Large induced subgraphs with k vertices of almost maximum degree

António Girão * Kamil Popielarz[†]

June 23, 2021

Abstract

In this note we prove that for every integer k, there exist constants $g_1(k)$ and $g_2(k)$ such that the following holds. If G is a graph on n vertices with maximum degree Δ then it contains an induced subgraph H on at least $n - g_1(k)\sqrt{\Delta}$ vertices, such that H has k vertices of the same degree of order at least $\Delta(H) - g_2(k)$. This solves a conjecture of Caro and Yuster up to the constant $g_2(k)$.

1 Introduction

Given a graph G, let the repetition number, denoted by rep(G), be the maximum multiplicity of a vertex degree. Trivially, any graph G of order at least two contains at least two vertices of the same degree, i.e. $rep(G) \geq 2$. This parameter has been widely studied by several researchers (e.g., [2, 4, 7, 9, 10]), in particular, by Bollobás and Scott, who showed that for every $k \geq 2$ there exist triangle-free graphs on n vertices with $rep(G) \leq k$ for which $\alpha(G) = (1 + o(1))n/k$ ([4]). As there are infinitely many graphs having repetition number two, it is natural to ask what is the smallest number of vertices one needs to delete from a graph in order to increase the repetition number of the remaining induced subgraph. This question was partially answered by Caro, Shapira and Yuster in [6], indeed, they proved that for every k there exists a constant C(k) such that given any graph on n vertices one needs to remove at most C(k) vertices and thus obtain an induced subgraph with at least min $\{k, n-C(k)\}$ vertices of the same degree. Related to this question, Caro and Yuster ([8]) considered the problem of finding the largest induced subgraph H of a graph G which contains at least k vertices of degree $\Delta(H)$. To do so they defined $f_k(G)$ to be the smallest number of vertices one needs to remove from a graph G such that the remaining induced subgraph has its maximum degree attained by at least k vertices. They found examples of graphs on n vertices for which $f_2(G) \ge (1 - o(1))\sqrt{n}$ and conjectured $f_k(G) \leq O(\sqrt{n})$ for every graph G on n vertices. In the same paper they established the conjecture for $k \leq 3$.

^{*}Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, UK; A.Girao@dpmms.cam.ac.uk

[†]Department of Mathematics, University of Memphis, Memphis, Tennessee; kamil.popielarz@gmail.com

The following more general conjecture was posed recently by Caro, Lauri and Zarb in [5].

Conjecture 1. For every $k \ge 2$ there is a constant g(k) such that given a graph G with maximum degree Δ , one can remove at most $g(k)\sqrt{\Delta}$ vertices such that the remaining subgraph $H \subseteq G$ has at least k vertices of degree $\Delta(H)$.

Let us define $g(k, \Delta) = \max\{f_k(G) : \Delta(G) \leq \Delta\}$. In the same paper, they proved that $g(2, \Delta) = \lceil \frac{3+\sqrt{8\Delta+1}}{2} \rceil$ and stated that $g(3, \Delta) \leq 42\sqrt{\Delta}$. We should point out that, if true, the conjecture is best possible, as there are graphs on *n* vertices found in [5] for which any induced subgraph on more than $n - \frac{k}{2}\sqrt{\Delta}$ does not contain *k* vertices of the same maximum degree. We shall present such constructions in Section 3.

In this note we prove the following approximate version of Conjecture 1.

Theorem 1. For every positive integer k, there exist constants $g_1(k)$ and $g_2(k)$ such that the following holds. If G is a graph on n vertices with maximum degree Δ then it contains an induced subgraph H on at least $n - g_1(k)\sqrt{\Delta}$ vertices, such that H has k vertices of the same degree at least $\Delta(H) - g_2(k)$.

2 Proofs

Given a partition of $\{1, 2, ..., n\}$ into t sets, $A_1, A_2, ..., A_t$, and a strictly decreasing sequence of non-negative integers $r_1 > r_2 > r_3 > ... > r_t$, we say \mathcal{A} is an $(r_1, r_2, ..., r_t)$ uniform cover of $\{1, 2, ..., n\}$ if \mathcal{A} is a multiset of subsets of $\{1, 2, ..., n\}$ such that, whenever $i \in \{1, ..., t\}$ and $j \in A_i$, we have $|\{A \in \mathcal{A} : j \in A\}| = r_i$. Note that \mathcal{A} is a multiset, hence we allow repetitions.

We call an (r_1, r_2, \ldots, r_t) -uniform cover \mathcal{A} of $\{1, 2, \ldots, n\} = A_1 \cup A_2 \cup \ldots \cup A_t$ irreducible if there is no proper (r'_1, \ldots, r'_t) -uniform cover $\mathcal{B} \subset \mathcal{A}$, for some strictly decreasing sequence of non-negative integers $r'_1 > r'_2 > \ldots > r'_t$.

Given a uniform cover \mathcal{A} of $\{1, 2, ..., n\}$ and a subset $B \subseteq \{1, 2, ..., n\}$ we define $w_{\mathcal{A}}(B)$ to be the number of times B appears in \mathcal{A} .

Lemma 2. For all $n \in \mathbb{N}$, there exists f(n) such that for any $1 \leq t \leq n$ and any partition of $\{1, 2, ..., n\}$ into t sets $A_1, A_2, ..., A_t$, every $(r_1, r_2, ..., r_t)$ -uniform cover \mathcal{A} of $\{1, 2, ..., n\}$ contains a proper $(r'_1, r'_2, ..., r'_t)$ -uniform sub-cover $\mathcal{B} \subset \mathcal{A}$ with $r'_1 \leq f(n)$.

Proof. We shall prove there are only finitely many *irreducible* covers. For otherwise, let us assume there exists an infinite sequence $\{B_i\}_{i\in\mathbb{N}}$ of *irreducible* uniform covers. Since there are only finitely many partitions of $\{1, 2, ..., n\}$, we may pass to an infinite subsequence $\{B_{l_i}\}_{i\in\mathbb{N}}$ of uniform covers of the same partition of $\{1, 2, ..., n\}$. Now, choose $A \subseteq \{1, 2, ..., n\}$ and consider the sequence of non-negative integers $\{w_{B_{l_i}}(A)\}_{i\in\mathbb{N}}$, clearly it must contain an infinite non-decreasing subsequence $w_{B_{l_{i_1}}}(A) \leq w_{B_{l_{i_2}}}(A) \leq ...$ We restrict our attention to this subsequence of the uniform covers $B_{l_{i_1}}, B_{l_{i_2}}, ...$ and iteratively apply the same argument for the remaining subsets of $\{1, 2, ..., n\}$, always passing to a subsequence of the previous sequence of uniform covers. After we have done it for every subset of $\{1, 2, ..., n\}$, we must end up with two distinct *irreducible* uniform covers (actually an infinite sequence) \mathcal{A}, \mathcal{B} for which $w_{\mathcal{A}}(F) \leq w_{\mathcal{B}}(F)$ for every $F \subseteq \{1, 2, ..., n\}$. This implies $\mathcal{A} \subseteq \mathcal{B}$, which is a contradiction. Take f(n) to be the maximum r_1 over all *irreducible* uniform covers of $\{1, 2, \ldots, n\}$.

Lemma 3. For every $n \in \mathbb{N}$, there exists f(n) such that the following holds. Let G = (A, B) be a bipartite graph with $A = \{x_1, x_2, \ldots, x_n\}$. Then there exists a subset $W \subseteq V(B)$ of size at most $n \cdot f(n) = f'(n)$, such that the induced bipartite graph $G' = G[A, (B \setminus W)]$ has the property that

if
$$d_G(x_i) > d_G(x_j)$$
 then $d_G(x_i) - d_{G'}(x_i) > d_G(x_j) - d_{G'}(x_j)$.

Proof. Partition A into A_1, \ldots, A_t , so that two vertices belong to the same part if they have the same degree. Let r_i be the degree of the vertices in A_i . We may assume that $r_1 > r_2 > \cdots > r_t$. The lemma follows as a corollary of Lemma 2. Indeed, for every vertex $w \in B$, let $A_w \subseteq \{1, 2, \ldots, n\}$ such that $i \in A_w$ if x_i is a neighbour of w in G. Note that $\mathcal{A} = \{A_w : w \in B\}$ is an (r_1, r_2, \ldots, r_t) -uniform cover of $\{1, 2, \ldots, n\}$. Applying now Lemma 2, we can find a $(r'_1, r'_2, \ldots, r'_t)$ -uniform sub-cover $\mathcal{B} \subseteq \mathcal{A}$ with $r'_1 \leq f(n)$. Let $W = \{w \in B : A_w \in \mathcal{B}\}$ and $G' = G[A, (B \setminus W)]$. It is easy to see that $|W| \leq n \cdot f(n)$ and that the property is satisfied by the definition of uniform cover.

Given a positive integer k and a graph G with the vertex set $\{x_1, \ldots, x_n\}$ such that $d(x_1) \geq \cdots \geq d(x_n)$, let $r_k(G) := \Delta(G) - d_G(x_k)$ be the difference between the maximum degree and the degree of vertex x_k .

Theorem 4. For every positive integer k there exists h(k) such that the following holds. If G is a graph on n vertices with maximum degree Δ then it contains an induced subgraph H on at least $n - (h(k) + k)\sqrt{\Delta}$ vertices, such that $r_k(H) \leq h(k) \cdot k$.

Proof. The proof consists of two parts. Firstly, we shall show that we can remove at most $k\sqrt{\Delta}$ vertices from G so that in the remaining graph H' we have $r_k(H') \leq \sqrt{\Delta}$. Then we iteratively apply Lemma 3 (at most $\sqrt{\Delta}$ times) in order to obtain an induced subgraph H of H' on at least $n - (h(k) + k)\sqrt{\Delta}$ vertices such that $r_k(H) \leq h(k) \cdot k$. We may take h(k) to be f'(k) from Lemma 3.

We start by showing there is a large induced subgraph $H' \subseteq G$ with $r_k(H') \leq \sqrt{\Delta}$.

Claim 1. There is an induced subgraph H' of G on at least $n - k\sqrt{\Delta}$ vertices such that $r_k(H') \leq \sqrt{\Delta}$.

Proof of Claim 1. Consider the following procedure. Let $G_0 = G$ and suppose that $G_0 \supset \cdots \supset G_i$ have been defined. If G_i does not have the required property then let G_{i+1} be obtained from G_i by removing k vertices with largest degrees in G_i . Notice that $\Delta(G_{i+1}) \leq \Delta(G_i) - \sqrt{\Delta}$ and $|G_{i+1}| = |G_i| - k$. Observe that the procedure will stop after at most $\sqrt{\Delta}$ steps, as otherwise the obtained graph would have maximum degree 0. Since $|G_i| \geq n - i \cdot k$ we have that $|H'| \geq n - k\sqrt{\Delta}$.

We now proceed to the second part of the proof and iteratively apply Lemma 3. In each step we remove at most h(k) vertices from H' while decreasing the value of r_k and we stop when r_k is at most $k \cdot h(k)$. Let $H_0 = H'$ and suppose that H_0, \ldots, H_i have already been defined. If $r_k(H_i) \leq k \cdot h(k)$ then we are done, so we may assume that $r_k(H_i) > k \cdot h(k)$. Let $A = \{x_1, \ldots, x_k\}$ be a set of k vertices with the largest degrees in H_i and write B for $H_i \setminus A$. Without loss of generality we may assume that $d_{H_i}(x_1) \geq \cdots \geq d_{H_i}(x_k)$. Since $r_k(H_i) \geq k \cdot h(k)$ there must exist $l \in \{2, \ldots, k\}$ such that $d_{H_i}(x_l) > d_{H_i}(x_{l-1}) + h(k)$. Now consider the bipartite subgraph $K = H_i[A, B]$. By Lemma 3, with G = K and n = k, we can remove a set $W \subset B$ of at most f'(k) = h(k) vertices from B, and obtain $K' = H_i[A, (B \setminus W)]$ such that

for any
$$x, y \in A$$
, if $d_K(x) < d_K(y)$ then $d_K(x) - d_{K'}(x) < d_K(y) - d_{K'}(y)$. (1)

Let $H_{i+1} = H_i \setminus W$ (hence $|H_{i+1}| \ge |H_i| - |W| \ge |H_i| - h(k)$). The following claim asserts that the above procedure will stop after at most $\sqrt{\Delta}$ steps.

Claim 2. $r_k(H_{i+1}) < r_k(H_i)$.

Proof of Claim 2. Let z be a vertex with the maximum degree and w a vertex with the k'th largest degree in H_{i+1} . Observe that $z = x_t$ for some $t \ge l$ and $d_{H_{i+1}}(w) \ge d_{H_{i+1}}(x_s)$ for some s < l. First, notice that $d_{H_i}(x_t) - d_{H_i}(x_s) \le d_{H_i}(x_1) - d_{H_i}(x_k) = r_k(H_i)$. Hence, $r_k(H_{i+1}) = d_{H_{i+1}}(z) - d_{H_{i+1}}(w) \le d_{H_{i+1}}(x_t) - d_{H_{i+1}}(x_s) < d_{H_i}(x_t) - d_{H_i}(x_s) \le r_k(H_i)$, where the strict inequality follows from (1) since $d_K(x_t) > d_K(x_s)$.

As in each iteration the value of r_k decreases, we must stop after at most $r_k(H') = \sqrt{\Delta}$ steps thus getting an induced subgraph $H \subset H'$ with $r_k(H) \leq k \cdot h(k)$ and $|H| \geq |H'| - h(k)\sqrt{\Delta} \geq n - (h(k) + k)\sqrt{\Delta}$.

In order to prove Theorem 1 we need the following theorem of Caro, Shapira and Yuster, appearing in [6], whose proof is inspired by the one used by Alon and Berman in [1].

Theorem 5. For positive integers r, d, q, the following holds. Any sequence of $n \ge (\lceil q/r \rceil + 2) (2rd + 1)^d$ elements of $[-r, r]^d$ whose sum, denoted by z, is in $[-q, q]^d$ contains a subsequence of length at most $(\lceil q/r \rceil + 2) (2rd + 1)^d$ whose sum is z.

As usual, we write R(k) (see e.g. [3]) for the two coloured Ramsey number, the least integer n such that in any two colouring of the edges of the complete graph on n vertices, there is a monochromatic K_k .

Proof of Theorem 1. Firstly, we apply Theorem 4 with k = R(k) to find a large induced subgraph $G' \subset G$ of order at least $n' \geq n - (h(R(k)) + R(k))\sqrt{\Delta}$ and with vertex set $\{x_1, \ldots, x_{n'}\}$ where $d(x_1) \geq d(x_2) \geq \cdots \geq d(x_{n'})$ and $d(x_1) - d(x_{R(k)}) \leq h(R(k)) \cdot R(k) = M$. Now we follow the proof of Theorem 1.1 in [6].

By the definition of R(k) we can find a set S of k vertices in $\{x_1, \ldots, x_{R(k)}\}$ that induces either a complete graph or an independent set.

Without loss of generality, assume that $S = \{v_{n'-k+1}, \ldots, v_{n'}\}$ and $V(G) \setminus S = \{v_1, \ldots, v_{n'-k}\}$. Let $e(v_i, v_j)$ be equal to 1 if there is an edge between v_i and v_j , and 0 otherwise. We construct a sequence X of n' - k vectors $w_1, \ldots, w_{n'-k}$ in $[-1, 1]^{k-1}$ as follows. The coordinate j of w_i is $e(v_{n'-k+j}, v_i) - e(v_{n'}, v_i)$ for $i = 1, \ldots, n' - k$ and

 $j = 1, \ldots, k - 1$. It is clear that $e(v_{n'-k+j}, v_i) - e(v_{n'}, v_i) \in [-1, 1]$ as required. Consider the sum of all the j'th coordinates,

$$\sum_{i=1}^{n'-k} \left(e(v_{n'-k+j}, v_i) - e(v_{n'}, v_i) \right) = \sum_{i=1}^{n'-k} e(v_{n'-k+j}, v_i) - \sum_{i=1}^{n'-k} e(v_{n'}, v_i)$$
$$= \left(d(v_{n'-k+j}) - a \right) - \left(d(v_{n'}) - a \right) = d(v_{n'-k+j}) - d(v_{n'})$$
$$\leq M,$$

where a = k - 1 if G'[S] is complete, and a = 0 otherwise. Hence,

$$z = \sum_{i=1}^{n'-k} w_i \in [-M, M]^{k-1}$$

By Theorem 5, with d = k - 1 and q = M, there is a subsequence of X of size at most $(M+2)(2k-1)^{k-1}$ whose sum is z. Deleting the vertices of G' corresponding to the elements of this subsequence results in an induced subgraph $H \subset G'$ in which all the k vertices of S have the same degree of order at least $\Delta(H) - (M + (M+2)(2k-1)^{k-1})$. Choosing $g_1(k) = g_2(k) = h(R(k))(4k)^k$ we conclude the theorem.

3 Remarks

In the previous section, we proved that every graph contains a large induced subgraph with at least k vertices having the same degree of order almost the maximum degree. Note that Theorem 1 is sharp up to the size of the functions $g_1(k)$ and $g_2(k)$. Indeed, there are graphs for which one needs to remove "roughly" $\frac{k}{2}\sqrt{\Delta}$ vertices to force the remaining subgraph to have k vertices with the same degree "near" the maximum degree. For any k and Δ , let G^{Δ} be the disjoint union of the stars $K_{1,n_1}, \ldots, K_{1,n_t}$, where $n_i = i \cdot \sqrt{\Delta}$, for $i \in \{1, \ldots, t = \sqrt{\Delta}\}$ and let G_k^{Δ} be the disjoint union of k/2 copies of G^{Δ} . It is easy to see that, for any constant D, one needs to remove at least $\frac{k}{2}\sqrt{\Delta} - \frac{k}{2}D$ vertices from G_k^{Δ} in order to obtain an induced graph H with k vertices of the same degree of order at least $\Delta(H) - D$.

Whether removing $C(k)\sqrt{\Delta}$ vertices is enough to force the remaining induced subgraph to have at least k vertices attaining the maximum degree remains an interesting open question.

4 Acknowledgments

This project was carried through during our stay in IMT School for Advanced Studies Lucca. We would like to thank the Institute for their kind hospitality.

References

- ALON, N., AND BERMAN, K. Regular hypergraphs, Gordon's lemma, Steinitz' lemma and invariant theory. *Journal of Combinatorial Theory, Series A* 43 (1986), 91–97.
- [2] BALISTER, P., BOLLOBÁS, B., LEHEL, J., AND MORAYNE, M. Repeated degrees in random uniform hypergraphs. SIAM Journal on Discrete Mathematics 27, 1 (2013), 145–154.
- [3] BOLLOBÁS, B. Modern Graph Theory. Springer, 1998.
- BOLLOBÁS, B., AND SCOTT, A. Independent sets and repeated degrees. Discrete Mathematics 170, 1 (1997), 41–49.
- [5] CARO, Y., LAURI, Y., AND ZARB, C. Equating two maximum degrees. ArXiv *e-prints* (apr 2017).
- [6] CARO, Y., SHAPIRA, A., AND YUSTER, R. Forcing k-repetitions in degree sequences. Electronic Journal of Combinatorics 16:#R7 (2013).
- [7] CARO, Y., AND WEST, D. Repetition number of graphs. Electronic Journal of Combinatorics 16:#R7 (2009).
- [8] CARO, Y., AND YUSTER, R. Large induced subgraphs with equated maximum degree. *Discrete Mathematics 310*, 4 (2010), 742–747.
- CHEN, G., AND SCHELP, R. Ramsey problems with bounded degree spread. Combinatorics, Probability and Computing 2 (1993), 263 – 269.
- [10] ERDŐS, P., CHEN, G., ROUSSEAU, C., AND SCHELP, R. Ramsey problems involving degrees in edge coloured complete graphs of vertices belonging to monochromatic subgraphs. *European Journal of Combinatorics* 14, 3 (1993), 183 – 189.