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Abstract

In this paper we study the connectivity properties of the random subgraph of the n-
cube generated by the k-out model and denoted by Qn(k). Let k be an integer, 1 ≤ k ≤
n−1. We let Qn(k) be the graph that is generated by independently including for every
v ∈ V (Qn) a set of k distinct edges chosen uniformly from all the

(n
k

)

sets of distinct
edges that are incident to v. We study connectivity the properties of Qn(k) as k varies.
We show that w.h.p.1 Qn(1) does not contain a giant component i.e. a component that
spans Ω(2n) vertices. Thereafter we show that such a component emerges when k = 2.
In addition the giant component spans all but o(2n) vertices and hence it is unique.
We then establish the connectivity threshold found at k0 = log2 n− 2 log2 log2 n. The
threshold is sharp in the sense that Qn(⌊k0⌋) is disconnected but Qn(⌈k0⌉ + 1) is
connected w.h.p. Furthermore we show that w.h.p. Qn(k) is k-connected for every
k ≥ ⌈k0⌉+ 1.

1 Introduction

The n-dimensional cube, denoted by Qn, is the graph with vertex set V = {0, 1}n in which
two vertices are connected if and only if they differ into precisely one coordinate. Clearly Qn

is an n-regular bipartite graph on 2n vertices. In this paper we study the random subgraph
of the n-cube generated by the k-out model and denoted by Qn(k). Let k be an integer,
1 ≤ k ≤ n− 1. We let Qn(k) be the graph that is generated by independently including for
every v ∈ V (Qn) a set of k distinct edges chosen uniformly from all the

(

n
k

)

sets of distinct
edges that are incident to v.

Random subgraphs of Qn can be generated in various ways. The most usual way to
generate such graphs is either using the G(Qn, p) model or the (Qn)t random process. In
the G(Qn, p) model every edge of Qn is included independently with probability 0 < p < 1.
On the other hand the random process (Qn)t is generated by starting with (Qn)0, the empty
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1we say that a sequence of events {En} holds with high probability (w.h.p.) or equivalency almost surely

if P(En) → 1 as n → ∞.
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graph on V , and extending (Qn)i to (Qn)i+1 by adding to (Qn)i an edge from Qn, that is not
currently present, uniformly at random. Various results on connectivity have been establish
in both models. Burtin [5] was the first to study the connectivity of G(Qn, p). He proved
that G(Qn, p) connected w.h.p. when p > 1

2
and is disconnected when p < 1

2
. His result was

sharped by Erdös and Spencer who also conjectured that if p ≥ 1+ǫ
n

, ǫ > 0, then G(Qn, p)
almost surely has a giant component. Their conjecture was verified by Ajtai, Komlós and
Szemerédi [1]. The connectivity of the random process (Qn)t was studied by Bollobás,
Kohayakawa and  Luczak [2],[3]. They established the following result. Let ℓ = O(1), and
τℓ = min{t ∈ [n2n] : δt ≥ ℓ}. Then w.h.p (Qn)τℓ is ℓ-connected. Here by δt we denote the
minimum degree of (Qn)t. Furthermore we say that a graph is ℓ-connected if it has more
than ℓ vertices and remains connected whenever fewer than ℓ vertices are removed.

Observe that ℓ-connectivity requires that the minimum degree of a graph is at least ℓ.
In both of the above models one has to wait until the minimum degree is ℓ. Once this
requirement is fulfilled then the graph is ℓ-connected w.h.p. One is therefore interested in
models of a random graph which guarantee a certain minimum degree while not having too
many edges. The k-out model meets this requirement.

There have already been studies on connectivity properties of random graphs that are
generated by the k-out model. For an arbitrary graph G let G(k) denote the random subgraph
of G that is generated by the k-out model, 1 ≤ k ≤ δ(G) (here δ(G) denotes the minimum
degree of G). In the case that G is the compete graph on n vertices Kn the following are
known to hold w.h.p. (see [10]). First Kn(1) is disconnected. Then Kn(2) is connected, a
proof of which can been found in the Scottish book [12]. Furthermore Fenner and Frieze [8]
show that for k ≥ 2 we have that Kn(k) is k-connected. The last theorem has been recently
generalized by Frieze and Johansson [9] in the case where k = O(1). They showed that for
an arbitrary graph G of minimum degree δ(G) ≥

(

1
2

+ ǫ
)

n we have that the random graph
G(k) is k-connected for 2 ≤ k = O(1).

In this paper we study connectivity properties of Qn(k) as n → ∞. As we vary k we ask
whether some specific connectivity properties hold. Our results are summarized in the three
theorems given below.

Theorem 1.1. W.h.p. Qn(1) does not contain a component spanning Ω(2n) vertices.

Theorem 1.2. W.h.p. Qn(2) contains a unique giant component that spans all but o(2n)
vertices.

Theorem 1.3. Let k0 = log2 n− 2 log2 log2 n. Then w.h.p. the following hold,

1. if k ≤ ⌊k0⌋ then Qn(k) is disconnected,

2. if k ≥ ⌈k0⌉ + 1 then Qn(k) is k-connected.

The most surprisingly feature of our results, as opposed to what someone might expect
based on the results concerning Kn(2), is that Qn(2) is not connected. Furthermore even
though Qn(2) contains a giant component that spans all but o(2n) vertices we have that as
k increases Qn(k) persists on not being connected until k passes k0. On the other hand, as
is proved for Kn(k), we are able to prove that if Qn(k) is connected then it is k-connected.

The rest of the paper is split as follows. In section 2 we give some notation and preliminary
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results. Thereafter in Sections 3 and 4 we give the proofs of Theorem 1.1 and 1.2 respectively.
We continue by proving the first part of Theorem 1.3 in Section 5. We give the proof of the
second part in section 6. We close with section 7.

2 Notation-Preliminaries

In this section we give some definitions and basic results that are used throughout the paper.
We use V and E in order to denote V (Qn) and E(Qn) respectively.

Definition 2.1. We say that a graph G is ℓ-connected if it has more than ℓ vertices and
remains connected whenever fewer than ℓ vertices are removed.

Notation. For v ∈ V and A ⊂ V we set E(v, A) := {vw ∈ E : w ∈ A}. Furthermore for
A,B ⊂ V we set E(A,B) := {vw ∈ E(G) : v ∈ A,w ∈ B}. Finally we denote the quantities
|E(v, A)| and |E(A,B)| by d(v, A) and d(A,B) respectively.

In various places we are going use the following inequalities (see [6], [13]). By Bin(n, p)
we mean the Binomial(n, p) random variable.

Lemma 2.2. (Chernoff’s bounds) Let X be distributed as a Bin(n, p) random variable.
Then for any 0 ≤ ǫ ≤ 1,

P
(

X ≥ (1 + ǫ)np
)

≤ e−
ǫ2np

3

Lemma 2.3. (McDiarmid’s Inequality) Let X1, X2, ..., Xn be independent random variables
with Xi taking values in Ai. Further, let f :

∏

i∈[n]Ai 7→ R and assume there exist c1, ..., cn ∈
R such that whenever x, x′ differ only in their i-th coordinate we have

|f(x) − f(x′)| ≤ ci. (1)

Then ∀ǫ > 0,

P
[

f − E[f(x)] ≥ ǫ
]

≤ exp

{

−2ǫ2
∑n

i=1c
2
i

}

Remark 2.4. In the setup above if f satisfies condition (1) then so does −f . Therefore by
applying McDiarmid’s Inequality twice, once with f and once with −f , we get that ∀β > 0

P

{

f /∈
[

(1 − β)E
(

f(x)
)

, (1 + β)E
(

f(x)
)]

}

≤ 2 exp

{

−2
[

βE
(

f(x)
)]2

∑n
i c

2
i

}

We will also use the following isoperimetric inequality, see for example Bollobás and
Leader [4].

Lemma 2.5. Let A ⊂ V . Then,

d(A,A) ≤
|A| log2 |A|

2
.

Equivalently, since d(A, V \A) = n|A| − 2d(A,A), we have

d(A, V \A) ≥ n|A| − |A| log2 |A|.
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Remark 2.6. The function f(x) = nx − x log2 x has a unique stationary point which is a
maximum. Therefore ∀a ≤ b ∈ [0, 2n] if A ⊂ V and |A| ∈ [a, b] then Lemma 2.5 implies that
d(A, V \A) ≥ min{f(a), f(b)}.

Finally we are also going to use the following two results. For a proof of Lemma 2.7 in
the case where the underline graph has maximum degree D see Knuth [11].

Lemma 2.7. For v ∈ V there are at most
(

sn
s

)

/[(n− 1)s+ 1] trees T such that |T | = s and
v ∈ V (T ).

Corollary 2.8. For v ∈ V there are at most (en)s sets S such that (i) v ∈ S, (ii) |S| = s
and (iii) G[S] is connected.

Proof. It follows directly from Lemma 2.8 and the following inequality,

(

sn

s

)

/[(n− 1)s + 1] ≤

(

sn

s

)

≤

(

ens

s

)s

= (en)s.

3 Structural properties of Qn(1)

We split this section into two parts. In the first part we prove Theorem 1.1. Thereafter we
split [0, 2n] into sub-intervals and for each interval we study the number of components in
Qn(1) with size in that interval. We use this information to prove Theorem 1.2 in the next
section.

We generate Qn(1) in the following manner. Every vertex v ∈ V independently chooses a
vertex f(v) from those adjacent to it in Qn uniformly at random. Let ED be the set of arcs
{(v, f(v)) : v ∈ V }. We set GD := (V,ED). Lastly we set Qn(1) be the simple graph that
we get from GD when we ignore orientation.

Remark 3.1. GD is the union of in-arborescences and directed cycles. Moreover the in-
arborescences can be chosen such that the root of every in-arborescence lies on a cycle.

3.1 The lack of a giant component

Lemma 3.2. W.h.p. ∄v, w ∈ V such that in GD there is a directed path from u to w of
length larger than n2.

Proof. Let v ∈ V . Explore, by sequentially revealing the out-edges, the vertices that
v can reach (i.e the vertices v, f(v), f 2(v), ...). Suppose that we have revealed the arcs
(

v, f(v)
)

, ...,
(

f i−1(v), f i(v)
)

and that these arcs do not span a cycle. Then
(

f i(v), f i+1(v)
)

is still distributed uniformly at random over the n arcs out of f i(v). Thus with probability
1
n

we have f i−1(v) = f i+1(v), in which case we say that f i(v) “closes the path”. Let B(v, n2)
be the event that there exists a directed path out of v of size larger than n2 and A(v, i) be
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the event that
(

v, f(v)
)

, ...,
(

f i−1(v), f i(v)
)

do not span a cycle. Then,

P
(

∃v ∈ V : B(v, n2)
)

≤
∑

v∈V

∏

i∈[n2]

P
(

f i(v) does not close the path|A(v, i)
)

≤
∑

v∈V

∏

i∈[n2]

(

1 −
1

n

)

= 2n

(

1 −
1

n

)n2

≤ 2n · e−
1
n
·n2

= o(1).

Proof of Theorem 1.1. Let Z be that number of unordered pairs u, v ∈ V such that
there is a path from u to v in Qn(1) (i.e. u, v belong to the same component in Qn(1)).
Let u, v be such a pair. Then in GD there exists a unique w ∈ V such that there exists
di-paths (directed paths) from both u and v to w that share no vertices other than w. (here
we use the convection that for every v ∈ V there is a di-path from v to v of length 0). Set
Z = ZS + ZL where ZS counts the pairs of vertices where both of the corresponding paths
have length at most n2 and ZL counts the rest of the pairs. Lemma 3.2 implies that there
do not exist any di-paths of size larger than n2 thus ZL = 0 w.h.p.

In order to bound ZS for v, w ∈ V let Pu 7→w be the set of all di-paths from v to w of length at
most n2. Furthermore for u, v, w ∈ V let Pu,v 7→w ⊂ Pu 7→w × Pv 7→w be the set of all the pairs
of di-paths (P1, P2) ∈ Pu 7→w × Pv 7→w where P1 and P2 do not share any vertices other than
w. We denote by I(·) the indicator function. Therefore for a path P we have that I(P ) = 1
in the event that E(P ) ⊂ E(GD) and 0 otherwise. In addition for a set of paths P we have
that I(P) = 1 in the event that there exists some P ∈ P such that I(P ) = 1 and 0 otherwise.
Finally for a pair of paths P1, P2 we set I(P1 ∧ P2) = I(P1)I(P2). Thus

E(ZS) = E

[

∑

u,v,w∈V

∑

(P1,P2)∈Pu,v 7→w

I

(

P1 ∧ P2

)]

=
∑

u,v,w∈V

∑

(P1,P2)∈Pu,v 7→w

E
[

I
(

P1)
]

E
[

I
(

P2)
]

(2)

≤
∑

u,v,w∈V

∑

(P1,P2)∈Pu 7→w×Pv 7→w

E
[

I
(

P1)
]

E
[

I
(

P2)
]

=
∑

u,v,w∈V

E
[

I(Pu 7→w)
]

E
[

I(Pv 7→w)
]

=
∑

w∈V

E

(

∑

u∈V

I(Pu 7→w)

)

E

(

∑

v∈V

I(Pv 7→w)

)

In the second equality we used linearity of expectations and the fact that if (P1, P2) ∈ Pu,v 7→w

then P1, P2 do not share any vertices other than w. Therefore since both P1,P2 are both
directed towards w we have that they appear independently in GD. In the inequality we
used that Pu,v 7→w ⊂ Pu 7→w × Pv 7→w. Observe that for every w1, w2 ∈ V we have

E

(

∑

v∈V

I(Pv 7→w1)

)

= E

(

∑

v∈V

I(Pv 7→w2)

)

.

Therefore for w ∈ V

E

(

∑

v∈V

I(Pv 7→w)

)

=
1

|V |

∑

w′∈V

E

(

∑

v∈V

I(Pv 7→w′)

)

=
1

2n

∑

v∈V

E

(

∑

w′∈V

I(Pv 7→w′)

)

≤ 2−n
∑

v∈V

(n2 + 1) = (n2 + 1).
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In the inequality we used that out of any vertex there are at most n2 + 1 di-paths of length
at most n2 (counting the path of length 0). Substituting in (2) we get

E(ZS) ≤
∑

w∈V

(n2 + 1)2 = (n2 + 1)22n.

Thus the Markov inequality gives us

P
(

ZS ≥ n62n
)

= o(1).

Hence w.h.p. Z = ZS + ZL ≤ n62n.

Now let C be the size of a largest component in Qn(1). By summing over all the unordered
pairs of vertices that belong to a largest component of Qn(1), including pairs of repeated
vertices, we have

C2 ≤ Z.

Therefore given that Z ≤ n62n we have that C ≤ n32
n
2 = o(2n) and so there is no component

spanning Ω(2n) vertices. �

3.2 Distribution of Cycles in Qn(1)

The following lemma is the first step in proving that Qn(2) has a giant component.

Lemma 3.3. W.h.p. in Qn(1) the following hold.

(i) There are (1 + o(1))2n−1/n cycles of length two.

(ii) There are O
(

2n/n1.5
)

cycles of length greater than two.

Proof. Since Qn is bipartite it does not contain any odd cycles. For ℓ ∈ [2n−1] let X2ℓ be the
number of cycles of length 2ℓ and set X =

∑

i∈N X2i. Also let Y2ℓ be the number of vertices
that lie on cycles of length 2ℓ. Clearly X2ℓ = 1

2ℓ
Y2ℓ ≤

1
2
Y2ℓ. We start by proving (i).

For v ∈ V we denote by e1(v) the edge that is chosen by v in the generation of Qn(1). We
first bound E(X2). Then we use McDiarmid’s inequality to establish concentration of X2.

A vertex v lies on a 2-cycle in Qn(1) if v and one of its neighbors choose the edge between
them, thus with probability n · 1/n2. Therefore E(Y2) = 2n

n
. Observe that Y2 is a function of

e(v1), ..., e(v2n). Moreover if we alter one of the edges then we may destroy or/and we may
create at most one cycle of size 2. Thus Lemma 2.3, with ci = 1 for i ∈ [2n], implies

P
(

|Y2 − E(Y2)| ≥ 2
3n
4

)

≤ 2 exp

{

2
3n
2

2n

}

= o(1).

Hence w.h.p. X2 = Y2/2 = (1 + o(1))2
n−1

n
.

In order to prove (ii) (i.e. to bound the number of cycles of size at least 4) for every v ∈ V
we define the sequence {Si(v)}i∈N with elements in [n] as follows. For i ∈ N we set Si(v)
to be the coordinate in which f i−1(v) and f i(v) differ. Note we can deduce {f i(v)}i≥0 from
{Si(v)}i∈N.

6



Remark 3.4. Given that
(

v, f(v)
)

, ...,
(

f i−1(v), f i(v)
)

do not span a cycle of any length,
f i+1(v) is independent of v, f(v), ..., f i(v) and is distributed uniformly at random over all
the neighbors of f i(v). Hence Si+1(v) is distributed uniformly over [n].

We now reveal the terms of {Si(v)}i∈N one by one. Let E2ℓ(v) be the event that v belongs
to a cycle of length 2ℓ. If E2ℓ(v) occurs then f 2ℓ(v) = v. Hence every element in [n] appears
an even number of times in the first 2ℓ terms of the sequence {Si(v)}v∈N. That is because
if x ∈ [n] appears an odd number of times among those terms then v and f 2ℓ(v) differ in
their x-th entry. Therefore in the event E2ℓ(v) we can pair the first 2ℓ terms of {Si(v)}v∈N
such that in every pair the two elements are the same. We can pair the 2ℓ terms by first
choosing ℓ terms out of the 2ℓ and then pairing them with the remaining ones. That is in
(

2ℓ
ℓ

)

ℓ! ways. Assume that the ath term of the sequence, Sa(v), is paired with the bth term
Sb(v), a < b. Then given that

(

v, f(v)
)

, ...,
(

f b−2(v), f b−1(v)
)

do not span a cycle of any
length, Sb(v) equals Sa(v) with probability 1

n
. Hence,

E

( n/4
∑

ℓ=2

X2ℓ

)

≤ E

( n/4
∑

ℓ=2

Y2ℓ

)

≤ 2n

n/4
∑

ℓ=2

(

2ℓ

ℓ

)

ℓ!

(

1

n

)ℓ

≤ 2n

n/4
∑

ℓ=2

(

2ℓ

n

)ℓ

= O

(

2n

n2

)

.

The Markov inequality implies that w.h.p.
∑n/4

ℓ=2X2ℓ ≤
2n

n1.5 .

A cycle of size 2ℓ induces a path in GD of length 2ℓ. Therefore Lemma 3.2 implies that
there does not exists a cycle of size larger than n2. To bound the remaining variables Y2ℓ, i.e.
when ℓ ∈ [n/4, n2/2], we define the sequence {Li(v)}i∈N. For i ∈ N we set Li(v) = {j ∈ [n] :
(v)j 6=

(

f i(v)
)

j
}. By

(

f i(v)
)

j
we denote the j-th coordinate of f i(v), hence Li(v) records

the entries in which v and f i(v) differ.

Recall that given that the edges
(

v, f(v)
)

, ...,
(

f i−1(v), f i(v)
)

do not span a cycle of any
length fi+1(v) is chosen uniformly at random from the n neighbors of f i(v). Let j = Si+1(v).
If j ∈ Li(v), then Li+1(v) = Li(v)\{j}. On the other hand if j ∈ [n]\Li(v), then Li+1(v) =
Li(v) ∪ {j}. Thus, as j is chosen uniformly at random from [n] we have that |Li+1(v)| =

|Li(v) − 1| with probability |Li(v)|
n

and |Li+1(v)| = |Li(v)| with probability n−|Li(v)|
n

.

Now let {Li}i≥0 be the biased random walk defined by,

Li =











0 if i = 0,

Li−1 − 1 with probability Li−1

n
if i ≥ 1,

Li−1 + 1 with probability n−Li−1

n
if i ≥ 1.

If v = f 0(v) lies on a cycle of length 2ℓ then f 2ℓ(v) = v and L2ℓ(v) = ∅. Therefore we can
couple the sequence {|Li(v)|}i≥0 with the bias random walk {Li}i≥0 such that if v lies on a
cycle of length 2ℓ then L2ℓ = 0. In order to finish the proof we use the following fact whose
proof is given in the appendix.

Lemma 3.5. Let {Li}i≥0 be a biased random walk given by,

Li =











0 if i = 0,

Li−1 − 1 with probability Li−1

n
if i ≥ 1,

Li−1 + 1 with probability n−Li−1

n
if i ≥ 1.
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Then we have that P
(

∃ℓ ∈ [n/4, n2] : L2ℓ = 0
)

≤ n−4.

Given Lemma 3.5 we have that

n2

2
∑

ℓ=n
4

E(X2ℓ) ≤

n2

2
∑

ℓ=n
4

E(Y2ℓ) = 2nP
(

v belongs to a cycle of size 2ℓ, ℓ ∈ [n/4, n2/3]
)

≤ 2nP
(

∃ℓ ∈ [n/4, n2] : L2ℓ = 0
)

≤ n−42n.

Finally the Markov inequality implies, P

(

n2/2
∑

ℓ=n/4

X2ℓ ≥
2n

n2

)

= o(1).

Corollary 3.6. W.h.p. Qn(1) consists of (1 + o(1))2n−1/n connected components.

Proof. The corollary follows directly from Lemma 3.3 and the fact that every component in
Qn(1) contains a unique cycle.

4 The emergence of the Giant Component

4.1 The construction of Qn(1.5)

Let V = V0 ∪ V1 where V0 = {v ∈ V :
∑

i∈[n](v)i = 0 mod 2} and V1 = V \V0. For v ∈ V

denote the edge found in Qn(1)
(

v, f(v)
)

by e1(v). Given Qn(1) we construct Qn(1.5) as
follows. Every v ∈ V0 independently chooses, uniformly at random, an edge e1.5(v) from
those adjacent to it in Qn, excluding e1(v). Let E ′

1.5 := {e1.5(v) : v ∈ V0} and define Qn(1.5)
by E1.5 := E

(

Qn(1.5)
)

:= E ′
1.5 ∪ E

(

Qn(1)
)

and V
(

Qn(1.5)
)

:= V .

Lemma 4.1. W.h.p. Qn(1.5) consist of at most 5·2n

n log2 log2 n
components.

Remark 4.2. The extra 1/ log2 log2 n factor in the number of the components will be the
catalyst in our proof for the size of the giant component in Qn(2).

Proof. We split our proof into two parts. In the first one we show that an at most 1/n
fraction of the vertices lie in a component of size at most n2. After this we show that the
number of components of size less than log2 log2 n in Qn(1.5) is small.

Claim 1. W.h.p. in Qn(1.5) at most 2n+2

n
vertices lie on a component of size at most n2.

Proof of Claim 1. Let C1, ..., Cz be the components of Qn(1). For a given partition of the
components of Qn(1) into two sets P1, P2 define EP1,P2(1) := {uv ∈ E : u ∈ Ci, v ∈ Cj , Ci ∈
P1 and Cj ∈ P2} and for i = 1, 2 V (Pi) = {v ∈ V : ∃Cj ∈ Pi with v ∈ Cj}. Furthermore
define the set of partitions P1 :=

{

(P1, P2) : |EP1,P2(1)| ≥ 2n−1
}

. For (P1, P2) ∈ P1 let

8



B1.5(P1, P2) be the event that EP1,P2(1) ∩ E ′
1.5 = ∅. Then

P
(

B1.5(P1, P2)
)

=
∏

v∈V (P1)∩V0

(

1 −
d
(

v, V (P2)
)

n− 1

)

∏

v∈V (P2)∩V0

(

1 −
d
(

v, V (P1)
)

n− 1

)

(3)

≤ exp

{

−
∑

v∈V (P1)∩V0

d
(

v, V (P2)
)

n
−

∑

v∈V (P2)∩V0

d
(

v, V (P1)
)

n

}

= exp

{

−
|EP1,P2(1)|

n

}

≤ exp

{

−
2n−1

n

}

.

To go from the second to the third line we used that every edge in EP1,P2(1) has one endpoint
in each of V (P1), V (P2) and that exactly one of those belongs to V0. Corollary 3.6 implies

that |P1| ≤ 2
(1+o(1))2n−1

n . Therefore

P
(

∃(P1, P2) ∈ P1 : B1.5(P1, P2) occurs
)

≤ 2
(1+o(1))2n−1

n · exp

{

−
2n−1

n

}

= o(1). (4)

Now let C ′
1, .., C

′
w be the components of Qn(1.5) where C ′

1, ..., C
′
s, s ≤ z, are all the compo-

nents of size at most n2. Furthermore set EB(1.5) = {uv ∈ E : u ∈ C ′
i, v ∈ C ′

j and i 6= j}.

Let B1.5 be the event that more than 2n+2

n
vertices lie on a component of size at most n2. If

B1.5 occurs then

∣

∣EB(1.5)
∣

∣ =
1

2

∑

i∈[z]

E(Ci, V \Ci) ≥
1

2

∑

i∈[s]

E(Ci, V \Ci) ≥
1

2

∑

i∈[s]

(n|Ci| − |Ci| log2 |Ci|)

≥
1

2

∑

i∈[s]

(n− log2 n
2)|Ci| ≥

[1 − o(1)]n

2
·

2n+2

n
= [1 − o(1)]2n+1.

We now partition C ′
1, ..., C

′
z into two sets P ′′

1 , P
′′
2 by independently including each C ′

i in P ′′
1

with probability 0.5 and into P ′′
2 otherwise. Let EP ′′

1 ,P ′′

2
(1.5) = {uv ∈ Qn : u ∈ C ′

i, v ∈
C ′

j, C
′
i ∈ P ′′

1 and C ′
j ∈ P ′′

2 }. Then

E
(
∣

∣EP ′′

1 ,P ′′

2
(1.5)

∣

∣

)

=
∑

e∈EB

P
(

e ∈ EP ′′

1 ,P ′′

2
(1.5)

)

=
∑

e∈EB

0.5 ≥ [1 − o(1)]2n.

Therefore if the event B1.5 occurs then there exists a partition P ′
1, P

′
2 of C ′

1, ..., C
′
w such that

EP ′

1,P
′

2
(1.5) ≥ [1 − o(1)]2n. Each of C ′

i is a union sets in {C1, C2, ..., Cw}. In addition C ′
i are

disjoint. Thus P ′
1, P

′
2 induces a partition of {C1, C2, ..., Cw} into two sets P1, P2 such that

|EP1,P2(1)| = |EP ′

1,P
′

2
(1.5)| ≥ [1 − o(1)]2n ≥ 2n−1 and EP1,P2(1) ∩ E ′

1.5 = ∅. Hence, since
B1.5 implies that there exists (P1, P2) ∈ P1 such that B1.5(P1, P2) occurs, (4) implies that
P
(

B1.5

)

= o(1). �

Claim 2. W.h.p. in Qn(1.5) there are at most 2n

n1.5 vertices that lie on a connected component
CT which satisfies the following: i) |CT | ≤ s = log2 log2 n, ii) any cycle spanned by CT of
size larger than 2 has a nonempty intersection with E ′

1.5.

Proof of Claim 2. Let M be the number of connected components satisfying the above
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conditions and let H be one of them. Then the following are true. H spans a component
H1 in GD of size at most s. Moreover H1 spans a cycle CH1 of size 2 (due condition ii).
In addition if we let v ∈ CH1 ∩ V0 then ∃w ∈ V and a component H2 in GD such that
e1.5(v) = (v, w), w ∈ H2, |H2| ≤ s and H2 contains a 2-cycle.

We can specify an instance of the above configuration as follows. First we specify H1 by
choosing two vertices v1, v2 and two in-arborescences T1, T2 rooted at v1 and v2 respectively.
Furthermore we request that v2 is a neighbor of v1 (w.l.o.g v1 ∈ V0) so that is feasible for
{v1, v2} to span a cycle in GD. In addition T1, T2 must satisfy |T1| = s1, |T2| = s2 for some
s1, s2 ≤ s. Thus in GD, H1 consists of the 2 in-arborescences T1, T2 and the directed cycle
v1, v2, v1. Thereafter we choose (v1, w) = e1.5(v). In the case that H1 = H2 we choose
w ∈ V (H1) and we set s3 = 0. Otherwise we choose w /∈ V (H1) and we also choose a
tree T3 that contains w such that it is vertex disjoint from H1 and it has size s3 ≤ s. We
then choose a vertex v3 in V (T3) and a neighbor of it v4. Then we direct every arc on T3

either towards v3 or v4 to create two in-arborescences T4, T5 rooted at v3 and v4 respectively.
Thus in GD, H2 consists of the 2 in-arborescences T3, T4 and the directed cycle v3, v4, v3.
Furthermore w belongs to one of T3, T4. Observe that the probability of all the arcs in
E(T1) ∪E(T2) ∪ {(v1, v2), (v2, v1)} occurring in GD is 1

ns1+s2
. In addition (v1, w) occurs with

probability 1
n−1

and in the case that H1 6= H2 the arcs in E(T4) ∪E(T5) ∪ {(v3, v4), (v4, v3)}

occur in GD with probability 1
ns3

.

There are 2n choices for v1 thereafter n choices for v2. Furthermore from Lemma 2.7 we have
that there are at most

(

n
si

)

/[(n−1)si + 1] ≤ nsi/[(n−1)si + 1] choices for Ti, i ∈ {1, 2, 3}. In
the case that w ∈ V (H1) or equivalently in the case that s3 = 0 there are at most s1+s2 ≤ 2s
choices for w. Otherwise there are at most n of them. Therefore,

E(M) ≤
∑

s1,s2≤s

n2n
∏

i∈[2]

nsi

(n− 1)si + 1
·

1

ns1+s2
·

1

n− 1

(

2s +
s
∑

s3=1

ns3

(n− 1)s3 + 1
· n ·

1

ns3

)

≤
∑

s1,s2≤s

n2n ·
1

n2(n− 1)
(2s + s) ≤

s2 · 3s · 2n

n(n− 1)
= o

(

2n · log2 n

n2

)

.

The Markov inequality implies that P
(

M ≥ 2n

n1.5

)

= o(1). �

In Qn(1.5) there are w.h.p. at most 2n

n2 components of size at least n2. Furthermore Claim

1 implies that w.h.p. there are at most 2n+2

n log2 log2 n
components of size in [log2 log2 n, n

2].

Thereafter Claim 2 implies that w.h.p. there are at most 2n

n1.5 components of size at most
s = log2 log2 n such that any cycle of length larger than 2 spanned by such a component has
a nonempty intersection with E ′

1.5. Any component that we have not accounted for must
span a cycle of size at least 4 whose edges lie in E

(

Qn(1)
)

. The number of such components
is bounded by the number of cycles of size larger than 4 in Qn(1) which is O

(

2n

n1.5

)

(by
Lemma 3.3). Summing up we have that Qn(1.5) consists of at most 5·2n

n log2 log2 n
connected

components.

Lemma 4.3. W.h.p Qn(2) has a connected component of size [1 − o(1)]2n.

Proof. We generate E ′
2 by independently including for every v ∈ V1 an edge that is adjacent

to v chosen uniformly at random from the n− 1 edges adjacent to it in Qn excluding e1(v).
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We then extend Qn(1.5) to Qn(2) by adding to its edge set all the edges in E ′
2. Henceforth

we follow the same argument given in the prove of Lemma 4.1\Claim 1.

Let W1, ...,Wz be the components of Qn(1.5). For a given partition of the components
of Qn(1.5) into two sets P1, P2 define EP1,P2(1.5) = {uv ∈ E : u ∈ Wi, v ∈ Wj,Wi ∈
P1 and Wj ∈ P2}. Furthermore define the set of partitions P1.5 :=

{

(P1, P2) : |EP1,P2(1.5)| ≥
25·2n

log2 log2 n

}

. For (P1, P2) ∈ P1.5 let B2(P1, P2) be the event that EP1,P2(1.5) ∩ E ′
2 = ∅. Then

similar calculations to those done for (3) imply

P
(

B2(P1, P2)
)

≤ exp

(

−

∣

∣EP1,P2(1.5)
∣

∣

n

)

= exp

(

−
25 · 2n

n log2 log2 n

)

.

As argued earlier Qn(1.5) w.h.p. consists of at most 5·2n

n log2 log2 n
connected components and

hence |P1.5| ≤ 2
5·2n

n log2 log2 n . Therefore

P
(

∃(P1, P2) ∈ P1.5 : B2(P1, P2) occurs
)

≤ 2
5·2n

n log2 log2 n · exp

(

−
25 · 2n

n log2 log2 n

)

= o(1). (5)

Now let W ′
1, ..,W

′
q be the components of Qn(2) and let B2 be the event that Qn(2) has

no connected component of size larger than h =

(

1 − 100 log 2
log2 log2 n

)

2n. Furthermore define

EB(2) = {uv ∈ E : u ∈ W ′
i , v ∈ W ′

j and i 6= j}. If B2 occurs then

∣

∣EB(2)
∣

∣ =
1

2

∑

i∈[z]

E(Ci, V \Ci) ≥
1

2

∑

i∈[z]

(n|Ci| − |Ci| log2 |Ci|) ≥
1

2

∑

i∈[z]

(n− log2 h)|Ci|

≥ −
2n

2
· log2

{

1 −
100 log 2

log2 log2 n

}

≥ −
2n

2

1

log 2
·
−100 log 2

log2 log2 n
=

50 · 2n

log2 log2 n
.

For the last inequality we used that − x
log 2

≤ − log(1+x)
log 2

= − log2(1 + x). We place indepen-
dently and uniformly at random W ′

1, ...,W
′
q into one of the two sets P ′′

1 , P
′′
2 . Hence P ′′

1 , P
′′
2

form a random partition of W ′
1, ...,W

′
q. In expectation half of the edges in EB(2) would cross

this random partition (i.e. their endpoints would belong to two components not found in the
same set of the partition). Thus there exists a partition of W ′

1, ...,W
′
q into two sets P ′

1, P
′
2

where the number of edges that cross the partition P ′
1, P

′
2 is at least

∣

∣

EB(2)
2

∣

∣ ≥ 25·2n

log2 log2 n
. Fur-

thermore P ′
1, P

′
2 induces a partition P1, P2 on the components of Qn(1.5), W1, ...,Wz, where

the same number of edges cross the partition P1, P2. In the event B2 that number is at least
25·2n

n log2 log2 n
. Hence the occurrence of the event B2 implies that ∃(P1, P2) ∈ P1.5 such that

B2(P1, P2) occurs . Thus (5) implies that P
(

B2

)

= o(1).

5 Connectivity of Qn(k) - The Lower Bound

We still have not shown that Qn(2) is disconnected. However this fact follows from the first
part of Theorem 1.3 where we prove that P

(

Qn(k0) is disconnected
)

= 1 − o(1) plus the
fact that P

(

Qn(k) is disconnected
)

is decreasing with respect to k.
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In order to prove that Qn(k0) is disconnected we show that k0-cubes appear as connected
components of Qn(k0). That is there exists at least one k0-cube A ⊂ Qn such that in the k0-
out model every vertex in A chooses its neighbors in A (there are exactly k such neighbors).
Moreover no vertex in V \A chooses a neighbor in A. We use the following definition in order
to describe the two aforementioned events.

Definition 5.1. For A,B ⊂ V and k ∈ N we let Ek(A → B) be the event that in Qn(k)
every vertex in A chooses its neighbors from B.

Lemma 5.2. Let k0 = ⌊log2 n− 2 log2 log2 n⌋. Then w.h.p. Qn(k0) is disconnected.

Proof. We say that a k0-cube H lies at the level ℓ of Qn if there exist a partition of [n] into 3
sets LH ,FH and UH of size ℓ, k0 and n− ℓ− k0 respectively such that ∀v ∈ V (H) the entries
of v corresponding to the elements in LH (and UH respectively) equal to 1 (0 respectively).
The entries of v corresponding to elements in FH may be either 0 or 1 i.e. they are free.

Let H1, H2, ...Hs be the k0-cubes that lie at level n
2

of Qn. Furthermore let Xi be the indicator
of the event that Hi spans a connected component of Qn(k0) and define X by X :=

∑

i∈[s]Xi.
In order to specify a k0-cube H that lies at level n

2
we can first specify LH , which can be

done in
(

n
n
2

)

ways, and thereafter we can specify FH which can be done in
( n

2
k0

)

ways. Thus

there are s =
(

n
n
2

)( n
2
k0

)

k0-cubes that lie at level n
2
. Let H be such a k0-cube. We denote

by VH , VH and N(VH) the sets V (H), V \V (H) and the neighborhood of V (H) found in
V \V (H) respectively. Observe that XH = 1 if and only if the events Ek0(VH → VH) and
Ek0
(

N(VH) → VH

)

occur. The probability that a given vertex in VH chooses its k0 neighbors

from VH in Qn(k0) is
(

n
k0

)−1
> n−k0. Hence

P
(

Ek0(VH → VH)
)

≥ (n−k0)|VH | = n−k02k0 .

On the other hand if v ∈ N(VH) then v has exactly one entry, say q, in LH ∪ UH such
that if q ∈ LH then vq = 0 otherwise vq = 1. Thus v has exactly one neighbor v′ ∈ VH (v, v′

differ only on their q-th entry). Therefore since there are |VH|(n − k0) edges coming out of
VH we have that |N(VH)| = |VH |(n− k0) = 2k0(n− k0) and that the probability that a given
vertex in N(VH) does not choose its neighbor in VH in the k0 out model is

(

n−1
k0

)

/
(

n
k0

)

= n−k0
n

.
Thus

P
(

Ek0(N(VH) → VH)
)

=

(

n− k0
n

)|N(VH )|

≥

(

1 −
k0
n

)n2k0

≥ 2−k02k0 .

Observe that k02
k0 ≤ (log2 n − 2 log2 log2 n) n

log22 n
. Thus, as the events Ek0

(

VH → VH

)

and

Ek0
(

N(VH) → VH

)

are independent, we have the following.

E(X) =

(

n
n
2

)(

n
2

k0

)

P

(

Ek0
(

VH → VH

)

)

P

(

Ek0
(

N(VH) → VH

)

)

≥
2n

n
· n−k02k0 · 2−k02k0 ≥ 2c1,
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where

c1 = n− log2 n− (log2 n− 2 log2 log2 n) ·
n

log2
2 n

· (1 + log2 n)

= − log2 n + 2 log2 log2 n ·
(1 + log2 n) · n

log2
2 n

−
n

log2 n
≥

n log2 log2 n

log2 n
.

Hence E(X) → ∞ as n → ∞.

Now let i ∈ [s]. If VH1 ∩ VHi
6= ∅ then if X1 = 1 then there are no edges from VH1 \ VHi

to
VHi

\VH1 . Thus Xi = 0 i.e. P(Xi = 1|X1 = 1) = 0. On the other hand if VH1 ∩ VHi
= ∅ and

N(VH1)∩N(VHi
) = ∅ then X1, Xi are independent i.e P(Xi = 1|X1 = 1) = P(Xi = 1). Finally

if VH1∩VHi
= ∅ but N(VH1)∩N(VHi

) 6= ∅ we have that P(Xi = 1|X1 = 1) ≤ P(Xi = 1). That
is because given X1 = 1 every vertex v ∈ N(VH1) ∩ N(VHi

) does not choose an edge with
endpoint to VH1 . Hence they choose their k0 edges from the remaining ones, which include
vertices in VHi

, any one of which has now larger probability to be chosen. In addition in the
event that v chooses an edge with an endpoint in VHi

we have Xi = 0. In all three cases for
i ∈ [s]\{1} we have that P(Xi = 1|X1 = 1) ≤ P(Xi = 1). Hence

E(X2) = E

[( s
∑

i=1

Xi

)2]

= s ·

[

E(X2
1 ) +

s
∑

i=2

E(XiX1)

]

= s ·

[

P(X1 = 1) +

s
∑

i=2

P(Xi = 1 ∧X1 = 1)

]

= s ·

[

P(X1 = 1) +
s
∑

i=2

P(Xi = 1|X1 = 1)P(X1 = 1)

]

≤ s · P(X1 = 1)

[

1 +

s
∑

i=2

P(Xi = 1)

]

≤ E(X)
[

1 + E(X)
]

Therefore, since E(X) → ∞, we have

P(X > 0) ≥
E(X)2

E(X2)
≥

E(X)2

E(X)
[

1 + E(X)
] =

E(X)

1 + E(X)
= 1 − o(1).

6 k-Connectivity of Qn(k)

The fact that the threshold for connectivity of Qn(k) is sharp follows from the second part
of Theorem 1.3 which we restate as Lemma 6.1.

Lemma 6.1. Let k ≥ ⌈log2 n− 2 log2 log2 n⌉ + 1. Then w.h.p. Qn(k) is k-connected.

Let k1 = ⌈log2 n − 2 log2 log2 n⌉ + 1 and let k ≥ k1. In order to prove that Qn(k) is
k-connected we use the first moment method. However we are not able to show in one go
that the expected number of pairs S, L such that L = k − 1 and S is disconnected from
V \ (S ∪ L) in Qn(k) tends to zero as n tends to infinity. That is because the upper bounds
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that we use on the number of such pairs and on the probability of the corresponding events
occurring are not strong enough to yield the desired result. For deriving better bounds a
better understanding of the geometry of the hypercube is essential (see Remark 6.9).

In order to circumvent this problem we generate Qn(k) in three steps. We start by
generating G0 which is distributed as a Qn(k − 1). Thereafter we extend G0 to G2, which
is distributed as a Qn(k), in two phases. In the first phase we only allow vertices found
in a small set of vertices that can be easily disconnected in G0 to choose their kth edge
adjacent to them. The remaining vertices will choose their kth edge in the second phase.
We show that after the first phase every set of vertices that can be easily disconnected is of
large size. In this calculation for upper bounding the number of pairs S, L we use Corollary
2.8. Thereafter we argue that after the second phase no such set remains. Here, in order to
bound the number of pairs S, L we make the following crucial observation. Fix L ⊂ V . Then
every set S for which P

(

S is not connected to V \ (S ∪ L)
)

6= 0 is a union of components of
the subgraph of G1 induced by G \ L.

6.1 Generation of the random graph sequence G0 ⊆ G1 ⊆ G2.

We first generate G0. Every vertex v ∈ V independently chooses uniformly at random a set
E0(v), consisting of k − 1 edges, out of the n edges incident to it in Qn. We then define G0

by V (G0) := V, E(G0) :=
⋃

v∈V

E0(v). Clearly G0 is distributed as a Qn(k − 1). The following

definitions are going to be of use in the constructions of G1 and G2.

Definition 6.2. Let G be a graph. We say that a set S ⊂ V can be (k − 1)-disconnected
in G if there exists a set L ⊂ V with |L| = k − 1 such that there is no edge from S to
V \(S ∪ L). If such a set L exists we also say that S is L-disconnected in G.

Definition 6.3. For i ∈ {0, 1, 2} define

Si := {S ⊂ V : S can be (k − 1)-disconnected in Gi}.

Furthermore for L ⊂ V define

Si(L) := {S ⊂ V : S is a minimal L-disconnected set in Gi}.

Now let ns = 2k1−0.1 and A0 = {v ∈ V : ∃L, S ⊂ V s.t. |L| = k − 1, S ∈ S0(L), |S| ≤
ns and v ∈ S}. In other words A0 consists of all the vertices that belong to some (k − 1)-
disconnected set whose size is relatively small (we consider these vertices to be the active
ones during the construction of G1). Every vertex v ∈ A0 independently chooses uniformly
at random an edge ek(v) out of the n − (k − 1) edges that are incident to it in Qn and
do not belong to E0(v). We let the set of newly chosen edges be E ′

1 and we define G1 by
V (G1) := V , E(G1) := E(G0) ∪ E ′

1.

We finally extend G1 to G2. We let A1 = V \A0. Every vertex in A1 independently chooses
uniformly at random an edge ek(v) out of the n − (k − 1) edges that are incident to it in
Qn and do not belong to E0(v). We let the set of newly chosen edges be E ′

2. Finally we
define G2 by V (G2) := V , E(G2) := E(G1) ∪ E ′

2. Observe that once we construct G2 we
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have that every vertex v has chosen a set of exactly k edges uniformly at random from all
the edges incident it. Since E(G2) =

⋃

v∈V

E2(v) we have that G2 is distributed as a Qn(k).

The following remarks can be made concerning definition 6.3.

Remark 6.4. For i ∈ {0, 1, 2}, every set in Si(L) is connected in Gi hence in Qn. Therefore
its vertices span a connected subgraph of Qn.

Remark 6.5. For i ∈ {0, 1, 2}, every L-disconnected set in Gi is the union of sets in Si(L)
hence,

min{|S| : S ∈ Si} = min
L∈(V

ℓ )

{

min{|S| : S ∈ Si(L)}
}

.

In addition if S ∈ Si(L) then for 0 ≤ j ≤ i, since Gj ⊂ Gi, we have that S is L-disconnected
in Gj hence it is a union of sets in Sj(L).

Lemma 6.6. W.h.p. ∄S, L ⊂ V s.t. |L| = k − 1, S ∈ S1(L) and |S| < ns.

Proof. Assume the claim is false and let L, S be a contradicting pair. Since S is L-
disconnected in G1 it is also L-disconnected in G0. Hence every vertex in S belongs to
some minimal (k − 1)-disconnected set in G0 of size at most ns. Due to the construc-

tion of G1 every such vertex has degree at least k in G1. Thus S ∪ L span at least k|S|
2

edges in G1. In addition, by Lemma 2.5, every set of |S| + (k − 1) vertices span at most
|S|+(k−1)

2
log2(|S| + k − 1) ≤ |S|+k

2
log2(|S| + k) edges in Qn. Thus, since G1 ⊂ Qn, we have

k|S|

2
≤

|S| + k

2
log2(|S| + k). (6)

Consequently one of the following two inequalities holds. Either

k|S|

4
≤

k

2
log2(|S| + k) which implies |S| ≤ 2 log2(|S| + k) (7)

or

k|S|

4
≤

|S|

2
log2(|S| + k) which implies k ≤ 2 log2(|S| + k). (8)

If (7) holds then, since k is larger than 0.5 log2 n, it must be the case that |S| = o(k), in
particular |S| ≤ k

4
. S is L-disconnected in G1 therefore every vertex in S is adjacent, in G1,

to k vertices in S ∪ L. Therefore, since |S| ≤ k
4

, every vertex in S is adjacent to at least
3k
4

vertices in L. Hence any 2 distinct vertices in S share at least 3 neighbors in L which
contradicts the fact that any two vertices in Qn have at most two common neighbors (note
S is (k − 1)-disconnected and every vertex in S has degree at least k hence |S| > 1). So it
must be the case that (8) holds. (8) implies that |S| ≥ k which implies

k ≤ 2 log2(2|S|) ≤ 3 log2 |S|. (9)

(6) can be rewritten as

k|S|

2
≤

|S| + k

2
log2(|S| + k) =

|S| + k

2
log2

(

1 +
k

|S|

)

+
|S|

2
log2 |S| +

k

2
log2 |S|.
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Dividing throughout by |S|
2

, setting u = 3 log2 |S| and using that k ≤ u we get that in the
case that the statement of our lemma is false the following inequality holds

k ≤

(

1 +
u

|S|

)

log2

(

1 +
u

|S|

)

+ log2 |S| +
u

|S|
log2 |S| = log2 |S| + o(1). (10)

Therefore a crude lower bound on |S| is |S| ≥ 20.9k ≥ n0.8. When |S| ≥ n0.8 we have that
(

1 + u
|S|

)

log2

(

1 + u
|S|

)

+ u
|S|

log2 |S| ≤
(

1 + u
|S|

)

· 1
log 2

· u
|S|

+ u
|S|

log2 |S| = o(n−0.6). Therefore

we can replace the o(1) term in (10) by o(n−0.6). Thus as |S| ≤ ns (10) implies that

k ≤ log2 |S| + o(n−6) ≤ log2 ns + n−0.6 = k1 − 0.1 + n−0.6 < k,

which give us a contradiction.

Remark 6.7. Let k ≥ k1. If S, L ⊂ V are such that |L| = k − 1 and S ∈ S1(L) then the
same argument we used to derive (9) implies that k ≤ 3 log2 |S|.

Lemma 6.8. Let n1 = 2
n
5 . Then w.h.p. ∄S, L ⊂ V s.t. |L| = k − 1, S ∈ S1(L) and

|S| ∈ [ns, n1].

Proof. In proving the above statement we observe that for every S, L ⊂ V such that S ∈
S1(L) and |L| = k − 1 then we have the following. There exists some L′ ⊂ L such that
the induced subgraph of Qn on S ∪ L′ is connected and in G1 every vertex in S is adjacent
to vertices only in S ∪ L′. For s ∈ N let Ds = {(S, L′) : S, L′ ⊂ V, |L′| ≤ k − 1, |S| =
s and S ∪ L′ is connected in Qn}. Corollary 2.8 implies that for fixed v ∈ V there are at
most

∑

j∈[k−1]

(en)s+j choices for S ∪L′ such that v ∈ S ∪L′ and s+ 1 ≤ |S ∪L| ≤ s+ (k− 1).

Thereafter there are at most
(

s+k−1
k−1

)

≤ (2s)k ways to choose L′ out of S ∪ L′. Thus when
k ≤ 3 log2 s and s ≤ n2 we have that

|Ds| ≤
∑

j∈[k−1]

2n(en)s+j(2s)k ≤ k2n(en)s+k(n3)k ≤ 2n(en)s+5k ≤ 2n+2s log2 n. (11)

On the other hand when k ≤ 3 log2 s and n2 < s we have

|Ds| ≤
∑

j∈[k−1]

2n(en)s+j(2s)k ≤ k2n(en)s+k22k log2 s ≤ k2n(en)s+k2s ≤ 2n+2s log2 n. (12)

At the same time Lemma 2.5 implies that for every (S, L′) ∈ Ds we have

1

s

∑

v∈S

d(v, S ∪ L′) ≤
1

s

∑

v∈S∪L′

d(v, S ∪ L′) ≤
1

s
· (s + k) log2(s + k) = (1 + o(1)) log2 s.

Therefore by the arithmetic-geometric mean inequality we get

{

(1 + o(1)) log2 s
}s

≥

(

1

s

∑

v∈S

d(v, S ∪ L′)

)s

≥
∏

v∈S

d(v, S ∪ L′). (13)
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(13) implies

∏

v∈S

(

(

d(v,S∪L′)
k−1

)

(

n
k−1

)

)

≤
∏

v∈S

(

d
(

v, S ∪ L′
)

n

)k−1

≤

(

(1 + o(1)) log2 s

n

)s(k−1)

(14)

Hence, using that k ≤ 3 log2 s (see Remark 6.7), we have

P
(

∃L, S ⊂ V : |L| = k − 1, S ∈ S1(L) and |S| = s ∈ [ns, n
2)
)

≤ P
(

∃s ∈ [ns, n
2) and ∃S, L′ ⊂ V : (S, L′) ∈ Ds and E0(v) ⊂ (S ∪ L′) × {v}

)

≤
n2
∑

s=ns

∑

(S,L′)∈Ds

(

(

d(v,S∪L′)
k−1

)

(

n
k−1

)

)

≤
n2
∑

s=ns

2n+2s log2 n

(

(1 + o(1)) log2 s

n

)s(k−1)

≤
n2
∑

s=ns

2n+2s log2 n

(

2 log2 n
2

n

)s(k1−1)

≤
n2
∑

s=ns

2c2(s) = o(1).

In the second line we used (11) and (14). Furthermore in the last line we used that for
s ∈ [ns, n

2],

c2(s) = n + 2s log2 n−
[

log2 n− log2(4 log2 n)
]

s(k1 − 1)

≤ n + 2ns log2 n−
[

log2 n− log2(4 log2 n)
]

ns(k1 − 1)

≤ n + 2 ·
4n

log2
2 n

log2 n−
[

1 − o(1)
]

· log2 n ·
20.9n

log2
2 n

log2 n

= −(20.9 − 1)n + o(n).

In the third line we used that 20.9n
log22 n

≤ ns ≤
4n

log22 n
. Similarly, we have

P
(

∃L, S ⊂ V : |L| = k, S ∈ S1(L) and |S| = s ∈ [n2, n1)
)

≤
n1
∑

s=n2

2n+2s log2 n

(

(1 + o(1)) log2 s

n

)s(k−1)

≤
n1
∑

s=n2

2n+2s log2 n

(

(1 + o(1)) log2 n1

n

)s(k1−1)

=

n1
∑

s=n2

2n+2s log2 n

(

(1 + o(1))

5

)s(k1−1)

≤
n1
∑

s=n2

2c3(s) ≤
n1
∑

s=n2

2−(log2 5−2)n2

= o(1).

In the last line we used that for s ∈ [n2, n1]

c3(s) = n + 2s log2 n− (1 + o(1)) log2 5 · s(k1 − 1)

≤ −(1 + o(1))(log2 5 − 2)s log2 n ≤ −(log2 5 − 2)n2.

Remark 6.9. We can extend the above calculations to pairs of sets S, L where |S| satisfies
log2 |S|

n
− 2 = o

(

1
n2

)

. In order to implement similar calculations for larger sets S we would
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have to sharpen the bounds derived in (12),(13) and (14). Observe that (12) counts each
set multiple times. Moreover we expect that as the size of the sets that we consider in (12)
is increased the proportion of the upper bound derived over the true value is also increased.
At the same time observe that for fixed S, L in order to bound the probability that S is
L-disconnected we do not use any information about the sets S, L other than their sizes.
On the other hand (13), (14) indicate that we can relate this probability with the quantity
|E
(

S, V \ (S ∪ L)
)

|.

In the proof of Lemma 6.1 we are also going to use the following lemma.

Lemma 6.10. W.h.p |A0| ≤ 2
n
10 .

Proof. Let S, L ⊂ V be such that |L| < k, S ∈ S0(L) and |S| ≤ ns. The same arguments
used to derive (6) imply

(k − 1)|S|

2
≤

|S| + (k − 1)

2
log2(|S| + (k − 1))

≤
|S| + k

2
log2(|S| + k)

Let a = 2k−1 − |S|≥ 0. By dividing throughout by |S|
2

and then substituting |S| = 2k−1 − a
we have

k − 1 ≤

(

1 +
k

|S|

)

log2(|S| + k) =

(

1 +
k

2k−1 − a

)

log2

[

2k−1

(

1 +
k − a

2k−1

)]

≤ (k − 1)

(

1 +
k

2k−1 − a

)

+ 2 log2

(

1 +
k − a

2k−1

)

≤ k − 1 +
(k − 1)k

2k−1 − a
+ 4

k − a

2k−1
. (15)

In the second line at the calculations above we used that k = o(|S|) = o(2k−1−a) (see Remark
6.7). Furthermore in the last inequality we used that ∀x ∈ R we have that log(1 + x) ≤ x.

Therefore 2x > x
log 2

≥ log(1+x)
log2

= log2(1 + x). (15) implies

0 ≤
2k−1k(k − 1)

2k−1(2k−1 − a)
+

(

2k−1 − a
)

4(k − a)

2k−1(2k−1 − a)
≤

2k−1(k2 + 4k − 4a)

2k−1
(

2k−1 − a
)

Hence 0 ≤ k2 + 4k − 4a which implies that a ≤ 2k2. Thus, since |S| = 2k−1 − a, we have
|S| ∈ [2k−1 − 2k2, ns] ⊆ [2k1−1 − 2k2

1, ns]. Let nℓ = 2k1−1 − 2k2
1. Using, in the second line of

the calculations below, (14), (11) and that (1 + o(1)) log2 s ≤ log2
2 n for s ≤ ns we have

E(|A0|) ≤ nsE
(

|{S : ∃L ⊂ V, |L| = k − 1, S ∈ S0(L) and |S| ∈ [nℓ, ns]
}

|)

≤ ns

ns
∑

s=nℓ

∑

(S,L′)∈Ds

∏

v∈S

(

(

d(v,S∪L)
k−1

)

(

n
k−1

)

)

≤ ns

ns
∑

s=nℓ

2n+2s log2 n

(

log2
2 n

n

)s(k1−1)

≤ ns

ns
∑

s=nℓ

2c4(s) ≤ ns

ns
∑

s=nℓ

2
n
12 ≤ 2

n
11 .
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In the last line we used that for s ∈ [nℓ, ns]

c4(s) = n + 2s log2 n− (log2 n− 2 log2 log2 n)s(k1 − 1)

≤ n + nℓ

[

2 log2 n− (log2 n− 2 log2 log2 n)(k1 − 1)
]

≤ n +

(

n

log2
2 n

− 2 log2
2 n

)

(

2 log2 n− log2
2 n + 4 log2 n · log2 log2 n

)

= o(n).

In the last line we used that n
log22 n

−2 log2
2 n ≤ 2k0 −2k2

0 ≤ nℓ. Hence by Markov’s inequality

we have that P
(

|A0| ≥ 2
n
10

)

≤ E(|A0|)2
− n

10 = o(1).

In the proof of Lemma 6.1 we are going to use the following definition.

Definition 6.11. For L ⊂ V , |L| = k − 1 and 2 ≤ j ≤ 9, with uj = min
{

2
(j+1)n

10 , 2n−1
}

, we

define the sets U j
1(L) as follows,

U j
1 (L) :=

{

T ⊂ V : T is a union of sets in S1(L) and |T | ∈
[

2
jn

10 , uj

]

}

.

Observe that Lemmas 6.6, 6.8 imply that S1(L) consists of disjoint sets of size at least

2
n
5 . Thus |S1(L)| ≤ 2

4n
5 . Furthermore if T ∈ U j

1 (L), then T is the union of at most 2
(j−1)n

10

sets in S1(L). Therefore

|U j
1(L)| ≤

2
(j−1)n

10
∑

h=1

(

|S|

h

)

≤
2
(j−1)n

10
∑

h=1

(

2n

h

)

≤
2
(j−1)n

10
∑

h=1

2nh

h!
≤ 2n2

(j−1)n
10 .

Proof of Lemma 6.1. In the event that G2 is not k-connected there is a set L consisting of
k − 1 vertices whose removal partitions the rest of the vertices into connected components.
The smallest one of those components is of size at most 2n−1. Therefore we have that there
exists T, L ⊂ V and 2 ≤ j ≤ 9 such that T ∈ U j

1 (L) and no edge in E
(

T, V \(T ∪L)
)

appears
in E ′

2 i.e.
{

ek(v) : v ∈ T ∩ A1

}

∩ E
(

T, V \(T ∪ L)
)

= ∅. For a fixed such triple T, L, j let
B(T, L, j) be the event that

{

ek(v) : v ∈ T ∩A1

}

∩ E
(

T, V \(T ∪ L)
)

= ∅. Then

P
(

B(T, L, j)
)

≤
∏

v∈T∩A1

P
[

ek(v) /∈ E
(

v, V \T ∪ L
)]

≤
∏

v∈T∩A1

[

1 −
d(v, V \T ∪ L)

n− (k − 1)

]

≤
∏

v∈T∩A1

exp

{

−
d(v, V \T ∪ L)

n− (k − 1)

}

≤ exp

{

−
1

n

∑

v∈T∩A1

d(v, V \T ∪ L)

}

≤ exp

{

−
1

n

(

∑

v∈T

d(v, V \T ) − n|L| − n|T\A1|

)

}

≤ exp

{

−
1

n

(

n|T | − |T | log |T |
)

+ k + 2
n
10

}

≤ exp

{

−
2

jn

10

n

(

n− log2 2
jn

10

)

+ k + 2
n
10

}

≤ exp

{

−
2

jn

10

20n

}

.
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To go from the third to the fourth line we used Lemma 2.5 and that |T\A1| = |T ∩A0| ≤ 2
n
10

(see Lemma 6.10). Thereafter we used Remark 2.6. In the last inequality we used that
2 ≤ j ≤ 9. Finally we have,

P
(

G2 is not k-connected
)

= P
(

∃L, T ⊂ V and 2 ≤ j ≤ 9 : B(T, L, j) occurs
)

≤
9
∑

j=2

∑

L∈( V
k−1)

∑

T∈Uj
1 (L)

exp

{

−
2

jn

10

20n

}

≤
9
∑

j=2

∑

L∈( V
k−1)

2n2
(j−1)n

10 exp

{

−
2

jn

10

20n

}

= o(1).

Since G2 is distributed has the same distribution with Qn(k) the statement of Lemma 6.1
follows. �

A question that now arises is the following. For k ≥ k1 can Qn(k) be ℓ-connected, for some
ℓ > k? We answer this question negatively in our next lemma with which we close this
section.

Lemma 6.12. Let 1 ≤ k ≤ n − 1. Then w.h.p. Qn(k) contains a vertex of degree k and
hence Qn(k) is not (k + 1)-connected.

Proof. Let v ∈ V . In Qn(k), v has degree k in the event that the (n− k) edges not selected
by v do not belong to Qn(k). That is those (n − k) edges are not selected by their other
endpoint either. Each of those edges is selected by their other endpoint independently with
probability k

n
. Hence

pk = P(v has degree k in Qn(k) =

(

1 −
k

n

)n−k

=

[

(

1 −
k

n

)1− k
n

]n

.

pk is minimized when 1 − k
n

= e−1 thus pk ≥ e−
n
e ≥ 0.6n. The degrees of any set of vertices

which are at distance at least three from each other are independent. We can greedily select
such a set S, of size at least 2n

n2 , by sequentially including a non-deleted vertex and then
deleting all the vertices at distance at most 2 from it. For v ∈ V let dk(v) be the degree of
v in Qn(k). Therefore

P
[

Qn(k) is (k + 1) connected
]

≤ P
(

∄v ∈ S : dk(v) = k
)

= (1 − pk)
|S| ≤ (1 − pk)

2n

n2

≤ e−
pk2n

n2 ≤ e−
0.6n·2n

n2 = o(1).

7 Final Remarks

In this paper we have established the connectivity threshold for the random subgraph of
the n-cube that is generated by the k-out model. When k is below the threshold k1 the
giant components consists of all but o(2n) vertices. Furthermore a calculation similar to the
one given at the proof of Lemma 6.8 give us that when k is below this threshold Qn(k) does
not have any components of size in

[

2n
log2 n

, 2
n
5

]

. Hence it would be interesting to investigate

the size of the second largest component.
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On the other hand, when k is at least k1 we showed Qn(k) is far more than just connected,
it is k-connected. In the proof of the k-connectivity we used the following properties of Qn(k).
Let N = 2n then Qn is a graph on N vertices of maximum degree log2N such that for any
partition S, V \S there are at least |S|(log2N − log2 |S|) edges crossing the partition. In
addition any two vertices have at most 0.25 log2 log2N common neighbors. Therefore by
repeating the arguments given in this paper we have the following. Every random subgraph
of a graph on N vertices that satisfies the aforementioned properties and is generated by
the k-out model, where k ≥ k1, is k-connected. An interesting question would therefore be
to state more general conditions of a similar flavor, such that the random subgraph of a
graph that satisfies these conditions and is generated by the k-out model is k-connected
(or even just connected).
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A Proof of Lemma 3.5

Proof. We start by proving that

P

(

Ln
5
≤

n

20

)

≤ e−10−3n

Observe that for i ≤ n
5
, Li ≤

n
5

hence P
(

Li+1 = Li + 1
)

≥ 0.8. In the event that Ln
5
≤ n

20

we have that |{i ≤ n
5

: Li+1 6= Li + 1}| ≥ 0.5
(

n
5
− n

20

)

= 3n
40

. Equivalently we have
|{i ≤ n

5
: Li+1 = Li + 1}| ≤ n

5
− 3n

40
= n

8
. Therefore,

P

(

Ln
5
≤

n

20

)

≤ P

[

Bin

(

n

5
, 0.8

)

≤
n

8

]

≤ exp

[( 4
25

− 1
8

4
25

)2 4
25
n

3

]

≤ e−10−3n.

In the second inequality we used Lemma 2.2. Our second step is to show that for i ∈ [n2]

P

(

Li+ n
40

≤
n

20

∣

∣

∣

∣

Li ≥
n

20

)

≤ e−10−3n.

Observe that |Li+ n
40
− Li| ≤

n
40

. Therefore

P

(

Li+ n
40

≤
n

20

∣

∣

∣

∣

Li >
n

20
+

n

40

)

= 0.

On the other hand if Li ≤
n
20

+ n
40

we have that Lj ≤
n
20

+ n
40

+ 1n
40

= n
10

for every j ∈
[

i, i+ n
40

]

hence P
(

Lj+1 = Lj + 1
)

≥ 9
10

. In the event that Li+ n
40

≤ n
20

we have
∣

∣

∣

∣

{

j ∈

[

i, i +
n

40

]

: Lj+1 6= Lj + 1

}
∣

∣

∣

∣

≥ 0.5 ·
n

40

or equivalently
∣

∣

{

j ∈
[

i, i + n
40

]

: Lj+1 = Li + 1
}
∣

∣ ≤ n
80
. Therefore,

P

(

Li+ n
40

≤
n

20

∣

∣

∣

∣

Li ≥
n

20

)

≤ P

(

Li+ n
40

≤
n

20

∣

∣

∣

∣

n

20
≤ Li ≤

n

20
+

n

40

)

≤ P

[

Bin

(

n

40
,

9

10

)

≤
n

80

]

≤ exp

[( 9
400

− 1
80

9
400

)2 9
400

n

3

]

≤ e−10−3n.

In the third inequality we once again used Lemma 2.2. In the event that L2i = 0 for some

i ∈
[

n
4
, n2
]

we have that either Ln
5
≤ n

20
or there exist n

5
≤ i < n2 such that L2i− n

40
≥ n

20
but

L2i ≤
n
20

. Hence

P
(

∃i ∈ [n/4, n2] : L2i = 0
)

≤ n2 · e−10−3n = o(n−4).
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