Large induced subgraphs with k vertices of almost maximum degree

António Girão * Kamil Popielarz ${ }^{\dagger}$

June 23, 2021

Abstract

In this note we prove that for every integer k, there exist constants $g_{1}(k)$ and $g_{2}(k)$ such that the following holds. If G is a graph on n vertices with maximum degree Δ then it contains an induced subgraph H on at least $n-g_{1}(k) \sqrt{\Delta}$ vertices, such that H has k vertices of the same degree of order at least $\Delta(H)-g_{2}(k)$. This solves a conjecture of Caro and Yuster up to the constant $g_{2}(k)$.

1 Introduction

Given a graph G, let the repetition number, denoted by $\operatorname{rep}(G)$, be the maximum multiplicity of a vertex degree. Trivially, any graph G of order at least two contains at least two vertices of the same degree, i.e. $\operatorname{rep}(G) \geq 2$. This parameter has been widely studied by several researchers (e.g., (2, 4, 7, 10) , in particular, by Bollobás and Scott, who showed that for every $k \geq 2$ there exist triangle-free graphs on n vertices with $\operatorname{rep}(G) \leq k$ for which $\alpha(G)=(1+o(1)) n / k([4)$. As there are infinitely many graphs having repetition number two, it is natural to ask what is the smallest number of vertices one needs to delete from a graph in order to increase the repetition number of the remaining induced subgraph. This question was partially answered by Caro, Shapira and Yuster in [6, indeed, they proved that for every k there exists a constant $C(k)$ such that given any graph on n vertices one needs to remove at most $C(k)$ vertices and thus obtain an induced subgraph with at least $\min \{k, n-C(k)\}$ vertices of the same degree. Related to this question, Caro and Yuster ([8]) considered the problem of finding the largest induced subgraph H of a graph G which contains at least k vertices of degree $\Delta(H)$. To do so they defined $f_{k}(G)$ to be the smallest number of vertices one needs to remove from a graph G such that the remaining induced subgraph has its maximum degree attained by at least k vertices. They found examples of graphs on n vertices for which $f_{2}(G) \geq(1-o(1)) \sqrt{n}$ and conjectured $f_{k}(G) \leq O(\sqrt{n})$ for every graph G on n vertices. In the same paper they established the conjecture for $k \leq 3$.

[^0]The following more general conjecture was posed recently by Caro, Lauri and Zarb in [5].

Conjecture 1. For every $k \geq 2$ there is a constant $g(k)$ such that given a graph G with maximum degree Δ, one can remove at most $g(k) \sqrt{\Delta}$ vertices such that the remaining subgraph $H \subseteq G$ has at least k vertices of degree $\Delta(H)$.

Let us define $g(k, \Delta)=\max \left\{f_{k}(G): \Delta(G) \leq \Delta\right\}$. In the same paper, they proved that $g(2, \Delta)=\left\lceil\frac{3+\sqrt{8 \Delta+1}}{2}\right\rceil$ and stated that $g(3, \Delta) \leq 42 \sqrt{\Delta}$. We should point out that, if true, the conjecture is best possible, as there are graphs on n vertices found in [5] for which any induced subgraph on more than $n-\frac{k}{2} \sqrt{\Delta}$ does not contain k vertices of the same maximum degree. We shall present such constructions in Section 3

In this note we prove the following approximate version of Conjecture 1
Theorem 1. For every positive integer k, there exist constants $g_{1}(k)$ and $g_{2}(k)$ such that the following holds. If G is a graph on n vertices with maximum degree Δ then it contains an induced subgraph H on at least $n-g_{1}(k) \sqrt{\Delta}$ vertices, such that H has k vertices of the same degree at least $\Delta(H)-g_{2}(k)$.

2 Proofs

Given a partition of $\{1,2, \ldots, n\}$ into t sets, $A_{1}, A_{2} \ldots, A_{t}$, and a strictly decreasing sequence of non-negative integers $r_{1}>r_{2}>r_{3}>\ldots>r_{t}$, we say \mathcal{A} is an $\left(r_{1}, r_{2}, \ldots, r_{t}\right)$ uniform cover of $\{1,2 \ldots, n\}$ if \mathcal{A} is a multiset of subsets of $\{1,2, \ldots n\}$ such that, whenever $i \in\{1, \ldots, t\}$ and $j \in A_{i}$, we have $|\{A \in \mathcal{A}: j \in A\}|=r_{i}$. Note that \mathcal{A} is a multiset, hence we allow repetitions.

We call an $\left(r_{1}, r_{2}, \ldots, r_{t}\right)$-uniform cover \mathcal{A} of $\{1,2, \ldots, n\}=A_{1} \cup A_{2} \cup \ldots \cup A_{t}$ irreducible if there is no proper $\left(r_{1}^{\prime}, \ldots, r_{t}^{\prime}\right)$-uniform cover $\mathcal{B} \subset \mathcal{A}$, for some strictly decreasing sequence of non-negative integers $r_{1}^{\prime}>r_{2}^{\prime}>\ldots>r_{t}^{\prime}$.

Given a uniform cover \mathcal{A} of $\{1,2, \ldots, n\}$ and a subset $B \subseteq\{1,2, \ldots, n\}$ we define $w_{\mathcal{A}}(B)$ to be the number of times B appears in \mathcal{A}.

Lemma 2. For all $n \in \mathbb{N}$, there exists $f(n)$ such that for any $1 \leq t \leq n$ and any partition of $\{1,2, \ldots, n\}$ into t sets $A_{1}, A_{2}, \ldots, A_{t}$, every $\left(r_{1}, r_{2}, \ldots, r_{t}\right)$-uniform cover \mathcal{A} of $\{1,2, \ldots, n\}$ contains a proper $\left(r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{t}^{\prime}\right)$-uniform sub-cover $\mathcal{B} \subset \mathcal{A}$ with $r_{1}^{\prime} \leq f(n)$.

Proof. We shall prove there are only finitely many irreducible covers. For otherwise, let us assume there exists an infinite sequence $\left\{B_{i}\right\}_{i \in \mathbb{N}}$ of irreducible uniform covers. Since there are only finitely many partitions of $\{1,2, \ldots, n\}$, we may pass to an infinite subsequence $\left\{B_{l_{i}}\right\}_{i \in \mathbb{N}}$ of uniform covers of the same partition of $\{1,2, \ldots, n\}$. Now, choose $A \subseteq\{1,2, \ldots, n\}$ and consider the sequence of non-negative integers $\left\{w_{B_{l_{i}}}(A)\right\}_{i \in \mathbb{N}}$, clearly it must contain an infinite non-decreasing subsequence $w_{B_{l_{i_{1}}}}(A) \leq w_{B_{l_{i_{2}}}}(A) \leq \ldots$. We restrict our attention to this subsequence of the uniform covers $B_{l_{i_{1}}}, B_{l_{i_{2}}}, \ldots$ and iteratively apply the same argument for the remaining subsets of $\{1,2, \ldots, n\}$, always passing to a subsequence of the previous sequence of uniform covers. After we have done it for every subset of $\{1,2, \ldots, n\}$, we must end up with two distinct irreducible uniform covers (actually an infinite sequence) \mathcal{A}, \mathcal{B} for which $w_{\mathcal{A}}(F) \leq w_{\mathcal{B}}(F)$ for every $F \subseteq\{1,2, \ldots, n\}$.

This implies $\mathcal{A} \subseteq \mathcal{B}$, which is a contradiction. Take $f(n)$ to be the maximum r_{1} over all irreducible uniform covers of $\{1,2, \ldots, n\}$.

Lemma 3. For every $n \in \mathbb{N}$, there exists $f(n)$ such that the following holds. Let $G=(A, B)$ be a bipartite graph with $A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Then there exists a subset $W \subseteq V(B)$ of size at most $n \cdot f(n)=f^{\prime}(n)$, such that the induced bipartite graph $G^{\prime}=G[A,(B \backslash W)]$ has the property that

$$
\text { if } d_{G}\left(x_{i}\right)>d_{G}\left(x_{j}\right) \text { then } d_{G}\left(x_{i}\right)-d_{G^{\prime}}\left(x_{i}\right)>d_{G}\left(x_{j}\right)-d_{G^{\prime}}\left(x_{j}\right) \text {. }
$$

Proof. Partition A into A_{1}, \ldots, A_{t}, so that two vertices belong to the same part if they have the same degree. Let r_{i} be the degree of the vertices in A_{i}. We may assume that $r_{1}>r_{2}>\cdots>r_{t}$. The lemma follows as a corollary of Lemma 2 Indeed, for every vertex $w \in B$, let $A_{w} \subseteq\{1,2, \ldots, n\}$ such that $i \in A_{w}$ if x_{i} is a neighbour of w in G. Note that $\mathcal{A}=\left\{A_{w}: w \in B\right\}$ is an $\left(r_{1}, r_{2}, \ldots, r_{t}\right)$-uniform cover of $\{1,2, \ldots, n\}$. Applying now Lemma 2, we can find a $\left(r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{t}^{\prime}\right)$-uniform sub-cover $\mathcal{B} \subseteq \mathcal{A}$ with $r_{1}^{\prime} \leq f(n)$. Let $W=\left\{w \in B: A_{w} \in \mathcal{B}\right\}$ and $G^{\prime}=G[A,(B \backslash W)]$. It is easy to see that $|W| \leq n \cdot f(n)$ and that the property is satisfied by the definition of uniform cover.

Given a positive integer k and a graph G with the vertex set $\left\{x_{1}, \ldots, x_{n}\right\}$ such that $d\left(x_{1}\right) \geq \cdots \geq d\left(x_{n}\right)$, let $r_{k}(G):=\Delta(G)-d_{G}\left(x_{k}\right)$ be the difference between the maximum degree and the degree of vertex x_{k}.

Theorem 4. For every positive integer k there exists $h(k)$ such that the following holds. If G is a graph on n vertices with maximum degree Δ then it contains an induced subgraph H on at least $n-(h(k)+k) \sqrt{\Delta}$ vertices, such that $r_{k}(H) \leq h(k) \cdot k$.

Proof. The proof consists of two parts. Firstly, we shall show that we can remove at most $k \sqrt{\Delta}$ vertices from G so that in the remaining graph H^{\prime} we have $r_{k}\left(H^{\prime}\right) \leq \sqrt{\Delta}$. Then we iteratively apply Lemma 3 (at most $\sqrt{\Delta}$ times) in order to obtain an induced subgraph H of H^{\prime} on at least $n-(h(k)+k) \sqrt{\Delta}$ vertices such that $r_{k}(H) \leq h(k) \cdot k$. We may take $h(k)$ to be $f^{\prime}(k)$ from Lemma 3

We start by showing there is a large induced subgraph $H^{\prime} \subseteq G$ with $r_{k}\left(H^{\prime}\right) \leq \sqrt{\Delta}$.
Claim 1. There is an induced subgraph H^{\prime} of G on at least $n-k \sqrt{\Delta}$ vertices such that $r_{k}\left(H^{\prime}\right) \leq \sqrt{\Delta}$.

Proof of Claim 1, Consider the following procedure. Let $G_{0}=G$ and suppose that $G_{0} \supset \cdots \supset G_{i}$ have been defined. If G_{i} does not have the required property then let G_{i+1} be obtained from G_{i} by removing k vertices with largest degrees in G_{i}. Notice that $\Delta\left(G_{i+1}\right) \leq \Delta\left(G_{i}\right)-\sqrt{\Delta}$ and $\left|G_{i+1}\right|=\left|G_{i}\right|-k$. Observe that the procedure will stop after at most $\sqrt{\Delta}$ steps, as otherwise the obtained graph would have maximum degree 0 . Since $\left|G_{i}\right| \geq n-i \cdot k$ we have that $\left|H^{\prime}\right| \geq n-k \sqrt{\Delta}$.

We now proceed to the second part of the proof and iteratively apply Lemma 3. In each step we remove at most $h(k)$ vertices from H^{\prime} while decreasing the value of r_{k} and we stop when r_{k} is at most $k \cdot h(k)$.

Let $H_{0}=H^{\prime}$ and suppose that H_{0}, \ldots, H_{i} have already been defined. If $r_{k}\left(H_{i}\right) \leq$ $k \cdot h(k)$ then we are done, so we may assume that $r_{k}\left(H_{i}\right)>k \cdot h(k)$. Let $A=\left\{x_{1}, \ldots, x_{k}\right\}$ be a set of k vertices with the largest degrees in H_{i} and write B for $H_{i} \backslash A$. Without loss of generality we may assume that $d_{H_{i}}\left(x_{1}\right) \geq \cdots \geq d_{H_{i}}\left(x_{k}\right)$. Since $r_{k}\left(H_{i}\right) \geq k \cdot h(k)$ there must exist $l \in\{2, \ldots, k\}$ such that $d_{H_{i}}\left(x_{l}\right)>d_{H_{i}}\left(x_{l-1}\right)+h(k)$. Now consider the bipartite subgraph $K=H_{i}[A, B]$. By Lemma 3 with $G=K$ and $n=k$, we can remove a set $W \subset B$ of at most $f^{\prime}(k)=h(k)$ vertices from B, and obtain $K^{\prime}=H_{i}[A,(B \backslash W)]$ such that

$$
\begin{equation*}
\text { for any } x, y \in A \text {, if } d_{K}(x)<d_{K}(y) \text { then } d_{K}(x)-d_{K^{\prime}}(x)<d_{K}(y)-d_{K^{\prime}}(y) \tag{1}
\end{equation*}
$$

Let $H_{i+1}=H_{i} \backslash W$ (hence $\left|H_{i+1}\right| \geq\left|H_{i}\right|-|W| \geq\left|H_{i}\right|-h(k)$). The following claim asserts that the above procedure will stop after at most $\sqrt{\Delta}$ steps.

Claim 2. $r_{k}\left(H_{i+1}\right)<r_{k}\left(H_{i}\right)$.
Proof of Claim Let z be a vertex with the maximum degree and w a vertex with the k 'th largest degree in H_{i+1}. Observe that $z=x_{t}$ for some $t \geq l$ and $d_{H_{i+1}}(w) \geq d_{H_{i+1}}\left(x_{s}\right)$ for some $s<l$. First, notice that $d_{H_{i}}\left(x_{t}\right)-d_{H_{i}}\left(x_{s}\right) \leq d_{H_{i}}\left(x_{1}\right)-d_{H_{i}}\left(x_{k}\right)=r_{k}\left(H_{i}\right)$. Hence, $r_{k}\left(H_{i+1}\right)=d_{H_{i+1}}(z)-d_{H_{i+1}}(w) \leq d_{H_{i+1}}\left(x_{t}\right)-d_{H_{i+1}}\left(x_{s}\right)<d_{H_{i}}\left(x_{t}\right)-d_{H_{i}}\left(x_{s}\right) \leq r_{k}\left(H_{i}\right)$, where the strict inequality follows from (11) since $d_{K}\left(x_{t}\right)>d_{K}\left(x_{s}\right)$.

As in each iteration the value of r_{k} decreases, we must stop after at most $r_{k}\left(H^{\prime}\right)=\sqrt{\Delta}$ steps thus getting an induced subgraph $H \subset H^{\prime}$ with $r_{k}(H) \leq k \cdot h(k)$ and $|H| \geq$ $\left|H^{\prime}\right|-h(k) \sqrt{\Delta} \geq n-(h(k)+k) \sqrt{\Delta}$.

In order to prove Theorem 1 we need the following theorem of Caro, Shapira and Yuster, appearing in 6, whose proof is inspired by the one used by Alon and Berman in [1.

Theorem 5. For positive integers r, d, q, the following holds. Any sequence of $n \geq$ $(\lceil q / r\rceil+2)(2 r d+1)^{d}$ elements of $[-r, r]^{d}$ whose sum, denoted by z, is in $[-q, q]^{d}$ contains a subsequence of length at most $(\lceil q / r\rceil+2)(2 r d+1)^{d}$ whose sum is z.

As usual, we write $R(k)$ (see e.g. [3) for the two coloured Ramsey number, the least integer n such that in any two colouring of the edges of the complete graph on n vertices, there is a monochromatic K_{k}.

Proof of Theorem 1. Firstly, we apply Theorem 4 with $k=R(k)$ to find a large induced subgraph $G^{\prime} \subset G$ of order at least $n^{\prime} \geq n-(h(R(k))+R(k)) \sqrt{\Delta}$ and with vertex set $\left\{x_{1}, \ldots, x_{n^{\prime}}\right\}$ where $d\left(x_{1}\right) \geq d\left(x_{2}\right) \geq \cdots \geq d\left(x_{n^{\prime}}\right)$ and $d\left(x_{1}\right)-d\left(x_{R(k)}\right) \leq$ $h(R(k)) \cdot R(k)=M$. Now we follow the proof of Theorem 1.1 in [6].

By the definition of $R(k)$ we can find a set S of k vertices in $\left\{x_{1}, \ldots, x_{R(k)}\right\}$ that induces either a complete graph or an independent set.

Without loss of generality, assume that $S=\left\{v_{n^{\prime}-k+1}, \ldots, v_{n^{\prime}}\right\}$ and $V(G) \backslash S=$ $\left\{v_{1}, \ldots, v_{n^{\prime}-k}\right\}$. Let $e\left(v_{i}, v_{j}\right)$ be equal to 1 if there is an edge between v_{i} and v_{j}, and 0 otherwise. We construct a sequence X of $n^{\prime}-k$ vectors $w_{1}, \ldots, w_{n^{\prime}-k}$ in $[-1,1]^{k-1}$ as follows. The coordinate j of w_{i} is $e\left(v_{n^{\prime}-k+j}, v_{i}\right)-e\left(v_{n^{\prime}}, v_{i}\right)$ for $i=1, \ldots, n^{\prime}-k$ and
$j=1, \ldots, k-1$. It is clear that $e\left(v_{n^{\prime}-k+j}, v_{i}\right)-e\left(v_{n^{\prime}}, v_{i}\right) \in[-1,1]$ as required. Consider the sum of all the j^{\prime} th coordinates,

$$
\begin{aligned}
\sum_{i=1}^{n^{\prime}-k}\left(e\left(v_{n^{\prime}-k+j}, v_{i}\right)-e\left(v_{n^{\prime}}, v_{i}\right)\right) & =\sum_{i=1}^{n^{\prime}-k} e\left(v_{n^{\prime}-k+j}, v_{i}\right)-\sum_{i=1}^{n^{\prime}-k} e\left(v_{n^{\prime}}, v_{i}\right) \\
& =\left(d\left(v_{n^{\prime}-k+j}\right)-a\right)-\left(d\left(v_{n^{\prime}}\right)-a\right)=d\left(v_{n^{\prime}-k+j}\right)-d\left(v_{n^{\prime}}\right) \\
& \leq M,
\end{aligned}
$$

where $a=k-1$ if $G^{\prime}[S]$ is complete, and $a=0$ otherwise. Hence,

$$
z=\sum_{i=1}^{n^{\prime}-k} w_{i} \in[-M, M]^{k-1}
$$

By Theorem 5, with $d=k-1$ and $q=M$, there is a subsequence of X of size at most $(M+2)(2 k-1)^{k-1}$ whose sum is z. Deleting the vertices of G^{\prime} corresponding to the elements of this subsequence results in an induced subgraph $H \subset G^{\prime}$ in which all the k vertices of S have the same degree of order at least $\Delta(H)-\left(M+(M+2)(2 k-1)^{k-1}\right)$. Choosing $g_{1}(k)=g_{2}(k)=h(R(k))(4 k)^{k}$ we conclude the theorem.

3 Remarks

In the previous section, we proved that every graph contains a large induced subgraph with at least k vertices having the same degree of order almost the maximum degree. Note that Theorem 1 is sharp up to the size of the functions $g_{1}(k)$ and $g_{2}(k)$. Indeed, there are graphs for which one needs to remove "roughly" $\frac{k}{2} \sqrt{\Delta}$ vertices to force the remaining subgraph to have k vertices with the same degree "near" the maximum degree. For any k and Δ, let G^{Δ} be the disjoint union of the stars $K_{1, n_{1}}, \ldots, K_{1, n_{t}}$, where $n_{i}=i \cdot \sqrt{\Delta}$, for $i \in\{1, \ldots, t=\sqrt{\Delta}\}$ and let G_{k}^{Δ} be the disjoint union of $k / 2$ copies of G^{Δ}. It is easy to see that, for any constant D, one needs to remove at least $\frac{k}{2} \sqrt{\Delta}-\frac{k}{2} D$ vertices from G_{k}^{Δ} in order to obtain an induced graph H with k vertices of the same degree of order at least $\Delta(H)-D$.

Whether removing $C(k) \sqrt{\Delta}$ vertices is enough to force the remaining induced subgraph to have at least k vertices attaining the maximum degree remains an interesting open question.

4 Acknowledgments

This project was carried through during our stay in IMT School for Advanced Studies Lucca. We would like to thank the Institute for their kind hospitality.

References

[1] Alon, N., and Berman, K. Regular hypergraphs, Gordon's lemma, Steinitz' lemma and invariant theory. Journal of Combinatorial Theory, Series A 43 (1986), 91-97.
[2] Balister, P., Bollobás, B., Lehel, J., and Morayne, M. Repeated degrees in random uniform hypergraphs. SIAM Journal on Discrete Mathematics 27, 1 (2013), 145-154.
[3] Bollobás, B. Modern Graph Theory. Springer, 1998.
[4] Bollobás, B., and Scott, A. Independent sets and repeated degrees. Discrete Mathematics 170, 1 (1997), 41-49.
[5] Caro, Y., Lauri, Y., and Zarb, C. Equating two maximum degrees. ArXiv e-prints (apr 2017).
[6] Caro, Y., Shapira, A., and Yuster, R. Forcing k-repetitions in degree sequences. Electronic Journal of Combinatorics 16:\#R7 (2013).
[7] Caro, Y., and West, D. Repetition number of graphs. Electronic Journal of Combinatorics 16:\#R7 (2009).
[8] Caro, Y., and Yuster, R. Large induced subgraphs with equated maximum degree. Discrete Mathematics 310, 4 (2010), 742-747.
[9] Chen, G., and Schelp, R. Ramsey problems with bounded degree spread. Combinatorics, Probabilty and Computing 2 (1993), 263-269.
[10] Erdős, P., Chen, G., Rousseau, C., and Schelp, R. Ramsey problems involving degrees in edge coloured complete graphs of vertices belonging to monochromatic subgraphs. European Journal of Combinatorics 14, 3 (1993), 183 - 189.

[^0]: *Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, UK; A.Girao@dpmms.cam.ac.uk
 ${ }^{\dagger}$ Department of Mathematics, University of Memphis, Memphis, Tennessee; kamil.popielarz@gmail.com

