t, xi(t), ẋi(t))dt

> φ(x̄(0), x̄(1))+

∫ 1

0
L(t, x̄(t), ˙̄x(t))dt

= Γ[x̄(·)] > infΓ[x(·)].
Therefore, infΓ[x(·)] = Γ[x̄(·)]. Hence, it follows that x̄(·) is the optimal arc of the varia-

tional problem (Pv). �

Remark 7.7. Theorems 7.4 and 7.6, together with Remark 7.5, imply Theorem 3.13.
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