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Abstract

In this note we prove that for every integer k, there exist constants g1(k) and g2(k)

such that the following holds. If G is a graph on n vertices with maximum degree ∆ then

it contains an induced subgraph H on at least n− g1(k)
√
∆ vertices, such that H has k

vertices of the same degree of order at least ∆(H) − g2(k). This solves a conjecture of

Caro and Yuster up to the constant g2(k).

1 Introduction

Given a graph G, let the repetition number, denoted by rep(G), be the maximum multi-

plicity of a vertex degree. Trivially, any graph G of order at least two contains at least two

vertices of the same degree, i.e. rep(G) ≥ 2. This parameter has been widely studied by

several researchers (e.g., [2, 4, 7, 9, 10]), in particular, by Bollobás and Scott, who showed

that for every k ≥ 2 there exist triangle-free graphs on n vertices with rep(G) ≤ k for

which α(G) = (1 + o(1))n/k ([4]). As there are infinitely many graphs having repetition

number two, it is natural to ask what is the smallest number of vertices one needs to delete

from a graph in order to increase the repetition number of the remaining induced sub-

graph. This question was partially answered by Caro, Shapira and Yuster in [6], indeed,

they proved that for every k there exists a constant C(k) such that given any graph on n

vertices one needs to remove at most C(k) vertices and thus obtain an induced subgraph

with at least min{k, n−C(k)} vertices of the same degree. Related to this question, Caro

and Yuster ([8]) considered the problem of finding the largest induced subgraph H of a

graph G which contains at least k vertices of degree ∆(H). To do so they defined fk(G)

to be the smallest number of vertices one needs to remove from a graph G such that the

remaining induced subgraph has its maximum degree attained by at least k vertices. They

found examples of graphs on n vertices for which f2(G) ≥ (1− o(1))
√
n and conjectured

fk(G) ≤ O(
√
n) for every graph G on n vertices. In the same paper they established the

conjecture for k ≤ 3.
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The following more general conjecture was posed recently by Caro, Lauri and Zarb in

[5].

Conjecture 1. For every k ≥ 2 there is a constant g(k) such that given a graph G with

maximum degree ∆, one can remove at most g(k)
√
∆ vertices such that the remaining

subgraph H ⊆ G has at least k vertices of degree ∆(H).

Let us define g(k,∆) = max{fk(G) : ∆(G) ≤ ∆}. In the same paper, they proved

that g(2,∆) = ⌈ 3+
√
8∆+1
2 ⌉ and stated that g(3,∆) ≤ 42

√
∆. We should point out that,

if true, the conjecture is best possible, as there are graphs on n vertices found in [5] for

which any induced subgraph on more than n − k
2

√
∆ does not contain k vertices of the

same maximum degree. We shall present such constructions in Section 3.

In this note we prove the following approximate version of Conjecture 1.

Theorem 1. For every positive integer k, there exist constants g1(k) and g2(k) such that

the following holds. If G is a graph on n vertices with maximum degree ∆ then it contains

an induced subgraph H on at least n − g1(k)
√
∆ vertices, such that H has k vertices of

the same degree at least ∆(H)− g2(k).

2 Proofs

Given a partition of {1, 2, . . . , n} into t sets, A1, A2 . . . , At, and a strictly decreasing

sequence of non-negative integers r1 > r2 > r3 > . . . > rt, we say A is an (r1, r2, . . . , rt)-

uniform cover of {1, 2 . . . , n} ifA is a multiset of subsets of {1, 2, . . . n} such that, whenever

i ∈ {1, . . . , t} and j ∈ Ai, we have | {A ∈ A : j ∈ A} | = ri. Note that A is a multiset,

hence we allow repetitions.

We call an (r1, r2, . . . , rt)-uniform coverA of {1, 2, . . . , n} = A1∪A2∪. . .∪At irreducible

if there is no proper (r′1, . . . , r
′
t)-uniform cover B ⊂ A, for some strictly decreasing sequence

of non-negative integers r′1 > r′2 > . . . > r′t.

Given a uniform cover A of {1, 2, . . . , n} and a subset B ⊆ {1, 2, . . . , n} we define

wA(B) to be the number of times B appears in A.

Lemma 2. For all n ∈ N, there exists f(n) such that for any 1 ≤ t ≤ n and any

partition of {1, 2, . . . , n} into t sets A1, A2, . . . , At, every (r1, r2, . . . , rt)-uniform cover A
of {1, 2, . . . , n} contains a proper (r′1, r

′
2, . . . , r

′
t)-uniform sub-cover B ⊂ A with r′1 ≤ f(n).

Proof. We shall prove there are only finitely many irreducible covers. For otherwise, let

us assume there exists an infinite sequence {Bi}i∈N of irreducible uniform covers. Since

there are only finitely many partitions of {1, 2, . . . , n}, we may pass to an infinite sub-

sequence {Bli}i∈N of uniform covers of the same partition of {1, 2, . . . , n}. Now, choose

A ⊆ {1, 2, . . . , n} and consider the sequence of non-negative integers {wBli
(A)}i∈N, clearly

it must contain an infinite non-decreasing subsequence wBli1

(A) ≤ wBli2

(A) ≤ . . .. We

restrict our attention to this subsequence of the uniform covers Bli1
, Bli2

, . . . and itera-

tively apply the same argument for the remaining subsets of {1, 2, . . . , n}, always passing
to a subsequence of the previous sequence of uniform covers. After we have done it for

every subset of {1, 2, . . . , n}, we must end up with two distinct irreducible uniform covers

(actually an infinite sequence) A,B for which wA(F ) ≤ wB(F ) for every F ⊆ {1, 2, . . . , n}.
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This implies A ⊆ B, which is a contradiction. Take f(n) to be the maximum r1 over all

irreducible uniform covers of {1, 2, . . . , n}.

Lemma 3. For every n ∈ N, there exists f(n) such that the following holds. Let

G = (A,B) be a bipartite graph with A = {x1, x2, . . . , xn}. Then there exists a sub-

set W ⊆ V (B) of size at most n · f(n) = f ′(n), such that the induced bipartite graph

G′ = G[A, (B \W )] has the property that

if dG(xi) > dG(xj) then dG(xi)− dG′(xi) > dG(xj)− dG′(xj).

Proof. Partition A into A1, . . . , At, so that two vertices belong to the same part if they

have the same degree. Let ri be the degree of the vertices in Ai. We may assume that

r1 > r2 > · · · > rt. The lemma follows as a corollary of Lemma 2. Indeed, for every

vertex w ∈ B, let Aw ⊆ {1, 2, . . . , n} such that i ∈ Aw if xi is a neighbour of w in G. Note

that A = {Aw : w ∈ B} is an (r1, r2, . . . , rt)-uniform cover of {1, 2, . . . , n}. Applying now

Lemma 2, we can find a (r′1, r
′
2, . . . , r

′
t)-uniform sub-cover B ⊆ A with r′1 ≤ f(n). Let

W = {w ∈ B : Aw ∈ B} and G′ = G[A, (B \W )]. It is easy to see that |W | ≤ n · f(n)
and that the property is satisfied by the definition of uniform cover.

Given a positive integer k and a graph G with the vertex set {x1, . . . , xn} such that

d(x1) ≥ · · · ≥ d(xn), let rk(G) := ∆(G)− dG(xk) be the difference between the maximum

degree and the degree of vertex xk.

Theorem 4. For every positive integer k there exists h(k) such that the following holds.

If G is a graph on n vertices with maximum degree ∆ then it contains an induced subgraph

H on at least n− (h(k) + k)
√
∆ vertices, such that rk(H) ≤ h(k) · k.

Proof. The proof consists of two parts. Firstly, we shall show that we can remove at most

k
√
∆ vertices from G so that in the remaining graph H ′ we have rk(H

′) ≤
√
∆. Then we

iteratively apply Lemma 3 (at most
√
∆ times) in order to obtain an induced subgraph

H of H ′ on at least n− (h(k) + k)
√
∆ vertices such that rk(H) ≤ h(k) · k. We may take

h(k) to be f ′(k) from Lemma 3.

We start by showing there is a large induced subgraph H ′ ⊆ G with rk(H
′) ≤

√
∆.

Claim 1. There is an induced subgraph H ′ of G on at least n− k
√
∆ vertices such that

rk(H
′) ≤

√
∆.

Proof of Claim 1. Consider the following procedure. Let G0 = G and suppose that

G0 ⊃ · · · ⊃ Gi have been defined. If Gi does not have the required property then let

Gi+1 be obtained from Gi by removing k vertices with largest degrees in Gi. Notice that

∆(Gi+1) ≤ ∆(Gi) −
√
∆ and |Gi+1| = |Gi| − k. Observe that the procedure will stop

after at most
√
∆ steps, as otherwise the obtained graph would have maximum degree 0.

Since |Gi| ≥ n− i · k we have that |H ′| ≥ n− k
√
∆.

We now proceed to the second part of the proof and iteratively apply Lemma 3. In

each step we remove at most h(k) vertices from H ′ while decreasing the value of rk and

we stop when rk is at most k · h(k).
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Let H0 = H ′ and suppose that H0, . . . , Hi have already been defined. If rk(Hi) ≤
k ·h(k) then we are done, so we may assume that rk(Hi) > k ·h(k). Let A = {x1, . . . , xk}
be a set of k vertices with the largest degrees in Hi and write B for Hi \ A. Without

loss of generality we may assume that dHi
(x1) ≥ · · · ≥ dHi

(xk). Since rk(Hi) ≥ k · h(k)
there must exist l ∈ {2, . . . , k} such that dHi

(xl) > dHi
(xl−1) + h(k). Now consider the

bipartite subgraph K = Hi[A,B]. By Lemma 3, with G = K and n = k, we can remove

a set W ⊂ B of at most f ′(k) = h(k) vertices from B, and obtain K ′ = Hi[A, (B \W )]

such that

for any x, y ∈ A, if dK(x) < dK(y) then dK(x)− dK′(x) < dK(y)− dK′(y). (1)

Let Hi+1 = Hi \W (hence |Hi+1| ≥ |Hi|−|W | ≥ |Hi|−h(k)). The following claim asserts

that the above procedure will stop after at most
√
∆ steps.

Claim 2. rk(Hi+1) < rk(Hi).

Proof of Claim 2. Let z be a vertex with the maximum degree and w a vertex with the

k’th largest degree in Hi+1. Observe that z = xt for some t ≥ l and dHi+1
(w) ≥ dHi+1

(xs)

for some s < l. First, notice that dHi
(xt)−dHi

(xs) ≤ dHi
(x1)−dHi

(xk) = rk(Hi). Hence,

rk(Hi+1) = dHi+1
(z)− dHi+1

(w) ≤ dHi+1
(xt) − dHi+1

(xs) < dHi
(xt)− dHi

(xs) ≤ rk(Hi),

where the strict inequality follows from (1) since dK(xt) > dK(xs).

As in each iteration the value of rk decreases, we must stop after at most rk(H
′) =

√
∆

steps thus getting an induced subgraph H ⊂ H ′ with rk(H) ≤ k · h(k) and |H | ≥
|H ′| − h(k)

√
∆ ≥ n− (h(k) + k)

√
∆.

In order to prove Theorem 1 we need the following theorem of Caro, Shapira and

Yuster, appearing in [6], whose proof is inspired by the one used by Alon and Berman in

[1].

Theorem 5. For positive integers r, d, q, the following holds. Any sequence of n ≥
(⌈q/r⌉+ 2) (2rd+ 1)

d
elements of [−r, r]

d
whose sum, denoted by z, is in [−q, q]

d
con-

tains a subsequence of length at most (⌈q/r⌉+ 2) (2rd+ 1)
d
whose sum is z.

As usual, we write R(k) (see e.g. [3]) for the two coloured Ramsey number, the least

integer n such that in any two colouring of the edges of the complete graph on n vertices,

there is a monochromatic Kk.

Proof of Theorem 1. Firstly, we apply Theorem 4 with k = R(k) to find a large in-

duced subgraph G′ ⊂ G of order at least n′ ≥ n − (h(R(k)) + R(k))
√
∆ and with

vertex set {x1, . . . , xn′} where d(x1) ≥ d(x2) ≥ · · · ≥ d(xn′) and d(x1) − d(xR(k)) ≤
h(R(k)) · R(k) = M . Now we follow the proof of Theorem 1.1 in [6].

By the definition of R(k) we can find a set S of k vertices in
{

x1, . . . , xR(k)

}

that

induces either a complete graph or an independent set.

Without loss of generality, assume that S = {vn′−k+1, . . . , vn′} and V (G) \ S =

{v1, . . . , vn′−k}. Let e(vi, vj) be equal to 1 if there is an edge between vi and vj , and

0 otherwise. We construct a sequence X of n′ − k vectors w1, . . . , wn′−k in [−1, 1]k−1

as follows. The coordinate j of wi is e(vn′−k+j , vi) − e(vn′ , vi) for i = 1, . . . , n′ − k and
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j = 1, . . . , k − 1. It is clear that e(vn′−k+j , vi)− e(vn′ , vi) ∈ [−1, 1] as required. Consider

the sum of all the j’th coordinates,

n′−k
∑

i=1

(e(vn′−k+j , vi)− e(vn′ , vi)) =

n′−k
∑

i=1

e(vn′−k+j , vi)−
n′−k
∑

i=1

e(vn′ , vi)

= (d(vn′−k+j)− a)− (d(vn′ )− a) = d(vn′−k+j)− d(vn′)

≤ M,

where a = k − 1 if G′[S] is complete, and a = 0 otherwise. Hence,

z =

n′−k
∑

i=1

wi ∈ [−M,M ]
k−1

.

By Theorem 5, with d = k − 1 and q = M , there is a subsequence of X of size at

most (M +2)(2k− 1)k−1 whose sum is z. Deleting the vertices of G′ corresponding to the

elements of this subsequence results in an induced subgraph H ⊂ G′ in which all the k

vertices of S have the same degree of order at least ∆(H) −
(

M + (M + 2)(2k − 1)k−1
)

.

Choosing g1(k) = g2(k) = h(R(k))(4k)k we conclude the theorem.

3 Remarks

In the previous section, we proved that every graph contains a large induced subgraph

with at least k vertices having the same degree of order almost the maximum degree. Note

that Theorem 1 is sharp up to the size of the functions g1(k) and g2(k). Indeed, there

are graphs for which one needs to remove ”roughly” k
2

√
∆ vertices to force the remaining

subgraph to have k vertices with the same degree ”near” the maximum degree. For any

k and ∆, let G∆ be the disjoint union of the stars K1,n1
, . . . ,K1,nt

, where ni = i ·
√
∆,

for i ∈
{

1, . . . , t =
√
∆
}

and let G∆
k be the disjoint union of k/2 copies of G∆. It is easy

to see that, for any constant D, one needs to remove at least k
2

√
∆ − k

2D vertices from

G∆
k in order to obtain an induced graph H with k vertices of the same degree of order at

least ∆(H)−D.

Whether removingC(k)
√
∆ vertices is enough to force the remaining induced subgraph

to have at least k vertices attaining the maximum degree remains an interesting open

question.
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