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Abstract

Stochastic models of reaction networks are becoming increasingly important in Systems Biology. In
these models, the dynamics is generally represented by a continuous-time Markov chain whose states
denote the copy-numbers of the constituent species. The state-space on which this process resides is a
subset of non-negative integer lattice and for many examples of interest, this state-space is countably
infinite. This causes numerous problems in analyzing the Markov chain and understanding its long-term
behavior. These problems are further confounded by the presence of conservation relations among species
which constrain the dynamics in complicated ways. In this paper we provide a linear-algebraic procedure
to disentangle these conservation relations and represent the state-space in a special decomposed form,
based on the copy-number ranges of various species and dependencies among them. This decomposed
form is advantageous for analyzing the stochastic model and for a large class of networks we demonstrate
how this form can be used for finding all the closed communication classes for the Markov chain within
the infinite state-space. Such communication classes are irreducible state-spaces for the dynamics and
they support all the extremal stationary distributions for the Markov chain. Hence our results provide
important insights into the long-term behavior and stability properties of stochastic models of reaction
networks. We discuss how the knowledge of these irreducible state-spaces can be used in many ways such
as speeding-up stochastic simulations of multiscale networks or in identifying the stationary distribu-
tions of complex-balanced networks. We illustrate our results with several examples of gene-expression
networks from Systems Biology.

Keywords: stochastic reaction networks; state-space analysis; communication classes; state-space irreducibil-
ity; stationarity; ergodicity.
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1 Introduction

Many biological processes are described as reaction networks, where finitely many species interact with
each other through some fixed reaction channels [1, 2, 3, 4, 5, 6]. Traditionally, reaction networks have
been mathematically studied by expressing the dynamics as a set of ordinary differential equations (ODEs).
However it is now well-known that these deterministic formulations become highly inaccurate when the
copy-numbers of the reacting species are small. This is because the timing of reactions becomes random,
introducing noise into the dynamics, which can significantly change the behavior of the system being modeled
[7]. Such situations arise commonly in Systems Biology, since intracellular networks often involve species with
low copy-numbers like gene-transcripts, signaling proteins, messenger RNAs, transcription factors etc. [8, 7].
The biochemical noise generated by the intermittency of reactions can be taken into account using stochastic
models of reaction networks. A common approach is to represent the dynamics as a continuous-time Markov
chain (CTMC) whose states denote the copy-numbers of the constituent species. For recent surveys on these
stochastic models and the methods available for analyzing them see [9, 10, 11]. Over the past few years,
such models have been extensively used for understanding the role of noise in various biological mechanisms
[12, 8].
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We now formally describe such a stochastic model for a reaction network. Throughout this paper R, R+,
Z, N and N0 denote the sets of all reals, nonnegative reals, integers, positive integers and nonnegative integers
respectively. Consider a network with d species S1, . . . ,Sd which interact through K reaction channels of
the form

d∑

i=1

νikSi −→
d∑

i=1

ρikSi, k = 1, . . . ,K, (1.1)

where νik and ρik belong to N0 and they denote the number of molecules of Si that are consumed and
produced by reaction k. Under the classical well-mixed assumption [13], the network’s state at any time is
described by a vector x = (x1, . . . , xd) ∈ Nd0 of copy-number counts of all the species, i.e. xi denotes the
copy-number of species Si. The net change in the state due to reaction k is simply given by the stoichiometry
vector ζk ∈ Zd whose i-th component is ζik = (ρik − νik) ∈ Z. The usual CTMC model for the reaction
dynamics [10] stipulates that the transition rate from state x to state (x+ ζk) is λk(x) for each k = 1, . . . ,K,
where λ1, . . . , λK : Nd0 → R+ are called the propensity functions for the network and they are assumed to
satisfy:

for any x ∈ Nd0 and k = 1, . . . ,K if λk(x) > 0 then (x+ ζk) ∈ Nd0. (1.2)

This condition ensures that the set Nd0 is a valid state-space for the CTMC, because it is closed under the
reaction dynamics i.e. if the starting state is in Nd0 then the dynamics remains in Nd0 throughout its trajectory.

Under mild conditions on the propensity functions (see Chapter 6 in [14]), one can ensure that the CTMC

(X(t))t≥0 = (X1(t), . . . , Xd(t))t≥0

with the above transition structure is well-defined for any initial state x0 ∈ Nd0. Define the probability that
the reaction dynamics is at state y ∈ Nd0 at time t by

px0(t, y) = P (X(t) = y) . (1.3)

Then the dynamics of px0
(t, ·) is given by the Chemical Master Equation (CME) [15] which has the following

form:

dpx0(t, y)

dt
=

K∑

k=1

(px0
(t, y − ζk)λk(y − ζk)− px0

(t, y)λk(y)) , (1.4)

for each y ∈ Nd0 which can be accessed by the CTMC. It can be shown that CME has a unique solution
provided that the CTMC is non-explosive (see [10]). For most examples in Systems Biology, the number
of accessible states is either infinite or very large, and hence solving the CME to obtain the probabilities
px0

(t, y) is nearly impossible. One generally estimates these values by simulating the CTMC (X(t))t≥0 using
Monte Carlo methods such as Gillespie’s Stochastic Simulation Algorithm (SSA) [13]. Another popular
approach for obtaining approximate solutions is the Finite State Projection (FSP) method which efficiently
truncates the state-space to a small finite set and then solves the CME over this finite set [16]. Both SSA
and FSP based approaches work well for smaller networks and over finite time-intervals, and hence they do
not help in satisfactorily assessing the long-term behavior and stability properties of the stochastic model.
For Markov chains over a finite state-space, one way to assess this long-term behavior is by computing the
disjoint closed communication classes in the state-space (see Section 2.1), using matrix or graphical methods
[17]. However there do not exist methods for systematically finding all the closed communication classes for
stochastic reaction network models with infinite state-spaces. The main goal of this paper is to develop such
a method that can provably find all such classes under biologically reasonable assumptions on the network.
This has important implications regarding the long-term behavior of the stochastic model because these
closed communication classes support the stationary distributions (see Section 2.2), which are like attracting
fixed-points for the CME (1.4) in the space of probability distributions. Moreover each closed communication
class serves as an irreducible state-space for the underlying CTMC (see Section 2.1). For this reason, we
refer to a closed communication class as an irreducible state-space in this paper.
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For many networks, the state-space Nd0 is simply too large, in the sense that it contains several extraneous
states that are never visited by the dynamics. This is mainly due to the conservation relations present in the
network which impose constraints on the copy-number ranges of the involved species. Hence our first task is
to develop a systematic procedure to weed-out these extraneous states and obtain a smaller non-empty set
E0 which is also a valid state-space (i.e. (1.2) holds with Nd0 replaced with E0). Furthermore we would like
the representation of E0 to be explicit enough to ensure that the copy-number ranges of various species can
be easily identified. Apart from enabling the search for irreducible state-spaces, which is the primary goal of
this paper, this explicit state-space representation allows us to gain a better understanding of the network
dynamics. We now explore these issues in a greater detail.

Let us return to the CTMC (X(t))t≥0 starting at some initial state x0 ∈ Nd0. The ideal or the smallest
state-space E for this process would simply be the set of all states in Nd0 that the reaction dynamics has a
positive probability of reaching in a finite time1, i.e.

E = {y ∈ Nd0 : px0(t, y) > 0}, (1.5)

for some t > 0. The set E is non-empty (as x0 ∈ E) and using Chapman-Kolmorogov inequalities (see [18])
one can easily check that E is a valid state-space and so the CTMC (X(t))t≥0 resides in this set throughout
its trajectory. However the set E is difficult to characterize because the probabilities px0

(t, ·) are usually
unknown. Hence we look for a bigger set E0 which contains E and is also a valid state-space. The standard
choice is the stoichiometry compatibility class (see [10]) defined by

E0 = (x0 + Range(S)) ∩ Nd0, (1.6)

where S = Col(ζ1, . . . , ζK) is the d×K stoichiometry matrix whose columns are the reaction stoichiometry
vectors and Range(S) is the range or column space of S. To see the containment E ⊂ E0 note that if y ∈ E
then y must be reachable from x0 in finitely many transition steps in each of the directions ζ1, . . . , ζK . Let rk
be the number of steps needed in direction k, then setting r = (r1, . . . , rK) ∈ NK0 we must have y = x0 + Sr
which ensures that (y − x0) ∈ Range(S) and hence y ∈ E0. We next write E0 in terms of conservation
relations for the network, which are the nonzero vectors in the left nullspace of the stoichiometry matrix S

L(S) = {γ ∈ Rd : γTS = 0T }, (1.7)

where 0 is the vector of all zeros in RK . For any nonzero γ = (γ1, . . . , γd) ∈ L(S), the relation γTS = 0T

implies that for each reaction k = 1, . . . ,K, the stoichiometry vector ζk is orthogonal to γ, i.e. 〈γ, ζk〉 = 0,
where 〈·, ·〉 denotes the standard inner product in Rd. Therefore the stochastic reaction dynamics (X(t))t≥0

will satisfy

〈γ,X(t)〉 = 〈γ,X(0)〉 = 〈γ, x0〉 for all t ≥ 0, (1.8)

which means that the copy-numbers of species included in the support set

supp(γ) := {i = 1, . . . , d : γi 6= 0} (1.9)

conserve the linear constraint specified by vector γ. Suppose that for some integer n > 0 we have Rank(S) =
(d − n) and so the dimension of the subspace L(S) is n. Let {γ1, . . . , γn} be a basis for L(S) and define a
d× n matrix Γ and a n× 1 vector c by

Γ = Col(γ1, . . . , γn) and c = ΓTx0. (1.10)

From (1.8) and the orthogonality of vector spaces L(S) and Range(S), we can equivalently express the set
E0 as

E0 = {x ∈ Nd0 : ΓTx = c}. (1.11)

Taking a cue from the terminology used in [19], we call Γ as the conservation matrix, c as the conservation
vector and the pair (Γ, c) as the conservation data for the network. If the subspace L(S) is trivial (i.e.

1The choice of this finite time is not important because for a CTMC if px0 (t, y) > 0 for some t > 0 then the same holds for
all t > 0 (see Theorem 3.2.1 in [18])
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n = 0) then E0 = Nd0, but in the other situation when this subspace is nontrivial (i.e. n > 0), the states in
Nd0 outside E0 are not reachable by the dynamics because E0 is a valid state-space for the CTMC (X(t))t≥0

and it contains the initial state X(0) = x0.
The representations (1.6) or (1.11) for E0 are quite abstract, making it difficult to get a sense of the

dynamics and particularly the copy-number ranges of all the species. We remedy this problem by developing
a method that systematically screens the space of conservation relations L(S) and expresses E0 in a more
explicit form. We briefly describe the steps needed for this purpose. We call a nonzero vector γ ∈ L(S) a semi-
positive conservation relation if all its nonzero entries are positive. Up to independence, the only other type
of conservation relations are the mixed-sign ones which have at least two nonzero entries with opposite signs.
Semi-positive conservation relations ensure that the species in their support-sets (see (1.9)) are bounded in the
sense that their copy-numbers have a bounded range. This is evident from (1.8) because if γ is a semi-positive
conservation relation then for any i ∈ supp(γ), we have γi > 0 and since 〈γ,X(t)〉 =

∑
j∈supp(γ) γjXj(t), we

must also have Xi(t) ∈ [0, 〈γ, x0〉/γi]. We scan the space of semi-positive conservation relations and identify
all the bounded species along with their suitable copy-number ranges. It is possible that these semi-positive
relations do not span the whole space of conservation relations L(S), and so we then look for any mixed-sign
conservation relations among the remaining unbounded species. We show that such conservation relations
force a certain subset of unbounded species (called restricted species) to mimic the dynamics of the remaining
unbounded species (called free species) according to an appropriately constructed affine map. For example,
the following ATP-hydrolysis reaction occurs in many living cells:

ATP(adenosine triphosphate) + H2O(water) −⇀↽− ADP(adenosine diphosphate) + P(phosphate).

Generally ATP and H2O molecules are present in high concentrations in the cytosol, and so the dynamics
of low copy-number species S1 = ADP and S2 = P can be well approximated by the simple network

∅ −→ S1 + S2 −→ ∅. (1.12)

The stoichiometry matrix for this network is

S =

[
1 −1
1 −1

]

and the space L(S) of conservation relations has dimension 1. One can see that there are no semi-positive
conservation relations and the only independent conservation relation is γ = (1,−1) which is mixed-sign.
Moreover (1.8) forces X1(t) = φ(X2(t)) for all t ≥ 0, where φ is the affine map given by φ(x) = x+ 〈γ, x0〉.

In large networks there are several conservation relations and each species can participate in many such
relations. To account for all the possibilities, we will employ standard linear-algebraic methods, such as
basic matrix manipulations, solving linear-algebraic systems and Linear Programs (LPs) [20], to classify
each species as one of three types: free, bounded or restricted. Under fairly general conditions satisfied by
most biological networks, we prove that by relabeling the species, we can express the state-space E0 in a
special decomposed form

E0 = Eb × Φ, (1.13)

where Eb is a finite set in Ndb0 and Φ is the graph of an affine function φ : Rdf → Rdr0 restricted to the
nonnegative integer orthant, i.e.

Φ =
{

(x, φ(x)) : x ∈ Ndf0 and φ(x) ∈ Ndr0

}
. (1.14)

Here df , db and dr are nonnegative integers denoting the number of free, bounded and restricted species

respectively. The finite set Eb ⊂ Ndb0 contains the dynamics of bounded species, while the infinite set

Φ ⊂ Ndf+dr
0 serves as a state-space for the dynamics of both free and restricted species, with the latter being

“locked” in a fixed affine relationship (given by function φ) with the former. Notice that in comparison to
both (1.6) or (1.11), the form (1.13) for state-space E0 is more explicit as it clearly expresses the copy-number
ranges for each species as well as the relationships among them. This enables a better understanding of the
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dynamics which can be leveraged to improve the efficiency of existing analytical methods. For instance,
one can use the form (1.13) to design optimal state-space truncations for the Finite State Projection (FSP)
method for solving CMEs [16]. One can also use this form as a guide for automatically separating the high-
copy-number and the low-copy-number species for the method of conditional moments (MCM) approach
[21] or for deriving suitable hybrid approximations of the dynamics [22]. We do not explore these ideas in
this paper but instead focus on using this form for the analysis of the long-term behavior of the underlying
Markov process.

Suppose there exists a conservation relation in L(S) such that all its d components are strictly positive.
Such a situation generally occurs when the network satisfies some form of global mass conservation relation
and in this case all the species are bounded (i.e. db = d, df = dr = 0), and so the state-space E0 = Eb is finite.
Using elementary matrix or graph-theoretic methods [17] we can easily find all the closed communication
classes or the irreducible state-spaces (see Section 2.1) E1, . . . , EQ within E0, where the dynamics eventually
lies starting from any initial state x0. These classes are mutually disjoint and each Eq supports a unique
stationary distribution πq for the stochastic reaction dynamics. Moreover these distributions π1, . . . , πQ are
the extremal points of the simplex formed by all the stationary distributions of the network

Σ =

{
π =

Q∑

q=1

αqπq : each α1, . . . , αQ ≥ 0 and

Q∑

q=1

αq = 1

}
. (1.15)

Typically for reaction networks in Systems Biology, a conservation relation with all strictly positive entries
does not exist. This is because such networks are abstract representations of the actual processes where
many details, such as the dynamics of abundant species (like ATP molecules, enzymes etc.), are intentionally
omitted to make the analysis more tractable and pertinent to a given problem. Consequently, unlike classical
chemical kinetics, global mass conservation fails because mass is allowed to be created and destroyed. Hence
it is important to consider this general case, where free and restricted species are present, and the state-space
E0 must be necessarily infinite provided certain natural assumptions are satisfied (see Assumption 2.1). In
such a scenario the stationary distributions do not always exist, but if the existence can be guaranteed on
each irreducible state-space (see Section 2.1), then again the extremal points π1, π2, . . . of the simplex of
stationary distributions Σ are the unique stationary distributions supported on all the irreducible state-
spaces E1, E2, . . . , within the infinite state-space E0. The primary goal of this paper is to develop a method
that explicitly identifies all these irreducible state-spaces using the decomposed state-space form (1.13). For
this purpose we adapt and generalize the ideas contained in [23], with the main observation being that for
most biological networks, the free species can be organized in the form of birth and death cascades, depending
on the minimum number of reactions that the species requires to be created from nothing (denoted by ∅)
or get reduced to it. As our examples suggest, for many Systems Biology networks these cascades have a
natural correspondence to gene expression or signaling stages in the dynamics (see Section 6). Combining
this cascade construction along with matrix methods that are used in the finite state-space case, our method
provably determines all the irreducible state-spaces for a large class of networks satisfying some biologically
reasonable criteria. The knowledge of irreducible state-spaces has several important applications which we
discuss in Section 2.2.

In comparison to the method in [23], the method we develop in this paper is far more versatile and can
analyze a much larger class of networks arising in Systems and Synthetic Biology. The method in [23] has
several shortcomings that severely restrict its range of applicability. Most prominently, it only applies to
networks where there are no mixed-sign conservation relations (i.e. no restricted species) and all the free
species can be arranged in birth-cascades. These requirements are often violated by important networks
(see Section 6) and this motivated us to devise the method presented in this paper, which can handle all
types of conservation relations and intricate interactions among the dynamics of bounded, free and restricted
species. The main novelty of the approach we develop in this paper is in the elaborate construction of
tree-like structures to define reachability relationships between birth and death cascades (see Section 4.4).
It is shown that the leaves of these cascade trees contain all the information about irreducible state-spaces.

This paper is organized as follows. In Section 2 we introduce some preliminary concepts that will be
used throughout the paper. The method for computing the decomposed form of state-space is explained in
Section 3 and the process for finding all the irreducible state-spaces is described in Section 4. The algorithms
for implementing these procedures are provided in Section 5. In Section 6 we illustrate the applicability and
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usefulness of our methods for state-space analysis by considering several examples from Systems Biology.
In particular we discuss how this state-space analysis can contribute towards our understanding of the
underlying biological process. In Section 7 we conclude and the detailed proof of our main result, Theorem
4.4 is given in the Appendix.

Notation

Most of the notation used in this paper has already been introduced in Section 1. However some additional
notation and clarifications are needed which we mention now. For any set A, we denote its cardinality by
|A|. The vector of all zeros in any dimension is denoted by 0. Similarly in any dimension d, the i-th standard
basis is denoted by ei and it is the vector whose i-th entry is 1 while the rest are zeros. The identity matrix
is denoted by I. For any m × n matrix M and any k ≤ l ≤ m, the (l − k + 1) × n matrix formed by rows
(k + 1), (k + 2), . . . , l of matrix M is denoted by Proj(M,k, l). If v1, . . . , vn are the columns of M then for
any A ⊂ R, the set ColspanA(M) stands for

{
x ∈ Rm : x =

n∑

i=1

aivi for some a1, . . . , an ∈ A
}
.

The dimension of any vector space V is denoted by dim(V ) and this vector space is called trivial if dim(V ) = 0.
While multiplying a matrix with a vector we always regard the vector as a column vector. All inequalities
involving vectors or matrices must be interpreted componentwise.

2 Preliminaries

Consider the reaction network N described in Section 1 with d species and K reactions of the form (1.1).
Let Λ : Nd0 → RK+ be the propensity map given by

Λ(x) = (λ1(x), . . . , λK(x)) . (2.16)

We represent this network by the triplet N = (V,O,Λ), where V and O are two d×K matrices whose entries
at row i and column k are given by νik and ρik respectively. We call these matrices as the reactant matrix
and the product matrix respectively, because they tabulate the number of molecules of each species that
are created and removed by each of the reactions. Note that the stoichiometry matrix S for this network
is simply S = (O − V). The left nullspace L(S) of this matrix is the space of all conservation relations for
the network and as explained in Section 1, the constraints imposed by these relations can be described by
some conservation data (Γ, c), and with this data at hand the designated state-space E0 is given by (1.11).
In the rest of this section we present some concepts and assumptions associated with the reactions networks
we consider in this paper.

2.1 The reachability relation and irreducible state-spaces

For any x, y ∈ E0 let px(t, y) (see (1.3)) be the probability that the stochastic dynamics starts at x and
reaches y at time t. If px(t, y) > 0 for some t ≥ 0, then we say that state y is reachable from state x, and we
denote this relation as

x
N−→ y. (2.17)

This relation does not depend on the time-value t (see Theorem 3.2.1 in [18]) and it is transitive: i.e. for

any x, y, z ∈ E , if x
N−→ y and y

N−→ z then x
N−→ z (see Chapter 6 in [24]). We say that two states x, y ∈ E0

communicate if we have both x
N−→ y and y

N−→ x, and this relation is denoted by

x
N←→ y.
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It is known that
N←→ is an equivalence relation on E0 and it partitions the set E0 into disjoint equivalence

classes which are referred to as communication classes in the Markov chain literature (see [18]). The com-
munication classes can be further classified as closed or open. A communication class E ⊂ E0 is called closed

if and only if for any x ∈ E and y ∈ E0, if x
N−→ y then y ∈ E . By definition a closed communication class

E needs to be closed under the reaction dynamics (i.e. (1.2) holds with Nd0 replaced with E), and so it is a
valid state-space for the underlying CTMC. Moreover as all the states in E are reachable from each other, E
is an irreducible state-space for the CTMC. Therefore we refer to such a set E as an irreducible state-space
in the paper.

When the state-space E0 is finite, then all the irreducible state-spaces correspond exactly to all the
positive-recurrent classes for the underlying Markov chain (see [18]), and starting from any initial state in
E0, the CTMC will eventually get trapped in one of these disjoint irreducible state-spaces. The same holds
true for infinite state-spaces if the existence of stationary distributions on all the irreducible state-spaces can
be guaranteed. This can be done using methods developed by Meyn and Tweedie [25, 26]. In particular,
Theorem 4.5 in [26] shows that stationary distributions will exist if one can find a Foster-Lyapunov function
V : E0 → R+ satisfying V (x)→∞ as ‖x‖ → ∞, such that the R+-valued process (V (X(t)))t≥0 experiences
a negative drift outside some compact (finite) set C ⊂ E0. In a recent paper [27] we develop a computational
framework for constructing such Foster-Lyapunov functions for a large class of biochemical reaction networks,
which includes several well-known examples from Systems and Synthetic Biology.

The problem of finding closed communication classes for stochastic reaction networks is quite challenging,
as establishing the reachability (2.17) between any two states x, y ∈ E0 is tantamount to showing that there
exists a sequence of n reactions k1, . . . , kn ∈ {1, . . . ,K} such that y = x+

∑n
i=1 ζki and λkj (zj) > 0 for each

j = 1, . . . , n, where zj = x+
∑j−1
i=1 ζki . These conditions ensure that starting from state x, firing of reactions

k1, . . . , kn in this order, takes the state to y, and this firing of reactions is a positive-probability event
because at all the intermediate states (zj-s), the propensity λkj (zj) for the next reaction in this sequence
is positive. When the state-space E0 is finite, matrix methods (see [17]) can be used for computing the
closed communication classes, without having to explicitly find any positive-probability reaction sequences
between states. In this paper we provide an extension of this approach that can handle a large class of
biological networks with infinite state-spaces (see Section 4). One of the main difficulty that we have to deal
with is that some reaction channels may switch-off at certain states, due to their propensities being zero at
those states, and hence the set of possible transition directions is not the same for all the states in E0. To
account for this switching-off of reactions we need to impose some conditions on the propensity functions,
as we mention in Section 2.3. However, first we discuss the applications of our computational method for
identifying all the closed communication classes or irreducible state-spaces for stochastic reaction networks
with infinite state-spaces.

2.2 Applications

It is interesting to note that for many networks, simply knowing the irreducible state-spaces E1, E2, . . .
allows one to compute the corresponding stationary distributions π1, π2, . . . , either analytically (see [28] and
Example 6.5) or numerically [29]. Knowledge of these irreducible state-spaces has many other important
consequences. For example, if the initial state X(0) of the stochastic reaction dynamics (X(t))t≥0 lies in
the irreducible state-space Eq, then the ideal state-space E (see (1.5)) consisting of only the reachable states,
coincides exactly with Eq. Furthermore due to Theorem 1.10.2 in [18], for any bounded real-valued function
f on Eq we have

lim
t→∞

E(f(X(t))) =
∑

y∈Eq

f(y)πq(y) (2.18)

and the following limit holds with probability 1

lim
t→∞

1

t

∫ t

0

f(X(s))ds =
∑

y∈Eq

f(y)πq(y). (2.19)

Using (2.18) one can show that various statistical quantities (means, variances, covariances etc.) associated
with the stochastic reaction dynamics converge to their steady state values as t → ∞ (see [27]), which
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is helpful in the design of controllers that can robustly steer the mean copy-number of some species to
specific reference values [30]. Relation (2.19) shows that the stationary distribution of the population can
be computed by evaluating the proportion of time spent in various states by a single stochastic trajectory
(X(t))t≥0 over a long period of time. Such an insight can help in leveraging experimental techniques such
as Flow-Cytometry and Time-Lapse Microscopy in the study of isogenic cell populations (see [27]). One can
also use (2.19) to speed-up the estimation of the stationary distribution πq using Monte Carlo simulations.
Moreover the knowledge about the exact support of πq (viz. Eq) can be used to sample from this stationary
distribution more efficiently. Commonly we find that for networks arising in Systems Biology there is only
one irreducible state-space E1 within E0 and hence the simplex Σ collapses to a unique stationary distribution
π1 (see Section 6). In such a scenario the underlying CTMC is ergodic, and relations (2.18) and (2.19) hold
for any bounded real-valued function f on the full state-space E0 and for any initial condition X(0) ∈ E0.
Checking ergodicity of networks is important for many applications. For example, under ergodicity one
can apply tools from Transition Path Theory [31] to study the topology of networks by analyzing the
statistical properties of trajectories that flow between two subsets of the irreducible state-space. Another
important application area where checking ergodicity is crucial, is for speeding-up the stochastic simulations
of multiscale networks, which have reactions firing at multiple timescales [32]. Such networks are common in
Systems Biology and it is known that their exact stochastic simulation, using Gillespie’s SSA for example, is
highly cumbersome, because most of the simulation time is spent in generating the fast reaction events. To
circumvent these problems approximate simulation approaches have been developed [33, 34, 35] that apply the
quasi-stationary assumption (QSA) on fast ergodic subnetworks, by supposing that their stochastic dynamics
relaxes to stationarity between subsequent reactions at the slower timescales. These fast subnetworks can
change their structure, along with their ergodic properties, depending on the states of the slow variables
which may determine the set of available fast reactions. In this context, our results provide a way for
automated discovery of fast ergodic subnetworks, during the simulation run, and aid the correct application
of QSA. We illustrate this point through an example in Section 6.4. This example also shows how restricted
species can arise naturally when a fast subnetwork within the bigger network, is considered in isolation.

2.3 Conditions on the propensity functions

To facilitate the search for irreducible state-spaces, we shall assume that the network N = (V,O,Λ) satisfies
the following:

Assumption 2.1 For each reaction k = 1, . . . ,K and each x = (x1, . . . , xd) ∈ E0, we have λk(x) > 0 if and
only if xi ≥ νik for every i = 1, . . . , d.

In other words, at state x, reaction k has a positive probability of firing if any only if for each species Si,
the number of available molecules (xi) exceeds the number of molecules consumed by the reaction (νik).
The “only if” part of this condition is almost always satisfied, because a reaction cannot fire unless for each
species, the required number of molecules are present for consumption, but the “if” part of this condition
may get violated if the propensity function for a reaction is zero even though all the required molecules
for having the reaction are present. However such situations do not typically arise for networks in Systems
Biology as we now explain.

Observe that Assumption 2.1 is certainly satisfied if we have mass-action kinetics [9] where each propen-
sity function λk : Nd0 → R+ has the form

λk(x) = θk

d∏

i=1

xi(xi − 1) . . . (xi − νik + 1)

νik!
, (2.20)

for some rate constant θk > 0. Apart from mass-action kinetics, networks in Systems Biology generally
have propensity functions describing either Michaelis–Menten kinetics for enzyme-substrate interactions or
Hill kinetics for ligand-protein binding dynamics [36]. In both these cases, the propensity functions have a
rational form λk(x) = pk(x)/qk(x), where the denominator qk(x) is always positive and the numerator pk(x)
satisfies the criterion in Assumption 2.1. Consequently the network satisfies Assumption 2.1 even though
the propensity functions are not of mass-action form (2.20). Furthermore even if a network does not satisfy
Assumption 2.1, it can often be modified in such a way that this assumption is satisfied and its dynamics
remains the same (see Section 6.1). We end this section with a simple proposition.
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Proposition 2.2 Consider a network N satisfying Assumption 2.1 with conservation data (Γ, c) and state-

space E0 given by (1.11). Then the reachability relation
N−→ is positively additive on E0, which is to

say that for any x, y ∈ E0 and z ∈ Nd0, if x
N−→ y and (x + z) ∈ E0 then we also have (y + z) ∈ E0 and

(x+ z)
N−→ (y + z).

Proof. This is a simple consequence of Assumption 2.1 because for any reaction k and state u ∈ E0, if
λk(u) > 0 then λk(u + z) > 0 for any z ∈ Nd0. Therefore the positive-probability reaction sequence that
leads the state from x to y, also serves as a positive-probability reaction sequence that takes the state from
(x+ z) to (y + z) (recall the discussion in Section 2.1). �

2.4 Inverse of a reaction network

We now define the inverse Ninv = (Vinv,Oinv,Λinv) of the reaction network N = (V,O,Λ), which is obtained
by flipping the arrows in (1.1). In other words, the K reactions in Ninv are given by

d∑

i=1

ρikSi −→
d∑

i=1

νikSi, k = 1, . . . ,K. (2.21)

Hence Vinv = O, Oinv = V and we define the propensity map

Λinv(x) = (λ1,inv(x), . . . , λK,inv(x))

by letting each λk,inv to have the mass-action form (see (2.20)) with the rate constant θk = 1. Observe that
the stoichiometry matrix Sinv for Ninv is simply the negative of the stoichiometry matrix for N , and so the
space of conservation relations (1.7) as well as the state-space E0 (1.11) remain the same for both networks.

By construction, Ninv always satisfies Assumption 2.1 and if the original network N also satisfies this
assumption then we have the following correspondence between the reachability relations induced by the two
networks

x
N−→ y if and only if y

Ninv−→ x, for any x, y ∈ E0. (2.22)

To see this correspondence suppose that under network N , the dynamics can reach y from x in one reaction
step. In such a scenario for some reaction k we have λk(x) > 0 and y = x + ζk. Since xi ≥ νik and
ζik = (ρik − νik), we have yi ≥ ρik for each i = 1, . . . , d, which ensures that λk,inv(y) > 0 and so under the
inverse network Ninv, the dynamics can reach state x from state y by a single firing of reaction k. Extending
this idea to incorporate a sequence of intermediate states and reactions (see Section 2.1) one can conclude
that (2.22) holds.

2.5 Reaction network under a permutation

Our description of the stochastic model for network N = (V,O,Λ), stipulates that if the state is x =
(x1, . . . , xd) then xi denotes the copy-number of species i (viz. Si). However in order to simplify the
representation for state-space we would often need to redefine the correspondence between the species and
the location of their copy-numbers in the state vector. This can be conveniently done by permuting the
original network to obtain a dynamically equivalent network, as we describe below.

We denote the set of all species labels by D = {1, . . . , d}. Let σ : D → D be any permutation (one-to-one
and onto) map. Let Pσ be the d× d permutation matrix given by

Pσ = Col
(
eσ−1(1), . . . , eσ−1(d)

)
, (2.23)

where e1, . . . , ed are the standard basis vectors in Rd and let σ−1 denote the inverse of map σ. Let Vσ = PσV,
Oσ = PσO and the propensity map Λσ : Nd0 → RK+ be as in (2.16) with each λk replaced by λσk given by

λσk(x) = λk(PTσ x) for each k = 1, . . . ,K, (2.24)
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where PTσ = Pσ−1 denotes the transpose of matrix Pσ. We define the permuted network as N σ =
(Vσ,Oσ,Λσ). One can see that N σ is dynamically equivalent to N in the following sense. If (X(t))t≥0

represents the stochastic reaction dynamics for network N then (Xσ(t))t≥0 defined by

Xσ(t) = PσX(t) for all t ≥ 0, (2.25)

represents the dynamics for the permuted network N σ. In other words, if Xσ(t) = (x1, . . . , xd) then for each
i = 1, . . . , d, xi denotes the copy-number of species σ(i) at time t. Therefore the appropriate conservation
data and state-space for network N σ are (Γσ, c) and Eσ0 respectively, where

Γσ = PσΓ and Eσ0 = PσE0 := {Pσx : x ∈ E0}. (2.26)

One can also see that if network N satisfies Assumption 2.1, then the same holds for the permuted network
N σ. Due to the dynamical equivalence (2.25) we have the following proposition.

Proposition 2.3 A set Eσ ⊂ Eσ0 is an irreducible state-space for network N σ if and only if the set E =
PTσ Eσ ⊂ E0 is an irreducible state-space for network N .

3 Computing the decomposed form of state-space

The aim of this section is to provide a procedure to obtain the decomposed form (1.13) for state-space E0
for a network N = (V,O,Λ) with conservation data (Γ, c). For this purpose, we may need to permute this
network according to some permutation σ and work with the equivalent network N σ with state-space Eσ0
(see Section 2.5).

The decomposed form can be constructed in two simple steps. Firstly by scanning the space of all semi-
positive conservation relations, the bounded species are identified and their appropriate finite state-space Eb
is found (Section 3.1). Secondly the rest of the species are classified as free or restricted depending on any
mixed-sign conservation relations between them. Moreover, the affine function φ (see (1.14)), which gives
the static relationship between these two sets of species, is determined (Section 3.2). The detailed algorithm
for performing state-space decomposition is presented in Section 5.

3.1 Identifying the bounded species and their state-space

Note that the space of all conservation relations can be expressed as L(S) = {Γα : α ∈ Rn}. Suppose that
γ = Γα is a semi-positive conservation relation for some α ∈ Rn. From (1.8) and (1.10), one can see that for
any i ∈ supp(γ) we have

0 ≤ Xi(t) ≤
〈c, α〉
γi

for all t ≥ 0, (3.27)

where Xi(t) denotes the copy-number of species i at time t. This shows that species i is bounded, but
since it may be involved in several semi-positive conservation relations, the upper-bound 〈c, α〉/γi for its
copy-numbers may not be sharp. To systematically account for all these relations and obtain a sharper
upper-bound bi we solve the following Linear Program (LP):

bi = min
α∈Rn

〈c, α〉 (3.28)

subject to Γα ≥ 0 and 〈ei,Γα〉 = 1,

where ei is the i-th standard basis vector in Rd. If the feasible region of this LP is empty, then bi = ∞
and species i is not involved in any semi-positive conservation relation. Henceforth we partition the set of
all species D = {1, . . . , d} into the set of bounded species Db = {i ∈ D : bi < ∞} and the set of unbounded
species Du = {i ∈ D : bi =∞}. Let db = |Db| and du = |Du| = d− db be the cardinalities of these two sets.

Choose a permutation map σ1 : D → D satisfying

σ1(l) ∈
{
Db for l = 1, . . . , db
Du for l = (db + 1), . . . , d

(3.29)
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and consider the reaction dynamics of the network N σ under permutation σ = σ1 (see Section 2.5). Now the
entries in rows 1, . . . , db of the state vectors will contain the copy-numbers of bounded species in Db. These
copy-numbers, arranged as vectors in Ndb0 , will always lie in the finite rectangular set

Rσb = {(x1, . . . , xdb) ∈ Ndb0 : 0 ≤ xl ≤ bσ(l) for each l = 1, . . . , db}, (3.30)

but all the elements in this set may not be reachable from each other due to conservation relations among
bounded species (see Section 6). We deal with these conservations relations now.

Let Sσ be the stoichiometry matrix for network N σ and let (Γσ, c) be its conservation data (see (2.26)).
Setting Sbσ := Proj(Sσ, 1, db), the conservation relations among the bounded species are given by nonzero
vectors in its left nullspace L(Sbσ). Suppose nb = dim

(
L(Sbσ)

)
≥ 1 and let {γ̂1, . . . , γ̂nb} denote a basis for

L(Sbσ). For each j = 1, . . . , nb, let γj = (γ̂j ,0) ∈ Rd and set ĉj = 〈αj , c〉 where αj ∈ Rn is the unique solution
of the linear-system Γσαj = γj . This solution αj is unique because the columns of Γσ are independent and
they span L(Sσ) which contains γj . For the permuted network N σ, the state vectors for all the bounded
species in Db will always lie in the finite set

Eσb = {x ∈ Rσb : 〈γ̂j , x〉 = ĉj for each j = 1, . . . , nb}. (3.31)

3.2 Identifying the free and the restricted species

We now partition the set Du of unbounded species, into a set Df of free species and a set Dr of restricted
species. Letting Suσ = Proj(Sσ, db+1, d), we define the number of free species df and the number of restricted
species dr by

df := Rank(Suσ ) and dr := du − df = d− db − df . (3.32)

Note that the total number of species (d) is equal to the sum of the number of free (df ), bounded (db)
and restricted species (dr). Observe that dr is the dimension of the left nullspace L(Suσ ) of matrix Suσ ,
which corresponds to the space of all conservation relations among the unbounded species. Any nonzero
vector γ ∈ L(Suσ ) must necessarily be a mixed-sign conservation relation, because otherwise the species in its
support set (1.9) would be bounded which is not the case. Recall that n = dim(L(Sσ)) is the total number of
conservation relations while nb are the number of conservation relations among the bounded species. Hence
we must have n ≥ nb + dr. As it turns out, usually for biological networks (see Section 6) this inequality is
strict (i.e. n = nb + dr) which is same as saying that the following assumption holds.

Assumption 3.1 There are no conservation relations involving both the bounded and the free/restricted
species i.e.

Rank(Sσ) = Rank(Sbσ) + Rank(Suσ ),

where Sbσ = Proj(Sσ, 1, db) and Suσ = Proj(Sσ, db + 1, d).

This assumption will be required to hold from now on. Suppose that restricted species exist (i.e. dr ≥
1). Hence, the space L(Suσ ) is nontrivial. Let {δ′1, . . . , δ′dr} be a basis for L(Suσ ). For any subset I =
{i1, . . . , idf } ⊂ {1, . . . , du} with |I| = df elements, let AI be the du × du matrix given by

AI = Col
(
ei1 , . . . , eidf , δ

′
1, . . . , δ

′
dr

)
, (3.33)

where ei-s are the standard basis vectors in Rdu . Define another set

If = {I ⊂ {1, . . . , du} : |I| = df and Rank(AI) = du}. (3.34)

Note that this set is nonempty and its cardinality is bounded above by
(
du
df

)
.

Fix a I ∈ If and let Ic denote its complement in the set {1, . . . , du}. We define the set Df of free species
and the set Dr of restricted species as Df = {σ(db + i) : i ∈ I} and Dr = {σ(db + i) : i ∈ Ic}. These two sets
partition the set Du. We now choose another permutation map σ2 : D → D satisfying

σ2(l) = σ1(l) for l = 1, . . . , db and σ2(l) ∈
{
Df for l = (db + 1), . . . , (db + df )
Dr for l = (db + df + 1), . . . , d.

(3.35)
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Let N σ be the network under permutation σ = σ2 (see Section 2.5), and let Sσ and (Γσ, c) be its
stoichiometry matrix and conservation data respectively. For each i = 1, . . . , dr, the vector δi = (0, δ′i) ∈ Rd

belongs to L(Sσ) and hence the vector δ̂i = Pσ2
PTσ1

δi belongs to L(Sσ). Since the permutations σ1 and σ2

are identical on {1, . . . , db}, each δ̂i must have the form δ̂i = (0, δ
(1)
i , δ

(2)
i ) for some vectors δ

(1)
i ∈ Rdf and

δ
(2)
i ∈ Rdr . Define a df × dr matrix ∆1 = Col(δ

(1)
1 , . . . , δ

(1)
dr

) and a dr × dr matrix ∆2 = Col(δ
(2)
1 , . . . , δ

(2)
dr

).
Observe that if AI is the matrix given by (3.33), then there exists a du × du permutation matrix Q such
matrix QAI has the form

QAI =

[
I ∆1

0 ∆2

]
, (3.36)

where I is the df × df identity matrix and 0 is the dr × df matrix of all zeroes. Matrix AI is invertible
because I ∈ If , and hence matrix ∆2 is also invertible.

From now on let Sbσ = Proj(Sσ, 1, db), S
u
σ = Proj(Sσ, db + 1, d), Sfσ = Proj(Suσ , 1, df ) and Srσ =

Proj(Suσ , df + 1, df + dr). For each i = 1, . . . , dr, the vector δ̂i = (0, δ
(1)
i , δ

(2)
i ) belongs to L(Sσ), where

0 denotes the vector of zeros in Rdb . Hence we must have ∆T
1 S

f
σ = −∆T

2 S
r
σ which allows us to write

Srσ = −(∆T
2 )−1∆T

1 S
f
σ = −(∆−1

2 )T∆T
1 S

f
σ . (3.37)

This also shows that Rank(Sfσ) = df because df = Rank(Suσ ) (see (3.32)) and Suσ has the form

Suσ =

[
Sfσ
Srσ

]
=

[
I

−(∆−1
2 )T∆T

1

]
Sfσ .

The state-space for network N σ is Eσ0 = PσE0 = {x ∈ Nd0 : Γσx = c} (see (2.26)). Any element in this set

can be expressed as x = (xb, xf , xr) where xb ∈ Eσb , xf ∈ Ndf0 and xr ∈ Ndr0 . Since the columns of Γσ span
L(Sσ), for each i = 1, . . . , dr, there exists a unique n× dr matrix M such that

ΓσM = Col(δ̂1, . . . , δ̂dr ).

Since Assumption 3.1 holds, the last (df + dr) rows of the condition Γσx = c yield ∆T
1 xf + ∆T

2 xr = ĉ for
ĉ = MT c. This shows that xr = φ(xf ), where the affine map φ : Rdf → Rdr is defined by

φ(x) = (∆T
2 )−1ĉ− (∆T

2 )−1∆T
1 x. (3.38)

This analysis proves the following proposition.

Proposition 3.2 Suppose Assumption 3.1 holds. Then state-space Eσ0 for network N σ can be expressed as

Êσ0 = Eσb × Φ, (3.39)

where Φ is the graph (1.14) of function φ defined by (3.38).

Note that this state-space decomposition result only depends on the reaction stoichiometries but not on their
propensities. Indeed the propensity functions can be completely general as long as they satisfy the basic
assumption (1.2) which ensures that the dynamics is contained in the positive orthant. We end this section
with an important remark.

Remark 3.3 Note that the classification of unbounded species into free and restricted
species depends on the set I which can chosen to be any element in the set If given by (3.34). This flexibility
will be useful in the next section.

4 Identifying the irreducible state-spaces

In this section we shall assume that network N = (V,O,Λ) satisfies Assumption 2.1. As a consequence,
the permuted network N σ = (Vσ,Oσ,Λσ) also satisfies this assumption, which is a property that will
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play a crucial role in our search for irreducible state-spaces within the infinite state-space Eσ0 . Recall that

these state-spaces are the closed communication classes for relation
Nσ←→ on Eσ0 (see Section 2.1). From the

discussion in Section 3.2 it is immediate that restricted species have no independent dynamics of their own
and they essentially mimic the free species according to the affine map φ. This suggests that for finding
irreducible state-spaces we can simply remove the restricted species and concentrate on the dynamics of the
bounded and the free species. We now describe this step formally.

4.1 Network reduction by elimination of restricted species

We construct a “reduced” network Ñ σ with (db+df ) species in the set Db∪Df where Db = {σ(1), . . . , σ(db)}
and Df = {σ(db + 1), . . . , σ(db + df )}. For each reaction k = 1, . . . ,K, let its propensity function λ̃σk :

Ndb0 × Ndf0 → R+ be given by

λ̃σk(xb, xf ) = λσk(xb, xf , φ(xf )) (4.40)

where xb ∈ Ndb0 , xf ∈ Ndf0 and the function λσk is defined by (2.24). Let the propensity map Λ̃σ : Ndb+df0 → RK+
be as in (2.16) with each λk replaced by λ̃σk . Setting Ṽσ = Proj(Vσ, 1, db+df ) and Õσ = Proj(Oσ, 1, db+df ),

we define the reduced network as Ñ σ = (Ṽσ, Õσ, Λ̃σ).

Unfortunately the reduced network Ñ σ may not satisfy Assumption 2.1 even though the original network
does (see Example 6.4). We need to avoid this problem because our approach requires this property. Fortu-
nately for most biological examples this can be done by exploiting the flexibility in the choice of set I (see
Remark 3.3), which classifies each unbounded species as free or restricted. Note that different choices of I will
yield different reduced networks but they correspond to the same dynamics for the original network. Hence
the irreducible state-spaces for the original network can be found with any I chosen as per our convenience.
We sequentially examine each element in the finite set If (see (3.34)) until we either find a I for which the
affine function φ satisfies the following assumption or we exhaust all the possibilities (see Algorithm 1).

Assumption 4.1 Consider an affine map f : Rdf → Rdr

f(x) = F0 + F1x,

where F0 is a vector in Rdr and F1 is a dr × df matrix. We say that this map is compatible with network
N σ = (Vσ,Oσ,Λσ) if F0 and F1 have all the entries in N0 and the matrix inequality

F01
T + F1Vσf ≥ Vσr (4.41)

holds, where Vσf = Proj(Vσ, db + 1, db + df ), Vσr = Proj(Vσ, db + df + 1, d) and 1 is the vector of all ones in

RK .

If the affine map φ satisfies this compatibility condition, then the network reduction will automatically
satisfy Assumption 2.1. To see this note that (4.41) implies that for any reaction k, if xf ≥ νk,f then
φ(xf ) ≥ νr,f , where νk,f (νr,f ) denotes the k-th column of matrix Vσf (Vσr ). Therefore the reduced network

Ñ σ satisfies Assumption 2.1 because

λ̃σk(xb, xf ) > 0 ⇐⇒ λσk(xb, xf , φ(xf )) > 0

⇐⇒ (xb, xf , φ(xf )) ≥ (νk,b, νk,f , νk,r)

⇐⇒ (xb, xf ) ≥ (νk,b, νk,f ) and φ(xf ) ≥ νr,f
⇐⇒ (xb, xf ) ≥ (νk,b, νk,f ),

where νk,b is the k-th column of matrix Proj(Vσ, 1, db), ⇐⇒ denotes “if and only if” and the last relation
holds because φ(xf ) ≥ νr,f follows from (4.41).

It is easy to check that the reduced network Ñ σ preserves all the semi-positive conservation relations
among the bounded species. Therefore if φ satisfies Assumption 4.1 the state-space for this reduced network
is

Ẽσ0 = Eσb × Ndf0 .
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In what follows, we shall identify all the irreducible state-spaces for the communication relation
Ñσ←→ induced

by the network Ñ σ on Ẽσ0 . The next proposition then allows us to recover all the irreducible state-spaces for
the original network N σ.

Proposition 4.2 Assume that the affine map φ, given by (3.38). Then for any F ⊂ Eσb and G ⊂ Ndf0 ,

the set F × G is an irreducible state-space for relation
Ñσ←→ if and only if the set F × ΦG is an irreducible

state-space for relation
Nσ←→. Here ΦG is the graph of function φ (see (1.14)), restricted to the domain G.

Proof. The proof follows simply from the construction of the reduced network Ñ σ and the fact that the
dynamics of the restricted species is “tied” to the dynamics of the free species according to map φ. �

4.2 Networks with only bounded species

We first consider the case when there are no free species (i.e. df = 0), and hence the state-space Ẽσ0 = Eσb
for network Ñ σ is finite2. In such a situation all the irreducible state-spaces can be found using simple
matrix manipulations. We briefly describe this approach in the context of reaction networks and introduce
the relevant concepts that will be useful later in the paper.

Let Eσb = {y1, . . . , yNb} be the finite state-space with Nb = |Eσb | states. For each reaction k, let νσk ∈ Ndb0

and ζ
σ

k ∈ Zdb be the vectors denoting the k-th column of the reactant and the stoichiometry matrices of the

network. As network Ñ σ satisfies Assumption 2.1, only the following reactions have a positive propensity of
firing

Kr(y) = {k = 1, . . . ,K : y ≥ νσk}. (4.42)

Define a Nb ×Nb matrix Z by

Zij =

{
1 if yj = yi + ζ

σ

k for some k ∈ Kr(yi)
0 otherwise.

(4.43)

We can view Z as the zero-pattern matrix3 of a finite Markov chain [17] and use it to study reachability and

communication relations corresponding to network Ñ σ (see Section 2.1). Define the Nb × Nb reachability
matrix Ω by

Ω = (I + Z)
Nb−1

, (4.44)

where I is the Nb × Nb identity matrix. For any two states yi, yj ∈ Eσb , state yi is reachable from state yj
if and only if the ij-th entry of this reachability matrix is positive (i.e. Ωij > 0). Therefore based on this
matrix we can define the communication relation Θ on Eσb by

Θ = {(yi, yj) ∈ Eσb × Eσb : Ωij > 0 and Ωji > 0}. (4.45)

As we mentioned in Section 2.1, Θ is an equivalence relation on Eσb which partitions this set into distinct
equivalence or communication classes. Let Θ = [Θij ] be the Nb ×Nb matrix representing this relation, i.e.
Θij = 1 if (yi, yj) ∈ Θ and Θij = 0 otherwise. One can verify that states yi and yj will belong to the same
communication class if and only if rows i and j are identical in matrix Θ. Let nc be the number of unique
rows of matrix Θ and let U be the nc ×Nb matrix formed by these rows. Each row i of U corresponds to a
distinct communication class made up of those states yj for which Uij = 1. To study the interaction among
communication classes we define another nc × nc matrix R by

R = UZUT − I. (4.46)

2Observe that as we have no free/restricted species, we do not need to permute the network (i.e. σ can be chosen as the

identity permutation) or reduce it to eliminate the restricted species (i.e. Ñσ = N ). However we employ this complicated
notation to be consistent with the general case where both bounded and free/restricted species are present.

3The zero-pattern matrix corresponding to a finite Markov chain is obtained by setting all the positive entries in its probability
transition matrix to 1 and all the rest to 0
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This matrix captures the reachability relations among the communication classes (see Chapter 8 in [37]).
In other words, if Rij > 0, then there exists a reaction that takes a state in the i-th communication class
to a state in the j-th communication class. If the i-th row of matrix R only consists of zeros then the i-th
communication class in closed and otherwise it is open. Starting from any initial state in Eσb the dynamics
of the bounded species will eventually get trapped in one of the closed communication classes and these are
the only irreducible state-spaces for network Ñ σ without any free species.

4.3 Networks with only unbounded species

In this section we assume that there are no bounded species (i.e. db = 0) and all the irreducible state-spaces

must lie inside the nonnegative integer orthant Ẽσ0 = Ndf0 , after the restricted species have been removed
(see Section 4.1). We will find the irreducible state-spaces by adopting a simple scheme that attempts to
arrange the free species into birth and death cascades. We begin by formalizing the notion of birth-cascades
for the network Ñ σ = (Ṽσ, Õσ, Λ̃σ).

For each reaction k, let ν̃σk and ρ̃σk be the vectors in Ndf0 , denoting the k-th column of matrices Ṽσ and Õσ
respectively. As db = 0 the set of all free species is Df = {σ(1), . . . , σ(df )}. From now on let F = {1, . . . , df}
denote the set of addresses of all the free species under the map σ(·). For any A ⊂ F , let Dσf (A) be the
subset of free species given by

Dσf (A) := {σ(i) ∈ Df : i ∈ A} (4.47)

and let B(A) ⊂ F be defined by

B(A) = {i ∈ F : i /∈ A, supp(ν̃σk ) ⊂ A and i ∈ supp(ρ̃σk) for some reaction k = 1, . . . ,K} .

The set Dσf (B(A)) represents the free species that do not belong to the set Dσf (A) and are produced by a
reaction that only consumes the free species in Dσf (A).

Using this mapping B, we define a sequence of subsets of F , indexed by nonnegative integer levels
l = 0, 1, . . . , as follows: let G0 = ∅ and for each l ≥ 1 let

Gl = Gl−1 ∪ B(Gl−1).

This sequence of sets {Gl : l = 0, 1, 2, . . . } represent the birth-cascades for network Ñ σ. At any level l, the
set Dσf (Gl) consists of all those free species that either belong to the previous cascade Dσf (Gl−1) or it is
produced by a reaction that only consumes the free species in this previous cascade Dσf (Gl−1). In particular
for level l = 1 the set Dσf (G1) consists of all those free species that can be produced from nothing, due to
reactions of the form ∅ −→ S. From this cascade construction one can expect that all the free species in
each of these birth-cascades, can have arbitrarily high copy-numbers due to the reaction dynamics. This is
precisely what we show later in the paper (see Lemma 7.1).

As the number of free species is finite, the following number is well-defined

lb = max{l ∈ N : Gl 6= Gl−1} = min{l ∈ N : B(Gl−1) = ∅}.

The monotonically increasing sequence of sets G0, G1, . . . stops growing beyond level lb and so we have
Gl = Glb for all l ≥ lb. We define the Birth-Cascade Path (BCP) as the directed graph

∅ ⇒ G1 ⇒ G2 ⇒ · · · ⇒ Glb (4.48)

and refer to Glb as its terminal node. The set of all the free species that can be arranged into birth-cascades
is

B = Dσf (Glb).

We define two reaction-sets as

Kr = {k = 1, . . . ,K : supp(ν̃σk ) ⊂ Glb} and Kp = {k = 1, . . . ,K : supp(ρ̃σk) ⊂ Glb}. (4.49)
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The set Kr (Kp) consists of all those reactions that do not consume (produce) the free species that lie outside
the set B. Since Glb is the terminal node of the BCP we must have that

Kr ⊂ Kp, (4.50)

which is to say that any reaction that only consumes the free species in B must not produce any free species
outside this set.

Analogous to birth-cascades we now construct the death-cascades for network Ñ σ, but we restrict our
attention to only the species in B and only the reactions in Kr. Let Ñ σ(B) be the network restricted to only

these species and reactions and let Ñ σ
inv(B) be its inverse (see Section 2.4). We construct the birth-cascades

for this inverse network Ñ σ
inv(B) as before, and define the l-th death-cascade Ĝl for network Ñ σ as the l-th

birth-cascade for network Ñ σ
inv(B). Correspondingly the Death-cascade Path (DCP) for network Ñ σ is the

BCP for network Ñ σ
inv(B) and we can represent it as

∅ ⇒ Ĝ1 ⇒ Ĝ2 ⇒ · · · ⇒ Ĝld , (4.51)

where Ĝld is the terminal node of DCP and the set

X = Dσf (Ĝld)

consists of all the free species that can be arranged into death-cascades. Note that since the set of species is
restricted to B we must have X ⊂ B. The dynamical relation (2.22) satisfied by a network and its inverse,

provides us with the following interpretation of death-cascades: the free species in Dσf (Ĝ1) for level l = 1
degrade spontaneously due to reactions in Kr of the form S −→ ∅, while for higher levels l > 1 each free
species Si in Dσf (Ĝl) is converted by a reaction in Kr to some free species Sj at a lower level, i.e. species Sj

belongs to the set Dσf (Ĝl−1). For most biological networks, spontaneous degradation is very common and

so typically the first death-cascade Dσf (Ĝ1) is heavily populated (see Section 6). The species in B that do

not belong to Dσf (Ĝ1) usually belong to one of the higher death-cascades because generally they undergo
a sequence of conversions to eventually produce a spontaneously degradable species (see Section 6). These
remarks suggest that for most biological networks we can expect to have

B = X , (4.52)

which is to say that all the free species in B can be arranged into death-cascades by the procedure we just
described.

For our main result we need to ensure that each and every molecule of the free species in B can be
flushed-out from the system. Due to this reason we need to impose certain stoichiometric restrictions on the
network as we describe now. Let S̃σ be the df ×K stoichiometry matrix for network Ñ σ and let S̃σ [Kp] be

the matrix formed by restricting S̃σ to only those columns that correspond to reactions in Kp (see (4.49)).
For any i ∈ F the free species σ(i) ∈ Df is said to be singularly-degradable if

−ei ⊂ ColspanN0

(
S̃σ [Kp]

)
, (4.53)

where ei denotes the i-th standard basis vector in Rdf . Note that the column span in this condition is over
nonnegative integers N0. Observe that if a free species can degrade spontaneously because of a reaction like
S −→ ∅ then it is certainly singularly-degradable. Hence condition (4.53) primarily pertains to those free
species that require a sequence of conversion reactions to produce a spontaneously degradable species. We
can easily identify all the singularly-degradable free species by computing a modified Hermite normal form4

of the transpose of the matrix −S̃σ [Kp]. For obtaining this normal form, the only admissible operation is
the addition of one row to another, possibly after multiplication by a positive integer. Once this Hermite
normal form has been computed, the free species σ(i) is singularly-degradable if and only if there exists a
row with the leading entry of 1 in column i of the Hermite normal form.

4The Hermite normal form is an analogue of the row-reduced echelon form for integer matrices. For more details see [38].
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We now state the main result of this section Proposition 4.3, which determines an irreducible state-space
for network Ñ σ and also provides a way to easily check if it is the only irreducible state-space for the network

in the infinite state-space Ẽσ0 = Ndf0 . To state our main result, we shall consider the network dynamics under
the permutation σ = σ3 : D → D defined by

σ3(i) =





ji for i = 1, . . . , dfb
mi−dfb for i = (dfb + 1), . . . , df
σ2(i) for i = (df + 1, . . . , (df + dr),

(4.54)

where dfb = |B| be the total number of free species that can be arranged into birth-cascades, the set B is
B = {j1, . . . , jdfb} and the set of remaining free species is
Df ∩Bc = {m1, . . . ,mdf−dfb}. Observe that under this permutation the copy-numbers of all the free species
in B occupy the first dfb components of the state vector.

Proposition 4.3 Assume that network Ñ σ satisfies Assumption 2.1 and it has no bounded species (i.e.
db = 0). Suppose that permutation σ is defined by (4.54) and (4.52) holds. Then we have the following:

(A) If all the free species in B are singularly-degradable then Ndfb0 × {0} is an irreducible state-space for

network Ñ σ, where 0 denotes the (df − dfb)-dimensional vector of zeros.

(B) Additionally if all the free species in Df ∩ Bc are also singularly-degradable then Ndfb0 × {0} is the

only irreducible state-space for network Ñ σ.

Proof. This proposition is a special case of Theorem 4.4 that is proved in the Appendix. �

We end this section with a simple example that emphasizes the importance of imposing the condition of
being singularly-degradable on the free species. Consider a network in which a single species S participates
in the following two reactions

∅ −→ 2S −→ ∅.

We assume that the propensity functions follow mass-action kinetics. In this network the molecules of S are
produced and degraded in pairs. One can easily check that for this network B = X = {S}, but N0 is not
an irreducible state-space because species S is not singularly-degradable. One can check that this network
has two irreducible state-spaces: the set of all odd integers O = {1, 3, 5, . . . } and the set of all even integers
E = {0, 2, 4, . . . }.

4.4 Networks with both unbounded and bounded species

In this section we consider the general case where network Ñ σ = (Ṽσ, Õσ, Λ̃σ) has both unbounded and

bounded species and so all the irreducible state-spaces will lie in the infinite set Ẽσ0 = Eσb × Ndf0 after the
restricted species have been removed (see Section 4.1). We now develop a procedure to identify all these state-
spaces by intertwining the matrix-based approach in Section 4.2 with the birth-death cascade construction
described in Section 4.3. However instead of linear path-like cascades we need to construct tree-like structures
as we explain below.

We first fix some notation. For each reaction k = 1, . . . ,K let νσk , ν̃σk , ρσk and ρ̃σk denote the k-th column

of matrices Proj(Ṽσ, 1, db), Proj(Ṽσ, db+1, db+df ), Proj(Õσ, 1, db) and Proj(Õσ, db+1, db+df ) respectively.
Recall that the set of all free species is Df = {σ(db + 1), . . . , σ(db + df )} and let F = {1, . . . , df} denote the
set of addresses of all the free species under the map σ(db + ·). For any A ⊂ F , let Dσf (A) ⊂ Df be given by
(4.47) with σ(·) replaced by σ(db + ·). Corresponding to such a set A we define a set of reactions as

Kr(A) = {k = 1, . . . ,K : supp(ν̃σk ) ⊂ A},

which includes only those reactions that do not consume any free species that lie outside the set Dσf (A).
For any y ∈ Eσb define

Kr(y,A) = Kr(y) ∩ Kr(A),
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where Kr(y) is given by (4.42). Let Z(A) be the zero-pattern matrix defined by (4.43) with Kr(y) replaced
by Kr(y,A). Using the procedure described in Section 4.2 we can compute the associated communication
relation Θ(A) (see (4.45)) along with the corresponding set of equivalence or communication classes. We can
also compute the reachability relations R(A) (see (4.46)) among these classes and determine which classes
are closed and open. From now on let C(A) denote the set of closed communication classes under relation
Θ(A).

Suppose A1, A2 are two subsets of F such that A1 ⊂ A2. Then certainly Kr(A1) ⊂ Kr(A2) and hence
Zij(A1) ≤ Zij(A2) for each i, j. Consequently Θ(A2) has fewer equivalence classes than Θ(A1), and each
class of Θ(A1) is contained in a unique class of Θ(A2). Let C1 and C2 be two closed communication classes
in the sets C(A1) and C(A2) respectively. We say that C1 reaches C2 if either C1 ⊂ C2, or C1 is a subset of
an open class O for Θ(A2) and the closed class C2 is reachable from O under relation R(A2). We define a
map from C(A1) to a subset of C(A2) by

Ψ(A1,A2)(C1) = {C2 ∈ C(A2) : C1 reaches C2}.

Observe that this map is transitive in the sense that for any A1 ⊂ A2 ⊂ A3 ⊂ F if C2 ∈ Ψ(A1,A2)(C1) and
C3 ∈ Ψ(A2,A3)(C2) then C3 ∈ Ψ(A1,A3)(C1). This transitivity holds because Kr(A1) ⊂ Kr(A2) ⊂ Kr(A3).

We now develop the notion of a Birth-Cascade Tree (BCT) by generalizing the ideas in Section 4.3. This
tree is developed in levels or generations indexed by nonnegative integers l = 0, 1, 2, . . . , and it is a directed
graph with nodes in the set

T = {(C,A) : A ⊂ F and C ∈ C(A)} (4.55)

and edges in the set T × T. For generation l = 0 the BCT is initialized by simply adding the nodes (C, ∅)
for each C ∈ C(∅). For any generation l > 1, the BCT is extended as follows: for each node (C,A) that was
added to the BCT in the previous generation (l − 1) we compute the set

B(C,A) = {i ∈ F : i /∈ A and there exists a k ∈ Kr(C,A) such that i ∈ supp(ρ̃σk)}, (4.56)

where

Kr(C,A) =
⋃

y∈C
Kr(y,A),

is the set of those reactions that only consume free species in the set Dσf (A) as reactants and have a positive
probability of firing when the dynamics of bounded species is in the closed communication class C. If
B(C,A) 6= ∅ then we set A′ = A ∪ B(C,A) and for each C ′ ∈ Ψ(A,A′)(C) we add the node (C ′, A′) to the
BCT along with the directed edge (C,A)⇒ (C ′, A′).

The interpretation of the set B(C,A) is similar to the interpretation of B(A) in Section 4.3 with the only
difference being that now the states of bounded species can move around in the closed communication class
C. As the number of free species is finite, the BCT will stop growing beyond some generation lb and this
point the construction of BCT is complete and any node (C,A) from which there are no outgoing edges is
called a leaf of the BCT. For such a leaf node we have

B(C,A) = ∅, (4.57)

and there exists a set of (l + 1) BCT nodes, {(Ci, Gi) : i = 0, . . . , l} such that G0 = ∅, Cl = C, Gl = A and
the BCT has the following directed path

(C0, G0)⇒ (C1, G1)⇒ · · · ⇒ (Cl, Gl). (4.58)

The transitivity of the map Ψ mentioned above implies that for any i ∈ {0, . . . , (l − 1)} we have Cl ∈
Ψ(Gi,Gl)(Ci). Moreover since the set of reactions Kr(G1),Kr(G2), . . . is monotonically increasing, if C0 ⊂ Cl
then Ci ⊂ Cl for each i = 1, . . . , (l − 1).

Let L be the set of all leaf nodes in the BCT. A leaf node (C,A) ∈ L is called minimal if there is no
other leaf node that is strictly contained in (C,A) i.e. if (C ′, A′) ∈ L, C ′ ⊂ C and A′ ⊂ A then C = C ′

and A = A′. Henceforth we denote the set of all minimal leaf nodes by Lmin. Our main result of the paper,
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Theorem 4.4, will show that under certain conditions these minimal leaf nodes exactly characterize all the

irreducible state-spaces for the network Ñ σ in the infinite state-space Ẽσ0 = Eσb × Ndf0 . However before we
state this result we need an appropriate notion of death-cascades and we need to impose some stoichiometric
restrictions on the network as in Section 4.3.

Pick a minimal leaf node (C,A) ∈ Lmin and let Ñ σ(C,A) be the network formed by removing all the
free species outside Dσf (A) and discarding all the reactions outside Kr(C,A). Moreover we also replace the
finite state-space Eσb of the bounded species with its subset C. This replacement is feasible because (4.57)
holds ensuring that reactions in Kr(C,A) cannot produce any free species outside Dσf (A), and C is a closed

communication class for the states of bounded species under these reactions. Let Ñ σ
inv(C,A) be the inverse

of network Ñ σ(C,A) (see Section 2.4). We compute the BCT for network Ñ σ
inv(C,A) and refer to it as the

Death-cascade Tree (DCT) for network Ñ σ(C,A). Let Ld(C,A) denote the set of all leaf nodes of this DCT.
Note that for any leaf node (C ′, A′) ∈ Ld(C,A) we certainly have C ′ ⊂ C and A′ ⊂ A. We say that (C,A) is
death-exhaustive if there exists a leaf node (C ′, A′) ∈ Ld(C,A) such that A′ = A. If such a leaf node exists
then it is the only leaf node in Ld(C,A) since C ′ = C. This is shown in the proof of Lemma 7.2.

Consider a minimal leaf node (C,A) ∈ Lmin and let K̃p(A) be the set of all those reactions that do not
involve any bounded species and do not produce any free species outside the set Dσf (A), i.e.

K̃p(A) = {k = 1, . . . ,K : supp(νσk) = supp(ρσk) = ∅ and supp(ρ̃σk) ⊂ A}. (4.59)

Let Ŝσ = Proj(S̃σ, db + 1, db + df ) be the df ×K matrix formed by the last df rows of the (db + df ) ×K
stoichiometry matrix S̃σ for network Ñ σ and let Ŝσ[K̃p(A)] be the matrix formed by restricting Ŝσ to only

those columns that correspond to reactions in K̃p(A). Recall that the set of all free species is Df = {σ(db+i) :
i ∈ F}. For any i ∈ F we say that the free species σ(db + i) ∈ Df is singularly-degradable w.r.t. A if (4.53)

is satisfied with matrix Ŝσ[K̃p(A)]. To obtain the irreducible state-space corresponding to the leaf node
(C,A) ∈ Lmin, we shall permute the network according to the permutation σ3(A) : D → D which ensures
that the copy-numbers of all the free species in Dσf (A) occupy the components (db + 1), . . . , (db + |A|) of the
state vector. Such a permutation can be defined by setting it to be the same as σ2 on the set {1, . . . , db}
and letting its image on the set {(db + 1), . . . , (db + df )} be determined by (4.54) with B = Dσf (A). We now
state the main result of our paper.

Theorem 4.4 Suppose Assumption 3.1 holds, network Ñ σ satisfies Assumption 2.1 and its state-space is

Ẽσ0 = Eσb × Ndf0 . Let L and Lmin be the sets of all leaf nodes and minimal leaf nodes for the BCT of the
network. Then we have the following:

(A) Pick any minimal leaf node (C,A) ∈ Lmin. Suppose that this leaf node is death-exhaustive and all

the free species in Dσf (A) are singularly-degradable w.r.t. A. Then the set C × N|A|0 × {0} is an

irreducible state-space for network Ñ σ permuted according to permutation σ = σ3(A), where 0 denotes
the (df − |A|)-dimensional vector of zeros. Additionally if all the free species in the set Df ∩ (Dσf (A))c

are also singularly-degradable w.r.t. A then C × N|A|0 × {0} is the only irreducible state-space for

network Ñ σ that can have a nonempty intersection with the set C × Ndf0 .

(B) Suppose that all leaf nodes are minimal (i.e. L = Lmin), each leaf node (C,A) ∈ L is death exhaustive
and all the free species in Df are singularly-degradable w.r.t. A. Then up to the relabeling of free

species in Df , all the irreducible state-spaces for network Ñ σ are given by

C × N|A|0 × {0} for all (C,A) ∈ L.

Proof. This theorem is proved in the Appendix and it generalizes Proposition 4.3 by taking the dynamics
of bounded species into account. �

We end this section with a couple of useful remarks.
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Remark 4.5 Commonly in Systems Biology networks (see Section 6) there is only one leaf node (C,A)
and there is only one class C0 in C(∅) such that C0 ⊂ C. Hence all leaf nodes are minimal (because
L = Lmin = {(C,A)}) and one can see that the BCT reduces to a single path

(C0, ∅)⇒ (C1, G1)⇒ · · · ⇒ (Clb , Glb) = (C,A).

In such a scenario we can talk about the birth-cascades for the network in the same way as in Section 4.3.
In particular Dσf (Gl) is the set of free species that belong to the l-th birth cascade. If the leaf node (C,A)

is death-exhaustive as well, then the Death-Cascade Tree (DCT) for network Ñ σ(C,A) is also a single path
and so we can also talk about the death-cascades for the network in the same way as in Section 7.2.

Remark 4.6 Suppose from part (A) of Theorem 4.4 we obtain an irreducible state-space for network Ñ σ.
Then the corresponding irreducible state-space for the original network N can be easily identified using
Propositions 4.2 and 2.3. Similarly if all the irreducible state-spaces for network Ñ σ can be found using part
(B) of Theorem 4.4, then we can identify all the irreducible state-spaces for the original network N using
Propositions 4.2 and 2.3.

5 Algorithms

The aim of this section is to provide detailed algorithmic descriptions of various procedures that can be
used to apply the results in this paper. We start with network N = (V,O,Λ) with d species in the set
D = {1, . . . , d} and K reactions of the form (see Section 2). We assume that this network satisfies Assumption
2.1 and its conservation data is (Γ, c). Our first goal is to find a decomposed state-space Eσ0 of the form
(1.13) under some suitably constructed permutation σ : D → D. This is accomplished in the method
FindDecomposedStateSpace(·) (see Algorithm 1). This method starts by identifying the bounded species
and finding their optimal state-space (see Section 3.1). It then computes the numbers of free (df ) and
restricted (dr) species, and if dr > 0, then it tries to classify the unbounded species into free and restricted
species in such a way that the associated affine map φ (see (3.38)) is compatible with the reaction network
(see Assumption 4.1). Such a compatible map is found by iterating through the set If (see (3.34)), whose
elements determine all plausible partitions of the set of unbounded species (Du) into the sets of free (Df ).
The outputs returned by FindDecomposedStateSpace(·) are the permutation map σ and the decomposed
state-space Eσ0 .

If the network has any restricted species (i.e. dr > 0), then we construct the reduced network Ñ σ =

(Ṽ, Õ, Λ̃) along with the associated permutation σ = σ2 (see (3.35)), by systematically removing the re-
stricted species as described in Section 4.1. Assuming that a compatible affine map φ was discovered by
FindDecomposedStateSpace(·), the reduced network Ñ σ will also satisfy Assumption 2.1, which is nec-
essary for the process of identifying all the irreducible state-spaces. This process is accomplished by our
next method FindirreducibleStateSpaces(·) (see Algorithm 2), which works by first constructing the

Birth-Cascade Tree (BCT) for network Ñ σ and then examining all the minimal leaf nodes of this BCT (see
Section 4.4). The construction of BCT is performed by method
ConstructBCT(·) (see Algorithm 3) which returns the set of leaves L of the BCT.

For each minimal leaf node (C,A) ∈ Lmin the method FindirreducibleClasses(·) checks if the set

C × N|A|0 × {0} is an irreducible state-space for network Ñ σ under the permutation σ = σ3(A) (see Section
4.4) along with whether all the free species are singularly-degradable w.r.t. A. If both of these are true,

then part (A) of Theorem 4.4 tells us that C ×N|A|0 ×{0} is the only irreducible state-space which can have

common elements with the set C × Ndf0 . If this is the case for all minimal leaf nodes and L = Lmin, then
using FindirreducibleClasses(·) we recover all the irreducible state-spaces for our network due to part

(B) of Theorem 4.4. Remark 4.6 tells us how these irreducible state-spaces for network Ñ σ can be mapped
to the corresponding irreducible state-space for the original network N .
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Algorithm 1 Finds a decomposed state-space Eσ0 of the form (1.13) for a network N = (V,O,Λ) with
conservation data (Γ, c)

Require: Network N satisfies Assumption 2.1
1: function FindDecomposedStateSpace(N ,Γ, c)
2: For each species i ∈ D solve the LP (3.28) to compute bi.
3: Set Db = {i ∈ D : bi < ∞} and Du = {i ∈ D : bi = ∞} to be the sets of bounded and unbounded

species respectively. Also set db = |Db| and du = |Du|.
4: Select the permutation map σ1 : D → D according to (3.29).
5: Set σ = σ1 and construct the permuted network N σ (see Section 2.5) along with its conservation

data (Γσ, c).
6: Compute the finite set Eσb according to (3.31). This is the state-space for bounded species in Db.
7: Evaluate df and dr according to (3.32).
8: if dr = 0 then
9: Output: The decomposed state-space is Eσ0 = Eσb × Ndf0 under permutation σ.

10: else
11: Verify Assumption 3.1 and if it does not hold then return QUIT
12: Compute the set If given by (3.34).
13: for all I ∈ If do
14: Set Df = {σ(db + i) : i ∈ I} and Dr = {σ(db + i) : i ∈ Ic} to be the sets of free and restricted

species respectively.
15: Select the permutation map σ2 : D → D according to (3.35).
16: Set σ = σ2 and construct the permuted network N σ along with its conservation data (Γσ, c)
17: Define the affine map φ : Rdf → Rdr according to (3.38).
18: if φ satisfies Assumption 4.1 then
19: Output: Map φ is compatible with network N σ.
20: Exit the for-loop and go to step 23
21: end if
22: end for
23: If φ does not satisfy Assumption 4.1 then return QUIT. Otherwise let Φ be the graph of φ given

by (1.14) .
24: Output: The decomposed state-space is Eσ0 = Eσb × Φ under permutation σ
25: end if
26: end function
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Algorithm 2 Identifies the irreducible state-spaces for network Ñ σ = (Ṽ, Õ, Λ̃) in the state-space Eσb ×Ndf0

Require: Network Ñ σ only has bounded and free species in the sets Db = {σ(i) : i = 1, . . . , db} and
Df = {σ(db + i) : i = 1, . . . , df} respectively.

1: function FindirreducibleStateSpaces(Ñ σ, Eσb × Ndf0 )

2: Let L = ConstructBCT(Ñ σ, Eσb × Ndf0 )
3: Identify the set of minimal leaf nodes Lmin ⊂ L
4: Initialize L′ = ∅.
5: for all (C,A) ∈ Lmin do

6: Let Ñ σ(C,A) be the network formed by removing all the free species outside Dσf (A) and discarding
all the reactions outside Kr(C,A) (see Section 4.4).

7: Let Ñ σ
inv(C,A) be the inverse of network Ñ σ(C,A) (see Section 2.4).

8: Set Ld(C,A) = ConstructBCT(Ñ σ
inv(C,A), C × Ndf0 )

9: Let K̃p(A) be the set of reactions given by (4.59).

10: Construct the matrix Ŝσ[K̃p(A)] by restricting the stoichiometry matrix for network Ñ σ to only

its last df rows and only the columns that correspond to reactions in K̃p(A).
11: Compute the set of free species Dsd(A) ⊂ Df that are singularly-degradable w.r.t. A i.e.

Dsd(A) = {σ(db + i) : i = 1, . . . , df and (4.53) is satisfied with matrix Ŝσ[K̃p(A)]}.

12: if Ld(C,A) = {(C,A)} AND Dsd(A) ⊂ Dσf := {σ(db + i) : i ∈ A} then
13: Set σ = σ3(A) (see Section 4.4) and construct the permuted network Ñ σ (see Section 2.5).

14: Output: The set C×N|A|0 ×{0} is an irreducible state-space for network Ñ σ under permutation
σ.

15: if Dsd(A) = Df then
16: Update L′ ← L′ ∪ {(C,A)}.
17: end if
18: end if
19: end for
20: if L = Lmin = L′ then
21: Output: The irreducible state-spaces found in step 14 are the only irreducible state-spaces for

network Ñ σ in the state-space Eσb × Ndf0 up to the relabeling of free species in Df .
22: end if
23: end function
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Algorithm 3 Constructs the Birth-Cascade Tree (BCT) for network Ñ σ = (Ṽ, Õ, Λ̃) with state-space

Eσb × Ndf0 . This BCT is a directed graph with nodes in the set T given by (4.55).

Require: Network Ñ σ only has bounded and free species in the sets Db = {σ(i) : i = 1, . . . , db} and
Df = {σ(db + i) : i = 1, . . . , df} respectively.

1: function ConstructBCT(Ñ σ, Eσb × Ndf0 )
2: Initialize l = 0, L = ∅ and G0 = {(C, ∅) : for each C ∈ C(∅)}.
3: Add each node in G0 to the BCT.
4: repeat
5: Set Gl+1 = ∅
6: for all (C,A) ∈ Gl do
7: Compute the set B = B(C,A) where the operator B is defined by (4.56).
8: if B 6= ∅ then
9: Set A′ = A ∪B.

10: for all C ′ ∈ Ψ(A,A′)(C) do
11: Update Gl+1 ← Gl+1 ∪ {(C ′, A′)}.
12: Add the node (C ′, A′) to the BCT along with the directed edge (C,A)⇒ (C ′, A′).
13: end for
14: else
15: Update L← L ∪ {(C,A)}
16: end if
17: end for
18: Update l← l + 1
19: until Gl = ∅
20: Output: The set of leaf nodes of the BCT is L.
21: end function

6 Examples

In this section we illustrate our results using several networks from Systems Biology. We start by considering
a family of simple Gene-Expression networks which illustrate various theoretical ideas developed in this paper
(see Section 6.1). Next we consider a couple of Circadian Clock models (Section 6.2) and a Bacterial Heat-
Shock response model (Section 6.3). The networks underlying these models have many species and reactions,
and we discuss how the state-space analysis presented in this paper can help in understanding network
design as well as the long-term behavior of the associated stochastic models. In Section 6.4 we provide a
simple example of a Toxin-Antitoxin network to demonstrate how our results can aid the automatic, real-
time application of the quasi-stationary approximation to speed up stochastic simulations of the multiscale
network. Finally in Section 6.5, we present a class of networks, where our analysis along with certain existing
results, provide the exact stationary distribution for the stochastic model.

In all the examples, the reactions propensity functions (λk-s) are assumed to have the mass-action form
(2.20) unless otherwise stated. For correct interpretation of our results we provide a “Species Chart” that
encodes the names of network species into the notation used in our paper i.e. S1,S2, . . . . Throughout this
section the copy-number of species Si is denoted by xi. Often we would need to permute the network (see
Section 2.5) for our analysis. The permutation σ for which the final results are shown is given as a vector
σ = (σ(1), . . . , σ(d)), and under this permutation the i-th component of the state-vector corresponds to the
copy-number of species Sσ(i).

6.1 Family of Gene-Expression networks

We now consider several variants of the simple Gene-Expression network given in [39]. In these networks there
is a Gene (G), which is responsible for the transcription of massenger RNA or mRNA (M) molecules, that
later translate into the Protein (P ) of interest. Both mRNA and Protein molecules degrade spontaneously
and as in [40] we allow for the Gene to switch between an active (Gon) and an inactive (Goff) state. For now
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we assume that the transcription of mRNA is only possible in the active gene state Gon.
The first model (see Network 0 in Figure 1A) we examine consists of 4 species (see the Species Chart in

Table 1) and 6 reactions displayed in Figure 1B. For this network there is only one (independent) conservation
relation γ = (1, 1, 0, 0) which is semi-positive, and so there are two bounded species S1 and S2, whose copy-
numbers x1 and x2 are “locked” in the relation x1 + x2 = c = 1, which simply says that the total number
of Gene copies c is conserved by the dynamics. The other two species S3 and S4 are not involved in this
conservation relation, and are hence free species.

Species Chart
S1 = Goff S3 = M
S2 = Gon S4 = P

Table 1: Species chart for Gene-expression networks in Section 6.1. Gon and Goff denote the gene in active
and inactive states. M denotes the mRNA and P denotes the corresponding Protein.

Using Algorithms 1 and 2, we can identify the decomposed state-space and the irreducible state-spaces
for Network 0 (see Table 2). One can verify that the state-space Eσb = {(1, 0), (0, 1)} for bounded species is a
closed communication class in C(∅) and so the Birth-Cascade Tree (BCT) for this network will only consist
of one path whose nodes give us the birth-cascades of free species (see Remark 4.5). It is easy to see that
the length of this path is 3, the first birth-cascade is {S3} and the second one is {S4}. Observe that these
two cascades correspond naturally to the two stages in the network, transcription and translation, thereby
suggesting that our cascade construction approach is a useful tool for understanding the structure of large
Systems Biology networks. This point is reinforced by examples in Sections 6.2 and 6.3. We can check that
the only leaf node of BCT is death-exhaustive and recover the death-cascades for the network (see Remark
4.5). In Network 0, both free species degrade spontaneously and so they are both singularly-degradable
w.r.t. any set. Other conditions of Theorem 4.4 also hold and so we can use this result to conclude that the
full state-space Eσb × N2

0 is the unique irreducible state-space for Network 0. This concludes our state-space
analysis for Network 0.

We now create Networks 1-4 by adding feedback from protein molecules (see [40]) to various reactions
in Network 0 (see Figure 1A). This feedback is added to reaction k by multiplying its original mass-action
propensity function λk(x) by a Hill-type factor of the form

θfb
xn4

c+ xn4
, (6.60)

where x4 is the number of protein molecules, and θfb, c and n are strictly positive parameters. Note that
λk(x) = 0 if x4 = 0 which means that if we just multiply the propensity function for reaction k in Network
0 by this factor (6.60), then the modified network will not satisfy Assumption 2.1 which is required for our
analysis. However we can circumvent this problem by simply adding a molecule of species S4 to both sides
of reaction k, changing it from A −→ B to A+ S4 −→ B + S4. This simple trick ensures that the modified
network satisfies Assumption 2.1 and its dynamics remains unaffected as the reaction stoichiometry is the
same. Incorporating the feedback mechanism this way, we list the reactions for Networks 1-4 in Figure 1B
and provide the results from the state-space analysis of these networks in Table 2. Observe that in each of
these cases a unique irreducible state-space is guaranteed by Theorem 4.4, but this irreducible state-space
varies among networks. Also note that in all the Networks 0-4, the reactions stoichiometries are the same
and consequently their decomposed state-space is identical.

We now consider another gene-expression model (see Network 5 in Figure 1) by allowing the transcription
of mRNA in the inactive gene state Goff, and having feedback from protein molecules to the translation
reaction as well as the gene-switching reactions. In this network also the decomposed state-space is the same
as before but there are exactly two irreducible state-spaces, {(0, 1)} × N0 × {0} and {(1, 0)} × N0 × {0}
according to Theorem 4.4 (see Table 2).

We end this section by remarking that if all the Hill-type feedback factors have a positive basal level, i.e.
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No. Reaction No. Reaction
1 S1 −→ S2 4 S3 −→ S3 + S4

2 S2 −→ S1 5 S3 −→ ∅
3 S2 −→ S2 + S3 6 S4 −→ ∅

Network 1
No. Reaction No. Reaction
1 S1 + S4 −→ S2 + S4 4 S3 −→ S3 + S4

2 S2 −→ S1 5 S3 −→ ∅
3 S2 −→ S2 + S3 6 S4 −→ ∅

Network 2
No. Reaction No. Reaction
1 S1 −→ S2 4 S3 −→ S3 + S4

2 S2 + S4 −→ S1 + S4 5 S3 −→ ∅
3 S2 −→ S2 + S3 6 S4 −→ ∅

Network 3
No. Reaction No. Reaction
1 S1 −→ S2 4 S3 −→ S3 + S4

2 S2 −→ S1 5 S3 −→ ∅
3 S2 + S4 −→ S2 + S3 + S4 6 S4 −→ ∅

Network 4
No. Reaction No. Reaction
1 S1 −→ S2 4 S3 + S4 −→ S3 + 2S4

2 S2 −→ S1 5 S3 −→ ∅
3 S2 −→ S2 + S3 6 S4 −→ ∅

Network 5
No. Reaction No. Reaction
1 S1 + S4 −→ S2 + S4 5 S3 + S4 −→ S3 + 2S4

2 S2 + S4 −→ S1 + S4 6 S3 −→ ∅
3 S2 −→ S2 + S3 7 S4 −→ ∅
4 S1 −→ S1 + S3

1

B

Figure 1: The Gene-expression networks in Section 6.1. The networks are depicted in panel A and the
corresponding reactions sets are tabulated in panel B. The feedback interactions are shown with dotted
arrows and for each of the Networks 1-4, the corresponding feedback interaction is clearly marked in the
middle figure of panel A.

instead of (6.60) we have

θ1 + θfb
xn4

c+ xn4
,

for some θ1 > 0, then we do not need to add species S4 to both sides of feedback reactions to ensure that
the modified networks satisfy Assumption 2.1. Indeed now Networks 1-4 will satisfy this assumption with
the original set of reactions (same as Network 0) and hence they all will have the full state-space Eσb ×N2

0 as
their unique irreducible state-space. The same holds true for Network 5 even though it has an extra reaction.
This illustrates the significance of Assumption 2.1 in determining the irreducible state-spaces.
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Network Decomposed State-Space Irreducible state-spaces
0 Eσb × N2

0 Eσb × N2
0

1 Eσb × N2
0 {(1, 0, 0, 0)}

2 Eσb × N2
0 Eσb × N2

0

3 Eσb × N2
0 Eσb × {(0, 0)}

4 Eσb × N2
0 Eσb × N0 × {0}

5 Eσb × N2
0 {(0, 1)} × N0 × {0} and

{(1, 0)} × N0 × {0}

Table 2: State-space analysis for Gene-expression networks in Section 6.1. All results reported w.r.t the
identity permutation σ = (1, 2, 3, 4) and Eσb = {(1, 0), (0, 1)}. For all the five networks all irreducible state-
spaces were identified by Theorem 4.4.

6.2 Two Circadian Clock models

Circadian clocks are molecular time-keeping devices that coordinate many physiological processes in living
organisms [41]. These clocks generate oscillatory rhythms that are usually entrained to the periodic cues
provided by the day-light cycles [42, 43]. We consider two circadian clock networks in this section and
prove using our analysis that there exists a unique irreducible state-space for both these models, thereby
indicating that the stationary distributions for the associated stochastic models is unique. The existence of
these stationary distribution can be checked using the techniques in [27] and hence the stochastic models for
both these networks are ergodic (see Section 1). Therefore under constant inputs the individual stochastic
trajectory of a single circadian clock may be oscillatory, but the mean trajectories, corresponding to the
bulk or population-level behavior of several uncoupled and identical circadian clocks, cannot be oscillatory
due to (2.18). This is consistent with both computational [42, 27] and experimental [44] observations in the
existing literature. In a recent paper it is argued that this loss of oscillatory activity at the population-level
plays an important role in ensuring that the entrainment to periodic cues is robust at the population-level
[45].

The first circadian clock model we consider is from Vilar et al. [5] and it is depicted in Figure 2A. It
consists of gene-expression modules for an activator protein A and a repressor protein R which sequesters
the activator protein A by forming an inactive complex AR. The activator protein A can enhance the
transcription of both the mRNAs (MA and MR) by binding to the promoter regions of the activator gene
DA and the repressor gene DR. When the promoter region is occupied the activator and the repressor
genes are denoted by D′A and D′R respectively. The overall network consists of 9 species (see the Species
Chart in Table 3) and 16 reactions (see Table 4). The results from our state-space analysis on this network
are presented in Figure 2B and they show that the network has a unique irreducible state-space which
coincides with its decomposed state-space. For this network the situation of Remark 4.5 applies and so
we can arrange all the free species into birth and death cascades (Figure 2C). These cascades correspond
naturally to different stages in the network.

Next we examine the detailed mammalian circadian clock given in [46] (see Figure 3A). It consists of three
gene-expression modules corresponding to Per, Cry and Bmal1 genes. The proteins created by these genes
participate in complex regulatory steps through various mechanisms such as formation of dimeric complexes,
translocation in an out of nucleus and undergoing phosphorylation-dephosphorylation cycles. Overall the
network consists of 16 species (see the Species Chart in Table 5) and 52 reactions (see Table 6). Interestingly
there are no conservation relations for this network and so all the species are free and Theorem 4.4 proves
that N16

0 is the unique irreducible state-space (see Figure 3). The birth and death cascades, displayed in
Figure 3C, signify the various network stages as before.

6.3 Bacterial Heat-Shock response model

We now analyze the bacterial heat-shock response model developed in Kurata et al. [47]. It is known
that when bacterial cells are exposed to thermal shocks, certain cellular structures are damaged, causing
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Species Chart
S1 = MA S6 = GbA
S2 = A S7 = GuA
S3 = MR S8 = GbR
S4 = R S9 = GuR
S5 = AR

Table 3: Species chart for the first Circadian clock model (Vilar et al. [5]). A and R denote the activator
and repressor proteins. GA (MA) and GR (MR) denote the gene (mRNA) corresponding to these proteins.
The superscript b or u indicates the bound or unbound from of the gene. AR denotes the dimeric complex
between A and R.

No. Reaction No. Reaction
1 S6 + S2 −→ S7 9 S2 −→ ∅
2 S7 −→ S6 + S2 10 S9 −→ S9 + S3

3 S8 + S2 −→ S9 11 S8 −→ S8 + S3

4 S9 −→ S8 + S2 12 S3 −→ ∅
5 S7 −→ S7 + S1 13 S3 −→ S3 + S4

6 S6 −→ S6 + S1 14 S4 −→ ∅
7 S1 −→ ∅ 15 S2 + S4 −→ S5

8 S1 −→ S1 + S2 16 S5 −→ S4

Table 4: Reactions for the first Circadian clock model (Vilar et al. [5]). These reactions follow the Species
Chart in Table 3. The network is depicted in Figure 2.

Species Chart
S1 = MP S9 = PCN
S2 = MC S10 = PCCP
S3 = MB S11 = PCNP
S4 = PC S12 = BC
S5 = CC S13 = BCP
S6 = PCP S14 = BN
S7 = CCP S15 = BNP
S8 = PCC S16 = IN

Table 5: Species chart for the second Circadian clock model (Leloup and Goldbeter [46]). P , C and B denote
the Per, Cry and Bmal1 proteins. The dimeric complex between two proteins X and Y is denoted by XY .
The subscripts C, N and P stand for “Cytosol”, “Nucleus” and “Phosphorylated” respectively. MX denotes
the mRNA for protein X and IN is an inactive trimer in the Nucleus.

some proteins to denature or unfold. Accumulation of these denatured proteins within cells can disrupt
their normal functioning and hence a regulatory mechanism has evolved to detect and repair unfolded
proteins. The model in [47] describes this mechanism in bacterium E. Coli and it consists of 5 distinct
gene-expression modules responsible for creating various heat-shock specific proteins (hsps), such as the
heat-shock transcription factor σ32 factor, proteases like HslVu, FtsH etc. and a molecular chaperon DnaK,
which assists in the refolding of denatured proteins. The sigma factor σ32 competes with the dominant
sigma factor σ70 to bind to the RNA Polymerase (RNAP), and when it is able to bind, it can initiate the
transcription of the heat-shock gene ph, which then produces the other heat-shock proteins. The sigma
factor σ32 is itself produced by the gene pg when RNAP is bound to sigma factor σ70. As explained in
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Figure 2: Results for the Circadian clock model (Vilar et al. [5]) depicted in panel A. The results of
state-space analysis are presented in panel B and the birth-death cascades are shown in panel C. The birth-
cascades signify various stages in the network. Note that in this network there are four bounded species
(σ(1), . . . , σ(4)) and five free species (σ(5), . . . , σ(9)).

[47] the heat-shock proteins interact in complex ways to realize both feedback and feedforward control that
confers several performance advantages to the heat-shock response mechanism.

The network underlying the model in [47] is shown in Figure 4A and it is fairly large, with 28 species
(see the Species Chart in Table 7) and 61 reactions (see Table 8). The network contains 5 semi-positive
conservation relations corresponding to various conserved quantities (see Figure 4B). Due to these relations
12 species are bounded while the rest are free. Using our analysis we can the find the decomposed state-space
for this network and verify the existence of a unique irreducible state-space (see Figure 4B). Note that in
this example, the irreducible state-space is a strict subset of the full state-space and in particular, the last
two components of each state in this irreducible state-space are zeros. These two components being zero
implies that the copy-number of unfolded protein molecules is zero. As these unfolded protein molecules
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No. Reaction No. Reaction
1 ∅ −→ S1 27 S8 −→ S9

2 S1 −→ ∅ 28 S8 −→ ∅
3 S1 −→ ∅ 29 S9 −→ S11

4 ∅ −→ S2 30 S11 −→ S9

5 S2 −→ ∅ 31 S9 + S14 −→ S16

6 S2 −→ ∅ 32 S16 −→ S9 + S14

7 ∅ −→ S3 33 S9 −→ ∅
8 S3 −→ ∅ 34 S10 −→ ∅
9 S3 −→ ∅ 35 S10 −→ ∅
10 S1 −→ S1 + S4 36 S11 −→ ∅
11 S4 −→ S6 37 S11 −→ ∅
12 S6 −→ S4 38 S3 −→ S12

13 S8 −→ S4 + S5 39 S12 −→ S13

14 S4 + S5 −→ S8 40 S13 −→ S12

15 S4 −→ ∅ 41 S12 −→ S14

16 S2 −→ S2 + S5 42 S14 −→ S12

17 S7 −→ S5 43 S12 −→ ∅
18 S5 −→ S7 44 S13 −→ ∅
19 S5 −→ ∅ 45 S13 −→ ∅
20 S6 −→ ∅ 46 S14 −→ S15

21 S6 −→ ∅ 47 S15 −→ S14

22 S7 −→ ∅ 48 S14 −→ ∅
23 S7 −→ ∅ 49 S15 −→ ∅
24 S8 −→ S10 50 S15 −→ ∅
25 S10 −→ S8 51 S16 −→ ∅
26 S9 −→ S8 52 S16 −→ ∅

Table 6: Reactions for the second Circadian clock model (Leloup and Goldbeter [46]). These reactions follow
the Species Chart in Table 5. The network is depicted in Figure 3.

can only leave the network by converting to a properly folded protein (via reaction 25 in Table 8), we can
conclude that the heat-shock response network is such, that despite having noisy, stochastic dynamics, all
the unfolded protein molecules will eventually get folded, irrespective of the initial count of these unfolded
protein molecules. We base this assertion on the fact that starting from any initial state in the state-space,
the Markovian reaction dynamics will eventually get trapped inside the unique irreducible state-space. What
makes this assertion powerful is that it holds just due to the structure of the network, regardless of the values
of the rate constants of the reactions. Also for this network we are in the situation of Remark 4.5. Hence
we can arrange all the free species into birth and death cascades which correspond to various network stages
(see Figure 4C).

6.4 A simple Toxin-Antitoxin network

Many intracellular networks have reactions taking place on many different time-scales [32, 35]. It is well
known that direct stochastic simulations of such networks, using Gillespie’s SSA [13], is computationally
infeasible because most of the resources are spent on simulating the “fast” reactions which are generally
less important than the “slow” ones [33]. To remedy this problem, approximate simulation approaches
have been developed that separate the time-scales by applying the quasi-stationary assumption (QSA) on
the fast subcomponents of the network [32]. Under this assumption, the slow reactions are “switched-
off” and the dynamics of the slow species involved in these reactions is “frozen in time”, while the stable
Markovian dynamics of the fast subnetwork relaxes to a unique stationary distribution (see (2.18)). Using
this stationary distribution the propensities of the slow reactions can be estimated and the next slow reaction
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Figure 3: Results for the Circadian clock model (Leloup and Goldbeter [46]) depicted in panel A. The results
of state-space analysis are presented in panel B and the birth-death cascades are shown in panel C. The
birth-cascades signify various stages in the network. Note that in this network all the species are free as
there are no conservation relations.

can be sampled. Applying QSA between every consecutive slow reaction events allows one to approximate the
original dynamics without having the simulate the fast reactions, thereby reducing the overall computational
effort drastically.

For a successful application of QSA it is imperative to ascertain the stability or ergodicity of the fast
subnetwork in real-time (i.e. during the simulation run), as the set of available fast reactions can depend
on the current state of the slow species. Moreover for efficiently estimating the slow reaction propensities it
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Species Chart
S1 = RNAP S15 = σ32 : DnaK
S2 = σ70 S16 = Punfolded

S3 = σ70 : RNAP S17 = Punfolded : DnaK
S4 = σ32 S18 = Protease
S5 = σ32 : RNAP S19 = σ32 : DnaK : Protease
S6 = D S20 = HslVu
S7 = RNAP : D S21 = σ32 : HslVu
S8 = σ70 : RNAP : D S22 = mRNA(DnaK)
S9 = σ32 : RNAP S23 = mRNA(Protease)
S10 = pg S24 = mRNA(HslVu)
S11 = ph S25 = mRNA(σ32)
S12 = σ70 : RNAP : pg S26 = mRNA(FtsH)
S13 = σ32 : RNAP : ph S27 = FtsH
S14 = DnaK S28 = σ32 : DnaK : FtsH

Table 7: Species chart for the Bacterial Heat-Shock response model (Kurata et al. [47]). Here the complex
formed by binding two biomolecules A and B is denoted by A : B. The main players in this network are
the heat-shock proteins DnaK, Protease, HslVu and FtsH, and the transcription factor σ32 which binds to
the RNA Polymerase (RNAP) to initiate the production of the heat-shock proteins via the ph gene. This
transcription factor σ32 is itself created by the gene pg when the transcription factor σ70 is bound to RNAP.
Here D denotes the part of DNA that does not include these genes, and P is the protein of interest that
needs to be converted from its denatured form Punfolded to its proper form Pfolded. The mRNA for protein
X is denoted by mRNA(X).

is useful to determine the exact time-varying support-sets of the stationary distributions. These tasks can
be automatically accomplished by integrating our computational procedures for state-space analysis, with
any QSA-based simulation algorithm like the slow-scale SSA or ssSSA [33] or the Nested SSA [34, 35]. We
illustrate this next using a simple Toxin-Antitoxin network module which is found in many bacterial cells
and is believed to lead to the formation of slow-growing persister cells that exhibit multi-drug tolerance.
This example shows how restricted species arise naturally when we restrict our attention to a subnetwork
within the larger network. Moreover this example also highlights that the flexibility in the classification of
unbounded species as free or restricted (see Remark 3.3) can be really important for applications. In fact
for this example, this classification will change randomly with time depending on the states visited by a
stochastic trajectory.

The simple Toxin-Antitoxin network we consider is depicted in Figure 5 and it is based on the more
detailed model given in [48]. It consists of a single DNA strand containing genes for both Toxin T and
Antitoxin A protein molecules. Both these proteins are translated by a common biscistronic mRNA M and
they both annihilate each other in the sense that they bind to form an inactive complex AT which does
not participate in the dynamics. The Antitoxin molecules directly inhibit the transcription of mRNA and
the Toxin molecules convert to a protein P that interferes with bacterial metabolism and harms the cells
in various ways [49]. Following the Species Chart in Table 9, we can describe our simple Toxin-Antitoxin
system as a network with 8 reactions which are listed along with their propensity functions in Table 10. The
choice of rate constants in these propensity functions is arbitrary but reflective of the values found in the
literature [48]. From these rates it can be inferred that two reactions can be considered fast, namely, the
translation of mRNA and the mutual annihilation of Toxin and Antitoxin proteins (see Figure 5A).

Suppose one is interested in simulating the stochastic model for this network in the time period [0, T ]
for T = 100. Performing exact stochastic simulations is cumbersome due to the presence of fast reactions,
but an approximate QSA-based algorithm can be used for carrying out these simulations with far lesser
computational effort. To apply QSA, we consider the dynamics of the component of the network consisting
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No. Reaction No. Reaction
1 S1 + S2 −→ S3 32 S18 −→ ∅
2 S3 −→ S1 + S2 33 S19 −→ S15

3 S4 + S1 −→ S5 34 S12 −→ S25 + S12

4 S5 −→ S4 + S1 35 S25 −→ ∅
5 S1 + S6 −→ S7 36 S25 −→ S4 + S25

6 S7 −→ S1 + S6 37 S4 −→ ∅
7 S4 + S14 −→ S15 38 S19 −→ S18 + S14

8 S15 −→ S4 + S14 39 S21 −→ S20

9 S16 + S14 −→ S17 40 S28 −→ S14 + S27

10 S17 −→ S16 + S14 41 S13 −→ S13 + S24

11 S3 + S6 −→ S8 42 S24 −→ ∅
12 S8 −→ S3 + S6 43 S24 −→ S20 + S24

13 S5 + S6 −→ S9 44 S20 −→ ∅
14 S9 −→ S5 + S6 45 S21 −→ S4

15 S3 + S10 −→ S12 46 S4 + S20 −→ S21

16 S12 −→ S3 + S10 47 S21 −→ S4 + S20

17 S5 + S11 −→ S13 48 S13 −→ S13 + S26

18 S13 −→ S5 + S11 49 S26 −→ ∅
19 S15 + S18 −→ S19 50 S26 −→ S26 + S27

20 S19 −→ S15 + S18 51 S27 −→ ∅
21 S13 −→ S13 + S22 52 S28 −→ S15

22 S22 −→ ∅ 53 S15 + S27 −→ S28

23 S22 −→ S14 + S22 54 S28 −→ S15 + S27

24 S14 −→ ∅ 55 S5 −→ S1

25 S17 −→ S14 + Pfolded 56 S13 −→ S1 + S11

26 S15 −→ S4 57 S9 −→ S7

27 S19 −→ S4 + S18 58 S15 −→ S14

28 S28 −→ S4 + S27 59 S19 −→ S14 + S18

29 S13 −→ S13 + S23 60 S28 −→ S14 + S27

30 S23 −→ ∅ 61 S21 −→ S20

31 S23 −→ S18 + S23

Table 8: Reactions for the Bacterial Heat-Shock response model (Kurata et al. [47]). These reactions follow
the Species Chart in Table 7. The network is depicted in Figure 4A. Reaction 25 represents the refolding of
denatured protein P when it is in complex with the chaperon protein DnaK. This reaction is the only way
in which molecules of protein P exit the network.

Species Chart
S1 = M S3 = A
S2 = T S4 = P

Table 9: Species chart for the Toxin-Antitoxin model. T and A denote the Toxin and Antitoxin proteins
respectively. They are both translated by the biscistronic mRNA M which is produced constitutively by a
gene. The Toxin protein converts to another protein P which inhibits the metabolism of the cell.

of two fast reactions

S1 −→ S1 + S2 + S3 and S2 + S3 −→ ∅, (6.61)

assuming that all the other slow reactions are switched off and the state of the slow variables is fixed.
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No. Quantity Relation

1 RNAP x1 + x3 + x5 + x7 + x8 + x9 + x12 + x13 = c1
2 σ70 x2 + x3 + x8 + x12 = c2
3 D x6 + x7 + x8 + x9 = c3
4 pg x10 + x12 = c4
5 ph x11 + x13 = c5

Permutation:

σ = (1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 25, 4, 22,

23, 24, 26, 14, 18, 20, 27, 15, 21, 19, 28, 16, 17)

Decomposed state-space for (c1, c2, c3, c4, c5) = (1, 1, 1, 1, 1):

Eσ
0 = C × N14

0 × {(0, 0)},

with

C =





(1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0)
(0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0)
(0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0)
(0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0)
(0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0)
(0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0)
(0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0)
(0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1)





All irreducible state-spaces in Eσ
0 :

C × N14
0 × {(0, 0)}

1
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Figure 4: Results for the Bacterial Heat-Shock response model (Kurata et al. [47]) depicted in panel A.
The mRNAs are not labeled to avoid clutter. The results of state-space analysis are presented in panel
B and the birth-death cascades are shown in panel C. The birth-cascades signify various stages in the
network. Note that in this network there are twelve bounded species (σ(1), . . . , σ(12)) and fourteen free
species (σ(13), . . . , σ(26)).

Following [32], the slow variables in this network are x1 (mRNA copy-number) and y = x2 − x3 (difference
between Toxin and Antotoxin copy-numbers), because these variables are unaffected by the fast reactions in
(6.61). Fixing x1 and y we compute the decomposed state-space for this subnetwork using Algorithm 1. Due
to the semi-positive conservation relation γ1 = (1, 0, 0), the species S1 is bounded and its finite state-space

33



No. Reaction Propensity

1 ∅ −→ S1 λ1(x) =
(

20
1+x3

)

2 S1 −→ S1 + S2 + S3 λ2(x) = θ1x1

3 S2 + S3 −→ ∅ λ3(x) = θ2x2x3

4 S1 −→ ∅ λ4(x) = 2x1

5 S2 −→ ∅ λ5(x) = 5x2

6 S3 −→ ∅ λ6(x) = x3

7 S2 −→ S4 λ7(x) = 0.5x2

8 S4 −→ ∅ λ8(x) = 0.1x4

Table 10: Reactions for the Toxin-Antitoxin model according to the Species Chart in Table 9. The associated
propensity functions λk-s are also provided. Here xi denotes the copy-number of species Si. We choose
θ1 = 100 and θ2 = 10, and hence reactions 2 and 3 are much faster in comparison to the other reactions.
Reaction 3 is the annihilation reaction between Toxin and Antitoxin molecules, which actually represents
formation of an inactive complex AT . In reactions 2 and 3, we choose parameters θ1 = 100 and θ = 10, and
so the subnetwork formed by these two reactions can be considered fast in the context of the larger network.

is simply the singleton {x1}. The only other independent conservation relation is γ2 = (0, 1,−1), which
is mixed-sign, and so there exists a restricted species. Algorithm 1 will automatically classify one of the
remaining species as free and the other as restricted, depending on the value of y, in such a way that the
associated affine map φ is compatible with the network (recall Assumption 4.1). If y ≥ 0, then Algorithm
1 picks species S3 as free, species S2 as restricted, the affine map φ as φ(x2) = x3 + y and the permutation
σ as σ = (1, 3, 2). However these choices violate network compatibility when y < 0 and so in this situation
Algorithm 1 picks species S2 is free, species S3 is restricted, the affine map φ as φ(x3) = x2 − y and the
permutation σ as σ = (1, 2, 3). For convenience, let Sy, φy and σy denote the y-dependent choices of the free
species, the affine map and the permutation σ respectively. Then according to Algorithm 1, the decomposed
state-space for the fast subnetwork permuted with σy is simply {x1}×Φy, where Φy is the graph (see (1.14))
of map φy.

As described in Section 4.1 we can reduce the fast subnetwork (6.61) by eliminating the restricted species
to obtain the following network

S1 −→ S1 + Sy and Sy −→ ∅, (6.62)

where the propensity function for the first reaction is same as before, but for the second reaction it changes
to

λ̃y(x1, z) = θ2zφy(z) = θ2z(z + |y|). (6.63)

Here z is the copy-number of the free species Sy. Observe that the compatibility of map φy ensures that

λ̃y(x1, z) = 0 if and only if z = 0, and hence the reduced network satisfies Assumption 2.1. This allows
us to apply Algorithm 2 to find all the irreducible state-spaces for this reduced network in the state-space
{x1} × N0 and this algorithm outputs that there is a single irreducible state-space which is identical to the
full state-space {x1}×N0. Therefore the stationary distribution for this network must be exactly supported
on {x1} × N0, and in fact using the results in [28] (see also Section 6.5) we can compute it to be exactly:

π̃y(x1, z) =





1 if x1 = 0 and z = 0
1
L

(
θ1
θ2

)z
xz1

(
|y|!

z!(z+|y|)!

)
if x1 > 0 and z = 0, 1, 2, . . .

0 otherwise,

(6.64)

where a! denotes the factorial of a and L is the normalization constant given by

L =

∞∑

z=0

(
θ1

θ2

)z
xz1

( |y|!
z!(z + |y|)!

)
.
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Figure 5: Stochastic simulations for the Toxin-Antitoxin model depicted in panel A. The fast reactions
are indicated with a thicker arrow. In panel B the estimated mean-dynamics E(X4(t)) for copy-numbers of
protein P is plotted, and in panel C, the estimated probability distributions (histograms) for these copy-
numbers at the final time-point T = 100 are shown. All these estimations were performed with two simulation
schemes - the Exact SSA [13] and the approximate ssSSA [33] that uses the quasi-stationary assumption
(QSA). Observe that ssSSA is quite accurate and for this example, the simulations using ssSSA were about
6 times faster than those using the Exact SSA.

It is easy to check that L <∞ and hence π̃y is a valid stationary distribution over {x1}×N0. The uniqueness
of this stationary distribution is guaranteed because {x1} × N0 is the only irreducible state-space for the
reduced network. Due to Proposition 4.2 we can conclude that {x1}×Φy is the only irreducible state-space
for the full subnetwork (6.61) under permutation σy and its unique stationary distribution πy on {x1} ×Φy
is just

πy(x1, z, φy(z)) = π̃y(x1, z).

This also shows that the subnetwork (6.61) is ergodic which is necessary for the application of QSA. For the
slow reactions k ∈ {1, 4, 5, 6, 7, 8} the propensities needed for the application of QSA can be estimated as

λ̂k(x1, y, x4) =
∑

z∈N0

λk(x1, z, φy(z), x2)π̃y(x1, z).
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Using these propensities we can simulate the Toxin-Antitoxin network with ssSSA [33] to estimate the
probability distribution of copy-numbers of protein P (i.e. X4(t)) as well as the mean dynamics of these copy-
numbers. The results are reported in Figure 5, where results from the exact SSA simulations are also shown
for comparison. One can see that ssSSA simulations are quite accurate thanks to the correct identification
of the ergodic subnetwork and its stationary distribution. Moreover these ssSSA simulations are about 6
times faster than simulations with Exact SSA. This simple example nicely illustrates how our algorithms for
state-space analysis can be integrated with a simulation scheme like ssSSA, to aid the application of QSA.
Note that in more complicated examples, the exact form of the stationary distribution may not be available,
but our analysis can verify its uniqueness and provide a description of its exact support. In such cases this
knowledge can be combined with other simulation-based schemes to sample from the stationary distributions
and estimate the slow propensities for applying QSA (see [34, 35]).

6.5 Networks with product-form stationary distributions

In this paper we present a method for finding irreducible state-spaces for networks where infinitely many
states are accessible. On each of these irreducible state-spaces, the uniqueness of the stationary distribution
is guaranteed but its existence needs to be checked by other means (like the analysis in [27]). This is
complementary to certain other results in the literature which assume the knowledge of irreducible state-
spaces and demonstrate the existence of product-form stationary distributions for a large class of networks
[28]. Exploiting this complementarity, we now explore how the combination of our results with the results
on product-form stationary distributions, can provide us with a complete characterization of the simplex of
stationary distributions (see (1.15)) for several networks.

Consider a reaction network N = (V,O,Λ) with d species and K reactions of the form (1.1) (see Section
2). For now we assume that each propensity function λk has the mass-action form (2.20) with some rate
constant θk > 0. In the deterministic setting, the state of the network at time t is a vector of species
concentrations x(t) = (x1(t), . . . , xd(t)) ∈ Rd+, which evolves according to the following ODE

dx

dt
=

K∑

k=1

θk

(
d∏

i=1

xνiki

)
(ρk − νk), (6.65)

where νk = (ν1k, . . . , νdk) and ρk = (ρ1k, . . . , ρdk) are vectors in Nd0 denoting the k-th column of matrices V
and O respectively. Observe that the k-th reaction in the network can simply be represented as νk −→ ρk.
With this association, νk and ρk are called network complexes. Let C = {νk, ρk : k = 1, . . . ,K} be the set of
all network complexes and suppose there exists a strictly positive vector r = (r1, . . . , rd) ∈ Rd+ such that for
each z ∈ C we have

K∑

k=1,νk=z

θk

(
d∏

i=1

rνiki

)
=

K∑

k=1,ρk=z

θk

(
d∏

i=1

rνiki

)
.

This relation simply says that when the vector of species concentrations is r, the rate at which a complex
z is consumed (l.h.s.) is same as the rate at which this complex is produced (r.h.s.). It can be shown
that r is a fixed point for the deterministic state-dynamics (6.65), i.e. r.h.s of (6.65) is 0 when x = r.
Hence the network is called complex-balanced and r is called a complex-balanced fixed point. This property
has several implications regarding the topology of the network as well as the existence, uniqueness and
stability of its fixed points (see [50, 51, 52]). The existence of a complex-balanced equilibrium can be verified
computationally, but it can also be checked for many networks using the famous deficiency zero theorem (see
[52]) from Chemical Reaction Network Theory.

In [28], Anderson et al. prove that if a network N with mass-action propensities is complex-balanced
in the sense described above, then there exists a product-form stationary distribution π for its stochastic
model, on each irreducible state-space E within the state-space E0 ⊂ Nd0 of the network. This stationary
distribution is given by

π(x) =
1

M

d∏

i=1

rxii
xi!

for all x ∈ E , (6.66)
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where a! denotes the factorial of a, r is the complex-balanced fixed point and M is the normalizing constant
given by

M =
∑

x∈E

d∏

i=1

rxii
xi!

. (6.67)

To use this elegant result one needs to know the irreducible state-spaces, which is precisely what is ac-
complished in this paper. In fact, the examples considered before suggest that for many networks we can
provably find all the irreducible state-spaces E1, . . . , EQ for the network using our main result Theorem 4.4.
If this is true, then we can easily compute the corresponding product-from (6.66) stationary distributions
supported on these classes and obtain the exact simplex Σ (see (1.15)) of stationary distributions for the
network.

Note that if the whole nonnegative integer orthant E = Nd0 is an irreducible state-space, then this is the
only irreducible state-space, and the simplex Σ consists of just one stationary distribution π given by (6.66)

with E = Nd0 and M = exp(
∑d
i=1 ri). In other words, π is just a product of Poisson distributions and in such

a scenario, the species copy-numbers are independent at stationarity, with the copy-number distribution of
species i being Poisson with mean ri. As the species are constantly interacting through reactions, having this
independence is quite remarkable, and it has been argued that this independence could play an important
role in metabolic pathways [53].

We now demonstrate how for certain networks, our results can help in accurately computing the stationary
networks by replacing a possibly infinite sum in (6.67) with a finite sum, thereby avoiding any truncation
errors associated with the problem of estimating infinite sums. Assume that network N is complex-balanced
and it does not have any restricted species. Also suppose that using Theorem 4.4, we obtain the irreducible
state-space E = Eb×Nd10 ×{0}, under some permutation σ which we can assume to be identity (i.e. σ(i) = i

for each i), without any loss of generality. Here Eb is a finite set in Ndb0 , db is the number of bounded species
and d1 is some number less than the number of free species df = (d − db). The decomposed form of E
shows that any element x ∈ E can be expressed as x = (xb, xf ,0), where xb = (x1, . . . , xdb) ∈ Eb and

xf = (xdb+1, . . . , xdb+d1) ∈ Nd10 . Therefore we can write (6.67) as

M =
∑

(xb,xf ,0)∈E

d∏

i=1

rxii
xi!

=

(∑

xb∈E

db∏

i=1

rxii
xi!

)

∑

xf∈N
d1
0

db+d1∏

i=db+1

rxii
xi!




= exp

(
db+d1∑

i=db+1

ri

)(∑

xb∈E

db∏

i=1

rxii
xi!

)
,

which is a finite sum, that can be easily computed without incurring any truncation errors. In deriving the
last relation, we have used that

∑∞
n=0 a

n/n! = exp(a) for any a ∈ R.
Until now we were assuming that propensity functions of the complex-balanced network N satisfy mass-

action kinetics. Theorem 6.1 in [28] relaxes this assumption of mass-action kinetics and proves the existence
of product-form stationary distributions for more general kinetics, where each species i has a “rate of asso-
ciation” function κi : N0 → R+. In this setting, the mass-action formula (2.20) for the propensity function
changes to

λk(x) = θk

d∏

i=1

νik−1∏

j=0

κi(xi − j)

and the product-form stationary distribution becomes

π(x) =
1

M

d∏

i=1

rxii∏xi
j=1 κi(j)

for all x ∈ E ,

with the normalizing constant M chosen to ensure that
∑
x∈E π(x) = 1. Observe that this result can be

used to compute the stationary distribution (6.64) for network (6.62) in Section 6.4. Recently this result
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has been extended even further to consider more general species-specific association rate functions (see [54]).
Such results along with our computational framework for identifying irreducible state-spaces, provide a way
for characterizing the stationary distributions for complex-balanced networks.

7 Conclusion

The aim of this paper is to provide a new tool for analyzing continuous-time Markov chain (CTMC) models
of biomolecular reaction networks. Specifically we are interested in situations where the state-space for
the CTMC needs to be countably infinite due to the lack of a global conservation relationship among all
the species. Such situations arise frequently in Systems Biology as stochastic models generally describe
the activity of a small subnetwork embedded within a larger network. We develop a simple procedure to
systematically explore the space of conservation relations among species and represent the state-space of the
CTMC in a special decomposed-form based on the copy-number ranges of all the species. This form can help
in assessing the reachability relations and the communication structures within the infinite state-space of
the underlying CTMC. In this context, the main goal of this paper is to construct a computational method
for finding all the closed communication classes for the CTMC. Such classes are natural attracting sets for
the dynamics and they can also be viewed as irreducible state-spaces for the CTMC (see Section 2.1). Under
the existence of a suitable Foster-Lyapunov function (see [27, 26] and Section 1), each irreducible state-space
supports a unique stationary distribution and these distributions form the vertices of the full simplex (see
(1.15)) of stationary distributions of the CTMC.

As we discuss in this paper, finding irreducible state-spaces for networks where infinitely many states
are accessible, is a challenging but a very important problem for several reasons. These reasons include
understanding the stability and ergodic properties of networks (see Section 1), analyzing network topologies
using methods from Transition Path Theory [31] and in obtaining the exact stationary distribution for a large
class of networks (see Section 6.5). Furthermore our computational procedure for finding irreducible states-
spaces can assist in an automated discovery of fast ergodic subnetworks for the application of quasi-stationary
assumption (QSA) in the simulation of multiscale reaction networks (see Section 6.4 and [33, 34, 35]). Using
our procedure we demonstrate in Section 6 that generally networks from Systems Biology admit a single
irreducible state-space which corresponds to the situation where the CTMC describing the reaction dynamics
is ergodic and has a unique stationary distribution. We discuss how this information along with the structure
of irreducible state-space can sometimes provide valuable biological insights into the design and functionality
of the underlying network (see Sections 6.2 and 6.3).

Our approach works by classifying each species as free, bounded and restricted, based on their admissible
copy-number ranges. The bounded species have a finite copy-number range and their dynamics evolves in a
finite set Eb. On the other hand the copy-number range of free species is the infinite set of all non-negative

integers N0, and hence their dynamics evolves in an orthant Ndf0 . The restricted species imitate the dynamics
of free species according to some affine function, and they can be removed from the network for the purpose of
finding irreducible state-spaces (see Section 4.1). We develop a computational procedure that can provably

locate all the irreducible state-spaces for the underlying CTMC within the infinite state-space Eb × Ndf0 .
This is accomplished by suitably combining the matrix methods used in the finite state-space case where
only bounded species are present (see Section 4.2), along with the construction of birth-death cascades for
the free species (see Section 4.4). We demonstrate the versatility of our method through many examples
from Systems Biology in Section 6. From these examples one can also observe that the birth-death cascades
correspond naturally to various important stages in the network and hence this cascade construction process
facilitates a better understanding of the network design.

Finally we would like to mention that since our computational procedure only involves basic linear-
algebraic tasks (such as matrix computations, solving linear equations and Linear Programs etc.), it can be
efficiently applied in very high dimensions. Hence our method can easily handle large reaction networks with
several species and reactions. However computational issues may arise if the size Nb of the finite state-space
Eb for bounded species becomes too large, as our method requires several computations with matrices of size
Nb ×Nb. We hope to resolve these issues in a future work.
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Appendix: Proof of Theorem 4.4

Let Lmin be the set of al minimal leaf nodes of the Birth-Cascade Tree (BCT) constructed in Section 4.4.

We pick any (C,A) ∈ Lmin and consider the dynamics of network Ñ σ under the permutation σ = σ3(A)
mentioned in the statement of Theorem 4.4. Consider the directed path (4.58) in BCT, starting with the node
(C0, ∅) and terminating at the leaf node (C,A). The next lemma is a simple consequence of the construction
of BCT.

Lemma 7.1 Pick any z1 ∈ C0, z2 ∈ C and r0 ∈ N|A|0 . Then there exists a vector x ∈ N|A|0 such that x ≥ r0

and

(z1,0)
Ñσ−→ (z2, x,0).

Moreover this relation also holds for any z1 ∈ C.

Proof. Throughout this proof we denote the relation
Ñσ−→ by −→. Let Ci-s and Gi-s be as in the path (4.58)

consisting of (l + 1) nodes. Let di = |Gi| for each i and since Gi-s in an increasing family of sets we must
have

0 = d0 < d1 < d2 < · · · < dl = |A|.
By permuting the network if necessary, we can assume that Gi = {1, . . . , di} for each i.

Clearly the case l = 0 is trivial because in this case C0 = C and A = ∅. We now consider the case l = 1
and A = G1. Due to reactions in the set Kr(∅), the dynamics of bounded species can reach any state in
C0 from any other state in C0. The construction of BCT ensures that for each free species Si in Dσf (A),
there exists a state y ∈ C0 and a reaction Kr(y, ∅) ⊂ Kr(∅), which produces this free species. By repeated
firings of this reaction we can push the molecular-count of species Si beyond any positive integer. Note that
reactions in Kr(∅) do not consume any free species. Hence we can perform this procedure independently for
all the free species in Dσf (A), and prove that for any r ∈ Nd10 there exists a vector x′ ∈ Nd10 along with some
state y ∈ C0 such that x′ ≥ r and

(z1,0) −→ (y, x′,0).

However since C ∈ Ψ(∅,A1)(C0), after finitely many reactions in Kr(A) that only consume the free species in
Dσf (A), the state of the bounded species can go from y to z2 ∈ C, thereby ensuring that

(y, x′,0) −→ (z2, x,0)

for some x ∈ Nd10 with x ≤ x′. By choosing r with large enough entries we can ensure that x ≥ r0. The
assertion of this lemma (i.e. (z1,0) −→ (z2, x,0)) then follows for l = 1 from the transitivity of relation −→
(see Section 2.1).

For a general l > 1, one can repeat the above arguments at each stage i = 1, 2, . . . , (l − 1) to prove the
lemma’s assertion. At each stage we rely on the fact that Ci is a closed communication class under reactions
in Kr(Gi) and these reactions do not consume any free species outside the set Dσf (Gi).

Now suppose z1 ∈ C. After finitely many reactions in the set Kr(∅), the state of bounded species will
reach a state z′1 in some closed communication class C ′0 ∈ C(∅). As z1 ∈ C and Kr(∅) ⊂ Kr(A) we must have
C ′0 ⊂ C. There exists a BCT-path of the form

(C ′0, ∅) = (C ′0, G
′
0)⇒ (C ′1, G

′
1)⇒ · · · ⇒ (C ′m, G

′
m) = (C ′, A′),

culminating in the leaf node (C ′, A′) ∈ L. Note that as C ′0 ⊂ C we have Kr(C ′0, ∅) ⊂ Kr(C,A) and hence
C ′1 ⊂ C and G′1 ⊂ A. Repeating this argument (m − 1) times we can conclude that C ′m = C ′ ⊂ C and
G′m = A′ ⊂ A. However as (C,A) is a minimal leaf node we must have C ′ = C and A′ = A. The result now
follows from the assertion already proven above. �

For the minimal leaf node (C,A) ∈ Lmin, let Ñ σ(C,A) be the network formed by restricting the free
species to the set Dσf (A), the reactions to the set Kr(C,A) and the bounded species state-space to the set

C. Let Ld(C,A) denote the set of all leaf nodes for the Death-Cascade Tree (DCT) for network Ñ σ(C,A).
The following lemma pertains to the situation when the leaf node (C,A) is death-exhaustive.
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Lemma 7.2 Suppose that the minimal leaf node (C,A) ∈ Lmin is death-exhaustive, i.e. there exists a node

(C ′, A′) ∈ Ld(C,A) such that A = A′. Then C ′ = C and for any z1, z2 ∈ C and r0 ∈ N|A|0 there exists a

vector x ∈ N|A|0 such that x ≥ r0 and

(z1, x,0)
Ñσ−→ (z2,0).

Proof. Let Ñ σ
inv(C,A) be the inverse of network Ñ σ(C,A). Note that since (C,A) is a leaf node for

BCT, relation (4.57) holds and hence the reactions in Kr(C,A) do not produce any free species outside the

set Dσf (A). This implies that in the inverse network Ñ σ
inv(C,A) no reaction in Kr(C,A) can consume any

free species outside the set Dσf (A). Hence all the reactions in Kr(C,A) can fire in this inverse network as it
satisfies Assumption 2.1. Since communication is a symmetric relation and C ′ ⊂ C is a closed communication
class, A′ = A implies that C ′ = C. By definition, the DCT for network Ñ σ(C,A) is the BCT of network

Ñ σ
inv(C,A). Consider the directed path (4.58) in this BCT, starting with the node (C0, ∅) and terminating

at the leaf node (C,A). Pick any z1, z2 ∈ C and r0 ∈ N|A|0 . Applying Lemma 7.1 we can conclude that there

exists a vector x ∈ N|A|0 such that x ≥ r0 and

(z2,0)
Ñσinv(C,A)−→ (z1, x,0),

which also implies

(z1, x,0)
Ñσ−→ (z2,0),

due to relation (2.22) and the fact that network Ñ σ(C,A) is simply a restriction of the network Ñ σ. This
completes the proof of this lemma. �

Lemma 7.3 Let (C,A) ∈ Lmin be a minimal leaf node such that all the free species in Dσf (A) are singularly-

degradable w.r.t. A. Then there exists a r0 ∈ N|A|0 such that for any z ∈ C and x1, x2 ∈ N|A|0 satisfying
x1 ≥ x2 ≥ r0 we have

(z, x1,0)
Ñσ−→ (z, x2,0).

Proof. Throughout this proof we denote the relation
Ñσ−→ by −→. Without loss of generality we can assume

that A = {1, 2, . . . , |A|}. The proof of this lemma is inspired by the proof of Theorem 3.4 in [55]. Fixing a

z ∈ C, we first show that for each i ∈ A there exists a ri ∈ N|A|0 such that

(z, ri,0) −→ (z, ri − ei,0), (7.68)

where ei is the i-th standard basis vector in R|A|.
Pick any i ∈ A and let K̃p(A) be the set of reactions given by (4.59). Since each species in Dσf (A) is

singularly-degradable, there exists a sequence of reactions k1, . . . , kn ∈ K̃p(A) such that

(−ei,0) =

n∑

j=1

(ρ̃σkj − ν̃σkj ), (7.69)

where ν̃σk and ρ̃σk are as in Section 4.4. Note that since for each reaction kj we have supp(ρ̃σkj ) ⊂ A, we must

also have supp(ν̃σkj ) ⊂ A, or otherwise the last (df − |A|) components in the r.h.s. of (7.69) cannot be 0.

Therefore each of these reactions can only consume the free species in Dσf (A). For each m = 1, . . . , n let

ym =

m−1∑

j=1

(ρ̃σkj − ν̃σkj ).
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By choosing a ri ∈ N|A|0 with large enough entries we can ensure that (ri,0) + ym ≥ ν̃σkm for each m. Since
none of these reactions involve the bounded species and Assumption 2.1 is satisfied, such a choice of ri
also ensures that each reaction km has a positive probability of firing when the state of the free species is
(ri,0) + ym, thereby implying that (7.68) is satisfied.

We find such a ri for each i ∈ A and compute the maximum r0 := maxi∈A{ri} of these vectors in the

componentwise sense. Using Proposition 2.2 we can conclude that for any x ∈ N|A|0 satisfying x ≥ r0 we have

(z, x,0) −→ (z, x− ei,0) (7.70)

for each i ∈ A. Now select any x1, x2 ∈ N|A|0 satisfying x1 ≥ x2 ≥ r0 and let α = (x1 − x2) ∈ N|A|0 . We can
express α as the sum

α =

|A|∑

i=1

αiei.

Exploiting the transitivity of relation−→ and using (7.70), αi times for each i we obtain the accessibility chain

(z, x2 +α,0) −→ (z, x2 +α−α1e1,0) −→ (z, x2 +α−α1e1−α2e2,0) −→ · · · −→ (z, x2 +α−∑|A|i=1 αiei,0).

But x2 + α = x1 and (x2 + α−∑|A|i=1 αiei) = x2 and hence the proof of this lemma is complete. �

Next we present a simple modification of the above lemma in the case where all the free species are
singularly-degradable w.r.t. A.

Lemma 7.4 Let (C,A) ∈ Lmin be a minimal leaf node such that all the free species in Df are singularly-

degradable w.r.t. A. Then there exists a r0 ∈ N|A|0 such that for any z ∈ C, y ∈ Ndf−|A|0 and any x ∈ N|A|0

satisfying x ≥ r0 we have

(z, x, y)
Ñσ−→ (z, x,0).

Proof. The proof is similar to the proof of Lemma 7.3. As before we denote the relation
Ñσ−→ by −→ and

assume that A = {1, 2, . . . , |A|}. Fix a z ∈ C. We first show that for each i ∈ {|A|+ 1, . . . , df} there exists

a ri ∈ N|A|0 such that

(z, ri, ei) −→ (z, ri,0), (7.71)

where ei is the i-th standard basis vector in Rdf−|A|.
Fix any i ∈ {|A|+ 1, . . . , df} and since all the free species in Df are singularly-degradable w.r.t. A, there

exists a sequence of reactions k1, . . . , kn ∈ K̃p(A) such that

(0,−ei) =

n∑

j=1

(ρ̃σkj − ν̃σkj ).

Note that for each reaction kj we have supp(ρ̃σkj ) ⊂ A. Hence there must exist a n0 ∈ {1, . . . , n} such that

supp(ν̃σkj ) ⊂ A for all j 6= n0 and for reaction kn0 the following must be satisfied:

supp(ν̃σkn0
) ⊂ A ∪ {i} and ν̃σikn0

= 1.

For each m = 1, . . . , n let

ym =

m−1∑

j=1

(ρ̃σkj − ν̃σkj ).

By choosing a ri ∈ N|A|0 with large enough entries we can ensure that (ri, ei) + ym ≥ ν̃σkm for each m.
Since none of these reactions involve the bounded species and Assumption 2.1 is satisfied, such a choice of
ri also ensures that each reaction km has a positive probability of firing when the state of the free species is
(ri, ei) + ym, thereby implying that (7.71) is satisfied.
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We find such a ri for each i ∈ {|A| + 1, . . . , df} and compute the maximum r0 := max{ri} in the

componentwise sense. Using Proposition 2.2 we can conclude that for any x ∈ N|A|0 satisfying x ≥ r0 and

any y = (y1, . . . , ydf−|A|) ∈ Ndf−|A|0 we have

(z, x, y) −→ (z, x, y − ei) (7.72)

as long as yi ≥ 1. Exploiting the transitivity of relation −→ and using (7.72), yi times for each i we obtain
the accessibility chain (z, x, y) −→ (z, x, y − y1e1) −→ (z, x, y − y1e1 − y2e2) −→ · · · −→ (z, x, y − y1e1 −
y2e2−· · ·−ydf−|A|edf−|A|). But y−y1e1−y2e2−· · ·−ydf−|A|edf−|A| = 0 and hence the proof of this lemma
is complete. �

We are now ready to prove Theorem 4.4. We shall use the fact that irreducible state-spaces for network
Ñ σ must be necessarily disjoint (see Section 2.1).

Proof.[Proof of Theorem 4.4] Throughout the proof we denote the relation
Ñσ−→ by −→. We pick any minimal

leaf node (C,A) ∈ Lmin and we suppose that this node is death-exhaustive and all the free species in Dσf (A)

are singularly-degradable w.r.t. A. We now show that C×N|A|0 ×{0} is an irreducible state-space for network

Ñ σ permuted according to the permutation σ = σ3(A) defined in Section 4.4. To prove this assertion it

suffices to show that for any z1, z2 ∈ C and x ∈ N|A|0 we have

(z1,0) −→ (z2, x,0) −→ (z1,0). (7.73)

This is because if (7.73) holds then for any (z1, x1,0), (z2, x2,0) ∈ C × N|A|0 × {0} we have (z1, x1,0) −→
(z2, x2,0) due to the following chain of accessibility relations (z1, x1,0) −→ (z1,0) −→ (z2, x2,0) and the
transitivity of −→.

We now prove (7.73) for a fixed z1, z2 ∈ C and x ∈ N|A|0 . Since the leaf node (C,A) is death-exhaustive,

Lemma 7.2 implies that for any r0 ∈ N|A|0 there exists a vector x′ ∈ N|A|0 satisfying x′ ≥ r0 and

(z2, x
′,0) −→ (z2,0). (7.74)

We assume that r0 is as in Lemma 7.3. Due to Proposition 2.2, relation (7.74) implies (z2, x + x′,0) −→
(z2, x,0). Using Lemma 7.1 we can find a vector y ∈ N|A|0 satisfying y ≥ (x + x′) and (z1,0) −→ (z2, y,0).
Since (x+ x′) ≥ r0, Lemma 7.3 implies that (z2, y,0) −→ (z2, x+ x′,0). We now have an accessibility chain
(z1, ,0) −→ (z2, y,0) −→ (z2, x+ x′,0) −→ (z2, x,0), and since −→ is transitive we have the first relation in
(7.73).

We now show the converse (i.e. (z2, x,0) −→ (z1,0)). Using Lemma 7.1 and 7.2, we can find vectors

x1, x2 ∈ N|A|0 such that x1 ≥ x2 ≥ 0, (z2, x2,0) −→ (z1,0) and (z2,0) −→ (z2, x1,0). The last relation also
implies (z2, x,0) −→ (z2, x1+x,0) due to Proposition 2.2. Since (x1+x) ≥ x2 ≥ r0 we have (z2, x1+x,0) −→
(z2, x2,0) due to Lemma 7.3. This gives us the following chain of accessibility relations (z2, x,0) −→ (z2, x1+

x,0) −→ (z2, x2,0) −→ (z1,0) which shows the second relation of (7.73) and proves that C × N|A|0 × {0} is

an irreducible state-space for network Ñ σ.
Assuming that all the free species in the set Df are singularly-degradable w.r.t. A, we now prove

that this is the network’s only irreducible state-space that can contain elements in the set C × Ndf0 under

the permutation σ = σ3(A). We prove this claim by contradiction by showing that if E ⊂ Eσb × Ndf0 is

any irreducible state-space for network Ñ σ satisfying E ∩ (C × Ndf0 ) 6= ∅ then it cannot be disjoint from

C × N|A|0 × {0}. Let (z, x) be any state in E , and as this set is irreducible, any state that can be accessed

by (z, x) with relation −→, must also be in E . We can write x ∈ Ndf0 as x = (x1, x2) where x1 ∈ N|A|0 and

x2 ∈ Ndf−|A|0 . Let r0 ∈ N|A|0 be as in Lemma 7.4. Using Lemma 7.1 and Proposition 2.2 if necessary, we can
assume that (z, x1, x2) −→ (z, x′1, x2) for some x′1 ≥ r0. Lemma 7.4 then implies that (z, x′1, x2) −→ (z, x′1,0),

which also means that (z, x′1,0) ∈ E . But (z, x′1,0) ∈ C × N|A|0 × {0} and hence E cannot be disjoint from

C × N|A|0 × {0}, giving a contradiction. This completes the proof of part (A) of Theorem 4.4.

We now prove part (B). Let E ⊂ Eσb × Ndf0 be a nonempty irreducible state-space for network Ñ σ. Let
(z, x) be any state in E . After finitely many reactions in the set Kr(∅), the state of bounded species will
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reach a state z′ in some closed communication class C ′0 ∈ C(∅). Hence there exists a x′ ∈ Ndf0 such that
(z, x) −→ (z′, x′) ∈ E . Moreover there exists a BCT-path of the form

(C ′0, ∅) = (C ′0, G
′
0)⇒ (C ′1, G

′
1)⇒ · · · ⇒ (C ′m, G

′
m) = (C ′, A′),

culminating in the leaf node (C ′, A′) ∈ L. Since L = Lmin the leaf node (C ′, A′) is also minimal. We view the

dynamics of network Ñ σ under the permutation σ = σ3(A′) defined in Section 4.4. Pick any z1 ∈ C ′. Due to

Lemma 7.1 and Proposition 2.2 we know that for any r0 ∈ N|A
′|

0 , there exists a x1 ∈ N|A
′|

0 and x2 ∈ Ndf−|A
′|

0

such that (z′, x′) −→ (z1, x1, x2) ∈ E . However (z1, x1, x2) is an element in C ′ × N|A
′|

0 × {0} and hence, as

argued previously, we arrive at a contradiction unless E = C ′×N|A
′|

0 ×{0}. This completes the proof of part
(B) of Theorem 4.4. �
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