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FAST LOW-RANK KERNEL MATRIX FACTORIZATION USING

SKELETONIZED INTERPOLATION

LÉOPOLD CAMBIER∗ AND ERIC DARVE†

Abstract. Integral equations are commonly encountered when solving complex physical prob-
lems. Their discretization leads to a dense kernel matrix that is block or hierarchically low-rank.
This paper proposes a new way to build a low-rank factorization of those low-rank blocks at a nearly
optimal cost of O(nr) for a n×n block submatrix of rank r. This is done by first sampling the kernel
function at new interpolation points, then selecting a subset of those using a CUR decomposition and
finally using this reduced set of points as pivots for a RRLU-type factorization. We also explain how
this implicitly builds an optimal interpolation basis for the Kernel under consideration. We show
the asymptotic convergence of the algorithm, explain its stability and demonstrate on numerical
examples that it performs very well in practice, allowing to obtain rank nearly equal to the optimal
rank at a fraction of the cost of the naive algorithm.
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1. Introduction. In this paper, we are interested in the low-rank approximation
of kernel matrices, i.e., matrices Kij defined as

Kij = K (xi, yj)

for xi ∈ X = {x1, . . . , xm} ⊆ X and yj ∈ Y = {y1, . . . , yn} ⊆ Y and where K is a
smooth function over X × Y. A typical example is when

K (x, y) =
1

‖x− y‖2

and X ⊂ X and Y ⊂ Y are two well-separated sets of points.
This kind of matrices arises naturally when considering integral equations like

a(x)u(x) +

∫

Ỹ

K (x, y)u(y)dy = f(x) ∀x ∈ X̃

where the discretization leads to a linear system of the form

(1) aiui +
∑

j

Kijuj = fi

where K is a dense matrix. While this linear system as a whole is usually not low-
rank, one can select subsets of points X ⊂ X and Y ⊂ Y such that K is smooth
over X × Y and hence K (X,Y ) is low-rank. This corresponds to a submatrix of
the complete K. Being able to efficiently compute a low-rank factorization of such
submatrix would lead to significant computational savings. By “smooth” we usually
refer to a function with infinitely many continuous derivatives over its domain. Such a
function can be well approximated by its interpolant at Chebyshev nodes for instance.
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K The smooth kernel function
X ,Y The spaces over which K is defined, i.e., X × Y
x, y Variables, x ∈ X , y ∈ Y
X , Y The mesh of points over which to approximate K , i.e.,

X × Y
K The kernel matrix, K = K (X,Y ), Kij = K (xi, yj)
m, n m = |X |, n = |Y |
X, Y The tensor grids of Chebyshev points

X̂, Ŷ The subsets of X and Y output by the algorithm used to
build the low-rank approximation

m, n The number of Chebyshev tensor nodes, m = |X |, n = |Y |
r0 The “interpolation” rank of K , i.e., r0 = min(|X|, |Y |)
r1 The Skeletonized Interpolation rank of K , i.e., r1 = |X̂ | =

|Ŷ |
r The rank of the continuous SVD of K

S(x,X), T (y, Y ) Row vectors of the Lagrange basis functions, based on
X and Y and evaluated at x and y, respectively. Each
column is one Lagrange basis function.

Ŝ(x, X̂), T̂ (y, Ŷ ) Row vectors of Lagrange basis functions, based on X̂ and
Ŷ , built using the Skeletonized Interpolation and evalu-
ated at x and y, respectively. Each column is one function.

wk, wl Chebyshev integration weights
diag(WX), diag(WY ) Diagonal matrices of integration weights when integration

is done at nodes X and Y

Table 1: Notations used in the paper

Low-rank factorization means that we seek a factorization of K = K (X,Y ) as

K = USV ⊤

where U ∈ R
m×r, V ∈ R

n×r, S ∈ R
r×r, and r is the rank. In that factorization, U and

V don’t necessarily have to be orthogonal. One way to compute such a factorization
is to first compute the matrix K at a cost O(mn) and then to perform some rank-
revealing factorization like SVD, rank-revealing QR or rank-revealing LU at a cost
usually proportional to O(mnr). But, even though the resulting factorization has
a storage cost of O((m+ n)r), linear in the size of X and Y , the cost would be
proportional to O(mn), i.e., quadratic.

1.1. Notation. In the following, we will denote by K a function over X × Y.
X and Y are finite sequences of vectors such that X ⊂ X and Y ⊂ Y and K (X,Y )
denotes the matrix Kij = K (xi, yj). Small-case letters x and y denote arbitrary

variables, while capital-case letters X , X̂, qX, X̃ denotes sequences of vectors. We
denote matrices like A(X,Y ) when the rows refer to the set X and the columns to
the set Y . Table 1 summarizes all the symbols used in this paper.

1.2. Previous work. The problem of efficiently solving (1) has been extensively
studied in the past. As indicated above, discretization often leads to a dense matrix
Kij . Hence, traditional techniques such as the LU factorization cannot be applied
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because of their O
(
n3
)
time and even O

(
n2
)
storage complexity. The now tradi-

tional method used to deal with such matrices is to use the fact that they usually
present a (hierarchically) low-rank structure, meaning we can represent the matrix as
a hierarchy of low-rank blocks. The Fast Multipole Method (FMM) [28, 12, 2] takes
advantage of this fact to accelerate computations of matrix-vector products Kv and
one can then couple this with an iterative method. More recently, [10] proposed a
kernel-independent FMM based on interpolation of the kernel function.

Other techniques compute explicit low-rank factorization of blocks of the kernel
matrix through approximation of the kernel function. The Panel Clustering method
[18] first computes a low-rank approximation of K (x, y) as

K (x, y) ≈
∑

i

κi(x; y0)φi(y)

by Taylor series and then uses it to build the low-rank factorization.
Bebendorf and Rjasanow proposed the Adaptive Cross Approximation [4], or

ACA, as a technique to efficiently compute low-rank approximations of kernel ma-
trices. ACA has the advantage of only requiring to evaluate rows or columns of
the matrix and provides a simple yet very effective solution for smooth kernel ma-
trix approximations. However, it can have convergence issues in some situations (see
for instance [7]) if it cannot capture all necessary information to properly build the
low-rank basis and lacks convergence guarantees.

In the realm of analytic approximations, [31] (and similarly [6], [7], [10] and
[30] in the Fourier space) interpolate K (x, y) over X ×Y using classical interpolation
methods (for instance, polynomial interpolation at Chebyshev nodes in [10]), resulting
in expressions like

K (x, y) ≈ S(x, X̃)K (X̃, Ỹ )T (y, Ỹ )⊤ =
∑

k

∑

l

Sk(x)K (x̃k, ỹl)Tl(y)

where S and T are Lagrange interpolation basis functions. Those expressions can be
further recompressed by performing a rank-revealing factorization on the node matrix
K (X̃, Ỹ ), for instance using SVD [10] or ACA [7]. Furthermore, [31] takes the SVD

of a scaled K (X̃, Ỹ ) matrix to further recompress the approximation and obtain an
explicit expression for ur and vr such that

K (x, y) ≈
∑

s

σsus(x)vs(y)

where {us}s and {vs}s are sequences of orthonormal functions in the usual L2 scalar
product.

Bebendorf [3] builds a low-rank factorization of the form

(2) K (x, y) = K (x, Ỹ )K (X̃, Ỹ )−1
K (X̃, y)

where the nodes X̃ and Ỹ are interpolation nodes of an interpolation of K (x, y) built
iteratively. Similarly, in their second version of the Hybrid cross approximation algo-
rithm, Börm and Grasedyck [7] propose applying ACA to the kernel matrix evaluated

at interpolation nodes to obtain pivots X̃i, Ỹj , and implicitly build an approximation
of the form given in Eq. 2. Both those algorithms resemble our approach in that
they compute pivots X̃, Ỹ in some way and then use Eq. 2 to build the low-rank
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approximation. In contrast, our algorithm uses weights, and has stronger accuracy
guarantees. We highlight those differences in section 5.

Our method inserts itself amongst those low-rank kernel factorization techniques.
However, with the notable exception of ACA, those methods often either rely on
analytic expressions for the kernel function (and are then limited to some specific
ones), or have suboptimal complexities, i.e., greater than O(nr). In addition, even
though we use interpolation nodes, it is worth noting that our method differs from
interpolation-based algorithm as we never explicitly build the S(x, X̃) and T (y, Ỹ )
matrices containing the basis functions. We merely rely on their existence.

H-matrices [16, 17, 15] are one way to deal with kernel matrices arising from
boundary integral equations that are Hierarchically Block Low-Rank. The compres-
sion criterion (i.e., which blocks are compressed as low-rank and which are not) leads
to different methods, usually denoted as strongly-admissible (only compress well-
separated boxes) or weakly-admissible (compress adjacent boxes as well). In the
realm of strongly-admissible H-matrices, the technique of Ho & Ying [22] as well as
Tyrtyshnikov [29] are of particular interest for us. They use Skeletonization of the
matrix to reduce storage and computation cost. In [22], they combine Skeletonization
and Sparsification to keep compressing blocks of H-matrices. [29] uses a somewhat
non-traditional Skeletonization technique to also compress hierarchical kernel matri-
ces.

Finally, extending the framework of low-rank compression, [9] uses tensor-train
compression to re-write K (X,Y ) as a tensor with one dimension per coordinate, i.e.,
K (x1, . . . , xd, y1, . . . , yd) and then compress it using the tensor-train model.

1.3. Contribution.

1.3.1. Overview of the method. In this paper, we present a new algorithm
that performs this low-rank factorization at a cost proportional to O(m+ n). The
main advantages of the method are as follows:

1. The complexity of our method is O(r(m+ n)) (in terms of kernel function
K evaluations) where r is the target rank.

2. The method is robust and accurate, irrespective of the distribution of points
x and y.

3. We can prove both convergence and numerical stability of the resulting algo-
rithm.

4. The method is very simple and relies on well-optimized BLAS3 (GEMM) and
LAPACK (RRQR, LU) kernels.

Consider the problem of approximating K (x, y) over the mesh X × Y with X ∈
X and Y ∈ Y. Given the matrix K (X,Y ), one possibility to build a low-rank
factorization is to do a rank-revealing LU. This would lead to the selection of

Xpiv ⊂ X, Ypiv ⊂ Y

called the “pivots”, and the low-rank factorization would then be given by

K (X,Y ) ≈ K (X,Ypiv)K (Xpiv, Ypiv)
−1

K (Xpiv, Y )

In practice however, this method may become inefficient as it requires assembling the
matrix K (X,Y ) first.

In this paper, we propose and analyze a new method to select the “pivots” out-

side of the sets X and Y . The key advantage is that this selection is independent
from the sets X and Y , hence the reduced complexity. Let us consider the case
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where X ,Y = [−1, 1]d. We will keep this assumption throughout this paper. Then,
within [−1, 1]d, one can build tensor grids of Chebyshev points X,Y and associated
integration weights WX ,WY and then consider the matrix

Kw = diag(WX)1/2K (X,Y ) diag(W Y )
1/2

Denote r0 = min(|X |, |Y |). Based on interpolation properties, we will show that this
matrix is closely related to the continuous kernel K (x, y). In particular, they share

a similar spectrum. Then, we select the sets X̂ ⊂ X, Ŷ ⊂ Y by performing strong
rank-revealing QRs [13] over, respectively, K⊤

w and Kw (this is also called a CUR
decomposition):

KwPy = QyRy

K⊤
wPx = QxRx

and build X̂ by selecting the elements of Px associated to the largest rows of Rx and
similarly for Ŷ (if they differ in size, extend the smallest). We denote the rank of this

factorization r1 = |X̂ | = |Ŷ |, and in practice, we observe that r1 ≈ rSV D, where rSV D

is the rank the truncated SVD of K (X,Y ) would provide. The resulting factorization
is

(3) K (X,Y ) ≈ K (X, Ŷ )K (X̂, Ŷ )−1
K (X̂, Y )

Note that, in this process, at no point did we built any Lagrange basis function
associated with X and Y . We only evaluate the kernel K at X × Y .

This method appears to be very efficient in selecting sets X̂ and Ŷ of minimum
sizes. Indeed, instead, one could aim for a simple interpolation of K (x, y) over both
X and Y separately. For instance, using the regular polynomial interpolation at
Chebyshev nodes X and Y , it would lead to a factorization of the form

K (X,Y ) ≈ S(X,X)K (X,Y )T (Y, Y )⊤

In this expression, we collect the Lagrange basis functions (each one associated to
a node of X) evaluated at X in the columns of S(X,X) and similarly for T (Y, Y ).
This provides a robust way of building a low-rank approximation. The rank r0 =
min(|X |, |Y |), however, is usually much larger than the true rank rSV D and than
r1 (given a tolerance). Note that even if those factorizations can always be further
recompressed to a rank ≈ rSVD, they incur a high upfront cost because of the rank
r0 ≫ rSV D. See subsubsection 1.3.4 for a discussion about this.

1.3.2. Distinguishing features of the method. Since there are many meth-
ods that resemble our approach, we point out its distinguishing features. The singular
value decomposition (SVD) offers the optimal low-rank representation in the 2-norm.
However, its complexity scales like O

(
n3
)
. In addition, we will show that the new

approach is negligibly less accurate than the SVD in most cases.
The rank-revealing QR and LU factorization, and methods of random projec-

tions [19], have a reduced computational cost of O
(
n2r
)
, but still scale quadratically

with n.
Methods like ACA [4], the rank-revealing LU factorization with rook pivoting [11]

and techniques that randomly sample from columns and rows of the matrix scale like
O(nr), but they provide no accuracy guarantees. In fact, counterexamples can be
found where these methods fail. In contrast, our approach relies on Chebyshev nodes,



6 L. CAMBIER, E. DARVE

which offers strong stability and accuracy guarantees. The fact that new interpolation
points, X and Y , are introduced (the Chebyshev nodes) in addition to the existing
points in X and Y is one of the key elements.

Analytical methods are available, like the fast multipole method, etc., but they
are limited to specific kernels. Other techniques, which are more general, like Taylor
expansion and Chebyshev interpolation [10], have strong accuracy guarantees and are
as general as the method presented. However, their cost is much greater; in fact,
the difference in efficiency is measured directly by the reduction from r0 to r1 in our
approach.

1.3.3. Low-rank approximation based on SVD and interpolation. Con-
sider the kernel function K and its singular value decomposition [26, theorem VI.17]:

Theorem 1 (Singular Value Decomposition). Suppose K : [−1, 1]d × [−1, 1]d is

square integrable. Then there exist two sequences of orthogonal functions {ui}∞i=1 and

{vi}di=1 and a non-increasing sequence of non-negative real number {si}∞i=1 such that

(4) K (x, y) =

∞∑

s=1

σsus(x)vs(y)

As one can see, under relatively mild assumptions, any kernel function can be ex-
panded into a singular value decomposition. Hence from any kernel function expan-
sion we find a low-rank decomposition for the matrix K (X,Y ) (which is not the same
as the matrix SVD):
(5)

K (X,Y ) ≈
r∑

s=1

us(X)σsvs(Y ) =
[
u1(X) · · · ur(X)

]


σ1

. . .

σr






v⊤1 (Y )

...
v⊤r (Y )




where the sequence {si}∞i=1 was truncated at an appropriate index r. As a general
rule of thumb, the smoother the function K (x, y), the faster the decay of the σs’s
and the lower the rank.

If we use a polynomial interpolation method with Chebyshev nodes, we get a
similar form:

(6) K (X,Y ) ≈ S(X,X) K (X,Y ) T (Y, Y )⊤

The interpolation functions S(x,X) and T (y, Y ) have strong accuracy guarantees,
but the number of terms required in the expansion is r0 ≫ r ≈ r1. This is because
Chebyshev polynomials are designed for a broad class of functions. In contrast, the
SVD uses basis functions us and vs that are optimal for the chosen K .

1.3.4. Optimal interpolation methods. We will now discuss a more general
problem, then derive our algorithm as a special case. Let’s start with understand-
ing the optimality of the Chebyshev interpolation. With Chebyshev interpolation,
S(x,X) and T (y, Y ) are polynomials. This is often considered one of the best (most
stable and accurate) ways to interpolate smooth functions. We know that for general
polynomial interpolants we have:

(7) f(x)− S(x,X)f(X) =
f (m)(ξ)

m!

m∏

j=1

(x−Xj)
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If we assume that the derivative f (m)(ξ) is bounded, we can focus on finding interpo-
lation points such that

m∏

j=1

(x−Xj) = xm − rX(x)

is minimal, where rX(x) is a degree m− 1 polynomial. Since we are free to vary the
interpolation points X , then we have m parameters (the location of the interpolation
points) and m coefficients in rX . By varying the location of the interpolation points,
we can recover any polynomial rX . Chebyshev points are known to solve this problem
optimally. That is, they lead to an rX such that maxx |xm − rX(x)| is minimal.

Chebyshev polynomials are a very powerful tool because of their generality and
simplicity of use. Despite this, we will see that this can be improved upon with
relatively minimal effort. Let’s consider the construction of interpolation formulas for
a family of functions K (x, λ), where λ is a parameter. We would like to use the SVD,
but, because of its high computational cost, we rely on the cheaper rank-revealing
QR factorization (RRQR, a QR algorithm with column pivoting). RRQR solves the
following optimization problem:

min
{λs,vs}

max
λ

∥∥∥K (x, λ) −
m∑

s=1

K (x, λs)vs(λ)
∥∥∥
2
, vs(λt) = δst

where the 2-norm is computed over x—in addition RRQR produces an orthogonal
basis for {K (x, λs)}s but this is not needed in the current discussion. The vector
space span{K (x, λs)}s=1,...,m is close to span{us}s=1,...,m [see Eq. 4], and the error
can be bounded by σm+1.

Define Λ̂ = {λ1, . . . , λm}. From there, we identify a set of m interpolation nodes

X̂ such that the square matrix

K (X̂, Λ̂) :=
[
K (X̂, λ1) · · · K (X̂, λm)

]

is as well conditioned as possible. We now define our interpolation operator as

Ŝ(x, X̂) = K (x, Λ̂)K (X̂, Λ̂)−1

By design, this operator is exact on K (x, λs):

Ŝ(x, X̂)K (X̂, λs) = K (x, λs)

It is also very accurate for K (x, λ) since

Ŝ(x, X̂)K (X̂, λ) ≈
m∑

s=1

Ŝ(x, X̂)K (X̂, λs)vs(λ) =

m∑

s=1

K (x, λs)vs(λ) ≈ K (x, λ)

With Chebyshev interpolation, S(x,X) is instead defined using orderm−1 polynomial
functions.

A special case that illustrates the difference between SI and Chebyshev, is with
rank-1 kernels:

K (x, λ) = u(x)v(λ)

In this case, we can pick any x1 and λ1 such that K (x1, λ1) 6= 0, and define X̂ = {x1}
and

Ŝ(x, X̂) = K (x, λ1)K (x1, λ1)
−1
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Ŝ(x, X̂)K (X̂, λ) = u(x)v(λ1)
1

u(x1)v(λ1)
u(x1)v(λ) = u(x)v(λ)

SI is exact using a single interpolation point x1. An interpolation using Chebyshev
polynomials would lead to errors, for any expansion order (unless u is fortuitously a
polynomial).

So, one of the key differences between SI and Chebyshev interpolation is that SI
uses, as basis for its interpolation, a set of nearly optimal functions that approximate

the left singular functions of K , rather than generic polynomial functions.

1.3.5. Proposed method. In this paper, we use the framework from subsubsec-
tion 1.3.4 to build an interpolation operator for the class of functions K (x, y), which
we view as a family of functions of x parameterized by y (and vice versa to obtain a
symmetric interpolation method). The approximation (Eq. 3) can be rewritten

K (X,Y ) ≈
[
K (X, Ŷ )K (X̂, Ŷ )−1

]
K (X̂, Ŷ )

[
K (X̂, Ŷ )−1

K (X̂, Y )
]

and by comparing with Eq. 6, we recognize the interpolation operators:

Ŝ(x, X̂) = K (x, Ŷ )K (X̂, Ŷ )−1, T̂ (y, Ŷ ) = K (X̂, y)⊤K (X̂, Ŷ )−T

These interpolation operators are nearly optimal; because of the way these operators
are constructed we call the method “Skeletonized Interpolation.” The sets X̂ and Ŷ
are the minimal sets such that if we sample K at these points we can interpolate K

at any other point with accuracy ǫ. In particular, X̂ and Ŷ are much smaller than
their Chebyshev-interpolant counterparts X and Y and their size, r1, is very close
to r in Eq. 5. The approach we are proposing produces nearly-optimal interpolation
functions for our kernel, instead of generic polynomial functions.

Note that none of the previous discussions explains why the proposed scheme is
stable; the inverse K (X̂, Λ̂)−1 as well as K (X̂, Ŷ )−1 in Eq. 3 could become trou-
blesome numerically. We will explain in detail in section 3 why this is not an issue
numerically, and we explore the connection with interpolation in more detail in sec-
tion 4.

1.3.6. Organization of the paper. This paper is organized as follows. In
section 2, we present the algorithm in detail and present some theoretical results
about its convergence. In section 3, we discuss its numerical stability and in section 4
we revisit the interpolation interpretation on a simple example. Finally, section 5
illustrates the algorithm on more complex geometries, compares its accuracy with
other classical algorithms and presents computational complexity results.

2. Skeletonized Interpolation.

2.1. The algorithm. Algorithm 1 provides the high-level version of the algo-
rithm. It consists of 3 steps:

• Build grids X and Y , tensor grids of Chebyshev nodes. Over [−1, 1] in 1D,
the m Chebyshev nodes of the first kind are defined as

x̄k = cos

(
2k − 1

2m
π

)
k = 1, . . . ,m

In higher dimensions, they are defined as the tensor product of one-dimen-
sional grids. The number of points in every dimension should be such that

m∑

k=1

n∑

l=1

Sk(x)K (x̄k, ȳl)Tl(y) = S(x,X)K (X,Y )T (y, Y )⊤
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provides an δ uniform approximation over [−1, 1]d× [−1, 1]d of K (x, y). De-
note

r0 = min(|X |, |Y |)
• Recompress the grid by performing a strong rank-revealing QR factorization
[13] of

(8) diag(WX)1/2K (X,Y ) diag(WY )
1/2

and its transpose, up to accuracy ǫ. This factorization is also named CUR
decomposition [24, 8]. While our error estimates only hold for strong rank-
revealing QR factorizations, in practice, a simple column-pivoted QR factor-
ization based on choosing columns with large norms works as well. In the
case of Chebyshev nodes of the first kind in 1D over [−1, 1] the integration
weights are given by

wk =
π

m

√
1− x̄2

k =
π

m
sin

(
2k − 1

2m
π

)

The weights in d dimensions are the products of the corresponding weights
in 1D, and the diag(WX) and diag(WY ) matrices are simply the diagonal
matrices of the integration weights. Denote

r1 = |X̂ | = |Ŷ |

In case the sets X̂ and Ŷ output by those RRQR’s are of slightly different
size (which we rarely noticed in our experiments), extend the smallest to have
the same size as the largest.

• Given X̂ and Ŷ , the low-rank approximation is given by

K (X, Ŷ )K (X̂, Ŷ )−1
K (X̂, Y )

of rank r1 ≈ rSVD.

2.2. Theoretical Convergence.

2.2.1. Overview. In this section, we prove that the error made during the
RRQR is not too much amplified when evaluating the interpolant. We first recall
that

1. From interpolation properties,

K (x, y) = S(x,X)K (X,Y )T (y, Y )⊤ + EINT(x, y)

where T and S are small matrices (i.e., bounded by logarithmic factors in r0)
and EINT = O(δ).

2. From the strong RRQR properties,

Kw =

[
I

Ŝ

]
K̂w

[
I T̂⊤

]
+ EQR

where K̂w has a spectrum similar to that of Kw (up to a small polynomial),

Ŝ and T̂ are bounded by a small polynomial, and EQR = O(ǫ).
Then, by combining those two facts and assuming δ < ǫ, one can show
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Algorithm 1 Skeletonized Interpolation

procedure Skeletonized Interpolation(K : [−1, 1]d× [−1, 1]d → R, X , Y , ǫ,
δ)

Build X and Y , sets of Chebyshev nodes over [−1, 1]d that interpolate K with
error δ uniformly

Build Kw as

Kw = diag(WX)1/2K (X,Y ) diag(WY )
1/2

Extract Ŷ ⊆ Y by performing a strong RRQR over Kw with tolerance ǫ ;

KwPy = QyRy

Extract X̂ ⊆ X by performing a strong RRQR over K⊤
w with tolerance ǫ ;

K⊤
wPx = QxRx

If the sets have different size, extends the smallest to the size of the largest.
return

K (X,Y ) ≈ K (X, Ŷ )K (X̂, Ŷ )−1
K (X̂, Y )

end procedure

1. First, that the interpolation operators are bounded,

(9) ‖K (x, Ŷ )K (X̂, Ŷ )−1‖2 = O(p(r0, r1))

where p is a small polynomial.
2. Second, that the error ǫ made in the RRQR is not too much amplified, i.e.,

(10) |K (x, y)− K (x, Ŷ )K (X̂, Ŷ )−1
K (X̂, y)| = O(p′(r0, r1)ǫ)

where p′ is another small polynomial.
Finally, if one assume that σi(Kw) decays exponentially fast, so does ǫ and the

resulting approximation in Eq. 10 converges.
In the following, we present the main lemmas (some proofs are relocated in the

appendix for brevity) leading to the above result.

2.2.2. Interpolation-related results. We first consider the interpolation it-
self. Consider X and Y , constructed such as

K (x, y) = S(x,X)K (X,Y )T (y, Y )⊤ + EINT(x, y)

Lemma 1 (Interpolation at Chebyshev Nodes). ∀x ∈ X and X tensor grids of

Chebyshev nodes of the first kind,

‖S(x,X)‖2 = O
(
log(|X |)d

)

where X ⊂ R
d. In addition, the weights, collected in the weight matrix diag(WX) are

such that

‖ diag(WX)1/2‖2 ≤ πd/2

√
m

= O
(

1√
m

)
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‖ diag(WX)−1/2‖2 ≤ m

πd/2
= O(m)

where m = |X|.
2.2.3. Skeletonization results. We now consider the skeletonization step of

the algorithm performed through the two successive rank-revealing QR factorizations.
Rank-Revealing QR factorizations. Let us first recall what a rank-revealing QR

factorization is. Given a matrix A ∈ R
m×n, one can compute a rank-revealing QR

factorization [11] of the form

AΠ =
[
Q1 Q2

] [R11 R12

R22

]

where Π is a permutation matrix, Q an orthogonal matrix and R a triangular matrix.
Both R and Q are partitioned so that Q1 ∈ R

m×k and R11 ∈ R
k×k. If ‖R22‖ ≈ ε, this

factorization typically indicates that A has an ε-rank of k. The converse, however, is
not necessarily true [11] in general.

From there, one can also write

AΠ = Q1R11

[
I R−1

11 R12

]
+ E = A1

[
I T

]
+ E

where T is the interpolation operator, A1 a set of k columns of A and E the approx-
imation error. This approximation can be achieved by a simple column-pivoted QR
algorithm [11]. This algorithm, however, is not guaranteed to always work (i.e., even
if A has rapidly decaying singular values, this rank-revealing factorization may fail to
exhibit it).

A strong rank-revealing QR, however, has more properties. It has been proven [13,
8] that one can compute in O

(
mn2

)
a rank-revealing QR factorization that guarantees

(11) σi(A1) ≥
σi(A)

q1(n, k)
, σj(E) ≤ σk+j(A)q1(n, k) and ‖T ‖F ≤ q2(n, k)

where q1 and q2 are two small polynomials (with fixed constants and degrees). The
existence of this factorization is a crucial part of our argument. Using the interlacing
property of singular values [11], this implies that we now have both lower and upper
bounds on the singular values of A1

(12)
σi(A)

q1(n, k)
≤ σi(A1) ≤ σi(A)

From Eq. 11 we can directly relate the error E and σk+1 from

(13) ‖E‖2 = σ1(E) ≤ σk+1(A)q1(n, k)

Finally, given a matrix A, one can apply the above result to both its rows and
columns, leading to a factorization

Π⊤
r AΠc =

[
I
Tr

]
Arc

[
I Tc

]
+ E

with the same properties as detailed above.
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Skeletonized Interpolation. We can now apply this results to the Kw and K̂w

matrices.

Lemma 2 (CUR Decomposition ofKw). The partition X = X̂∪ qX, Y = Ŷ ∪ qY of

Algorithm 1 is such that there exist qS, qT , EQR(X,Y ) matrices and a slowly-growing

polynomial p(r0, r1) such that

Kw =

[
I
qS

]
K̂w

[
I qT⊤

]
+ EQR(X,Y )

and where

ǫ = ‖EQR(X,Y )‖2 ≤ p(r0, r1)σr1+1(Kw)

‖qS‖2 ≤ p(r0, r1)

‖ qT‖2 ≤ p(r0, r1)

Finally, we have

‖K̂−1
w ‖2 ≤ p(r0, r1)

2

ǫ

Proof. The first three results are direct applications of [8, theorem 3 and remark
5] as explained in the previous paragraph. The last result follows from the properties
of the strong rank-revealing QR:

‖K̂−1
w ‖2 =

1

σr1(K̂w)
≤ p(r0, r1)

σr1(Kw)
≤ p(r0, r1)

σr1+1(Kw)
≤ p(r0, r1)

2

ǫ

The first inequality follows from σr1(Kw) ≤ σr1(K̂w)p(r0, r1) (Eq. 12), the second
from σr1(Kw) ≥ σr1+1(Kw) (by definition of singular values) and the last from
σr1+1(Kw)

−1 ≤ p(r0, r1)ǫ
−1 (Eq. 13).

Finally, a less obvious result

Lemma 3. There exist a polynomial q(r0, r1) such that for any x ∈ X , y ∈ Y,

‖K (x, Ŷ )K (X̂, Ŷ )−1‖2 = O(q(r0, r1))

‖K (X̂, Ŷ )−1
K (X̂, y)‖2 = O(q(r0, r1))

We provide the proof in the appendix; the key ingredient is simply that ‖K̂−1
w ‖2 ≤

p(r0, r1)
2ǫ−1 from the RRQR properties; hence K̂w is ill-conditioned, but not arbi-

trarily. Its condition number grows like ǫ−1. Then, when multiplied by quantities like
ǫ or δ ≪ ǫ, the factors cancel out and the resulting product can be bounded.

2.2.4. Link between the node matrix and the continuous SVD. In this
section, we link the continuous SVD and the spectrum (singular values) of the matrix
diag(WX)1/2Kw diag(WY )

1/2. This justifies the use of the weights.
For the sake of simplicity, consider the case where interpolation is performed at

Gauss-Legendre nodes X,Y with the corresponding integration weights WX ,WY . (A
more complete explanation can be found in [31].)

Take the classical discrete SVD of Kw,

Kw = U ΣV
⊤
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We then have

K (x, y) = Sw(x,X)U ΣV
⊤
Tw(y, Y )⊤︸ ︷︷ ︸

=K (x,y)

+EINT(x, y)

Then, denote the sets of new basis functions

u(x) = Sw(x,X)U v(y) = Tw(y, Y )V

The key is to note that those functions are orthonormal. Namely, for u,

∫

X

ui(x)uj(x)dx =

r0∑

k=1

wkui(xk)uj(xk)

=

r0∑

k=1

wk

(
r0∑

l=1

w
−1/2
l Sl(xk)U li

)(
r0∑

l=1

w
−1/2
l Sl(xk)U lj

)

=

r0∑

k=1

wk

(
r0∑

l=1

δklw
−1/2
l U li

)(
r0∑

l=1

δklw
−1/2
l U lj

)

=

r0∑

k=1

wkw
−1/2
k Ukiw

−1/2
k Ukj =

r0∑

k=1

UkiUkj = δij

The same result holds for v. This follows from the fact that a Gauss-Legendre quadra-
ture rule with n points can exactly integrate polynomials up to degree 2n− 1. This
shows that we are implicitly building a factorization

(14) K (x, y) =

∞∑

s=1

σsus(x)vs(y) =

r0∑

s=1

σs(Kw)us(x)vs(y)

︸ ︷︷ ︸
=K (x,y)

+EINT(x, y)

where the approximation error is bounded by the interpolation error EINT and where
the sets of basis functions are orthogonal.

Assume now that the kernel K is square-integrable over [−1, 1]d× [−1, 1]d. This
is called a Hilbert-Schmidt kernel [27, Lemma 8.20]. This implies that the associated
linear operator is compact [27, Theorem 8.83]. K is compact as well since it is
finite rank [27, Theorem 8.80]. Given the fact that |EINT(x, y)| ≤ δ for all x, y,
‖K − K ‖L2

≤ Cδ for some C and hence, by compactness of both operators [14,
Corollary 2.2.14],

|σi − σi(K )| ≤ Cδ

for some C > 0. Then, from the above discussion, we clearly have σi(Kw) = σi(K )+
O(δ) and hence

σi(Kw) = σi +O(δ)

This result only formally holds for Gauss-Legendre nodes and weights. However,
this motivates the use of integration weights in the case of Chebyshev as well.

2.2.5. Convergence of the Skeletonized interpolation. We now present the
main result of this paper:
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Theorem 2 (Convergence of Skeletonized Interpolation). If X̂ and Ŷ are con-

structed following Algorithm 1, then there exist a polynomial r(r0, r1) such that for

any x ∈ X and y ∈ Y,

|K (x, y)− K (x, Ŷ )K (X̂, Ŷ )−1
K (X̂, y)| = O(ǫ r(r0, r1))

The key here is that the error incurred during the CUR decomposition, ǫ is
amplified by, at most, a polynomial of r0 and r1. Hence, Theorem 2 indicates that if
the spectrum decays fast enough (i.e., if ǫ → 0 when r0, r1 → ∞ faster than r(r0, r1)
grows), the proposed approximation should converge to the true value of K (x, y).

What is simply left is then linking ǫ, r0, and r1. We have, from the CUR prop-
erties,

ǫ ≤ p(r0, r1)σr1+1(Kw)

which implies

|K (x, y)− K (x, Ŷ )K (X̂, Ŷ )−1
K (X̂, y)| = O(σr1+1(Kw)r

′(r0, r1))

Then, following the discussion from subsubsection 2.2.4, we expect

σi(Kw) = σi +O(δ)

Hence, if K has rapidly-decaying singular values, so does Kw. Assuming the singular
values of Kw decay exponentially fast, i.e.,

log σk(Kw) ≈ poly(k),

we find

|K (x, y)− K (x, Ŷ )K (X̂, Ŷ )−1
K (X̂, y)| → 0

as r0, r1 → ∞, or alternatively, as ǫ → 0.

3. Numerical stability.

3.1. The problem. The previous section indicates that, at least theoretically,
we can expect convergence as ǫ → 0. However, the factorization

(15) K (X,Y ) ≈ K (X, Ŷ )K (X̂, Ŷ )−1
K (X̂, Y )

seems to be numerically challenging to compute. Indeed, as we showed in the previous
section, we can only really expect at best ‖K̂−1

w ‖2 = O
(
ǫ−1
)
which indicates that,

roughly,

κ(K (X̂, Ŷ )) = O
(
1

ǫ

)

i.e., the condition number grows with the desired accuracy, and convergence beyond
a certain threshold (like 10−8 in double-precision) seems impossible. Hence, we can
reasonably be worried about the numerical accuracy of computing Eq. 15 even with
a stable algorithm.

Note that this is not a pessimistic upper bound; by construction, K̂w really is ill-
conditioned, and experiments show that solving linear systems K̂wx = b with random
right-hand sides is numerically challenging and leads to errors of the order ǫ−1.
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3.2. Error Analysis. Consider Eq. 15 and let for simplicity

Kx = K (X, Ŷ ), K = K (X̂, Ŷ ), Ky = K (X̂, Y )

In this section, our goal is to show why one can expect this formula to be accurately
computed if one uses backward stable algorithms. As proved in section 2, we have
the following bounds on the interpolation operators

‖KxK
−1‖2 ≤ p(r0, r1)

‖K−1Ky‖2 ≤ p(r0, r1)

for some polynomial p. The key is that there is no ǫ−1 in this expression. Those
bounds essentially follow from the guarantees provided by the strong rank-revealing
QR algorithm.

Now, let’s compute the derivative of KxK
−1Ky with respect to Kx, K and Ky

[25]:

∂(KxK
−1Ky) = (∂Kx)K

−1Ky +Kx(∂(K
−1))Ky +KxK

−1(∂Ky)

= (∂Kx)K
−1Ky −KxK

−1(∂K)K−1Ky +KxK
−1(∂Ky)

Then, consider perturbing Kx, K, Ky by ε (assume all matrices are of order O(1)
for the sake of simplicity), i.e., let δKx, δKy and δK be perturbations of Kx, Ky and
K, respectively, with

‖δKx‖ = O(ε) , ‖δKy‖ = O(ε) , ‖δK‖ = O(ε) .

Then, using the above derivative as a first order approximation, we can write

‖KxK
−1K − (Kx + δKx)(K + δK)−1(Ky + δKy)‖

≤ ‖δKx‖‖K−1Ky‖+ ‖KxK
−1‖‖δK‖‖K−1Ky‖+ ‖KxK

−1‖‖δKy‖+O
(
ε2
)

≤ 2ǫp(r0, r1) + ǫp(r0, r1)
2 +O

(
ε2
)

= ε(2p(r0, r1) + p(r0, r1)
2) +O

(
ε2
)

We see that the computed result is independent of the condition number of K =
K (X̂, Ŷ ) and depends on p(r0, r1) only.

Assume now that we are using backward stable algorithms in our calculations [20].
We then know that the computed result is the result of an exact computation where
the inputs have been perturbed by ε. The above result indicates that the numerical
result (with roundoff errors) can be expected to be accurate up to ε times a small
polynomial, hence stable.

4. Skeletonized Interpolation as a new interpolation rule. As indicated
in the introduction, one can rewrite

K (x, y) ≈ K (x, Ŷ )K (X̂, Ŷ )−1
K (X̂, y)

=
[
K (x, Ŷ )K (X̂, Ŷ )−1

]
K (X̂, Ŷ )

[
K (X̂, Ŷ )−1

K (X̂, y)
]

= Ŝ(x, X̂)K (X̂, Ŷ )T̂ (y, Ŷ )⊤
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where we recognize two new “cross-interpolation” (because they are build by con-

sidering both the X and Y space) operators Ŝ(x, X̂) = K (x, Ŷ )K (X̂, Ŷ )−1 and

T̂ (y, Ŷ ) = K (X̂, y)⊤K (X̂, Ŷ )−⊤. In this notation, each column of Ŝ(x, X̂) and

T̂ (y, Ŷ ) is a Lagrange function associated to the corresponding node in X̂ or Ŷ and
evaluated at x or y, respectively.

This interpretation is interesting as it allows to “decouple” x and y and analyze
them independently. In particular, one can look at the quality of the interpolation of
the basis functions uk(x) and vk(y) using Ŝ and T̂ . Indeed, if this is accurate, it is
easy to see that the final factorization is accurate. Indeed,

K (x, y) ≈
r∑

k=1

σkuk(x)vk(y)

≈
r∑

k=1

σk(Ŝ(x, X̂)uk(X̂))(T̂ (y, Ŷ )vk(Ŷ ))⊤

= Ŝ(x, X̂)

(
r∑

k=1

σkuk(X̂)vk(Ŷ )⊤

)
T̂ (y, Ŷ )⊤

≈ Ŝ(x, X̂)K (X̂, Ŷ )T̂ (y, Ŷ )⊤

≈ K (x, Ŷ )K (X̂, Ŷ )−1
K (X̂, y)

To illustrate this, let us consider a simple 1-dimensional example. Let x, y ∈
[−1, 1] and consider

K (x, y) =
1

4 + x− y
.

Then approximate this function up to ǫ = 10−10, and obtain a factorization of rank
r.

Fig. 1 illustrates the 4th Lagrange basis function in x, i.e., Ŝ(x, X̂)4 and the

classical Lagrange polynomial basis function associated with the same set X̂ . We see
that they are both 1 at X̂4 and 0 at the other points. However, Ŝ(x, X̂)4 is much
more stable and small than its polynomial counterpart. In the case of polynomial
interpolation at equispaced nodes, the growth of the Lagrange basis function (or,
equivalently, of the Lebesgue constant) is the reason for the inaccuracy and instability.

Fig. 2 shows the effect of interpolating ur(x) using Ŝ(x, X̂) as well as using the

usual polynomial interpolation at the nodes X̂. We see that Ŝ(x, X̂) interpolates
very well ur(x), showing indeed that we implicitly build an accurate interpolant, even
on the last (least smooth) eigenfunctions. The usual polynomial interpolation fails
to capture any feature of ur on the other hand. Note that we could have reached
a similar accuracy using interpolation at Chebyshev nodes but only by using many
more interpolation nodes.

Finally, Fig. 3 shows how well we approximate the various r eigenfunctions. As
one can see, interpolation is very accurate on u1(x), but the error grows for less
smooth eigenfunctions. The growth is, roughly, similar to the growth of ǫ

σi

. Notice
how this is just enough so that the resulting factorization is accurate:

Ŝ(x, X̂)K (X̂, y) =

r∑

s=1

σsŜ(x, X̂)us(X̂)vs(y) +O(ǫ)
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=

r∑

s=1

σs

(
us(x) +O

(
ǫ

σs

))
vs(y) +O(ǫ)

=

r∑

s=1

σsus(x)vs(y) +

r∑

s=1

O(ǫ) vs(y) +O(ǫ)

= K (x, y) +O(ǫ)

It is also consistent with the analysis of section 3. This illustrates how the algorithm
works: it builds an interpolation scheme that allows for interpolating the various
eigenfunctions of K with just enough accuracy so that the resulting interpolation is
accurate up to the desired accuracy.

−1 −0.5 0 0.5 1
−2

−1

0

1

2

3

x

SI-based Lagrange
Usual Lagrange polynomial

X̂

Fig. 1: 4th Lagrange basis function. We see that the Chebyshev-SI based Lagrange
basis function is more stable than the usual polynomial going through the same in-
terpolation nodes.

5. Numerical experiments. In this section we present some numerical exper-
iments on various geometries. We study the quality (how far r1 is from the optimal
SVD-rank r and how accurate the approximation is) of the algorithm in subsection 5.1
and subsection 5.2. We illustrate in subsection 5.3 the improved guarantees of RRQR
and justify the use of weights in subsection 5.4. Finally, subsection 5.5 studies the
algorithm computational complexity.

The experiments are done using Julia [5] and the code is sequential. For the strong
rank-revealing QR algorithm, we use the LowRankApprox.jl Julia package [21]. The
code can be downloaded from https://people.stanford.edu/lcambier/publications.

5.1. Simple geometries. We begin this section with an elementary problem, as
depicted on Fig. 4b. In this problem, we consider the usual kernel K (x, y) = ‖x−y‖−1

2

where x, y ∈ R
2. X and Y are two squares of side of length 1, centered at (0.5, 0.5)

and (2.5, 2.5) respectively. Finally, X and Y are two uniform meshes of 50× 50 mesh
points each, i.e., n = 2500.

We pick the Chebyshev grids X and Y using a heuristic based on the target
accuracy ε. Namely, we pick the number of Chebyshev nodes in each dimension (i.e.,
x1, x2, y1 and y2) independently (by using the midpoint of X and Y as reference), such

https://people.stanford.edu/lcambier/publications
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SI-based
interpolant

Polynomial
interpolant

Singular
function

X̂

Fig. 2: Interpolation of the last (and least smooth) eigenfunction. We see that the
Chebyshev-SI based interpolant is much more accurate than the polynomial inter-
polant going through the same interpolation nodes.
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E
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o
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Interpolation error on ui

ǫ/σi

Fig. 3: Interpolation error on the various eigenfunctions. The error grows just slowly
enough with the eigenfunctions so that the overall interpolant is accurate up to the
desired accuracy.

that the interpolation error is approximately less than ε3/4. This values is heuristic,
but performs well for those geometries. Other techniques are possible. This choice
is based in part on the observation that the algorithm is accurate even when δ > ε,
i.e., when the Chebyshev interpolation is less accurate than the actual final low-rank
approximation through Skeletonized Interpolation.

Consider then Fig. 4a. The r0 line indicates the rank (r0 = min(|X |, |Y |)) of
the low-rank expansion through interpolation. The r1 line corresponds to the rank
obtained after the RRQR over K (X,Y ) and its transpose, i.e., it is the rank of the
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final approximation

K (X,Y ) ≈ K (X, Ŷ )K (X̂, Ŷ )−1
K (X̂, Y )

Finally, “SVD rank” is the rank one would obtain by truncating the SVD of

K (X,Y ) = USV ⊤

at the appropriate singular value, as to ensure

‖K (X,Y )− K̃ (X,Y )‖F ≈ ǫ‖K (X,Y )‖F

Similarly, “RRQR” is the rank a rank-revealing QR on K (X,Y ) would obtain. This
is usually slightly suboptimal compared to the SVD. Those two values are there as to
illustrate that r1 is close to the optimal value.

The conclusion regarding Fig. 4a is that Skeletonized Interpolation is nearly opti-
mal in terms of rank. While the rank obtained by the interpolation is clearly far from
optimal, the RRQR over K (X,Y ) allows us to find subsets X̂ ⊂ X and Ŷ ⊂ Y that
are enough to represent well K (X,Y ), and the final rank r1 is nearly optimal com-
pared to the SVD-rank r. We also see that the rank of a blind RRQR over K (X,Y )
is higher than the SVD-rank and usually closer—if not identical—to r1.

We want to re-emphasize that, in practice, the error of the sets X, Y —i.e., the

error of the polynomial interpolation based on X×Y— can be larger than the required

tolerance. If they are large enough, the compressed sets X̂, Ŷ will contain enough
information so as to properly interpolate K and the final error will be smaller than
the required tolerance. This is important, as the size of the Chebyshev grid for a
given tolerance can be fairly large (as indicated in the introduction, and one of the
main motivation of this work), even though the final rank is small.

As a sanity check, Fig. 4c gives the relative error measured in the Frobenius norm

‖K (X,Y )− K (X, Ŷ )K (X̂, Ŷ )−1K (X̂, Y )‖F
‖K (X,Y )‖F

between K (X,Y ) and its interpolation as a function of the tolerance ǫ.1 We see that
both lines are almost next to each other, meaning our approximation indeed reaches
the required tolerance. This is important as it means that one can effectively control

the accuracy.
Finally, Fig. 4b also shows the resulting X̂ and Ŷ . It is interesting to notice how

the selected points cluster near the close corners, as one could expect since this is the
area where the kernel is the least smooth.

We then consider results for the same Laplacian kernel K (x, y) = ‖x − y‖−1
2

between two plates in 3D (Fig. 5b). We observe overall very similar results as for
the previous case on Fig. 5a, where the initial rank r0 is significantly decreased to r1
while keeping the resulting accuracy close to the required tolerance as Fig. 5c shows.
Finally, one can see on Fig. 5b the selected Chebyshev nodes. They again cluster in
the areas where smoothness is the worst, i.e., at the closes edges of the plates.

5.2. Comparison with ACA and Random Sampling. We then compare our
method with other standard algorithms for kernel matrix factorization. In particular,

1Choosing the Frobenius norm is not critical—very similar results are obtained in the 2-norm for
instance.
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Fig. 4: Results for the 2D-squares example. The rank r0 before compression is signif-
icantly reduced to r1, very close to the true SVD or RRQR-rank.

we compare it with ACA [4] and ’Random CUR’ where one selects, at random, pivots

X̃ and Ỹ and builds a factorization

K (X,Y ) ≈ K (X, Ỹ )K (X̃, Ỹ )−1
K (X̃, Y )

based on those. As we are interested in comparing the quality of the resulting sets
of pivots for a given rank, we compare those algorithms for sets X and Y with vari-
able distance between each other and for a fixed tolerance (ǫ = 10−8) and kernel
(K (x, y) = ‖x− y‖−1

2 ). The geometry is two unit-length squares side-by-side with a
variable distance between their closest edges.

The comparison is done in the following way:
1. Given r1, build the ACA factorization of rank r1 and compute its relative

error in Frobenius norm with K (X,Y );
2. Given r1, build the random CUR factorization by sampling uniformly at

random r1 points from X and Y to build X̃, Ỹ . Then, compute its relative
error with K (X,Y ).

We then do so for sets of varying distance, and for a given distance, we repeat the
experiment 25 times by building X and Y at random within the two squares. This
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Fig. 5: Results for the perpendicular plates example. The rank r0 before compression
is significantly reduced to r1, very close to the true SVD or RRQR-rank.

allows to study the variance of the error and to collect some statistics.
Fig. 6 gives the resulting errors in relative Frobenius norm for the 3 algorithm

using box-plots of the errors to show distributions. The rectangular boxes represent
the distributions from the 25% to the 75% quantiles, with the median in the center.
The thinner lines represent the complete distribution, except outliers depicted using
large dots. We observe that the (X̂ , Ŷ ) sets based on Chebyshev-SI are, for a common

size r1, more accurate than the Random or ACA sets. In addition, by design, they lead
to more stable factorizations (as they have very small variance in terms of accuracy)
while ACA for instance has a higher variance. We also see, as one may expect, that
while ACA is still fairly stable even when the clusters get close, random CUR starts
having higher and higher variance. This is understandable as the kernel gets less and
less smooth as the clusters get close.

Finally, we ran the same experiments with several other kernels (r−2, r−3, log(r),
exp(−r), exp(−r2)) and observed quantitatively very similar results.

5.3. Stability guarantees provided by RRQR. In Algorithm 1, in principle,
any rank-revealing factorization providing pivots could be used. In particular, ACA
itself could be used. In this case, this is the HCAII (without the weights) algorithm
as described in [7]. However, ACA is only a heuristic: unlike strong rank-revealing
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Fig. 6: Comparison between different algorithms: Chebyshev-based SI, ACA and
purely random CUR decomposition. We consider two 2D squares of sides 1 with a
variable distance from each other; for each distance, we run Chebyshev-based SI and
find the smallest sets X,Y of rank r0 leading to a factorization using X̂, Ŷ of sizes
r1 with relative error at most 10−8. Then r1 is used as an a priori rank for ACA
and Random CUR. We randomize the experiments by subsampling 500 points from
a large 100× 100 points grid in each square.

factorizations, it can’t always reveal the rank. In particular, it may have issues when
some parts of X and Y have strong interactions while others are weakly coupled.
To highlight this, consider the following example. It can be extended to many other
situations.

Let us use the rapidly decaying kernel

K (x, y) =
1

‖x− y‖32
and the situation depicted in Fig. 7 with X =

[
X1 X2

]
and Y =

[
Y1 Y2

]
. We note

that, formally, X and Y are not well-separated.
Since K is rapidly decaying and X1/Y2 (resp. X2/Y1) are far away, the resulting

matrix is nearly block diagonal, i.e.,

(16) K (X,Y ) ≈
[
K (X1, Y1) O(ε)

O(ε) K (X2, Y2)

]

for some small ε. This is a challenging situation for ACA since it will need to sweep
through the initial block completely before considering the other one. In practice
heuristics can help alleviate the issue; see ACA+ [7] for instance. Those heuristic,
however, do not come with any guarantees. Strong RRQR, on the other hand, does not
suffer from this and picks optimal nodes in each cluster from the start. It guarantees
stability and convergence.

5.4. The need for weights. Another characteristic of Algorithm 1 is the pres-
ence of weights. We illustrate here why this is necessary in general. Algorithm 1 uses
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Fig. 7: Failure of ACA. The geometry is such that the coupling between X1/Y1

and X2/Y2 is much stronger than between X1/Y2 and X2/Y1. This leads to ACA
not selecting pivots properly. RRQR on the other hand has no issue and converges
steadily.

X and Y both to select interpolation points (the “columns” of the RRQR) and to
evaluate the resulting error (the “rows”). Hence, a non-uniform distribution of points
leads to over- or under-estimated L2 error and to a biased interpolation point selec-
tion. The weights, roughly equal to the (square-root of) the inverse points density,
alleviate this effect. This is a somewhat small effect in the case of Chebyshev nodes
& weights as the weights have limited amplitudes.

To illustrate this phenomenon more dramatically, consider the situation depicted
on Fig. 8. We define X and Y in the following way. Align two segments of N points,
separated by a small interval of length ǫ = 1/N withN = 200. At the close extremities
we insert 25N additional points inside small 3D spheres of diameter ǫ. As a result,
|X| = |Y | = 26N = 5, 200, and X, Y are strongly non-uniform. We see that the small
spheres hold a large number of points in an interval of length N−1. As a result, their
associated weight should be proportional to N−1/2, while the weight for the points
on the segments should be proportional to 1. Then we apply Algorithm 1 with and
without weights, and evaluate the error on the segments using |X | = |Y | = 10, 000
equispaced points as a proxy for the L2 error.

When using a rank r0 = 200, the CUR decomposition picks only 6 more points on
the segments (outside the spheres) for the weighted case compared to the unweighted.
However, this is enough to dramatically improve the accuracy, as Fig. 8b shows.
Overall, the presence of weights has a large effect, and this shows that in general, one
should appropriately weigh the node matrix Kw to ensure maximum accuracy.

5.5. Computational complexity. We finally study the computational com-
plexity of the algorithm. It’s important to note that two kinds of operations are
involved: kernel evaluations and classical flops. As they may potentially differ in
cost, we keep those separated in the following analysis.

The cost of the various parts of the algorithm is the following :
• O

(
r20
)
kernel evaluations for the interpolation, i.e., the construction of X and

Y and the construction of K (X,Y )
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Fig. 8: Benchmark demonstrating the importance of using weights in the RRQR
factorization. The setup for the benchmark is described in the text. The blue curve
on the right panel, which uses weights, has much improved accuracy.

• O
(
r20r1

)
flops for the RRQR over K (X,Y ) and K (X,Y )⊤

• O((m+ n)r1) kernel evaluations for computing K (X, Ŷ ) and K (X̂, Y ), re-
spectively (with m = |X | and n = |Y |)

• O
(
r31
)
flops for K (X̂, Ŷ )−1 (through, say, an LU factorization)

So the total complexity of building the three factor isO((m+ n)r1) kernel evaluations.
If m = n and r1 ≈ r, the total complexity is

O((m+ n)r1) ≈ O(nr)

Also note that the memory requirements are, clearly, of order O((m+ n)r1).
When applying this low-rank matrix on a given input vector f(Y ) ∈ R

n, the cost
is

• O(r1n) flops for computing w1 = K (X̂, Y )f(Y )

• O
(
r21
)
flops for computing w2 = K (X̂, Ŷ )−1w1 assuming a factorization of

K (X̂, Ŷ ) has already been computed

• O(mr1) flops for computing w3 = K (X, Ŷ )w2

So the total cost is
O((m+ n)r1) ≈ O(nr)

flops if m = n and r1 ≈ r.
To illustrate those results, Fig. 9a shows, using the same setup as in the 2D square

example of subsection 5.1, the time (in seconds) taken by our algorithm versus the
time taken by a naive algorithm that would first build K (X,Y ) and then perform
a rank-revealing QR on it. Time is given as a function of n for a fixed accuracy
ǫ = 10−8. One should not focus on the absolute values of the timing but rather
the asymptotic complexities. In this case, the O(n) and O

(
n2
)
complexities clearly

appear, and our algorithm scales much better than the naive one (or, really, that any
algorithm that requires building the full matrix first). Note that we observe no loss of
accuracy as n grows. Also note that the plateau at the beginning of the Skeletonized
Interpolation curve is all the overhead involved in selecting the Chebyshev points X
and Y using some heuristic. This is very implementation-dependent and could be
reduced significantly with a better or more problem-tailored algorithm. However,
since this is by design independent of X and Y (and, hence, n) it does not affect the
asymptotic complexity.
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Fig. 9b shows the time as a function of the desired accuracy ǫ, for a fixed number
of mesh points n = 105. Since the singular values of K (X,Y ) decay exponentially,
one has r ≈ O

(
log
(
1
ǫ

))
. The complexity of the algorithm being O(nr), we expect the

time to be proportional to log
(
1
ǫ

)
. This is indeed what we observe.

Fig. 9c depicts the time as a function of the rank r for a fixed accuracy ǫ = 10−8

and number of mesh points n = 105. In that case, to vary the rank and keep ǫ fixed,
we change the geometry and observe the resulting rank. This is done by moving the
top-right square (see Fig. 4b) towards the bottom-left one (keeping approximately
one cluster diameter between them) or away from it (up to 6 diameters). The rank
displayed is the rank obtained by the factorization. As expected, the algorithm scales
linearly as a function of r.
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Fig. 9: Timings experiments on Skeletonized Interpolation

6. Conclusion. In this work, we built a kernel matrix low-rank approximation
based on Skeletonized interpolation. This can be seen as an optimal way to interpolate
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families of functions using a custom basis.
This type of interpolation, by design, is always at least as good as polynomial

interpolation as it always requires the minimal number of basis functions for a given
approximation error. We proved in this paper the asymptotic convergences of the
scheme for kernels exhibiting fast (i.e., faster than polynomial) decay of singular
values. We also proved the numerical stability of general Schur-complement types of
formulas when using a backward stable algorithm.

In practice, the algorithm exhibits a low computational complexity of O(nr) with
small constants and is very simple to use. Furthermore, the accuracy can be set
a priori and in practice, we observe nearly optimal convergence of the algorithm.
Finally, the algorithm is completely insensible to the mesh point distribution, leading
to more stable sets of “pivots” than Random Sampling or ACA.

Acknowledgements. We would like to thank Cleve Ashcraft for his ideas and
comments on the paper, as well as the anonymous reviewer for his careful reading and
pertinent suggestions that greatly improved the paper.

Appendix A. Proofs of the theorems.

Lemma 1. This bound on the Lagrange basis is a classical result related to the
growth of the Lebesgue constant in polynomial interpolation. For m Chebyshev nodes
of the first kind on [−1, 1] and the associated Lagrange basis functions ℓ1, . . . , ℓm we
have the following result [23, equation 13]

max
x∈[−1,1]

m∑

i=1

|ℓi(x)| ≤
2

π
log(m+ 1) + 0.974 = O(log(m))

This implies that in one dimension,

‖S(x,X)‖2 ≤ ‖S(x,X)‖1 = O(logm)

Going from one to d dimensions can be done using Kronecker products. Indeed, for
x ∈ R

d,

S(x,X) = S(x1, X1)⊗ · · · ⊗ S(xd, Xd)

where x = (x1, . . . , xd) and X1, . . . , Xd are the one-dimensional Chebyshev nodes.

Since for all a ∈ R
m, b ∈ R

n, ‖a ⊗ b‖2 =
√∑

i,j(aibj)
2 = ‖ab⊤‖F = ‖a‖2‖b‖2, it

follows that

‖S(x,X)‖2 = ‖S(x1, X1)⊗ · · · ⊗ S(xd, Xd)‖2 =

d∏

i=1

‖S(xi, Xi)‖2 =

d∏

i=1

O(logmi)

This implies, using a fairly loose bound,

‖S(x,X)‖2 = O
(
log(|X |)d

)

The same argument can be done for T (y, Y ).
In 1D, the weights are

wk =
π

m
sin

(
2k − 1

2m
π

)
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for k = 1, . . . ,m. Obviously, wk > 0. Clearly, wk < π
m . Also, the minimum being

reached at k = 1 or k = m,

wk ≥ π

m
sin
( π

2m

)
>

π

m

2π

2πm
=

π

m2

Since the nodes in d dimensions are products of the nodes in 1D, it follows that

‖ diag(WX)‖2 ≤ πd

m

‖ diag(WX)−1‖2 ≤ m2

πd

The result follows.

Lemma 3. We show the result for the second equation. This requires using, con-
secutively, the interpolation result and the CUR decomposition one. First, one can
write from Lemma 1 and the interpolation,

K (X̂, Ŷ )−1
K (X̂, y) = K (X̂, Ŷ )−1

[
K (X̂, Y )T (y, Y )⊤ + EINT(X̂, y)

]

Then, introducing the weight matrices and applying Lemma 2 on the interpolation
matrix,

K (X̂, Y ) =

= diag(ŴX)−1/2 diag(ŴX)1/2K (X̂, Y ) diag(WY )
1/2 diag(WY )

−1/2

= diag(ŴX)−1/2
{
diag(ŴX)1/2K (X̂, Ŷ ) diag(ŴY )

1/2
[
I qT⊤

]

+ EQR(X̂, Y )
}
diag(WY )

−1/2

Finally, combining and distributing all the factors gives us

K (X̂, Ŷ )−1
K (X̂, y) = diag(ŴY )

1/2
[
I qT⊤

]
diag(WY )

−1/2T (y, Y )⊤

+ K (X̂, Ŷ )−1 diag(ŴX)−1/2EQR(X̂, Y ) diag(WY )
−1/2T (y, Y )⊤

+ K (X̂, Ŷ )−1EINT(X̂, y)

Here, we can bound all terms:
• For the first term, Lemma 1 and Lemma 2 show that the expression is bounded

by a polynomial;
• For the second term use the fact that

‖K̂−1
w ‖2 ≤ p2(r0, r1)

1

ǫ
⇒ ‖K (X̂, Ŷ )−1‖2 = p′(r0, r1)

1

ǫ

hence, since ‖EQR(X,Y )‖2 = ǫ, the product is again bounded by a polyno-
mial since the ǫ cancel out ;

• The last term can be bounded in a similar way using

EINT(x, y) = O(δ) ≤ O(ǫ)

We conclude that there exists a polynomial q such that

‖K (X̂, Ŷ )−1
K (X̂, y)‖2 = O(q(r0, r1))

The proof is similar in x.
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Theorem 2. Combining interpolation and CUR decomposition results one can
write

K (x, y) = S(x,X)K (X,Y )T (y, Y )⊤ + EINT(x, y)

= Sw(x,X)Kw(X,Y )Tw(y, Y )⊤ + EINT(x, y)

= Sw(x,X)

[[
I
qS

]
Kw(X̂, Ŷ )

[
I qT⊤

]
+ EQR(X,Y )

]
Tw(y, Y )⊤ + EINT(x, y)

= Sw(x,X)

[
Kw(X̂, Ŷ )
qSKw(X̂, Ŷ )

]
Kw(X̂, Ŷ )−1

[
Kw(X̂, Ŷ ) Kw(X̂, Ŷ )qT⊤

]
Tw(y, Y )⊤

+ Sw(x,X)EQR(X,Y )Tw(y, Y )⊤ + EINT(x, y)

= Sw(x,X)
[
Kw(X, Ŷ ) + EQR(X, Ŷ )

]
Kw(X̂, Ŷ )−1

[
Kw(X̂, Y ) + EQR(X̂, Y )

]

× Tw(y, Y )⊤ + Sw(x,X)EQR(X,Y )Tw(y, Y )⊤ + EINT(x, y)

= (K (x, Ŷ ) + EINT(x, Ŷ ))K (X̂, Ŷ )−1(K (X̂, y) + EINT(X̂, y))

+ Sw(x,X)EQR(X, Ŷ )Kw(X̂, Ŷ )−1
Kw(X̂, Y )Tw(y, Y )⊤

+ Sw(x,X)Kw(X, Ŷ )Kw(X̂, Ŷ )−1EQR(X̂, Y )Tw(y, Y )⊤

+ Sw(x,X)EQR(X, Ŷ )Kw(X̂, Ŷ )−1EQR(X̂, Y )Tw(y, Y )⊤

+ Sw(x,X)EQR(X,Y )Tw(y, Y )⊤ + EINT(x, y)

Distributing everything, factoring the weights matrices and simplifying, we obtain the
following, where we indicate the bounds on each term on the right,

K (x, y) = K (x, Ŷ )K (X̂, Ŷ )−1
K (X̂, y) Approximation

+ EINT(x, Ŷ )K (X̂, Ŷ )−1
K (X̂, y) O(δq(r0, r1))

+ K (x, Ŷ )K (X̂, Ŷ )−1EINT(X̂, y) O(δq(r0, r1))

+ EINT(x, Ŷ )K (X̂, Ŷ )−1EINT(X̂, y) O(δp′(r0, r1))

+ S(x,X) diag(WX)−1/2EQR(X, Ŷ ) diag(ŴY )
−1/2

K (X̂, Ŷ )−1
K (X̂, Y )T (y, Y )⊤ O

(
ǫ(log r0)

2dq(r0, r1)r
2
0

)

+ S(x,X)K (X, Ŷ )K (X̂, Ŷ )−1 diag(ŴX)−1/2

EQR(X̂, Y ) diag(WY )
−1/2T (y, Y )⊤ O

(
ǫ(log r0)

2dq(r0, r1)r
2
0

)

+ S(x,X) diag(WX)−1/2EQR(X, Ŷ )

diag(ŴY )
−1/2

K (X̂, Ŷ )−1 diag(ŴX)−1/2

EQR(X̂, Y ) diag(WY )
−1/2T (y, Y )⊤ O

(
ǫ(log r0)

2dr20p(r0, r1)
)

+ S(x,X) diag(WX)−1/2EQR(X,Y )

diag(WY )
−1/2T (y, Y )⊤ O

(
ǫ(log r0)

2dr20
)

+ EINT(x, y) O(δ)

This concludes the proof.
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