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Abstract

A subset S of initially infected vertices of a graph G is called forcing if we can infect the entire graph by
iteratively applying the following process. At each step, any infected vertex which has a unique uninfected
neighbour, infects this neighbour. The forcing number of G is the minimum cardinality of a forcing set
in G. In the present paper, we study the forcing number of various classes of graphs, including graphs of
large girth, H-free graphs for a fixed bipartite graph H, random and pseudorandom graphs.

1 Introduction
Let G be a simple, undirected graph on the vertex set V . The zero forcing process on G is defined as
follows. Initially, there is a subset S of black vertices, while all other vertices are said to be white. At
each time step, a black vertex with exactly one white neighbour will force its white neighbour to become
black. The set S is said to be a zero forcing set if, by iteratively applying the forcing step, all of V becomes
black. The zero forcing number of G is the minimum cardinality of a zero forcing set in G, denoted by
Z(G). Note that given an initial set of black vertices, the set of black vertices obtained by applying the
colour-change rule until no more changes are possible is unique. We will often use the adjective ‘forcing’
instead of ‘zero forcing’.

The forcing process is an instance of a propagation process on graphs (in particular, it is a cellular
automaton). Such processes are a common topic across mathematics and computer science (see, e.g., [14],
[8], [29], [18]). In other fields (statistical mechanics [13], physics [7], social network analysis [24]),
diverse graph processes are used to model technical or societal processes. For an overview of the different
models and applications, refer to the book [9].

The zero forcing process was introduced in [10] and used in [11] as a criterion for quantum controlla-
bility of a system. Independently, [1] have introduced it to bound the minimum rank, or equivalently, the
maximum nullity of a graph G. Given an n-vertex graph G, let M(G) denote the maximum nullity over all
symmetric real-valued matrices A whose zero-nonzero pattern of the off-diagonal entries is described by
the graph G. This means that for i , j, the entry Ai j is non-zero if and only if i j is an edge in G, whereas
the diagonal entries are chosen freely. The minimum rank of G is n − M(G). This parameter has been ex-
tensively studied in the last fifteen years, largely due to its connection to inverse eigenvalue problems for
graphs, singular graphs, biclique partitions and other problems. Among several tools introduced to study
the minimum rank, the zero forcing number has the advantage that its definition is purely combinatorial.
In [1], it was shown that Z(G) ≥ M(G) for all graphs G. To see this, suppose that A is a matrix whose
zero pattern is described by G, and S is a zero forcing set of cardinality |S | smaller than the nullity of A.
This guarantees that we can construct a vector x , 0 such that Ax = 0 and x|S = 0. But then by iteratively
applying the forcing step to the components of x, we can show x = 0, which is a contradiction. The min-
imum rank and forcing number of some specific families of graphs have also been computed in [1]. As a
simple example, a complete graph Kn on n vertices has Z(Kn) = M(Kn) = n− 1, whereas the n-vertex path
Pn has Z(Pn) = M(Pn) = 1. More results on this topic can be found in [2] and [17].
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Recently, there has been a lot of interest in studying the forcing number of graphs for its own sake,
and its relation to other graph parameters, such as the path cover number [21], connected domination
number [6], and the chromatic number [32]. Among others, [12] and [22] contain upper bounds on the
zero forcing number of a graph in terms of its degrees. It is easy to see that the trivial lower bound on the
zero forcing number of a graph is Z(G) ≥ δ − 1. Improving this trivial upper bound, and confirming the
earlier conjecture of Davila and Kenter, [16], the authors of [15] showed that

Z(G) ≥ δ + (δ − 2)(g − 3),

for a graph G with minimum degree δ ≥ 2 and girth g ≥ 3 (the girth is the length of the shortest cycle in a
graph). Our first result substantially improves on this bound, with the exception of very small values of δ.

Theorem 1.1. Let G be a graph of girth g with minimum degree δ.
(i) If g = 2k + 1 for k ∈ N, then Z(G) ≥ e−1

(
δk

k+1 − δ
k−1

)
.

(ii) If g = 2k + 2 for k ∈ N, then Z(G) ≥ 2e−1
(
δk

k+1 − δ
k−1

)
.

The crucial ingredient of the proof is an upper bound on the density of a graph which contains no
cycles C3,C4, . . .Cg−1. This is an instance of the so-called Turán problem (see, e.g., [20]). Given a graph
H, we define the Turán number ex(n,H) to be the maximum number of edges e(G) over all the n-vertex
graphs G not containing a subgraph isomorphic to H. In general, if a graph G does not contain H as a
subgraph, we refer to it as H-free. The Turán numbers of graphs have been extensively studied, and the
asymptotic value of ex(n,H) is known for all non-bipartite graphs H. Denote the complete bipartite graph
with vertex classes of order a and b by Ka,b. A celebrated theorem of Kövari, Sós and Turán [30] says that
for a ≤ b, ex(n,Ka,b) = O

(
n2− 1

a

)
. This implies that for every bipartite graph H, there exists cH < 1 such

that ex(n,H) = O
(
n1+cH

)
. Using our approach based on the Turán numbers, we can extend Theorem 1.1

to H-free graphs G, substantially improving the trivial bound Z(G) ≥ δ − 1.

Theorem 1.2. Suppose that for a graph H and all n ≥ n0(H), ex(n,H) ≤ βHn1+cH . Let G be an H-free
graph of minimum degree δ ≥ 2n0. Then

Z(G) ≥ 2−1− 2
cH

(
δ

βH

) 1
cH

.

The authors of [1] report that somewhat surprisingly, M(G) = Z(G) for many graphs for which M(G)
was known. Our next theorem shows that for most graphs, M(G) and Z(G) are actually far apart. We
consider the random graph model Gn,p. This is an n-vertex graph in which every pair of vertices is adjacent
randomly and independently with probability p. With an abuse of notation, we write Gn,p for the sampled
graph, as well as the underlying probability space. The model Gn, 1

2
is particularly interesting since it

assigns the same probability to all the 2(n
2) graphs, thus allowing us to make statements about a typical

graph. We say that an event in Gn,p holds with high probability if its probability tends to 1 as n tends to
infinity. The standard O-notation is used for the asymptotic behaviour of the relative order of magnitude of
two sequences, depending on a parameter n → ∞. Hall et al. [25] have shown that with high probability,
the maximum nullity of a random graph Gn, 1

2
lies between 0.49n and 0.86n. On the other hand, we will

show that the zero forcing number of a typical graph is almost as high as n.

Theorem 1.3. Let p = p(n) satisfy log2 n
√

n ≤ p ≤ 2
3 , then with high probability

Z
(
Gn,p

)
= n −

(
2 +
√

2 + o(1)
)
·

log(np)
− log(1 − p)

.

In particular, for p = 1
2 we have Z

(
Gn, 1

2

)
= n −

(
2 +
√

2 + o(1)
)

log2 n, whereas for p = o(1) the formula

simplifies to Z
(
Gn,p

)
= n −

(
2 +
√

2 + o(1)
)

p−1 log(np).
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There is a natural trend in probabilistic combinatorics to explore the possible extensions of results about
random graphs to the pseudorandom setting. A graph is pseudorandom if its edge distribution resembles
the one of Gn,p. There are several formal approaches to pseudorandomness. Here, we will use the one
based on the spectral properties of the graph. The adjacency matrix of a graph G = (V, E) with vertex set
V = [n] is an n × n matrix whose entry ai j is 1 if {i, j} ∈ E, and 0 otherwise. The eigenvalues of a graph
G are the eigenvalues of its adjacency matrix. An (n, d, λ) graph is a d-regular n-vertex graph in which
all eigenvalues but the largest one are at most λ in absolute value. If G is an (n, d, λ) graph, its largest
eigenvalue is λ1 = d, and the difference d − λ is called the spectral gap. It is well known (see, e.g., [31])
that the larger this gap is, the more closely the edge distribution of a regular graph G approaches that of the
random graph with the corresponding edge density. We prove a theorem which provides spectral bounds
on the zero forcing number of a graph. The lower bound is given in terms of the smallest eigenvalue of G,
akin to the celebrated result of Hoffman on the independence number [26], whereas the previously defined
λ is used for the upper bound.

Theorem 1.4. Let G be an (n, d, λ)-graph with smallest eigenvalue λmin. Then

(i) Z(G) ≥ n
(
1 +

2λmin

d − λmin

)
.

(ii) Z(G) ≤ n
(
1 −

1
2(d − λ)

log
(

d − λ
2λ + 1

))
.

The first bound on n − Z(G) is tight, whereas (ii) is tight up to a multiplicative constant.
The rest of this paper is organised as follows. The second section contains results on H-free graphs

with a forbidden bipartite graph H. In the third section, we asymptotically determine the zero forcing
number of Gn,p. Section 4 contains bounds based on the spectral properties of a graph.

2 Graphs with forbidden subgraphs
In this section, we bound the forcing number of graphs with a forbidden bipartite subgraph. First we
consider graphs with large girth g and minimum degree δ, showing that

(i) Z(G) ≥ e−1
(
δk

k+1 − δ
k−1

)
for g = 2k + 1, k ∈ N, and

(ii) Z(G) ≥ 2e−1
(
δk

k+1 − δ
k−1

)
for g = 2k + 2, k ∈ N.

Proof of Theorem 1.1 . We will use the result of Alon, Hoory and Linial [3], which says that a graph G1

of girth g and average degree d has to satisfy

|V(G1)| ≥

(d − 1)k, g = 2k + 1

2(d − 1)k, g = 2k + 2.
(1)

Let G be an n-vertex graph with girth g = 2k + 1 and minimum degree δ. The proof for the case of
even girth is the same. Let S be a zero forcing set in G of order s. Assume that s ≤ n

(k+1) , otherwise we
can apply (1) to the entire graph G and obtain

s >
n

k + 1
≥

(δ − 1)k

k + 1
> e−1 δk

k + 1
,

so we are done. Starting from S , we run the zero forcing process until we have reached a set of black
vertices T with |T | = (k + 1)s. Let U be the set of vertices which forced some vertex of T \ S during our
process. Then, since each vertex can force only one of its neighbours, |U | ≥ ks. Moreover, all the edges
with an endpoint in U lie inside T . Denoting the number of edges with both endpoints in T by e(T ), we
have

e(T ) ≥
|U |
2
· δ ≥

k|S |
2
· δ.

3



The graph G[T ] has average degree at least kδ
k+1 . Applying (1) to the graph G[T ] gives

(k + 1)s ≥
(

kδ
k + 1

− 1
)k

= δk
(

k
k + 1

)k (
1 −

k + 1
kδ

)k

≥ δke−1
(
1 −

k(k + 1)
kδ

)
s ≥ e−1

(
δk

k + 1
− δk−1

)
,

as required. For the second inequality, we used
(

k
k+1

)k
≥ e−1 and (1 − α)k ≥ 1 − kα for α < 1, k ∈ N.

�

It is worth mentioning that already for rather small values of δ, our lower bound exceeds the value
δ + (δ − 2)(g − 3) conjectured in [16]. Even for girth five, by taking k = 2, we obtain Z(G) ≥ 1

3

(
2δ
3 − 1

)2
,

which implies the conjecture of Davila and Kenter for δ ≥ 22.
The previous approach will now be used to establish a bound which applies to H-free graphs for any

bipartite graph H. We do not try to optimise the constants in this proof.

Proof of Theorem 1.2. It will be useful to rearrange our hypothesis on the Turán number of H, which is
that for n ≥ n0, ex(n,H) ≤ βHn1+cH . Suppose that G1 is an H-free graph with average degree d ≥ n0. In
particular, G1 has at least n0 vertices. Denoting n1 = |V(G1)|, the hypothesis gives

1
2

dn1 = e(G1) ≤ βHn1+cH
1(

d
2βH

) 1
cH

≤ n1.

The proof reduces to the following claim, which we state formally because we will use it to prove Corol-
lary 2.2.

Claim 2.1. Suppose that any H-free graph G1 with average degree d ≥ n0 satisfies

|V(G1)| ≥
(

d
2βH

) 1
cH

. (2)

Let G be an H-free graph with minimum degree δ ≥ 2n0. Then Z(G) ≥
1
2

(
δ

4βH

) 1
cH

.

To see this, let S be a zero forcing set in G of order s. Assume that s < n
2 , since otherwise we can

apply (2) to the entire graph G to get

s ≥
n
2
≥

1
2

(
δ

2βH

) 1
cH

≥
1
2

(
δ

4βH

) 1
cH

.

Starting from S , we run the zero forcing process until we have reached a set of black vertices T with
|T | = 2s. Let U be the set of vertices which forced some vertex of T \ S during our process. Since each
vertex can force only one of its neighbours, |U | = s. Moreover, all the edges with an endpoint in U lie
inside T . Hence

e(T ) ≥
|U |
2
· δ =

s
2
δ.

We conclude that the average degree in G[T ] is at least δ
2 . Now we can apply (2) to G[T ].

|T | = 2s ≥
(
δ

4βH

) 1
cH

,

as required. �
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Recall that Ka,b denotes the complete bipartite graph with parts of order a and b. Using the well-known
result of [30], we give explicit bounds for Ka,b-free graphs.

Corollary 2.2. Let G be a Ka,b-free graph with minimum degree δ ≥ 4a − 4. Then

Z(G) ≥
1
2

(
δ

4(b − 1)
1
a

) a
a−1

.

Proof. The aforementioned theorem of Kövari, Sós and Turán [30] states that for an n-vertex Ka,b-free
graph with average degree d,

d ≤ (b − 1)
1
a n1− 1

a + a − 1. (3)

It follows that Ka,b satisfies (2) with n0 = 2a − 2 and cH = a−1
a . For, let G1 be an n-vertex Ka,b-free graph

with average degree d ≥ 2a − 2. If the second summand in (3) is strictly larger than the first one, then we
have d < 2a − 2, which is a contradiction. Therefore the first summand is larger, so

d ≤ 2(b − 1)
1
a n1− 1

a .

Rearranging, we get n ≥
(

d
2(b−1)

1
a

) a
a−1
. Our bound on the zero forcing number of Ka,b-free graphs follows

from Claim 2.1. �

Since for b > (a − 1)!, there are constructions of Ka,b-free graphs with minimum degree δ and O
(
δ

a
a−1

)
vertices (see, e.g., [4]), the result of Corollary 2.2 is tight up to a constant factor.

3 The random graph

Here we prove that for log2 n
√

n ≤ p = o(1), with high probability

Z
(
Gn,p

)
= n −

(
2 +
√

2 + o(1)
)
·

log(np)
p

.

Since for p = o(1), − log(1 − p) = (1 + o(1))p, this establishes the bound of Theorem 1.3. Restricting
to p = o(1) in this section keeps the calculations clearer. The case of constant p is easier (as we explain
below) and can be proved similarly. In what follows, we mostly omit floor and ceiling signs for the sake
of clarity of presentation. The logarithms are in base e unless stated otherwise. All the inequalities will
hold for large enough n. In a graph G, we denote the set of edges between vertex sets S and T by E(S ,T ).
We write u ∼ v if the vertices u and v are adjacent in G, and u / v otherwise.

Our approach combines the first and the second moment method, and is somewhat similar to the
argument used to determine the independence number of Gn,p (see, e.g. [27, Section 7]). However, the
proof contains some delicate points, which we try to explain before giving the formal argument. We start
this discussion by considering only the uniform model Gn, 1

2
.

The zero forcing number of the random graph is governed by the occurrence of a specific substructure
called a witness. In a graph G on the vertex set V , a k-witness (or a witness of order k) is a pair of
ordered vertex k-tuples

(
(si)i∈[k], (ti)i∈[k]

)
such that si, ti ∈ V , si ∼ ti for each i, and si / t j for i < j. The

definition requires si , s j for i , j, but it might happen that si = t j for some i > j. The adjacency
matrix of a k-witness, where the rows and columns are indexed by (si) and (ti) respectively, can be found
in Figure 1a. For any pair of k-tuples

(
(si)i∈[k], (ti)i∈[k]

)
, we define the set of superdiagonal pairs to be{(

si, t j

)
: i, j ∈ [k], i < j

}
, and the set of diagonal pairs to be {(si, ti) : i ∈ [k]}. It is easy to see that if G

has a forcing set S of order at most n − k, then it contains a k-witness (Lemma 3.1). Therefore, our
aim is to find the order of the largest witness in Gn, 1

2
. The first subtlety arises in trying to use the first

moment computation to guess the forcing number of Gn, 1
2
. Let Rk be the random variable counting the

5



k-witnesses in Gn, 1
2
. For fixed k-tuples (si) and (ti), the probability that they form a witness is 2−(

k+1
2 ) since

they determine
(

k+1
2

)
superdiagonal and diagonal pairs. Using linearity of expectation, we can multiply this

probability with the number of choices for (si) and (ti) to obtain

E [Rk] ≤
(

n!
(n − k)!

)2

· 2−(
k+1

2 ) ≤ n2k2−
k2
2 =

(
n22−

k
2

)k
.

For k ≥ (4 + ε) log2 n, it holds that E [Rk] = o(1), so Markov’s inequality implies that with high
probability Gn, 1

2
contains no such k-witness. On the other hand, if k ≤ (4 − ε) log2 n the expected number

of k-witnesses tends to infinity with n, so it is reasonable to take (4 + o(1)) log2 n as the first guess for the
order of the largest witness. For example, in finding the independence number of Gn,p, the first moment
computation gives the correct value throughout the range of p. However, in our case, the actual asymptotic
order of a witness, kc :=

(
2 +
√

2
)

log2 n, is smaller than 4 log2 n.
The reason for this is that a substructure of a k-witness

(
(si)i∈[k], (ti)i∈[k]

)
obtained by discarding a final

segment of (si) and an initial segment of (ti) has a lower expected number of copies inside Gn, 1
2

than the
witness itself, and therefore gives a stronger bound on k. The correct asymptotic value is obtained by taking
` = `(k) =

√
2

2 k, and counting substructures called k-subwitnesses. The adjacency matrix of a subwitness
is depicted in Figure 1b. For integers a ≤ b, define the interval [a . . b] = {a, a + 1, . . . , b}. A k-subwitness
in G is a pair of `-tuples

(
(s′i)i∈[`], (t′i )i∈[k−`+1. .k]

)
such that s′i , t

′
j ∈ V , s′i ∼ t′i for each i ∈ [k − ` + 1 . . `], and

s′i / t′j for 1 ≤ i < j ≤ k. Clearly, if
(
(si)i∈[k], (ti)i∈[k]

)
is a witness in G, then the restrictions (s1, . . . s`) and

(tk−`+1, . . . , tk) form a subwitness.
In Lemma 3.2, we will count k-subwitnesses for k = (1 + ε)kc = (1 + ε)

(
2 +
√

2
)

log2 n, and show
that with high probability, Gn, 1

2
contains no such k-subwitness. An intuition on why we can discard those

segments of (si) and (ti) is that given a (1− ε)kc-subwitness in Gn, 1
2
, we can extend it to a (1− ε)kc-witness

with high probability. Indeed, to find the remaining columns t1, . . . , tk−`, we only need to consider their
adjacencies with s1, . . . , sk−`. But k − ` = (1 − ε) log2 n, and therefore a short computation shows that for
any choice of s1, . . . , sk−`, with high probability, there will be at least n

ε
2 vertices in Gn, 1

2
satisfying any

adjacency restriction with s1, . . . , sk−`. Of course, the same property of Gn, 1
2

implies that we can find the
missing rows s`+1, . . . , sk.

(a) (b)

 

 

(c)

Figure 1: Adjacency matrices of a k-witness, k-subwitness and a loose k-subwitness respectively. The regions which
are required to contain only zeros are shaded. In Figure (c), the stars mark the entries which are superdiagonal in this
particular ordering of the vertices, but not required to contain zeros.

This intuition gives the correct answer for Gn, 1
2
, but when p = o(1) the computation of the expected

6



number of k-subwitnesses contains another caveat. In a subwitness, (s′i)i∈[`] and (t′i )i∈[k−`+1. .k] are orderings
of the corresponding vertex sets. In the first moment computation, the ordering contributes a factor of
(`!)2 = k2`+o(k). This factor was negligible when p = 1

2 and kc = Θ(log n), but for p = o(1), Gn,p contains
witnesses whose order is polynomial in n, so we need to be more careful. Next, we explain how to shave off

a factor of kk+o(k). A subwitness is modified so that the adjacency matrix is invariant under reordering large
subsets of the vertices, at the price of discarding a small number of its zero entries. Figure 1c illustrates
this tradeoff.

In a graph G, we define a loose k-subwitness (or just loose subwitness) to be a substructure labelled by
sets S 0, S 1, . . . S m,T0,T1, . . . ,Tm ⊆ V and bijections fi : S i → Ti for i = 1, . . .m, where m = (2` − k)p =(√

2 − 1
)

kp and the following conditions are satisfied.
(i) The sets S i are pairwise disjoint for i = 0, . . . ,m, as well as the sets Ti. Denoting S =

⋃m
i=0 S i and

T =
⋃m

i=0 Ti, we have |S | = |T | = ` and |S 0| = k − ` =

(
1 −

√
2

2

)
k. The sets S \ S 0 and T \ T0

are partitioned equitably into S i, and Ti, that is, 0 ≤ |S i| − |S j| ≤ 1 for 1 ≤ i < j ≤ m. Therefore,
1
p − 1 ≤ |S i| = |Ti| ≤

1
p + 1 and the orders of S i are non- increasing for i ∈ [m].

(ii) For the edges between S and T , we require E(S 0,T ) = E(T0, S ) = ∅, and E(S i,T j) = ∅ for i < j. For
each bijection fi and v ∈ S i, there is an edge in G between v and fi(v). In other words, the bijections
fi determine a matching between S i and Ti.

The key point is that any graph that contains a k-witness, also contains a loose k-subwitness, which we
use to get an improved bound. Since the sets S i and Ti are not ordered, but only paired by the bijections
fi for i ∈ [m], we gain a factor of k−k+o(k) in the first moment computation. On the other hand, for i ∈ [m],
we do not care about the adjacency relation between S i and Ti apart from the diagonal vertex pairs, but
that costs us a much less significant factor (1 − p)|S i |

2m = (1 − p)(2`−k)/p. In words, the definition of a loose
subwitness allows a large number of vertex permutations. However, since those permutations preserve
most of the superdiagonal pairs, the adjacency matrix of a loose subwitness still contains most of the zeros
which were previously required.

Estimating the expected number of loose subwitnesses in Gn,p, we can match the bound obtained from
the second moment method (Lemma 3.3). This computation requires some additional understanding of
how two witnesses can interact, but the ideas are explicit in the argument. We are now ready to present
the formal proof. We first establish the relationship between the zero forcing number of a graph and the
occurrence of a witness. We will be using the shortened notation s = (si)i∈[k], and denote the image of this
k-tuple by s[k] = {si : i ∈ [k]}.

Lemma 3.1. Let G be an n-vertex graph. If Z(G) ≤ n − k, then G contains a k-witness. Moreover, if G
contains a k-witness (s, t) with s[k] ∩ t[k] = ∅, then Z(G) ≤ n − k.

Proof. Assume that Z(G) ≤ n − k, that is, G has a forcing set S with n − |S | ≥ k. Index the vertices of
V(G) \ S according to the order in which they were forced, so t1 is the first forced vertex, t2 the second,
and so on, up to tk. For 1 ≤ i ≤ k, let si be a vertex which forced ti. Then by the definition of a zero forcing
set,

(
(si)i∈[k], (ti)i∈[k]

)
is a witness.

Conversely, let (s, t) be a k-witness with s[k] ∩ t[k] = ∅. Then V(G) \ t[k] is a forcing set in G, since
the vertices t1, . . . , tk can be forced by the vertices s1, . . . , sk respectively. �

We now formalise the ideas outlined in the previous discussion.

Lemma 3.2. Let C
n < p(n) < 1 for a large constant C, and define k =

(
2+
√

2
)

p
(
log(np) + log log(np)

)
. With

high probability, Gn,p contains no k-witness, and therefore Z
(
Gn,p

)
≥ n − k.

Proof. For a graph G on the vertex set V , a k-witness and a loose k-subwitness have been defined in the

previous section. We set k =

(
2+
√

2
)

p
(
log(np) + log log(np)

)
and ` =

√
2

2 k, r = 2` − k =

(√
2+o(1)

)
p log(np),

m = pr =
(√

2 + o(1)
)

log(np). The crucial fact is that if G contains a witness
(
(si)i∈[k], (ti)i∈[k]

)
, then a loose

7



subwitness can be found as follows. S 0 consists of the first k − ` rows of the witness, S 0 := {s1, . . . , sk−`},
and T0 of the last k − ` columns, T0 := {t`+1, . . . , tk}. The sets S 1, . . . , S m are constructed by ordering the
vertices sk−`+1, sk−`+2, . . . , s` and partitioning them into m equitable intervals. Naturally, T1, . . . ,Tm are the
corresponding columns, T j = {ti : si ∈ S j}, and the bijections f j map si to ti for i ∈ [k − ` + 1 . . `].

Let Yk denote the number of loose k-subwitnesses in Gn,p. Our aim is to show E [Yk]→ 0. Fix the sets
S j,T j and bijections f j which satisfy (i). In particular, |S 1 ∪ · · · ∪ S m| = |T1 ∪ · · · ∪ Tm| = 2` − k = r
and |S i| = |Ti| ∈

[
1
p − 1, 1

p + 1
]

for i ∈ [m]. For S j, T j and f j to span a loose subwitness, i.e. for (ii)

to be satisfied, we require
(
`2 − r2

)
+

((
r
2

)
− m ·

(
r/m

2

))
pairs to be non-edges in Gn,p. The first summand,

`2 − r2 = 2(k − `)` − (k − `)2, comes from E(S 0,T ) = E(T0, S ) = ∅, and the second from E(S i,T j) = ∅ for
i < j. The m ·

(
r/m

2

)
pairs have been subtracted since we do not impose any restrictions on E(S i,Ti), and

they will turn out to be negligible. Moreover, (ii) requires r diagonal edges to be present in Gn,p, so the
probability that our fixed S j,T j and bijections f j satisfy (ii) is at most

pr(1 − p)`
2− r2

2 −
r2
2m .

Now we will take the union bound over all the potential loose subwitnesses. There are at most
(

n
`−r

)2

choices for S 0,T0, and
(

n
r
m

)m
choices for the sets S j, j ∈ [m]. Each vertex v ∈ S j gets assigned a vertex

f j(v), which can be done in at most nr ways. This assignment also determines the sets T j = f j(S j) for
j ∈ [m].

E [Yk] ≤
(

n
` − r

)2(n
r
m

)m

nr pr(1 − p)`
2− r2

2 −
r2
2m ≤

( en
` − r

)2`−2r (enm
r

)r
nr pre

−p
(
`2− r2

2 −
r2
2m

)
.

We use the inequalities ` − r ≥ k
4 and r ≥ k

4 to obtain

E [Yk] ≤
(

4en
k

)2`−2r (4en
k

)r

mrnr pre
−p

(
`2− r2

2 −
r2
2m

)
≤ Ck

1(np)2`(kp)−2`+rmre
−p

(
`2− r2

2

)
,

where C1= 4e2. For the second inequality, we used m = pr, so that e
pr2

2m =er/2 ≤ ek. Finally, substituting
` =

√
2

2 k, `2 − r2

2 = (
√

2 − 1)k2, and noting that (kp)−2`+rmr ≤ (kp)−2`+2r < 1, we obtain

E [Yk] < Ck
1 (np)

√
2k e−pk2

(√
2−1

)
.

Taking np sufficiently large and recalling that pk =
(
2 +
√

2
) (

log(np) + log log(np)
)
, we get E [Yk] < 2−k.

With high probability, Gn,p contains no loose k-subwitnesses, and therefore no k-witnesses. By Lemma 3.1,
Z(G) ≥ n − k with high probability. �

To show that with high probability, Gn,p contains a k-witness (s, t) with s[k] ∩ t[k] = ∅, we use a well-
known consequence of Chebyshev’s inequality. Let Xn be a sequence of non-negative random variables
indexed by some parameter n going to infinity. If E [Xn]→ ∞ and Var[Xn]

(E[Xn])2 → 0, then with high probability
Xn > 0. The proof can be found for example in [5, Corollary 4.3.2].

Lemma 3.3. Let p = p(n) satisfy log2 n
√

n < p = o(1) and ε > 0. With high probability

Z
(
Gn,p

)
≤ n − (1 − ε) ·

(
2 +
√

2
)

log(np)

p
.

Proof. Partition the vertex set V of Gn,p into V1 and V2 with |V1| = b
n
2 c and |V2| = d

n
2 e. Fix k = (1 − ε) ·(

2+
√

2
)

log(np)
p . We say that a pair (s, t) (or the corresponding k-witness) is divided if si ∈ V1 and ti ∈ V2

8



for i ∈ [k]. We will show that with high probability, Gn,p contains a divided k-witness. Let Xk denote the
number of such k-witnesses in Gn,p. Furthermore, for a pair of k-tuples (s, t), we denote the event that (s, t)
is a k-witness by Ws,t. Let us first estimate the expectation of Xk. We will denote n′ = n

2 , and define the
falling factorial power (

n′
)
k =

n′!
(n′ − k)!

. (4)

We crudely bound (n′)k ≥
(

n′
2

)k
for k ≤ n′

2 . We also use 1 − p ≥ e−(p+p2) ≥ e−1.1p for 0 ≤ p ≤ 0.1. In the
following equation, the sum runs over all divided pairs of k-tuples (s, t).

E [Xk] =
∑
s,t

P
[
Ws,t

]
=

((
n′

)
k
)2 pk(1 − p)(

k
2) ≥

(n
4

)2k
pke−1.1p· k

2
2

≥

(
1

16
n2 pe

−1.1
(
1+

√
2

2

)
log(np)

)k

>

(
1

16
n2 p (np)−1.9

)k

where in the second line, we used pk ≤
(
2 +
√

2
)

log(np). It follows that E [Xk] ≥
(
n0.1

)k
−→ ∞.

To use Chebyshev’s inequality, we will need second moment estimates. Fix a specific divided pair
(s, t). The events Ws′,t′ are symmetric over all the divided pairs (s′, t′), so the standard computation (see,
e.g. [5, Section 4.3]) gives

Var [Xk] ≤ E [Xk]
∑
s′,t′

s[k]∩s′[k],∅
t[k]∩t′[k],∅

P
[
Ws′,t′ | Ws,t

]
.

Note that the sum includes the case (s′, t′) = (s, t), so we do not need the additional summand E [Xk]
which often appears in the formula. For any pair of k-tuples (s′, t′), we have defined the set of superdiag-
onal pairs to be

{(
s′i , t

′
j

)
: i, j ∈ [k], i < j

}
, and the set of diagonal pairs to be

{(
s′i , t

′
i

)
: i ∈ [k]

}
. We now

partition the pairs (s′, t′). Let Pa,b,d denote the set of divided pairs (s′, t′) such that
• |s[k] ∩ s′[k]| = a, |t[k] ∩ t′[k]| = b, and
• the number of vertex pairs which are diagonal in both (s, t) and (s′, t′) is d.

Moreover, we define the term Ta,b,d = 1
E[Xk]

∑
(s′,t′)∈Pa,b,d

P
[
Ws′,t′ | Ws,t

]
. If d > a or d > b, Ta,b,d = 0, so we

let d run up to a for simplicity. Using this partition, our sum can be written as

Var [Xk]
(E [Xk])2 ≤

k∑
a,b=1

a∑
d=0

Ta,b,d. (5)

We now analyse the term Ta,b,d. We start by counting the divided pairs in Pa,b,d. There are at most
(n′ − k)k−a (n′ − k)k−b ways of selecting and indexing the vertices of s′[k] \ s[k] and t′[k] \ t[k]. Then we
select d distinct pairs (si, ti) which are diagonal in (s, t) and will also be diagonal in (s′, t′), which can be
done in at most

(
k
d

)
ways. The number of ways to place those pairs into (s′, t′), i.e. to choose the index j

such that s′j = si and t′j = ti is at most (k)d. Similarly, we choose a − d of the remaining vertices in s[k],

and assign them any preimage under s′, which gives an additional factor of
(

k−d
a−d

)
(k − d)a−d. Finally, we do

the same for t and t′. Altogether,∣∣∣Pa,b,d

∣∣∣ ≤ (
n′ − k

)
k−a

(
n′ − k

)
k−b

(
k
d

)
(k)d

(
k − d
a − d

)
(k − d)a−d

(
k − d
b − d

)
(k − d)b−d . (6)

We will later use the fact that (n′−k)k−a
(n′)k

≤
(n′−a)k−a

(n′)k
=

(n′−a)!(n′−k)!
(n′−k)!n′! = 1

(n′)a
. To bound the probability of

(s′, t′) ∈ Pa,b,d being a k-witness, we first bound the number of pairs which are superdiagonal for both (s, t)
and (s′, t′). We can even forget about how the overlap vertices are placed in (s′, t′), that is, the number of
common superdiagonal pairs is bounded above by Φ(a, b), where

Φ(a, b) = max
A,B⊆[k], |A|=a, |B|=b

|{(i, j) ∈ A × B : i < j}| .
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Note that trivially Φ(a, b) ≤ ab. By definition of Φ, P
[
Ws′,t′ | Ws,t

]
≤ pk−d(1− p)(

k
2)−Φ(a,b). Dividing by

E [Xk] and using (6), we get

Ta,b,d ≤
1

(n′)a(n′)b
ka+b−d

(
k
d

)(
k

a − d

)(
k

b − d

)
p−d(1 − p)−Φ(a,b). (7)

The following lemma is essential to our argument.

Lemma 3.4. For any k ∈ N and a, b ∈ [k],
Φ(a, b)
k(a + b)

≤ 1 −

√
2

2
.

From its proof, which we defer to the end of this section, it will be clear that the maximum value of Ta,b,d

is achieved at a = b =
√

2
2 k.

We now split into two cases according to the value of a + b. Firstly, assume that a + b ≥ 24
εp . In this

case, we trivially bound the product of the three remaining binomial coefficients in (7) by 23k. The whole
purpose of analysing the term Ta,b,d was do gain an extra factor of k−d compared to the trivial bound on the
number of vertex orderings in (s, t). This gives

Ta,b,d ≤ 4a+b23k(np)−(a+b)(kp)a+b−de(p+p2)Φ(a,b),
a∑

d=0

Ta,b,d ≤ 4a+b+1 · 23k(np)−(a+b)(kp)a+be(p+p2)Φ(a,b).

For the second inequality, we just summed over d and used
∑a

d=0(kp)−d ≤
∑a

d=0
(
2 log(np)

)−d < 4. Using
Lemma 3.4 and k

a+b ≤
ε
6 log(np), we get

a∑
d=0

Ta,b,d ≤

(
8kp · 2

ε
2 log(np)(np)−1e

(
1−

√
2

2

)
k(p+p2)

)a+b

.

Let n be large enough so that p ≤ 0.1ε. Now kp = (1 − ε)
(
2 +
√

2
)

log(np) gives e
(
1−

√
2

2

)
k(p+p2)

≤

e(1−ε)(1+0.1ε) log(np) ≤ (np)(1−0.9ε), and hence
a∑

d=0

Ta,b,d ≤
(
8(1 − ε)(2 +

√
2) log(np)(np)(

1
2 log 2−0.9)ε)a+b

≤ (np)−
ε
4 (a+b)

for large enough n. Summing over a, b, we get

∑
a,b∈[k]

a+b≥ ε
24p

a∑
d=0

Ta,b,d ≤

k∑
a=1

k∑
b=1

(np)−
ε
4 (a+b) ≤

 k∑
a=1

(np)−
εa
4


2

−→ 0. (8)

In the second case, a + b < 24
εp , we bound the binomial coefficients by

(
k
i

)
≤ ki, i ∈ {d, a − d, b − d}.

Then
Ta,b,d ≤ 4a+bn−(a+b)k2a+2b−2d p−d(1 − p)−ab.

Assuming p < 1
2 , we use the inequality (1− p) ≥ e−p−p2

≥ e−2p, which implies (1− p)−ab ≤ e2pab ≤ e
p(a+b)2

2 .
Furthermore, kp > 1, so

Ta,b,d ≤

(
4n−1k2e

p(a+b)
2

)a+b
.

From the condition p ≥ log2 n
√

n , it follows that n−1k2 ≤ n−1 · 16n
log4 n

log2(np) ≤ 16
log2 n

. Moreover, e
p(a+b)

2 ≤ e
12
ε ,

so altogether, Ta,b,d ≤
(

1
log n

)a+b
for large enough n. Summing up,

∑
a,b∈[k]

a+b< ε
24p

a∑
d=0

Ta,b,d ≤

k∑
a=1

k∑
b=1

(a + 1)(log n)−(a+b) ≤

 k∑
a=1

(a + 1)(log n)−a


 k∑

b=1

(log n)−b

 −→ 0.
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We conclude that Var[Xk]
(E[Xk])2 = o(1), and hence Xk > 0 with high probability. Upon this event, Lemma 3.1

implies Z(G) ≤ n − k. �

Now we prove Lemma 3.4, which is essentially finding the induced subgraph of a k-witness with a
minimum expected number of copies in Gn,p.

Proof of Lemma 3.4. Let k be fixed. Recall that we are trying to maximise Φ(a,b)
k(a+b) over all a, b, where

Φ(a, b) = maxA,B⊆[k], |A|=a, |B|=b |{(i, j) ∈ A × B : i < j}| .
We first fix |A| = a, |B| = b and |A ∩ B| = g. If A and B are a selection of rows and columns of a k × k

matrix, then g denotes the number of diagonal entries at the intersection of selected rows and columns.
Define φ(A, B) = |{(i, j) ∈ A × B : i < j}|. We claim that φ(A, B) ≤ ab − (g+1)g

2 . To see this, note that each
element (c1, c2) with c1, c2 ∈ A ∩ B and c1 ≥ c2 is contained in A × B, but not counted by φ. There are
(g+1)g

2 such pairs (in fact, such (c1, c2) are indices of the subdiagonal matrix entries selected by A and B).
Now we minimise g for fixed a and b. From the identity |A ∪ B| + |A ∩ B| = |A| + |B| and |A ∪ B| ⊆ [k],

we get g ≥ a + b − k, so φ(A, B) ≤ ab − (a+b−k+1)(a+b−k)
2 . Taking the maximum over A and B and using the

AM-GM inequality, we get

Φ(a, b) ≤ ab −
(a + b − k + 1)(a + b − k)

2
≤

(
a + b

2

)2

−
(a + b − k)2

2

Φ(a, b)
k(a + b)

≤
1

k(a + b)

(a + b
2

)2

−
(a + b − k)2

2

 .
We substitute a+b = 2αk, so that the problem reduces to maximising the function f (α) = 1

4α

(
2α2 − (2α − 1)2

)
for 0 < α ≤ 1. This is a simple calculus exercise, but we provide details for the sake of transparency.
f ′(α) = 1

4α2 (−2α2 + 1), so f attains its local maximum at α0 =
√

2
2 . Evaluating f at α0, we get

Φ(a, b) ≤ max
α

f (α) = f (α0) = 1 −

√
2

2

for all a, b ⊆ [k]. Note that the equality is asymptotically attained when A = [`], B = [k − ` + 1, k] with
` = b

√
2k
2 c, which we have used in Lemma 3.2 (the 0-statement of Theorem 1.3). �

4 Spectral bounds
In this section we discuss the bounds on the zero forcing number in terms of the graph eigenvalues. The
study of spectral properties and their relation to other graph parameters is an established area of research
with many diverse techniques and applications, surveyed for example in the monograph of Godsil and
Royle [23]. One of the earliest results of this type is Hoffman’s bound on the independence number of a
graph. Namely, let G be an n-vertex d-regular graph, and let λmin denote its smallest eigenvalue. Hoffman
proved that then G contains no independent set of order larger than −λminn

d−λmin
. Note that since the trace of the

adjacency matrix of a graph is zero, λmin is negative. There are many examples showing the bound to be
tight.

We establish an analogue of Hoffman’s bound for the zero forcing number, showing that Z(G) ≥
n
(
1 + 2λmin

d−λmin

)
. To prove this result we use the following well-known estimate on the edge distribution of a

graph in terms of its eigenvalues. Part (ii) is provided in, e.g., [31], whereas the variant (i) follows from the
same proof. For a graph G = (V, E) and two sets U,W ⊆ V , denote the number of edges with one endpoint
in U and the other one in W by e(U,W). Any edge with both endpoints in U ∩W is counted twice. Recall
that an (n, d, λ) graph is a d-regular n-vertex graph in which all eigenvalues but the largest one are at most
λ in absolute value.
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Theorem 4.1. Let G be an (n, d, λ)-graph, and denote its smallest eigenvalue by λmin. Then for any two
vertex subsets U,W of G,

(i)
d|U ||W |

n
− e(U,W) ≤ −λmin

√
|U ||W |

(
1 −
|U |
n

) (
1 −
|W |
n

)
.

(ii)
∣∣∣∣∣d|U ||W |n

− e(U,W)
∣∣∣∣∣ ≤ λ

√
|U ||W |

(
1 −
|U |
n

) (
1 −
|W |
n

)
.

Proof of Theorem 1.4 (i). Let (s, t) be a k-witness in G, and k = 2µn. Note that there are no edges between
the sets U = {s1, s2, . . . , sµn} and W = {tµn+1, . . . , tk}. Hence, using Theorem 4.1, we get

0 = e(U,W) ≥ dµ2n + λminµn(1 − µ)

−λmin ≥ dµ − λminµ

µ ≤
−λmin

d − λmin
.

Hence the largest witness in G has order at most −2λminn
d−λmin

, which by Lemma 3.1 implies

Z(G) ≥ n
(
1 +

2λmin

d − λmin

)
. �

Surprisingly, the additional factor of two in the above-mentioned bound that looks like an artefact of
the proof, turns out to be necessary, and the result of Theorem (i) is shown to be tight by the following
example.

Proposition 4.2. For any D ≥ 2, and for infinitely many values of N, there exists an N-vertex D-regular
graph G∗ whose smallest eigenvalue is λmin = −2, and which satisfies N − Z (G∗) ≥ 4N

D+2 − 2.

Proof. Let G be an n-vertex d-regular graph which contains a Hamilton cycle consisting of edges e1, e2, . . . , en

in this order. Clearly, such graphs do exist. Let G∗ be the line graph of G, that is, G∗ has the vertex set E(G)
with two vertices adjacent if the corresponding edges in G share a vertex. Then G∗ has N = nd

2 vertices
and is D-regular with D = 2d − 2. Moreover, Hoffman [26] has observed that the smallest eigenvalue of
G∗ is -2.

Note that the vertices in G∗ corresponding to e1, e2, . . . , en form an induced cycle. This implies that
V(G∗) \ {e3, e4, . . . , en} is a zero forcing set in G∗. Namely, the vertex ei forces ei+1 for i = 2, 3, . . . , n − 1.
This zero forcing set has order N − (n − 2). Finally, notice that in G∗, we have

−
2λminN
d − λmin

=
4 · nd

2

2d − 2 + 2
= n. �

Next, we turn our attention to the second part of Theorem 1.4, which says that any (n, d, λ)-graph G
satisfies

Z(G) ≤ n
(
1 −

1
2(d − λ)

log
(

d − λ
2λ + 1

))
.

In particular, if λ = d1−ε for some ε > 0, then n − Z(G) = Ω
(

n log d
d

)
.

Proof of Theorem 1.4 (ii). We greedily construct a witness. In each step i, we will select vertices si, ti ∈
Ui−1 and a set Ui ⊆ Ui−1. Start with U0 = V , the vertex set of G. Assuming that the steps 1, . . . , i − 1 were
executed, let si be any vertex in Ui−1 satisfying 1 ≤ degG[Ui−1](si) ≤ (d − λ) |Ui−1 |

n + λ. We fix ti to be any
neighbour of si, and set Ui = Ui−1 \ NG(si) (note that NG(si) contains si). The algorithm continues as long
as |Ui| >

λn
d+λ

. Denote the final number of steps by k.
It is clear that such k-tuples (s, t) form a witness. We will show that there is a choice for si throughout

the algorithm, and that k ≥ n
2(d−λ) log

(
d−λ
2λ+1

)
.
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Claim 4.3. If |Ui| >
λn

d+λ
, then the induced subgraph G[Ui] contains a vertex u satisfying 1 ≤ degG[Ui](u) ≤

(d − λ) |Ui |

n + λ.

Suppose that some set Ui does not satisfy the Claim. Since |Ui| >
λn

d+λ
, it is not an independent set by

Theorem 4.1. Therefore, removing all the isolated vertices in G[Ui], we get a non-empty set of vertices
W ⊆ Ui in which every vertex u satisfies degG[W](u)>(d − λ) |Ui |

n + λ. In particular,

e(W,W) > 2 ·
|W |
2

(
(d − λ)

|Ui|

n
+ λ

)
,

recalling that we are counting each edge in E(W,W) twice. On the other hand, Theorem 4.1 implies that

e(W,W) ≤ |W |
(

d|W |
n

+ λ

(
1 −
|W |
n

))
≤ |W |

(
(d − λ)

|Ui|

n
+ λ

)
.

We reached a contradiction, which completes the proof of the Claim.
Now denote ai =

|Ui |

n . By construction, a0 = 1 and

ai+1 ≥ ai −
d − λ

n
· ai −

λ + 1
n

.

Claim 4.4. For i ≤ n
2(d−λ) log d−λ

2λ+1 , ai ≥
λ

d+λ
.

It is not hard to show by induction that for all i,

ai ≥

(
1 +

λ + 1
d − λ

) (
1 −

d − λ
n

)i

−
λ + 1
d − λ

.

Now we estimate ai, ignoring the constant
(
1 + λ+1

d−λ

)
and using the inequality 1 − d−λ

n ≥ e−
2(d−λ)

n for
d−λ

n < 1
2 . This gives

ai ≥ e−
2(d−λ)

n · n
2(d−λ) log( d−λ

2λ+1 ) −
λ + 1
d − λ

=
2λ + 1
d − λ

−
λ + 1
d − λ

=
λ

d + λ
,

as required. We get that the algorithm continues for at least k = n
2(d−λ) log d−λ

2λ+1 steps, so

Z(G) ≤ n
(
1 −

1
2(d − λ)

log
d − λ
2λ + 1

)
. �

To show that this bound is tight up to a constant factor, we exhibit a sequence of (n, d, λ)-graphs Gm

with λ = O
(√

d
)

whose forcing number is at least n
(
1 − log2 d

2d + o(1)
)
. We use the following construction

from [31, Section 3]. For an odd integer m, the vertices of Gm are all binary vectors of length m with
an odd number of ones except for the all-one vector. Two distinct vertices are adjacent iff the inner
product of the corresponding vectors is 1 modulo 2. This graph has nm = 2m−1 − 1 vertices, degree
dm = nm−3

2 , and second largest eigenvalue λ(Gm) = 1 + 2
m−3

2 = O
(√

dm

)
. It is easy to check that if (s, t)

is a k-witness in Gm, then the vectors corresponding to t1, t2, . . . , tk are linearly independent, and therefore
k ≤ m = (1 + o(1)) log2 nm =

(1+o(1))nm
2dm

log2 dm. This implies the required bound on Z(Gm).

5 Concluding Remarks
• Theorem 1.3 can be extended to p=ω

(
n−1

)
. The proof combines our second moment estimates with

Talagrand’s inequality, along the lines of [27, Theorem 7.4], which finds independent sets of order
p−1 log(np) in Gn,p. Since this proof gives no additional insight, we put it into the appendix.
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• It would be interesting to study the minimum rank of quasirandom graphs. Recall that the mini-
mum rank of the random graph Gn, 1

2
is bounded away from 0, that is, mr(Gn, 1

2
) ≥ 0.14n with high

probability (see, e.g. [25]). We wonder if this also holds for (n, d, λ)-graphs when d is linear in n and
λ = o(n).

• Another question would be to find the zero forcing number of the random regular graph Gn,d, which
is a graph chosen uniformly at random from all n-vertex d-regular graphs. We are interest ed in
Gn,d for a large constant d and n → ∞. A greedy argument (see, e.g. [6]) shows that Z

(
Gn,d

)
≤

n
(
1 − 1

d−1

)
deterministically, whereas Theorem 1.4 (ii) implies that for large d, with high probability,

Z
(
Gn,d

)
≤ n

(
1 − log d

4d

)
. This follows from the fact that with high probability, Gn,d is an (n, d, λ)-

graph with λ ≤ 3
√

d (see, e.g., [19]). The lower bound, Z
(
Gn,d

)
≥ n

(
1 − 40 log d

d

)
, is an immediate

consequence of the fact that with high probability, Gn,d contains edges between any two sets S ,
T with |S |, |T | ≥ 20n log d

d (see, e.g., [28, Lemma 3.6]). It would be interesting to find the correct
constant.
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[20] Z. Füredi and M. Simonovits, The history of degenerate (bipartite) extremal graph problems, Erdős
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A The random graph with small p

To extend Lemma 3.3 for small p we use Talagrand’s Inequality (see, e.g., [27, Theorem 2.29]).

Lemma A.1. Assume ω
(
n−1

)
= p < log2 n

√
n . Let the vertex set V of Gn,p be partitioned into V1 and V2 with

|V1| = b
n
2 c and |V2| = d

n
2 e, and let k−ε =

(1−ε)(2+
√

2)
p · log(np) with 0 < ε < 1

2 . With high probability, Gn,p

contains a divided k−ε-witness.
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Proof. Denote by w(G) the order of the largest divided witness. For a given ε, we will actually show
that w

(
Gn,p

)
≥ k−2ε =

(1−2ε)(2+
√

2)
p · log(np) whp. The first step is a second moment lower bound on the

probability P
[
w

(
Gn,p

)
≥ k−ε

]
. For now, we write k = k−ε . The proof is identical to the proof of Lemma 3.3

down to equation (8). The case a + b ≥ 24
εp remains unchanged (and that is the case which determines k).

Hence we assume a + b < 24
εp . Equation (7) from the proof of Lemma 3.3 implies

Ta,b,d ≤

(
2
n

)a+b

ka+b−d p−d
(
k
d

)(
k

a − d

)(
k

b − d

)
(1 − p)−ab

≤

(
2k
n

)a+b (
k
d

)(
k
a

)(
k
b

)
(1 − p)−ab.

Denote a + b = 2u and define S u :=
(

2k
n

)2u (
k
u

)3
(1 − p)−u2

. It is clear that Ta,b,d ≤ S a+b
2

= S u, so we will

maximise S u for u ∈
[
1, 12

εp

]
. We compute

S u+1

S u
=

(
2k
n

)2

·

(
k − u
u + 1

)3

(1 − p)−2u−1.

We will use the following two claims.

Claim A.2. S u+1
S u

has at most one local extremum on
[
1, 12

εp

]
.

Claim A.3. For u1 = 2k
(

k
n

) 2
3 ,

S u1+1

S u1
< 1. Moreover, S 2

S 1
≥ 1.

The two claims imply that the maximum of S u lies in the interval [1, u1]. For, there is at most one
point u where S u+1

S u
switches from larger than one to smaller than one. The second claim implies that such

a point lies in the interval [1, u1]. We will prove the two claims later. Now we finish the proof assuming
the claims, that is, we bound S u for u ≤ u1.

S u =

(
2k
n

)2u (
k
u

)3

(1 − p)−u2
≤

(
4k2

n2 ·
e3k3

u3

)u

e2pu2
.

We use the fact that
(i) 2pu1 ≤ 2pk ≤ 4 log(np), and

(ii) the function u 7→
(

4e3k5

n2u3

)u
is increasing for u3 ≤ 4e2k5

n2 , and in particular on [1, u1].

log S u
(ii)
≤ u1

(
log

(
4k2

n2 ·
e3n2

8k2

)
+ 2pu1

)
(i)
≤ u1

(
3 + 4 log(np)

)
≤ k · 10 log(np) ·

(
k
n

) 2
3

≤ k(np)−
1
2 .

The third inequality, where u1�k is really used, is crucial in the calculation. We conclude that for all
a, b, d such that a + b < 24

εp ,

Ta,b,d ≤ ek(np)−
1
2
.

Summing over all such a, b, d and using (8) we get

Var [Xk]
(E [Xk])2 ≤

∑
a,b∈[k]

a+b≥ ε
24p

a∑
d=0

Ta,b,d +
∑

a,b∈[k]
a+b< ε

24p

a∑
d=0

Ta,b,d ≤ k3ek(np)−
1
2

+ o(1) ≤ e2k(np)−
1
2
.
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We will apply a stronger form of Chebyshev’s inequality, which reads P [Xk > 0] ≥ (E[Xk])2

E[X2
k ]

. For details,
refer to [27, Remark 3.1].

E
[
X2

k

]
(E [X]k)2 =

Var [Xk]
(E [Xk])2 + 1 ≤ e4k(np)−

1
2
, so

P [Xk > 0] ≥ e−4k(np)−
1
2
.

To show concentration of the order of the largest divided witness w
(
Gn,p

)
, we apply Talagrand’s Inequality.

The random graph Gn,p is modelled using vertex exposure. Formally, we fix an ordering of the vertices
v1, v2, . . . vn, and define mutually independent random variables (Zi)i∈[n], where Zi exposes the backward
edges from the vertex vi. Then the w

(
Gn,p

)
is a function of Z1, . . . ,Zn. This function is 1-Lipschitz, that is,

if graphs G and G′ differ only at the vertex vi, then |w(G) − w(G′)| ≤ 1. Moreover, whenever w(Gn,p) ≥ k,
there exist 2k certificate vertices, namely the vertices of a divided k-witness, which are responsible for the
fact that w(Gn,p) ≥ k. Hence we may apply [27, Theorem 2.29] with ψ(k) = 2k in their notation. Recalling

that k−ε =
(1−ε)(2+

√
2)

p · log(np), we have

P [w(G) ≤ k−2ε] P [w(G) ≥ k−ε] ≤ e−
(k−ε−k−2ε )2

8k−ε ≤ e−
ε2k−ε

8 .

We have shown that P [w(G) ≥ k−ε] ≥ e−4k−ε (np)−
1
2 . Putting this together with the previous inequality and

taking np >
(

10
ε

)4
,

P [w(G) ≤ k−2ε] ≤ e−
ε2k−ε

8 +4k−ε (np)−
1
2
≤ e−

ε2k−ε
16 −→ 0,

as required.

Proof of Claim A.2. We differentiate f (u) =
(

k−u
u+1

)
(1 − p)−2u/3, the part of S u+1

S u
which is dependent on u,

raised to power 1
3 to simplify the calculation. This is valid since the function x 7→ x3 is increasing. Let us

replace (1 − p) by e−q, where q = − log(1 − p).

f ′(u) = e2qu/3
(
−1

u + 1
−

k − u
(u + 1)2 +

k − u
u + 1

·
2q
3

)

f ′(u) = 0 ⇔ k + 1 +
2q
3

(
−ku − k + u2 + u

)
= 0

This is a quadratic equation in u. Vieté’s formulae give that if u− and u+ are solutions, then u−+u+ = k−1.
Therefore the larger solution, say u+, is at least k−1

2 . Since 12
εp <

k−1
2 provided that np is sufficiently large,

u− is the only potential local extremum in
[
1, 12

εp

]
. �

Proof of Claim A.3. Take u1 as in the statement. Then k3

u3
1

= 1
8

(
n
k

)2

S u+1

S u
≤

(
2k
n

)2

· 2−3 ·
n2

k2 · e
8pk( k

n )2/3

= (1 + o(1))
1
2
.

Furthermore,
S 2

S 1
=

(
2k
n

2) (k − 1
2

)3

(1 − p)−2 ≥
k5

10n2 ·
1
4
> 1. �

This concludes the proof of the lemma. �
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