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UNMATCHED PROJECTOR/BACKPROJECTOR PAIRS:1

PERTURBATION AND CONVERGENCE ANALYSIS∗2

TOMME ELFVING† AND PER CHRISTIAN HANSEN‡3

Abstract. In tomographic reconstruction problems it is not uncommon that there are errors4
in the implementation of the forward projector and/or the backprojector, and hence we encounter5
a so-called unmatched projektor/backprojector pair. Consequently the matrices that represent the6
two projectors are not each others’ transpose. Surprisingly, the influence of such errors in algebraic7
iterative reconstruction methods has received little attention in the literature. The goal of this paper8
is to perform a rigorous first-order perturbation analysis of the minimization problems underlying the9
algebraic methods, in order to understand the role played by the non-match of the matrices. We also10
study the convergence properties of linear stationary iterations based on unmatched matrix pairs,11
leading to insight into the behavior of some important row- and column-oriented algebraic iterative12
methods. We conclude with numerical examples that illustrate the perturbation and convergence13
results.14

Key words. perturbation theory, convergence analysis, algebraic iterative reconstruction, semi-15
convergence, computed tomography16

AMS subject classifications. 65F10, 65F2217

1. Introduction. Among the many reconstruction methods in computed to-18

mography (CT), algebraic iterative methods have received considerable interest due19

to their simplicity and their ability to adapt to the particular geometry of the CT20

scanner and the measurements. One of their applications is in limited-angle and21

limited-data CT, e.g., when exposition to a low dose of X-rays is an issue or when22

it is only possible to measure projection data for certain angles. These methods are23

therefore used for many reconstruction problems in imaging science [15], [17], [19].24

Underlying the algebraic iterative methods is always a system of linear equations25

arising from the discretization of an ill-posed problem,26

(1) Ax = b, A ∈ Rm×n, b ∈ Rm.27

This system is not necessarily consistent, and there are no restrictions on the rank or28

dimensions of A.29

Well-known examples of algebraic iterative methods are Kaczmarz’s method and30

variants of Landweber iteration [10], [14]. These methods, and their block extensions31

[24], utilize projection and backprojection operations in each iterative step. Both32

operations are defined by the geometry and the physics of the problem, and when dis-33

cretized the projection is represented by the matrix A in (1) while the backprojection34

is, in principle, represented by AT (the transpose of A).35

However, the particular discretization methods used to obtain the projection and36

backprojection (see, e.g., [12], [16], [23], [26]) depend on the application and, to some37

extent, also on traditions in the specific application communities. The philosophy38

is that the discretized operations are approximations of the underlying physics, and39
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2 TOMMY ELFVING AND PER CHRISTIAN HANSEN

hence different discretization schemes may be appropriate for projection and back-40

projection.41

Moreover, it is sometimes the case that the software uses different discretization42

methods for the projection and the backprojection, e.g., due to considerations about43

the most efficient use of multi-core processors, GPUs and other hardware accelerators.44

For example, this is the case in the software package ASTRA [27] when using GPU45

acceleration [20].46

Consequently, in all these circumstances the matrix that represents the backpro-47

jection is not equal to AT , a situation referred to as an unmatched projector/backpro-48

jector pair [25]. It is therefore relevant to study the influence of such an unmatched49

pair on the least squares and minimum-norm problems associated with (1), as well as50

their influence on the convergence properties of the algebraic iterative methods ap-51

plied to the unmatched problem. Our analysis includes two important specific cases,52

namely, row- and column-iterations, including a semi-convergence analysis of these53

methods.54

Our work is inspired by the work of Zeng and Gullberg [25] who also consider55

iterative reconstruction methods where the backprojection is replaced by a matrix56

that is very different from AT (such as a matrix that approximates filtered back57

projection). These scenarios are, however, outside the scope of our paper.58

This paper is organized as follows. We first perform a first-order perturbation59

analysis of the minimization problems underlying the algebraic iterative methods, in60

order to understand the role played by the non-match of the matrices. We then study61

the convergence properties of linear stationary iterations based on unmatched matrix62

pairs, leading to insight into the behavior of some important row- and column-oriented63

algebraic iterative methods. We conclude with numerical examples that illustrate the64

perturbation and convergence results.65

Throughout the paper we use the following notation: I is an identity matrix of66

conforming size, PS is the orthogonal projection matrix onto the subspace S, R(A)67

and N (A) are the range and null space of A, respectively, ρ(A) is the spectral radius68

of A, λj(A) is an eigenvalue of A, and σr(A) is the smallest nonsingular value of A.69

2. First-Order Perturbation Analysis. We first perform a perturbation anal-70

ysis of the minimization problems underlying the algebraic iterative methods. We71

consider the general case where both A and AT are perturbed, reflecting situations72

where both matrices can be considered as discrete approximations of an underlying73

unknown exact operation.74

2.1. The Unmatched Normal Equations. Recall the relation between a so-75

lution of the least squares problem and a solution of the normal equations [3]:76

(2) x = arg min
x
‖b−Ax‖2 ⇔ ATAx = AT b.77

Let {A,AT , b̄} be the unperturbed data, and put78

(3) Ã = A+ E1, ÂT = AT + E2, b = b̄+ δb.79

Moreover, let x̄ and r̄ denote the unperturbed least squares solution and the corre-80

sponding residual, i.e.,81

(4) AT r̄ = 0, r̄ = b̄−A x̄.82

When we instead use the triple {Ã, ÂT , b} we, in fact, aim at solving the equations83

(5) ÂT Ã (x̄+ δx) = ÂT b.84
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UNMATCHED PROJECTOR/BACKPROJECTOR PAIRS 3

We will refer to (5) as the unmatched normal equations. Note that with E2 = ET
1 we85

retrieve a classically perturbed least squares problem.86

We remark that since R(QTQ) = R(QT ) for any matrix Q the normal equa-87

tions are always consistent. When E2 = ET
1 then it follows that the symmetrically88

perturbed normal equations are also consistent. However, the unmatched normal89

equations (5) may not be consistent unless the perturbations are such that90

ÂT b ∈ R(ÂT Ã).91

If this does not hold we may choose to solve the unmatched equations in the least92

squares sense.93

Using the notation in (3) we find94

ÂT Ã = ATA+ E, where E = ATE1 + E2A+ E2E1,(6)95

ÂT b = AT b̄+AT δb+ E2b.(7)96

Now using (4), (6) and (7) the unmatched normal equations (5) take the form97

(8) (ATA+ E) δx = AT δb+ E2b− Ex̄.98

To derive a first-order perturbation bound for δx we need to use the pseudoinverse99

A† which, as is well known, is not a continuous function of the elements of A under100

rank-change. In order to ensure that δx is a continuously differentiable function of101

the data we therefore impose the condition102

(9) rank(ÂT Ã) = rank(ATA+ E) = rank(ATA).103

Let us compare condition (9) with the corresponding condition for the least squares104

problem (where ÂT = ÃT ), cf. [3, section 1.4],105

(10) rank(Ã) = rank(A).106

Since rank(ÃT Ã) = rank(Ã) the condition (10) prevents rank-loss. However, for the107

unmatched problem we can only rely on the fact that108

rank(ÂT Ã) ≤ min( rank(ÂT ) , rank(Ã) ).109

Hence the rank conditions (9) are essential.110

We now write (4) as111

g(x̄, b̄, AT , A) = AT b̄−ATAx̄ = 0.112

Since g = 0 is constant (the constant being zero), its differential (sometimes also113

called the total derivative) w.r.t. x̄, b̄, AT and A must be zero. It follows that114

E2 (A x̄) +AT (E1x̄) +ATAδx− E2b̄−AT δb = 0,115

or equivalently116

(11) ATAδx = AT (δb− E1x̄) + E2r̄.117

An alternative way to derive this first-order error formula is to neglect higher-order118

error terms in (8).119
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4 TOMMY ELFVING AND PER CHRISTIAN HANSEN

Note that when E2r̄ ∈ R(AT ) this system is consistent. Otherwise we choose to120

solve (11) in the least squares sense. Using the relation A† = (ATA)†AT we obtain121

from (11)122

δx = A†(δb− E1x̄) + (ATA)†E2r̄.123

We remark that since124

A†δb = A†AA†δb = A†PR(A)δb125

only the component of δb ∈ R(A) contributes to the error (just as in the least squares126

case).127

Let σ1 ≥ σ2 ≥ · · · ≥ σr > 0 be the nonzero singular values of A, and without loss128

of generality we will assume that σ1 = 1. We have129

‖A†‖2 =
1

σr
, ‖(ATA)†‖2 =

1

σ2
r

.130

We can summarize our results as follows.131

Proposition 1. Assume that the rank conditions (9) hold. A first-order pertur-132

bation bound for the perturbation δx of the solution to the unmatched normal equations133

(5) takes the form134

(12) ‖δx‖2 ≤
1

σr

(
‖PR(A)δb‖2 + ‖E1x̄‖2

)
+

1

σ2
r

‖E2r̄‖2.135

If R(E2) ⊆ R(AT ) then the last term in (12) disappears.136

If we compare the bound (12) with the corresponding bound for the least squares137

problem, the only difference is that ET
1 is here replaced by E2. As emphasized above,138

the rank conditions also differ in the two problems. We conclude that for inconsis-139

tent problems (r̄ = b̄ − Ax̄ 6= 0) it is specially important to keep the error in the140

backprojection small if one wants to stay close to the least squares solution.141

2.2. The Unmatched Minimum-Norm Problem. The following relation be-142

tween a solution of the dual least squares problem and a solution of the normal equa-143

tions of the second kind is well known [3]:144

(13) x = arg
{

min
x
‖x‖2 | Ax = b

}
⇔ AAT y = b, x = AT y.145

Here it is assumed that the linear system (1) is consistent. Using the notation in (3),146

the perturbed dual problem becomes147

(14) ÃÂT (ȳ + δy) = b̄+ δb, x̄+ δx = ÂT (ȳ + δy).148

Here ȳ and x̄ denote the solutions corresponding to unperturbed data, i.e.,149

(15) AAT ȳ = b̄, x̄ = AT ȳ.150

Let151

ÃÂT = AAT + F, where F = AE2 + E1A
T + E1E2.152

Then, using (14) and (15), it follows that the perturbed second-kind normal equations153

take the form154

(16) (AAT + F ) δy = δb− F ȳ, δx = AT δy + E2(ȳ + δy).155
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UNMATCHED PROJECTOR/BACKPROJECTOR PAIRS 5

Similarly as in (9) we impose the rank conditions156

(17) rank(ÃÂT ) = rank(AAT + F ) = rank(AAT ),157

which ensure that no rank change will occur in the perturbed problem. By differen-158

tiating AAT y = b we get159

(18) AAT δy = δb− E1(AT ȳ)−A(E2ȳ).160

If δb−E1(AT ȳ) ∈ R(A) this system is consistent. Otherwise we choose to solve (18)161

in the least squares sense, giving162

δy = (AAT )†δb− (AAT )†E1A
T ȳ − (AAT )†AE2ȳ.163

Differentiating x = AT y gives δx = E2ȳ + AT δy. Inserting the expression for δy and164

using A† = AT (AAT )† it follows that165

(19) δx = A†δb+ (I −A†A)E2 ȳ −A†E1A
T ȳ.166

Alternatively, this equation can be obtained by neglecting higher-order terms in (16).167

Thus we arrive at:168

Proposition 2. Assume that the rank conditions (17) hold. A first-order pertur-169

bation bound for the perturbation δx of the solution to the unmatched normal equations170

of the second kind (16) takes the form171

(20) ‖δx‖2 ≤
1

σr
(‖δb‖2 + ‖E1x̄‖2) + ‖E2ȳ‖2.172

Hence we find that the unmatched minimum-norm solution is more sensitive to173

errors in A than to errors in AT whereas, as shown above, the opposite is true for the174

unmatched least squares problem.175

3. Convergence Analysis of Linear Stationary Iterations. Let B ∈ Rn×m176

be a given matrix and put C = BA. We consider the following stationary iteration,177

with starting vector x0, which we will refer to as the BA Iteration,178

(21) xk+1 = xk + µB(b−Axk) = Txk + µBb := F (xk),179

with180

(22) T = I − µC.181

Here µ > 0 is the relaxation parameter and T is called the iteration matrix. Any fixed182

point x∗ of F satisfies the equations183

(23) Cx∗ = Bb,184

where we will assume throughout the paper that Bb ∈ R(C). We now characterize185

the limit point in a few cases.186

• If C is invertible then obviously x∗ = C−1Bb.187

• Next assume that N (C) = N (A) and that b ∈ R(A). Then, with b = Au,188

it follows that C(x∗ − u) = 0 and hence x∗ − u ∈ N (C) = N (A) so that189

Ax∗ = b.190
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6 TOMMY ELFVING AND PER CHRISTIAN HANSEN

• Another example is column iterations [8] where B = McA
T with Mc non-191

singular. It follows that ATAx∗ = AT b so the fixed point is a least squares192

solution but not necessarily (unless R(Mc) ⊆ R(AT )) the one with minimal193

norm.194

• Our final example is row iterations (see, e.g., the survey in [10]) where195

B = ATMr with Mr nonsingular. Then ATMrAx
∗ = ATMr b. Hence for196

inconsistent data the fixed point is not a (weighted) least squares solution,197

unless Mr is symmetric and positive definite.198

Our goal here is to study convergence in the perspective of using non-matching199

matrices. A common situation is when there is noise in the right-hand side b. Let x̄k200

be the iteration vector in (21) using the unperturbed right-hand side b̄ and let x̄ be a201

fixed point of the unperturbed iteration, i.e.,202

(24) Cx̄ = Bb̄.203

The total error can be decomposed into two terms204

(25) xk − x̄ = (xk − x̄k) + (x̄k − x̄).205

The first term is called the noise error (or data error) and the second the iteration206

error. During the first iterations of a convergent method the iteration error dominates,207

and hence the total error decreases – but after a while the noise error starts to grow208

resulting in so-called semi-convergence [19].209

We have already seen that the perturbation error in the final solution is propor-210

tional to the factor σ−1r . The noise error, on the other hand, measures the growth of211

the perturbation due to δb during the iterations. The perturbation bound σ−1r ‖δb‖2212

is problem dependent, and we will see that the noise error also depends on the choice213

of iteration method (i.e., the choice of B).214

3.1. The Iteration Error. The following result from [22, Corollary 2.2] is215

adapted to our notation:216

Proposition 3. The iterates {x̄k} in the BA Iteration (21), using b = b̄,217

converge to a solution of (24) if and only if ρ(PT ) < 1 with P = PR(CT ).218

Let λj = λj(C) denote the jth eigenvalue of C = BA. The matrix C is, in219

general, not symmetric so that it may have complex eigenvalues, and since A and B220

are assumed real the complex eigenvalues of C come in complex conjugate pairs. Let221

i2 = −1 and split the eigenvalues in real and imaginary parts, λj = <(λj) + i=(λj).222

Proposition 4. The iterates of the BA Iteration (21), using b = b̄, converge223

to a solution of (24) if and only if224

(26) 0 < µ <
2<(λj)

|λj |2
and <(λj) > 0.225

Proof. Let x = xN + xR with xN ∈ N (C) and xR ∈ R(CT ). First consider226

Tx = x ⇔ Cx = 0 ⇔ x ∈ N (C).227

Hence the eigenvalue λ = 1 is associated with the eigenspace N (C). Next consider228

TxR = λxR. Then by Proposition 3 convergence occurs if and only if229 (
1− µ<(λj)

)2
+ µ2=(λj)

2 < 1,230

whence the result follows.231
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UNMATCHED PROJECTOR/BACKPROJECTOR PAIRS 7

Zeng and Gullberg [25] make a similar analysis for the case N (C) = ∅ also im-232

plicitly assuming that C has only real eigenvalues; their conclusion is therefore that233

the eigenvalues of C should all be positive, and that 0 < µ < 2/max(λj). If this is234

fulfilled they call the corresponding pair (A,B) valid.235

We now consider the iteration error x̄k − x̄, and first assume that N(C) = ∅, so236

that the convergence criterion becomes ρ(T ) < 1. We have237

(27) x̄k − x̄ = T k(x̄0 − x̄),238

and it follows that239

‖x̄k − x̄‖2 ≤ ‖T k‖2 ‖x0 − x̄‖2 ≤ ‖T‖k2 ‖x0 − x̄‖2.240

In general we cannot assume that ‖T‖2 < 1 since ρ(T ) ≤ ‖T‖ for any operator norm241

(for the 2-norm there holds equality if and only if T is symmetric). Asymptotically,242

however, the convergence rate depends on the spectral radius due to the following243

classical result (for a proof see, e.g., [13, Theorem 2.1.1]):244

Lemma 5. Assume that ρ(T ) < 1. Then for any operator norm245

(28) lim
j→∞

‖T j‖ = lim
j→∞

ρ(T j) = 0.246

In the case N (C) 6= ∅ the iteration error ēk = x̄k − x̄ can be decomposed into247

two parts ēkN ∈ N (C) and ēkR ∈ R(CT ). Then ēkN (governed by the eigenvalue +1)248

remains unchanged through the iteration, whereas ēkR is governed by ρ(PT ) with P249

from Proposition 3. So in both cases the convergence rate is linear. In [2, Theorem250

2.15] it is shown that the asymptotic rate equals ρ(PT ) if and only if the corresponding251

eigenvalues are all semi-simple.252

3.2. The Noise Error Due to δb. We next investigate how the errors δb in253

the right hand side are propagated during the iterations. As mentioned previously254

the noise error is defined by255

(29) ekN = xk − x̄k,256

where x̄k is the iteration vector using the unperturbed right-hand side b̄.257

By the iteration (21) we get ek+1
N = TekN + µBδb. Hence by induction, and258

assuming e0N = 0, it follows that259

(30) ekN = Skδb with Sk = µ

k−1∑
j=0

T jB, T = I − µBA.260

For later use we formulate (using that (T j)T = (TT )j)261

(31) ‖Sk‖22 = ‖SkS
T
k ‖2 = µ2

∥∥∥∥∥∥
k−1∑
j=0

T jBBT
k−1∑
j=0

(TT )j

∥∥∥∥∥∥
2

.262

Now define the constant cT by263

(32) sup
j
‖T j‖2 ≤ cT .264
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8 TOMMY ELFVING AND PER CHRISTIAN HANSEN

The parameter cT is bounded when (26) holds. Further using (30), (32) it holds265

(33) ‖ekN‖2 ≤ µ cT k‖Bδb‖2 ≤ (µ cT ‖B‖2) k‖δb‖2.266

It seems hard to derive sharper bounds for the general case. However for special267

choices of the matrix B or special noise distributions the norm of the noise-error is268

bounded by a constant times
√
k. In Section 3.4 we consider three cases.269

3.3. The Noise Error due to E1 and E2. We next study how the errors E1270

and E2 propagate during the iterations. Let B̂ = B + E2, b = b̄ and xk = x̄k + δxk.271

We first consider the BA-iteration with ideal data:272

(34) x̄k+1 = x̄k − µBAx̄k + µBb.273

We assume (as previously) no rank-change in Ã and B̂. By computing the differential274

of x̄k+1 = x̄k+1(x̄k, B,A) w.r.t. x̄k, B and A we get275

δxk+1 = δxk − µ(E2Ax̄
k +BE1x̄

k +BAδx̄k) + µE2b276

= (I − µBA)δxk + µE2(b−Ax̄k)− µBE1x̄
k.(35)277

Alternatively, this equation can be derived by subtracting from Eq. (34) the corre-278

sponding iterations with perturbed data, and discarding higher-order terms (as in the279

previous section). Again let T = I − µBA, and put280

(36) R = −µ(E2A+BE1).281

Then (35) becomes282

(37) δxk+1 = Tδxk +Rx̄k + µE2b.283

Now put284

(38) yk =

(
δxk

x̄k

)
, W =

(
T R
0 T

)
, c =

(
c1
c2

)
= µ

(
E2b
Bb

)
.285

Then (34) and (37) take the form286

(39) yk+1 = Wyk + c.287

Assuming that y0 = 0, i.e., δx0 = x0 = 0, it follows that288

(40) yk =

k−1∑
j=0

W jc.289

It can be shown that290

(41) W j =

(
T j Rj

0 T j

)
, Rj =

j−1∑
i=0

T j−i−1RT i
291

and we note that Rj is linear in R. From (40), (41) we obtain292

(42) δxk = δxk1 + δxk2 , δxk1 =

k−1∑
j=0

T jc1, δxk2 =

k−1∑
j=0

Rjc2.293
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UNMATCHED PROJECTOR/BACKPROJECTOR PAIRS 9

For the first term we can write294

(43) δxk1 = µ

k−1∑
j=0

T jE2b,295

and with the constant cT defined in (32) it follows that296

(44) ‖δxk1‖2 ≤ (µ cT ‖b‖2) k‖E2‖2.297

We next consider the second term298

δxk2 =

k−1∑
j=0

Rjc2 =

k−1∑
j=0

j−1∑
i=0

T j−i−1RT iBb.299

It follows that300

‖δxk2‖2 ≤
k−1∑
j=0

j−1∑
i=0

‖T j−i−1‖2‖R‖2‖T i‖2‖Bb‖2301

≤ c2T ‖Bb‖2
k(k − 1)

2
‖R‖2.(45)302

We see that ‖δxk2‖2 is bounded by k2 whereas ‖δxk1‖2 is bounded by k (as is also303

the noise-error due to δb as seen from (33)). We therefore consider the following304

estimation of δxk2 . By induction we get from (37) (also assuming that δx0 = 0)305

(46) δxk =

k−1∑
j=0

T k−1−j (R x̄j + µE2b).306

By taking norms we obtain307

‖δxk‖2 ≤
k−1∑
j=0

‖T k−1−j‖2
(
‖R‖2 ‖x̄j‖2 + µ ‖E2b‖2

)
308

≤ cT
k−1∑
j=0

(
‖R‖2 ‖x̄j‖2 + µ ‖E2b‖2

)
309

≤ cT
(
‖R‖2 max

j=0,...,k−1
‖x̄j‖2 + µ ‖E2b‖2

)
k(47)310

Since {x̄k} is a convergent sequence ‖x̄j‖2 is bounded. Note that the first term is311

another bound for δxk2 whereas the second term corresponds to (44).312

3.4. Special Cases. In this section we consider only perturbations of the right-313

hand side b, and we focus on three special cases where we can derive sharper bounds314

for the noise error.315

3.4.1. Case of a Special Right-Hand Side Perturbation.. Here we consider316

a general matrix B but with a special perturbation of the right-hand side. Let317

(48) δb = δbR + δbN , δbR ∈ R(A), δbN ∈ N (AT ),318

and note that there always exists a vector δc such that we can write319

δbR = Aδc.320
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10 TOMMY ELFVING AND PER CHRISTIAN HANSEN

Below we will use the following matrix identity321

(49) (I −X)

k−1∑
j=0

Xj =

k−1∑
j=0

Xj(I −X) = I −Xk.322

Proposition 6. Assume that BδbN = 0 and that the iteration matrix T is con-323

vergent. Then the noise error is bounded by324

(50) ‖ekN‖2 ≤
√
µ cT (1 + cT )‖BA‖2

√
k ‖δc‖2.325

Proof. We remark that the condition BδbN = 0 guarantees that the perturbed326

system BAx = B(b̄ + δb) is consistent. With δbR = Aδc and using assumption327

BδbN = 0 it follows that Bδb = BδbR = BAδc. Hence328

ekN = µ
k−1∑
j=0

T jBAδc =

k−1∑
j=0

T j(I − T )δc := Ŝkδc.329

It follows330

∥∥Ŝk

∥∥2
2

=
∥∥ŜT

k Ŝk

∥∥
2

=

∥∥∥∥∥∥∥
k−1∑

j=0

T j(I − T )

T k−1∑
j=0

T j(I − T )

∥∥∥∥∥∥∥
2

.331

From (49) we obtain332

∥∥Ŝk

∥∥2
2

=

∥∥∥∥∥∥∥
k−1∑

j=0

T j(I − T )

T (I − T k)

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥(I − TT )

k−1∑
j=0

(TT )j(I − T k)

∥∥∥∥∥∥
2

.333

Using that ‖(TT )j‖2 = ‖T j‖2 and ‖I − TT ‖2 = µ ‖(BA)T ‖2 = µ ‖BA‖2 we get334 ∥∥Ŝk

∥∥2
2
≤ µ ‖BA‖2 cT (1 + cT )k,335

and hence the proof is complete.336

Remark 7. Note that the bound in (50) is expressed in δc where δc = A†δbR. In337

cases where δbR contains components corresponding to small singular values (typically338

high frequency components) this implies that ‖δc‖2 = O(1/σr)‖δbR‖2.339

Remark 8. Note that the assumption BδbN = 0 in Proposition 6 is fulfilled for340

the special case (56) below. However, in general the bound (57) is more favorable than341

the bound (50) due to remark 7.342

3.4.2. Block-Row Iterations.. Let A be partitioned into p disjoint block rows343

Ri, and let b be partitioned accordingly. Further, let {ωi}pi=1 be a set of positive344

relaxation parameters and let Mi ∈ Rmi×mi , i = 1, 2, . . . , p be a set of given symmetric345

positive definite matrices. Consider the iteration346

z0 = xk,347

zi = zi−1 + ωiR
T
i Mi

(
bi −Ri z

i−1), i = 1, 2, . . . , p,348

xk+1 = zp.349
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By different choices of Mi many well-known block-row iterations appear. With Mi =350

(RiR
T
i )−1 we get the Kaczmarz iteration [15], [19]. With Mi = 1/mi( diag(RT

i Ri) )−1,351

we get the Cimmino method (assuming equal weights). Note that the Cimmino352

method can be considered as using a diagonal approximation of the corresponding353

matrix in Kaczmarz’s method. Other examples are BiCav [5], SART [1] and DROP354

[4] (for more details see, e.g., [10]). Let355

Mr = (Dr + Lr)
−1, with Dr = diag(ω−1i M−1i ), Lr = slt(AAT ),356

where slt(Q) denotes the strictly lower triangular part of Q. Then [9, Proposition357

4]:358

xk+1 = xk +ATMr(b−Axk).359

Hence this is an instance of the BA Iteration (21) with µ = 1. It is known (see [6],360

[9]) that the method converges if361

(51) ωi ∈
(
ε, (2− ε)/ρ(RT

i MiRi)
)
, i = 1, 2, . . . , p, 0 < ε < 2.362

Assuming (51) is satisfied, we may conclude from Proposition 4 (note that the conver-363

gence conditions there are both necessary and sufficient) that the spectrum of ATMrA364

is contained in the positive halfspace of the complex plane. A direct proof of this fact365

appears in [18, Lemma 3.1]. To allow for an (outer) relaxation parameter µ 6= 1 we366

form xk+1 = (1− µ)xk + µzp which yields367

(52) xk+1 = xk + µATMr(b−Axk).368

We stress, even in the case when ωi = ω, that µ and ω are two independent relaxation369

parameters, since then Mr = ω (diag(M−1i ) + ω Lr)
−1. Hence one cannot just merge370

µω into a single relaxation parameter since ω also affects Lr.371

Expressions for the noise error, assuming µ = 1, were recently presented in [7]372

and independently in [18]. We will next shortly discuss and compare these bounds.373

In [7] a bound of the form c
√
k‖δb‖2 is derived (and also for variants of the algorithm374

that incorporate a projection on a convex set). However, the constant c ∼ 1/σr(MrA)375

usually grossly overestimates the real noise error. Kindermann and Leitao [18, Lemma376

3.2] also derived a bound of this form with a constant c not depending on 1/σr(MrA);377

however they then need to assume that378

(53) sup
j
‖Qj‖2 ≤ cQ, where Q = I −MrAA

T
379

with cQ bounded. Note that the convergence condition (for exact data) is380

(54) sup
j
‖T j

r ‖2 ≤ cTr
, where Tr = I −ATMrA381

with cTr bounded. There is no simple relation between ‖Qj‖2 and ‖T j
r ‖2 and hence382

Lemma 5 does not imply that cQ is bounded. However, in [18] a sufficient condition383

is derived which assures that cQ is bounded. Before stating this result we need to384

resolve some notational differences between [18] and [8]–[10]. In [18] the equations are385

scaled and ωi = ω = 1 is assumed. Put Ā = D
−1/2
r A, and let L̄r = slt(ĀĀT ). Then,386

according to [18, Lemma 3.8], cQ is bounded if387

(55)
∥∥L̄r

∥∥
2

+ 1/2
∥∥ĀĀT

∥∥
2
< 1.388

The introduction of µ in (53)–(54) does not affect condition (55) as seen by inspecting389

[18, Lemma 3.8].390
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12 TOMMY ELFVING AND PER CHRISTIAN HANSEN

3.4.3. Block-Column Iterations. Let Mc ∈ Rn×n be a given, not necessarily391

symmetric, nonsingular matrix, and consider the choice392

(56) B = McA
T such that Tc = I − µMcA

TA.393

For µ = 1 this case includes a class of block-column sequential iterations recently394

studied in [8] (see also [3], [21]); among its members are SOR, column-Cimmino and395

column-BiCav.396

Conditions (involving Mc) guaranteeing convergence towards a least squares solu-397

tion for exact data are given in [8]. Assuming these conditions we may also conclude398

from Proposition 4 that the spectrum of McA
TA is contained in the positive halfspace399

of the complex plane. It is quite straightforward to also introduce the outer relax-400

ation parameter µ in the column iteration scheme. Then one defines the new iterate401

as a convex combination of the old and new iterates. One also needs to generate the402

corresponding residual in the same fashion.403

We next derive a bound for the noise error. From (31) and (56) we get404

‖Sk‖22 =

∥∥∥∥∥∥
k−1∑
j=0

T j
c µMc(A

TAµMT
c )

k−1∑
j=0

(I −ATAµMT
c )j

∥∥∥∥∥∥
2

.405

It follows by (49) with X = I −ATAµMT
c that406

(ATAµMT
c )

k−1∑
j=0

(I −ATAµMT
c )j = I − (I −ATAµMT

c )k = I − (TT
c )k.407

Hence (noting that ‖T j
c ‖2 = ‖(TT

c )j‖2)408

‖Sk‖22 =

∥∥∥∥∥∥
k−1∑
j=0

T j
c µMc(I − (TT )k)

∥∥∥∥∥∥
2

≤ cTc µ ‖Mc‖2(1 + cTc) k.409

This leads to the following result.410

Proposition 9. Assume that B = µMcA
T and that the corresponding iteration411

matrix Tc is convergent. Then the noise error is bounded by412

(57) ‖ekN‖2 ≤
√
µ cTc

(1 + cTc
)‖Mc‖2

√
k ‖δb‖2.413

Note that, in contrast to the row iteration, the iteration error and the noise error are414

governed by the same quantity ‖T j
c ‖2.415

We finally remark that for the special case Mc = I (Landweber iteration) we416

retrieve the result by Engl, Hanke and Neubauer [11, Lemma 6.2]. Instead of the417

factor
√
cTc

(1 + cTc
) they get, based on their assumptions, the factor one.418

4. Numerical Examples. We conclude with numerical examples that illustrate419

some of the points made in this work. We first consider the general perturbation420

bounds in Propositions 1–2, and then we turn to the behavior of the BA Iteration421

(21) under perturbations. In all our experiments, the matrix A was generated by422

means of the function paralleltomo from AIR Tools [14]; it is a sparse matrix423

that represents a discretization of the Radon transform, and we scaled the matrix424

such that the largest singular value equals 1. Moreover, we generated the exact data425

as b̄ = A x̄, where x̄ represents the Shepp-Logan phantom generated by MATLAB’s426

phantom function. The image is 64× 64, leading to an exact solution x̄ ∈ R4096 with427

‖x̄‖2 = 15.8.428
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Table 1
The different combinations of perturbations of b̄, A and AT that contribute to the perturbation

bound (12) for the least squares problem.

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14
δb X 0 X 0 X 0 X X 0 X 0 X 0 X
E1 0 X X 0 0 X X 0 X X 0 0 X X
E2 0 0 0 X X X X 0 0 0 X X X X
r̄ 0 0 0 0 0 0 0 X X X X X X X

Fig. 1. The actual errors and the upper bounds (12) for the least squares problem, for 50
random perturbations of an overdetermined full-rank problem; see Table 1 for details about the 14
cases.

4.1. Sensitivity. All perturbed solutions to the unmatched normal equations429

(5), as well as the dual problem for the unmatched normal equations of the second430

kind (16), were computed by means of MATLAB’s “backslash.” These solutions were431

used to compute the actual errors shown in Figures 1 and 2 below. All the involved432

matrices have full rank, and in particular the rank conditions (9) and (17) are satisfied.433

We first study overdetermined systems, for which the perturbation bound is given434

by (12). The test problem here uses 180 projection angles 1◦, 2◦, . . . , 180◦ and 91435

detector pixels, giving a matrix of dimensions m× n = 16, 380× 4, 096. The smallest436

singular value of A is σr = 9.90 · 10−4.437

To study how well the upper bound describes the actual error, we generated 50438

instances of perturbed problems with Gaussian perturbations scaled such that:439

‖δb‖2/‖b̄‖2 = 10−4, ‖E1‖F/‖A‖F = ‖E2‖F/‖A‖F = 10−3.440

We considered both consistent problems (with r̄ = 0) and inconsistent systems with441

r̄ ⊥ b̄ and ‖r̄‖2/‖b̄‖2 = 0.03. The different combinations of perturbations of b̄, A442
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14 TOMMY ELFVING AND PER CHRISTIAN HANSEN

Table 2
The different combinations of perturbations of b̄, A and AT that contribute to the perturbation

bound (20) for the minimum-norm problem – same cases as in Table 1.

Case 1 2 3 4 5 6 7
δb X 0 X 0 X 0 X
E1 0 X X 0 0 X X
E2 0 0 0 X X X X

Fig. 2. The actual errors and the upper bounds (20) for the minimum-norm problem, for 50
random perturbations of an underdetermined full-rank problem; see Table 2 for details about the 7
cases.

and AT are listed in Table 1 and the results are shown in Figure 1. (Case 4 with443

δb = 0, E1 = 0, E2 6= 0 and r̄ = 0 gives the exact solution x̄ except for rounding444

errors.) Our results confirm that the upper bounds track the actual errors (but are445

quite pessimistic) and that the errors are indeed larger for inconsistent systems in the446

presence of perturbations of AT .447

Next, we study minimum-norm solutions to underdetermined problems, whose448

perturbation bound is given by (20). The test problem here uses 45 projection angles449

4◦, 8◦, . . . , 180◦ and 91 detector pixels, giving a matrix of dimensions m×n = 2, 745×450

4, 096. Both A and B have full rank, and the smallest singular value of A is σr =451

4.37 · 10−3.452

Again, we generated 50 instances of perturbed problems with Gaussian pertur-453

bations scaled as above, and with ‖ȳ‖2 = 1145. The different combinations of pertur-454

bations of b̄, A and AT are listed in Table 2 and the results are shown in Figure 2.455

Similar to before, the upper bounds track the actual errors (but are quite pessimistic)456

and our results confirm that he errors are indeed smaller for problems where the errors457

are confined to AT .458
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Fig. 3. We show three types of errors for the BA Iteration (21) with both matched and
unmatched transpose. The thick solid lines show the reconstruction errors ‖xk − x̄‖2 for the test
problem with noise in the data b, and the minima are marked with the bullets. The thick dashed lines
show the iteration errors ‖x̄k − x̄‖2, i.e., the reconstruction errors without noise in the data. The
thin solid lines show the noise errors ‖ekN‖2. It is evident that there is semi-convergence, because
the total reconstruction error is the sum of the iteration error and the noise error.

4.2. Convergence and Semi-Convergence. We now focus on the behavior459

of the BA Iteration (21) in Section 3 with a unmatched transpose, using the460

16, 380×4, 096 test problem from before with r̄ = 0. The unmatched transpose ÂT was461

generated from AT by neglecting small elements, such that the number of non-zeros462

in Â is approximately half of that in A and ‖E2‖F/‖A‖F = ‖A− Â‖F/‖A‖F = 0.406.463

Noisy data b = b̄ + δb was generated by adding Gaussian white noise δb scaled such464

that ‖δb‖2/‖b̄‖2 = 0.01. In all our numerical tests – for both triples {A,AT , b̄} and465

{A, ÂT , b} – we used µ = 1.9/‖ATA‖2 = 1.9 (due to our scaling of A).466

Both A and Â have full rank, and all real parts of the eigenvalues of C = ÂTA467

are positive (the smallest real part is 9.35 · 10−7). For the unperturbed right-hand468

side b̄ = A x̄, the BA Iteration (21) with both B = AT and B = ÂT converges to x̄469

(because C = BA has full rank and C−1B b̄ = (BA)−1BA x̄ = x̄). For the perturbed470

right-hand side, iteration (21) converges to the least squares solution x̄ when B = AT471

and to a solution of (5) when B = ÂT .472

Figure 3 shows results for the BA Iteration (21) with both matched transpose473

B = AT and unmatched transpose B = ÂT 6= AT :474

• The thick solid lines are the reconstruction errors ‖xk− x̄‖2, where x̄ denotes475

the exact phantom image.476

• The thick dashed lines are the iteration errors ‖x̄k− x̄‖2, i.e., the reconstruc-477

tion errors without noise in the data.478

• The thin solid lines are the noise errors ‖ekN‖2479

In the case of noise-free data we see that both iterations converge, and the iteration480

with the unmatched transpose converges slower. When noise is present in the data, the481

iteration with the unmatched transpose reaches the point of semi-convergence after482

1314 iterations where the minimum reconstruction error is 1.181. This error is 48%483
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Fig. 4. The norm of the noise error ‖ekN‖2 for the BA Iteration (21), and the corresponding

upper bound in (33). It appears that ‖ekN‖2 is more likely to be proportional to
√
k.

Fig. 5. The norm of the noise error ‖ekN‖2 for the BA Iteration (21), and the corresponding
upper bound, for two special cases. Left: the special right-hand side perturbation considered in §3.4.1
where the upper bound is given by (50). Right: the column-iteration algorithm from §3.4.3 whose

upper bound is given by (57). Both upper bounds are proportional to
√
k, but it appears that the

noise-error norms increase slower than that.

larger than the minimum error 0.796 for the iterations with the matched transpose,484

achieved after 3225 iterations.485

This example clearly illustrates two important issues related to the use of an486

unmatched transpose: the convergence can be slower, and for noisy data the smallest487

achievable error (at the point of semi-convergence) can be larger than when using the488

matched transpose.489

Next we show numerical examples related to the results in Section 3.2 about the490

noise error due to perturbations of the right-hand side; we use the same test problem491

as above. The results in Figure 4 (note the semi-logarithmic axis) supplement the492

results in Figure 3. Here we compare the norm of the noise error ‖ekN‖2 for the BA493

Iteration (21), with both the matched and unmatched transpose, with the rather494

pessimistic upper bound in Eq. (33) which is proportional to k (in this example495

cT = 1.15). For reference we also show a plot of
√
k/10 indicating that ‖ekN‖2 is more496

likely to be proportional to
√
k. Note that when B = AT (the Landweber case) then497

the noise error indeed behaves like O(
√
k), as remarked at the end of §3.4.3.498
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Fig. 6. Reconstruction errors for the BA Iteration (21) for an example with errors in the
matrices A and B (but not in the right-hand side); cases 2, 4 and 6 refer to Table 1. Matrix errors
also lead to semi-convergence, and the minimum reconstruction error is larger for the unmatched
transpose.

In Figure 5 we show results for two special cases, namely, the special right-hand499

side considered in §3.4.1, and the column-iteration method (here with block size one)500

considered in §3.4.3. In the former case we scaled the perturbations such that ‖δc‖2 =501

0.370 and ‖δbR‖2/‖b̄‖2 = ‖δbN ‖2/‖b̄‖2 = 0.005, and we have cT = 1.15. In the latter502

case we have ‖Mc‖2 = 1.77 ·10−3 and cTc
= 1.43. In both examples the upper bounds503

are proportional
√
k, but it appears that the noise-error norms grow slower – perhaps504

like k1/4.505

We conclude with a numerical example that illustrates the influence of matrix506

errors on the semi-convergence, cf. Section 3.3, using the same A, B and b as before.507

There are no errors in the right-hand side in this example (δb = 0). The perturbation508

E1 of A has the same sparsity pattern as A, the nonzero elements of E1 have a509

Gaussian distribution, and E1 is scaled such that ‖E1‖F/‖A‖F = 0.05. The perturbed510

matrix B + E2 is generated by introducing zeros in (A+ E1)T in the same positions511

as those introduced in AT to produce B; then ‖E2‖F/‖B‖F = 0.041. Figure 6 shows512

the error histories for the BA Iteration (21) for cases 2, 4 and 6 from Table 1 –513

as well as with no errors. We see that matrix perturbations – for both the matched514

and the unmatched B – have the same effect as perturbations of the right-hand side,515

namely, they lead to semi-convergence. Moreover, with an unmatched transpose the516

minimum reconstruction error is larger than with a matched transpose.517

5. Conclusion. We studied the influence of errors in the two matrices A and518

B that represent the forward projector and the backprojector, respectively, in com-519

puted tomography. This includes the important case where an algebraic iterative520

method is implemented such that the computed backprojection B is not identical to521

a multiplication with AT , where A is the forward projection.522

We first performed a first-order perturbation analysis of the unmatched normal523

equations associated with the perturbed matrices; this analysis augments the classical524

analysis of least squares problems. Our analysis shows that the errors in the two matri-525
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ces have different effects in the minimization problems underlying the reconstructions:526

the least squares solution is more sensitive to errors in B than in A (Proposition 1),527

while the opposite is true for the minimum-norm solution (Proposition 2).528

We also considered linear stationary iterations based on unmatched matrix pairs.529

For certain choices of B, these iterations are equivalent to known methods such as530

Kaczmarz, column-iteration, Cimmino and SIRT as well as their block versions. We531

derived bounds for the errors in the iteration vectors, for both the generic case and532

for some important special cases. In particular we show that the upper bound for533

the noise error increases with k in the generic case, and with
√
k for block-column534

iterations and for a special right-hand side perturbation.535

Finally, we presented numerical examples which demonstrate that an unmatched536

matrix pair leads to a less accurate reconstruction than with a matched transpose.537
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