
ar
X

iv
:1

70
7.

08
51

2v
2 

 [
m

at
h.

O
C

] 
 2

5 
Fe

b 
20

18

Sensitivity analysis of variational inequalities via twice

epi-differentiability and proto-differentiability of the

proximity operator

Samir Adly∗, Löıc Bourdin†,

August 29, 2018

Abstract

In this paper we investigate the sensitivity analysis of parameterized nonlinear variational

inequalities of second kind in a Hilbert space. The challenge of the present work is to take

into account a perturbation on all the data of the problem. This requires special adjustments

in the definitions of the generalized first- and second-order differentiations of the involved

operators and functions. Precisely, we extend the notions, introduced and thoroughly studied

by R.T. Rockafellar, of twice epi-differentiability and proto-differentiability to the case of

a parameterized lower semi-continuous convex function and its subdifferential respectively.

The link between these two notions is tied to Attouch’s theorem and to the new concept,

introduced in this paper, of convergent supporting hyperplanes. The previous tools allow

us to derive an exact formula of the proto-derivative of the generalized proximity operator

associated to a parameterized variational inequality, and deduce the differentiability of the

associated solution with respect to the parameter. Furthermore, the derivative is shown to

be the solution of a new variational inequality involving semi- and second epi-derivatives of

the data. An application is given to parameterized convex optimization problems involving

the sum of two convex functions (one of them being smooth). The case of smooth convex

optimization problems with inequality constraints is discussed in details. This approach seems

to be new in the literature and open several perspectives towards theoretical and computational

issues in nonlinear optimization.
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1 Introduction

In the whole paper let H be a real Hilbert space and let 〈·, ·〉 (resp. ‖ · ‖) be the corresponding

scalar product (resp. norm). In the sequel, R+ denotes the set of all nonnegative real numbers.

1.1 Context of the paper

One of the most famous optimization problem consists in finding a point y of a set C ⊂ H that

minimizes the distance to a given point x ∈ H. This historical problem can be rewritten as

y ∈ argmin
z∈C

‖z − x‖.

If C is a nonempty closed convex set, it is well-known that the above problem admits a unique

solution, denoted by y = projC(x), called the metric projection of x onto C, and characterized by

the following variational inequality

∀z ∈ C, 〈y, z − y〉 ≥ 〈x, z − y〉.

As a first step towards the sensitivity analysis of the above variational inequality, one would

consider a slight perturbation of the point x ∈ H, replacing it by x(t) ∈ H where t ∈ R+ is a
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parameter. The behavior of y(t) = projC(x(t)) was well studied in the literature and is naturally

connected to the differentiability properties (in some general sense) of the projection operator

projC. We mention for instance the work of E.H. Zarantonello [29] who had shown the existence of

directional derivatives for projC at the boundary of C. However, it is well-known that outside the

set C, the directional differentiability of projC is not guaranteed (see [27] for a counter-example

in R
2). On the other hand, A. Haraux [5] and F. Mignot [11] published two fundamental papers

where the conical differentiability of the projection operator is proved under a polyhedric (also

called density) assumption. In that case, an asymptotic development of y(t) at t = 0 can be

obtained and the derivative y′(0) can be expressed as the projection of x′(0) onto a closed subset

of the tangent cone of C at y(0). We also refer to [4, 6, 28] for other references concerning the

differentiability of the metric projection operator.

The theory of variational inequalities, introduced by G. Stampacchia and G. Fichera with mo-

tivations in unilateral mechanics, has been developed in the 1970’s by the French and Italian

schools. This theory has been proved to be a useful and effective tool for the study of a wide range

of applications, within a unified framework, in many scientific areas such as contact mechanics,

mathematical programming, operation research, economy, transportation planning, game theory,

etc. In this paper we will focus on a general nonlinear variational inequality of second kind which

consists in finding y ∈ H such that

(VI(A, f, x))
∀z ∈ H, 〈A(y), z − y〉+ f(z)− f(y) ≥ 〈x, z − y〉,

where A : H → H is a (possibly nonlinear) operator, f : H → R ∪ {+∞} is a proper lower semi-

continuous convex function and x ∈ H is given. Recall that (VI(A, f, x)) is said to be linear if A

is linear, and that (VI(A, f, x)) is said to be of first kind if f = δC coincides with the indicator

function of a nonempty closed convex subset C ⊂ H. In the case where A = Id is the identity

operator, (VI(A, f, x)) admits a unique solution given by y = proxf (x), where proxf denotes the

classical proximity (also well-known as proximal) operator introduced by J.-J. Moreau [13] in 1965.

Note that if moreover f = δC, then proxf = projC. As a consequence, the Moreau’s proximity

operator can be viewed as a generalization of the projection operator. On the other hand, in the

general case of a possibly nonlinear operator A, assumed to be Lipschitz continuous and strongly

monotone, it can be proved [2, Proposition 31 p.140] that (VI(A, f, x)) admits a unique solution

denoted by y = proxA,f (x), where proxA,f can be seen as a generalization of the Moreau’s proximity

operator proxf .

A first step towards the sensitivity analysis of (VI(A, f, x)) is to consider a slight perturbation of

the point x ∈ H, replacing it by x(t) ∈ H where t ∈ R+ is a parameter, and to study the behavior

of y(t) = proxA,f (x(t)). The key point in the understanding of the differentiability properties of

the generalized proximity operator proxA,f is to investigate generalized second-order differentia-

tion theory. Precisely, R.T. Rockafellar introduced and thoroughly studied the notions of twice

epi-differentiability [22] and proto-differentiability [23] of functions and set-valued maps respec-

tively. These notions are both based on Painlevé-Kuratowski convergence of epigraphs and graphs

of difference quotients. In the particular case where A = Id is the identity operator and where

H is finite-dimensional, thanks to Attouch’s theorem [1], R.T. Rockafellar [24] proved the equiv-

alence between the twice epi-differentiability of f , the proto-differentiability of the subdifferential

operator ∂f and the proto-differentiability of the Moreau’s proximity operator proxf (see also [26,

Chapter 13]). Note that C.N. Do [3] extended these results to the infinite-dimensional Hilbert
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setting using the concept of Mosco convergence [14]. Finally, from the twice epi-differentiability

of f , it can be derived that y(t) = proxf (x(t)) is differentiable at t = 0. In the general case of

a possibly nonlinear operator A, the additional assumption of semi-differentiability of A (notion

introduced by J.-P. Penot [16]) allows to recover easily the differentiability of y(t) = proxA,f (x(t))

at t = 0. Moreover y′(0) can be expressed as the image of x′(0) under a generalized proximity

operator involving the semi-derivative of A and the second epi-derivative of f . In particular, note

that y′(0) is then the unique solution of the associated variational inequality.

For the calculus rules of epi-derivatives, we refer to the work of R.A. Poliquin and R.T. Rockafellar

[19, 20] and references therein. In particular, it can be proved that Mignot and Haraux’s polyhedric

assumption on a closed convex set C is a sufficient condition for the twice epi-differentiability

of the corresponding indicator function δC. We refer to the discussion in [3, Definition 2.8 and

Example 2.10]. As a consequence, Rockafellar’s result encompasses the one by Mignot and Haraux.

Before concluding this section, we think that it is important to mention that there exist other

approaches in the literature dealing with generalized second-order differentiations. It is not our

aim to give here a complete list of references. Nevertheless, to mention just a few, we can refer

for example to the work of B.S. Mordukhovich and R.T. Rockafellar [12] based on the dual-

type constructions generated by coderivatives of first-order subdifferentials and to the paper of

J.B. Hiriart-Urruty and A. Seeger [8] where calculus rules were introduced for set-valued second-

order derivatives.

1.2 Contributions of the paper

The challenge of this paper is to investigate the sensitivity analysis of (VI(A, f, x)) that takes into

account a perturbation on all the data of the problem, not only on x but also on A and f . Precisely,

we consider the following perturbed variational inequality which consists in finding y(t) ∈ H such

that
(VI(A(t, ·), f(t, ·), x(t))) ∀z ∈ H, 〈A(t, y), z − y〉+ f(t, z)− f(t, y) ≥ 〈x(t), z − y〉,

where A(t, ·), f(t, ·) and x(t) satisfy some appropriate assumptions that will be specified in Sec-

tion 3. Note that the solution of (VI(A(t, ·), f(t, ·), x(t))) is given by

y(t) = proxA(t,·),f(t,·)(x(t)).

Our main objective in this paper is to derive sufficient conditions on A(t, ·), f(t, ·) and x(t) under

which y(t) is differentiable at t = 0 and to provide an explicit formula for y′(0). As mentioned in

the previous section, R.T. Rockafellar already dealt with the t-independent framework, that is, with

the particular case where A(t, ·) = A and f(t, ·) = f are t-independent. The concepts introduced by

R.T. Rockafellar cannot be directly applied to the t-dependent framework. Therefore, we extend in

Section 3 the notions of twice epi-differentiability, semi-differentiability and proto-differentiability

to the case of parameterized functions, single-valued and set-valued maps respectively. These

extensions are not a simple replica of the methodology developed by R.T. Rockafellar and require

several adjustments in the definitions. Moreover we show explicitly in Example 31 that the situation

is more complicated when dealing with the t-dependent setting. Precisely, the properness of the

second epi-derivative of the one-variable function f(x) = |x| is not preserved under the perturbation

f(t, x) = |x − t| (see Example 31), while it is preserved with the perturbation f(t, x) = |x − t2|
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(see Example 38). The difference between these two kinds of perturbations is the key point of the

understanding of how to handle the t-dependent situation. We refer to Section 4.1 for a detailed

discussion about this issue. The new concept of convergent supporting hyperplane, introduced in

this paper (see Definition 32), turns out to be efficient in order to prove the equivalence between the

twice epi-differentiability of f(t, ·) and the proto-differentiability of its subdifferential ∂f(t, ·) (see

Theorem 34). Actually the existence of a convergent supporting hyperplane to the second-order

difference quotient is shown to be equivalent to the properness of the second epi-derivative of f(t, ·)

(see Proposition 39). Next we derive in Theorem 41 the proto-differentiability of proxA(t,·),f(t,·)

and we deduce in Theorem 42 that y(t) = proxA(t,·),f(t,·)(x(t)) is differentiable at t = 0. Moreover

we prove that y′(0) can be expressed as the image of x′(0) under a generalized proximity operator

involving the semi-derivative of A(t, ·) and the second epi-derivative of f(t, ·). In particular, note

that y′(0) is then the unique solution of the associated variational inequality.

Our main result (Theorem 42) encompasses and extends Rockafellar’s work, and thus the results

of Mignot and Haraux, mentioned in the previous section. For instance, it permits to deal with

the differentiability of t 7→ projC(t)(x(t)) where the convex set C(t) is also perturbed in some sense

(see Section 5.3). The originality of the present work is twofold. Firstly, it allows to deal with the

sensitivity analysis of variational inequalities where all the data are t-dependent, via a nontrivial

extension of the notion of twice epi-differentiability originally introduced by R.T. Rockafellar.

Secondly, it permits to fill a gap in the literature, with respect to the works of A.J. King, A.B. Levy

and R.T. Rockafellar in [9, 10]. In these references, the authors investigated the differentiability

of the solutions set to parameterized generalized equations of the form

0 ∈ A(t, y) +B(t, y)

via the semi- and proto-derivatives of the involved single- and set-valued maps A and B respectively.

However, no link has been explored with the twice epi-differentiability in the case where the set-

valued map B(t, ·) = ∂f(t, ·) coincides with the subdifferential of a parameterized convex function

f(t, ·).

1.3 Applications and additional comments

As an application of the theoretical results developed in this paper, we investigate the sensitiv-

ity analysis of parameterized convex optimization problems in Section 5. More precisely, we first

consider in Section 5.1 the general parameterized minimization problem of the sum of two lower

semi-continuous convex functions f and g (g being smooth). We show, under some appropriate

assumptions, that the derivative at t = 0 of the perturbed solution is still a solution of a convex

optimization problem involving the second epi-derivative of f and a quadratic term involving the

Hessian matrix of g (see Proposition 44 for details). An illustrative example in one dimension is

provided in Section 5.2 showing both the nontriviality of the t-dependent setting and the applica-

bility of our theoretical results. Finally, the sensitivity analysis of parameterized smooth convex

optimization problems with inequality constraints in a finite-dimensional setting is discussed in

details in Section 5.3.

We end the paper with two discussions in Section 6. Firstly, we justify our choice of the for-

mula of the second-order difference quotient of the twice epi-differentiability in the t-dependent

setting (see Section 6.1 for details). Secondly, we show that the equivalence between the twice epi-

differentiabilities of a convex function and its conjugate is not preserved in the t-dependent case
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and requires some additional assumptions (that are automatically satisfied in the t-independent

framework). We refer to Section 6.2 for details.

1.4 Organization of the paper

The paper is organized as follows. Section 2 is devoted to the main notations, definitions and

auxiliary results from convex analysis. Section 3 is dedicated to the detailed setting of the paper

and to the presentation of its main objective. Then, the extensions of the notions of generalized

differentiability (semi-differentiability, proto-differentiability and twice epi-differentiability) to the

t-dependent framework are specified. In Section 4, we state and prove our main results (The-

orems 34, 41 and 42) where the new notion of convergent supporting hyperplane is introduced.

In Section 5, as an application of our theoretical results, we investigate the sensitivity analysis

of parameterized convex optimization problems. We conclude this paper with some additional

comments in Section 6.

2 Recalls on convergence notions and convex analysis

In the next subsections we introduce some notations useful throughout the paper. We first give

recalls about Painlevé-Kuratowski and Mosco convergences (see Section 2.1), graphical convergence

(see Section 2.2) and epi-convergence (see Section 2.3). We continue with basics of convex analysis

(see Section 2.4) and we conclude with recalls about Attouch’s theorems (see Section 2.5). We

refer to standard books like [1, 7, 17, 26] and references therein.

2.1 Two convergence modes of a parameterized family of subsets

In this paper we denote by d(·, S) the classical distance function to any subset S of H.

Let (Sτ )τ>0 be a parameterized family of subsets of H. The outer, weak-outer, inner and weak-

inner limits of (Sτ )τ>0 when τ → 0 are respectively defined by

lim supSτ := {x ∈ H | ∃(tn)n → 0, ∃(xn)n → x, ∀n ∈ N, xn ∈ Stn},

w-lim supSτ := {x ∈ H | ∃(tn)n → 0, ∃(xn)n ⇀ x, ∀n ∈ N, xn ∈ Stn},

lim inf Sτ := {x ∈ H | ∀(tn)n → 0, ∃(xn)n → x, ∃N ∈ N, ∀n ≥ N, xn ∈ Stn},

w-lim inf Sτ := {x ∈ H | ∀(tn)n → 0, ∃(xn)n ⇀ x, ∃N ∈ N, ∀n ≥ N, xn ∈ Stn},

where → (resp. ⇀) denotes the strong (resp. weak) convergence in H. Note that the four following

inclusions always hold true:

lim inf Sτ ⊂ lim supSτ ⊂ w-lim supSτ and lim inf Sτ ⊂ w-lim inf Sτ ⊂ w-lim supSτ .

In the whole paper, note that all limits with respect to τ will be considered for τ → 0. For the

ease of notations, when no confusion is possible, the notation τ → 0 will be removed.

Remark 1. Let (Sτ )τ>0 be a parameterized family of subsets of H. It can be shown that

lim supSτ = {x ∈ H | lim inf d(x, Sτ ) = 0} and lim inf Sτ = {x ∈ H | lim sup d(x, Sτ ) = 0}

(see, e.g., [17, Proposition 1.42 p.35]). We can deduce that lim supSτ and lim inf Sτ are closed

subsets of H.
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Remark 2. Convexity is a stable property under inner and weak-inner limits. Precisely, if (Sτ )τ>0

is a parameterized family of convex subsets of H, then lim inf Sτ and w-lim inf Sτ are also convex.

This result is not true in general for lim supSτ and w-lim supSτ (see, e.g., [26, p.119]).

Let us recall the two following convergence modes for a parameterized family (Sτ )τ>0 of subsets

of H.

Definition 3 (Painlevé-Kuratowski convergence). A parameterized family (Sτ )τ>0 of subsets of H

is said to be PK-convergent if

lim supSτ ⊂ lim inf Sτ .

In that case, we denote by PK-limSτ := lim inf Sτ = lim supSτ .

Definition 4 (Mosco convergence). A parameterized family (Sτ )τ>0 of subsets of H is said to be

M-convergent if

w-lim supSτ ⊂ lim inf Sτ .

In that case, we denote by M-limSτ := lim inf Sτ = lim supSτ = w-lim inf Sτ = w-lim supSτ .

Remark 5. (i) Let (Sτ )τ>0 be a parameterized family of subsets of H. If (Sτ )τ>0 M-converges,

then (Sτ )τ>0 PK-converges. In that case PK-limSτ = M-limSτ . (ii) If H is finite-dimensional, the

Painlevé-Kuratowski and the Mosco convergences clearly coincide.

2.2 Graphical convergence of a parameterized family of set-valued maps

For a set-valued map A : H ⇒ H on H, the domain of A is given by Dom(A) := {x ∈ H | A(x) 6= ∅}

and its graph is defined by Gr(A) := {(x, y) ∈ H×H | y ∈ A(x)}. We denote by A−1 : H ⇒ H the

set-valued map defined by

A−1(y) := {x ∈ H | y ∈ A(x)},

for all y ∈ H. In particular, for all x, y ∈ H, it holds that

(x, y) ∈ Gr(A) ⇐⇒ y ∈ A(x) ⇐⇒ x ∈ A−1(y) ⇐⇒ (y, x) ∈ Gr(A−1).

Definition 6 (Graphical convergence). A parameterized family (Aτ )τ>0 of set-valued maps on H

is said to be G-convergent if (Gr(Aτ ))τ>0 is PK-convergent. In that case, we denote by G-limAτ :

H ⇒ H the set-valued map characterized by its graph as follows:

Gr (G-limAτ ) := PK-limGr(Aτ ).

Remark 7. Let (Aτ )τ>0 be a parameterized family of set-valued maps on H. Then, (Aτ )τ>0 is

G-convergent if and only if (A−1
τ )τ>0 is G-convergent. In that case, it holds that G-lim(A−1

τ ) =

(G-limAτ )
−1.

Remark 8. Let (Aτ )τ>0 be a G-convergent parameterized family of set-valued maps on H and let

A := G-limAτ . If (zτ , ξτ )τ>0 → (z, ξ) with (zτ , ξτ ) ∈ Gr(Aτ ) for all τ > 0, then (z, ξ) ∈ Gr(A).
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2.3 M-convergence of a parameterized family of extended-real-valued

functions

Let R := R ∪ {−∞,+∞}. For an extended-real-valued function f : H → R on H, the domain of f

is defined by dom(f) := {x ∈ H | f(x) < +∞} and its epigraph is given by

Epi(f) := {(x, λ) ∈ H× R | f(x) ≤ λ}.

We denote by EH the set of all epigraphs on H, that is, S ∈ EH if and only if there exists an

extended-real-valued function f : H → R such that S = Epi(f).

Remark 9. The set EH is stable under outer and inner limits (see, e.g., [26, p.240]). Precisely,

if (Sτ )τ>0 is a parameterized family of subsets of H × R such that Sτ ∈ EH for all τ > 0, then

lim supSτ and lim inf Sτ both belong to EH.

Definition 10 (M-convergence). A parameterized family (fτ )τ>0 of extended-real -valued func-

tions on H is said to be M-convergent if (Epi(fτ ))τ>0 is M-convergent. In that case, we denote by

E-lim fτ : H → R the extended-real-valued function characterized by its epigraph as follows:

Epi(E-lim fτ ) := M-limEpi(fτ ).

Recall the following characterization of epi-convergence. We refer to [1, Proposition 3.19 p.297] or

[26, Proposition 7.2 p.241] for details.

Proposition 11. Let f be an extended-real-valued function on H and let (fτ )τ>0 be a parameterized

family of extended-real-valued functions on H. Then (fτ )τ>0 M-converges with f = E-lim fτ if and

only if, for all z ∈ H, there exists (zτ )τ>0 → z such that lim sup fτ (zτ ) ≤ f(z) and, for all

(zτ )τ>0 ⇀ z, lim inf fτ (zτ ) ≥ f(z).

2.4 Basics of convex analysis

A set-valued operator A : H ⇒ H is said to be monotone if

∀(x1, y1), (x2, y2) ∈ Gr(A), 〈y2 − y1, x2 − x1〉 ≥ 0.

Moreover, A is said to be maximal monotone if Gr(A) ⊂ Gr(B) for some monotone set-valued

operator B : H ⇒ H implies that A = B.

A set-valued map A : H ⇒ H is said to be single-valued if A(x) is a singleton for all x ∈ H. In that

case, it holds in particular that Dom(A) = H and we denote by A : H → H (instead of A : H ⇒ H).

For a single-valued map A : H → H, we say that A is Lipschitz continuous if

∃M ≥ 0, ∀x1, x2 ∈ H, ‖A(x2)−A(x1)‖ ≤M‖x2 − x1‖,

and we say that A is strongly monotone if

∃α > 0, ∀x1, x2 ∈ H, 〈A(x2)−A(x1), x2 − x1〉 ≥ α‖x2 − x1‖
2.

In the whole paper, we denote by A(H) the set of all single-valued maps A : H → H that are

Lipschitz continuous and strongly monotone.
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For an extended-real-valued function f : H → R ∪ {+∞}, we say that f is proper if dom(f) 6= ∅,

and that f is lower semi-continuous if its epigraph Epi(f) is closed in H× R. Finally, recall that

f is a convex function if and only if its epigraph Epi(f) is a convex subset of H×R. In the whole

paper, we denote by Γ0(H) the set of all extended-real-valued functions f : H → R ∪ {+∞} that

are proper, lower semi-continuous and convex.

Let f ∈ Γ0(H). We denote by ∂f : H ⇒ H the subdifferential operator of f defined by

∂f(x) := {y ∈ H | ∀z ∈ H, 〈y, z − x〉 ≤ f(z)− f(x)},

for all x ∈ H. In particular, note that x ∈ argmin f if and only if 0 ∈ ∂f(x). Recall that ∂f

is a maximal monotone operator (see [21] or [26, Theorem 12.17 p.542] for details). Moreover, it

follows from the classical Brøndsted-Rockafellar theorem (see, e.g., [18, Theorem 6.5 p.333]) that

Dom(∂f) 6= ∅, and thus f admits a supporting hyperplane, that is,

∃(z, ξ, β) ∈ H×H× R,

{

∀w ∈ H, f(w) ≥ 〈ξ, w〉 + β,

f(z) = 〈ξ, z〉+ β.

Note that (z, ξ, β) ∈ H × H × R is a supporting hyperplane of f if and only if ξ ∈ ∂f(z) and

β = f(z)− 〈ξ, z〉.

The generalized proximity (also well-known as proximal) operator associated to some (A, f) ∈

A(H) × Γ0(H) is defined by

proxA,f := (A+ ∂f)−1.

For all x, y ∈ H, one can easily see that y ∈ proxA,f (x) if and only if y is a solution of the nonlinear

variational inequality of second kind given by

(VI(A, f, x)) ∀z ∈ H, 〈A(y), z − y〉+ f(z)− f(y) ≥ 〈x, z − y〉.

From the contraction mapping principle, it can be proved that the above variational inequal-

ity (VI(A, f, x)) admits a unique solution (see, e.g., [2, Proposition 31 p.140] for details) given by

proxA,f (x). We deduce that proxA,f : H → H is a single-valued map. Moreover, it can be easily

proved that proxA,f is 1
α -Lipschitz continuous where α denotes the strong monotonicity coefficient

of A.

2.5 Recalls about Attouch’s theorems

We conclude this section with two crucial results stated by H. Attouch in [1, Theorem 3.66 p.373

and Corollary 3.65 p.372]. The first result is well-known as the classical Attouch’s theorem.

Theorem 12. Let (fτ )τ>0 be a parameterized family of functions in Γ0(H) and let f ∈ Γ0(H).

Then, f = E-lim fτ if and only if the two following assertions are satisfied:

(i) ∂f = G-lim ∂fτ ;

(ii) there exists (zτ , ξτ )τ>0 → (z, ξ) such that (zτ , ξτ ) ∈ Gr(∂fτ ) for all τ > 0 and fτ (zτ ) → f(z).

Theorem 13. Let (fτ )τ>0 be a parameterized family of functions in Γ0(H). If (∂fτ )τ>0 is G-

convergent and if G-lim ∂fτ is a maximal monotone operator, then there exists f ∈ Γ0(H) such

that G-lim ∂fτ = ∂f .

Remark 14. Let us consider the framework of Theorem 12. If the equivalent assertions are

satisfied, note that (z, ξ) ∈ Gr(∂f) from Remark 8. In particular note that f(z) ∈ R.
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3 Setting, objective and generalized notions of differentia-

bility

Before exhibiting in details the setting of the present paper and its main objective, we need to

introduce first some notations.

Let A : R+×H ⇒ H be a parameterized set-valued map. For the simplicity of notations, we denote

by A−1 : R+ ×H ⇒ H the parameterized set-valued map defined by

A−1(t, y) := (A(t, ·))−1(y)

for all (t, y) ∈ R+ ×H.

A parameterized set-valued map A : R+ × H ⇒ H is said to be a parameterized single-valued map

if A(t, ·) : H → H is a single-valued map for all t ≥ 0. In that case we denote by A : R+ × H → H

(instead of A : R+ ×H ⇒ H).

Let us introduce:

• A(·,H) the set of all parameterized single-valued maps A : R+ × H → H such that A(t, ·) ∈

A(H) for all t ≥ 0;

• Γ0(·,H) the set of all parameterized extended-real-valued functions f : R+ ×H → R∪ {+∞}

such that f(t, ·) ∈ Γ0(H) for all t ≥ 0.

Let f ∈ Γ0(·,H). For the ease of notations, we denote by

∂f(t, x) := ∂(f(t, ·))(x)

for all (t, x) ∈ R+ × H. Then ∂f : R+ ×H ⇒ H is a parameterized set-valued map. Moreover, we

introduce the notation

f−1(·,R) := {x ∈ H | ∀t ≥ 0, f(t, x) ∈ R}.

If f is t-independent, note that f ∈ Γ0(H) and that f−1(·,R) coincides with the classical notation

f−1(R).

3.1 Setting and main objective of the paper

In this paper we focus on the sensitivity analysis, with respect to the parameter t ≥ 0, of the

general nonlinear variational inequality of second kind given by
(VI(A(t, ·), f(t, ·), x(t))) ∀z ∈ H, 〈A(t, y), z − y〉+ f(t, z)− f(t, y) ≥ 〈x(t), z − y〉,

where (A, f) ∈ A(·,H)×Γ0(·,H) and where x : R+ → H is a given function. From Section 2.4, the

above variational inequality admits for all t ≥ 0 a unique solution y(t) ∈ H given by

y(t) = proxA(t,·),f(t,·)(x(t)).

Our main objective in this paper is to derive sufficient conditions on A, f and x under which

y : R+ → H is differentiable at t = 0 and to provide an explicit formula for y′(0).
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In the literature numerous generalized notions of differentiability have been introduced in or-

der to deal with nonsmooth functions. In particular, notions of semi-differentiability, twice epi-

differentiability and proto-differentiability have been introduced respectively in [16], [22] and [23].

These wonderful tools turned out to be sufficient in order to deal with the case where A and f

are t-independent. We refer to [24, 26] for the finite-dimensional case and to [3] for the infinite-

dimensional case.1

In view of dealing with the t-dependence of A and f , we need to extend the notions of semi-

differentiability, twice epi-differentiability and proto-differentiability above mentioned to the t-

dependent framework. This is the aim of Sections 3.2, 3.3 and 3.4.

Remark 15. We mention here that these generalizations are not trivial and are not sufficient in

order to fully adapt the strategy developed in [3, 24, 26] to the t-dependent framework. Indeed,

we will provide a simple example (see Example 31) showing that the situation is more complicated

in the t-dependent setting. As a consequence, we will introduce in Section 4.1 a new concept

called convergent supporting hyperplane (see Definition 32) that allows us to conclude. Actually,

this condition turns out to be necessary and sufficient in a sense that can be made precise (see

Proposition 39). We refer to Section 4.1 for a detailed discussion about this issue. Similarly,

we will also prove that, in contrary to the t-independent framework, the generalized twice epi-

differentiability of a function f ∈ Γ0(·,H) cannot be directly related to the twice epi-differentiability

of its conjugate function f∗. We refer to Section 6.2 for more details.

3.2 Semi-differentiability of a parameterized single-valued map

In this section our aim is to generalize the classical notion of semi-differentiability to the case where

the single-valued map considered depends on the parameter t ≥ 0.

Definition 16 (Semi-differentiability). Let A : R+ × H → H be a parameterized single-valued

map and let x ∈ H. If the limit

DsA(x)(w) := lim
τ→0
w′→w

A(τ, x+ τw′)−A(0, x)

τ

exists in H for all w ∈ H, we say that A is semi-differentiable at x. In that case, DsA(x) : H → H

is a single-valued map called the semi-derivative of A at x.

If the single-valued map A is t-independent, Definition 16 recovers the classical notion of semi-

differentiability originally introduced in [16].

In the sequel we will denote by Aunif(·,H) the set of all parameterized single-valued maps A :

R+ ×H → H such that A is uniformly Lipschitz continuous, that is,

∃M ≥ 0, ∀t ≥ 0, ∀x1, x2 ∈ H, ‖A(t, x2)−A(t, x1)‖ ≤M‖x2 − x1‖,

and uniformly strongly monotone, that is,

∃α > 0, ∀t ≥ 0, ∀x1, x2 ∈ H, 〈A(t, x2)−A(t, x1), x2 − x1〉 ≥ α‖x2 − x1‖
2.

1These three references are interested only in the t-independent framework and actually they also only consider

the case where A = Id is the identity operator. Precisely, they proved that if f is twice epi-differentiable, then

the classical Moreau’s proximity operator proxf = proxId,f is proto-differentiable. Even if it is not mentioned in

[3, 24, 26], one can easily deduce from the proto-differentiability of proxf that y is differentiable at t = 0 and provide

an explicit formula for y′(0). The results presented in the present paper encompass and extend these results.
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Proposition 17. Let A ∈ Aunif(·,H). If A is semi-differentiable at x ∈ H, then DsA(x) ∈ A(H).

Proof. Let us prove that DsA(x) is Lipschitz continuous. Let w1, w2 ∈ H. It holds that ‖A(τ, x+

τw2)−A(τ, x + τw1)‖ ≤Mτ‖w2 − w1‖ and thus
∥

∥

∥

∥

A(τ, x + τw2)−A(0, x)

τ
−
A(τ, x+ τw1)−A(0, x)

τ

∥

∥

∥

∥

≤M‖w2 − w1‖,

for all τ > 0. Letting τ → 0 leads to ‖DsA(x)(w2)−DsA(x)(w1)‖ ≤ M‖w2 − w1‖. We conclude

that DsA(x) is Lipschitz continuous. The proof is similar for proving the strong monotonicity of

DsA(x).

Remark 18. Let A ∈ Aunif(·,H) be semi-differentiable at x ∈ H. If we denote by M ≥ 0 and

α > 0 the uniform Lipschitz and strong monotonicity coefficients of A, then DsA(x) ∈ A(H) is

M -Lipschitz continuous and α-strongly monotone.

3.3 Proto-differentiability of a parameterized set-valued map

In this section our aim is to generalize the classical notion of proto-differentiability to the case

where the set-valued map considered depends on the parameter t ≥ 0.

Let A : R+ ×H ⇒ H be a parameterized set-valued map. For all τ > 0, x ∈ H and v ∈ A(0, x), we

denote by

∆τA(x|v) : H ⇒ H

w 7→ ∆τA(x|v)(w) :=
A(τ, x+ τw) − v

τ
.

Definition 19 (Proto-differentiability). Let A : R+ ×H ⇒ H be a parameterized set-valued map.

We say that A is proto-differentiable at x ∈ H for v ∈ A(0, x) if (∆τA(x|v))τ>0 G-converges. In

that case, we denote by

DpA(x|v) := G-lim∆τA(x|v)

the set-valued map DpA(x|v) : H ⇒ H called the proto-derivative of A at x for v.

If the set-valued map A is t-independent, Definition 19 recovers the classical notion of proto-

differentiability originally introduced in [23].

Remark 20. Let us point out that if a parameterized single-valued map A : R+ × H → H is

semi-differentiable at x ∈ H, then A is proto-differentiable at x for A(0, x) with DpA(x|A(0, x)) =

DsA(x).

One can easily prove the two following results. In the t-independent case, we recover [26, p.331-333].

Proposition 21. Let A : R+×H → H be a parameterized single-valued map and B : R+×H ⇒ H

be a parameterized set-valued map. Let x ∈ H and v ∈ A(0, x)+B(0, x). If A is semi-differentiable

at x, then A+ B is proto-differentiable at x for v if and only if B is proto-differentiable at x for

v −A(0, x). In that case it holds that

Dp(A+B)(x|v) = DsA(x) +DpB(x|v −A(0, x)).

Proposition 22. Let A : R+ ×H ⇒ H be a parameterized set-valued map, x ∈ H and v ∈ A(0, x).

Then, A is proto-differentiable at x for v if and only if A−1 is proto-differentiable at v for x. In

that case, it holds that

Dp(A
−1)(v|x) := (DpA(x|v))

−1.
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3.4 Twice epi-differentiability of parameterized extended-real-valued func-

tions

In this section our aim is to generalize the classical notion of twice epi-differentiability to the case

where the extended-real-valued function considered depends on the parameter t ≥ 0.

Let f ∈ Γ0(·,H). For all τ > 0, x ∈ f−1(·,R) and v ∈ ∂f(0, x), we denote by

∆2
τf(x|v) : H → R ∪ {+∞}

w 7→ ∆2
τf(x|v)(w) :=

f(τ, x+ τw) − f(τ, x)− τ〈v, w〉

τ2
.

(1)

Definition 23 (Twice epi-differentiability). Let f ∈ Γ0(·,H). We say that f is twice epi-

differentiable at x ∈ f−1(·,R) for v ∈ ∂f(0, x) if (∆2
τf(x|v))τ>0 M-converges. In that case, we

denote by

d2ef(x|v) := E-lim∆2
τf(x|v)

the extended-real-valued function d2ef(x|v) : H → R called the second epi-derivative of f at x for v.

If the extended-real-valued function f is t-independent, Definition 23 recovers the classical notion

of twice epi-differentiability originally introduced in [22] (up to the multiplicative constant 1
2 ).

Remark 24. Let f ∈ Γ0(·,H) be twice epi-differentiable at x ∈ f−1(·,R) for v ∈ ∂f(0, x). Even

if ∆2
τf(x|v) is with values in R ∪ {+∞} for all τ > 0, it may be possible that there exists w ∈ H

such that d2ef(x|v)(w) = −∞. We refer to Example 31. This is an important difference with the

t-independent framework. We refer to Section 4.1 for a detailed discussion about this issue.

Remark 25. Let f ∈ Γ0(·,H) be twice epi-differentiable at x ∈ f−1(·,R) for v ∈ ∂f(0, x). It might

be possible that d2ef(x|v) is not positively homogeneous of degree two. We refer to Example 38.

Indeed, note that ∆2
τf(x|v)(λw) 6= λ2∆2

λτf(x|v)(w) in general for λ > 0 and w ∈ H. This is a

second important difference with the t-independent framework.

Remark 26. Let f : R+ ×H → R be a function of class C2 on R+ ×H. A Taylor expansion of f

around x ∈ H with v = ∇xf(0, x) implies that (∆2
τf(x|v)(w))τ>0 converges pointwise to

1

2

〈

∇2
xxf(0, x)(w), w

〉

+
〈

∇2
txf(0, x), w

〉

for all w ∈ H. This remark is coherent with Remark 25 since the above expression is not positively

homogeneous of degree two with respect to the variable w.

Remark 27. Note that Section 6.1 will be devoted to a discussion about the pointwise convergence

mentioned in Remark 26 and about the choice of Formula (1).

4 Main results

The whole paper is based on Attouch’s theorems (see Theorems 12 and 13) and on Proposition 28

below. Its proof is simple and similar to the t-independent case (see, e.g., [25, Proposition 2.7]).

Proposition 28. Let f ∈ Γ0(·,H), x ∈ f−1(·,R) and v ∈ ∂f(0, x). Then, ∆2
τf(x|v) belongs to

Γ0(H) with

∂
(

∆2
τf(x|v)

)

= ∆τ (∂f)(x|v),

for all τ > 0.
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One can easily deduce that the twice epi-differentiability of a function f ∈ Γ0(·,H) is strongly

related to the proto-differentiability of its subdifferential operator ∂f .

This relation in the t-independent framework is simple and recalled in Section 4.1 (see Proposi-

tion 29). However, a simple example (see Example 31) shows that the situation is more complicated

in the t-dependent setting. This is the reason why we introduce a new concept called convergent

supporting hyperplane (see Definition 32) that allows us to state and prove the counterpart of

Proposition 29 in the t-dependent framework (see Theorem 34). This condition actually turns out

to be necessary and sufficient in a sense that can be made precise (see Proposition 39).

Finally Section 4.2 is devoted to the proto-differentiability of the generalized proximity operator

(see Theorem 41) and to our initial motivation, that is, to the sensitivity analysis of general

nonlinear variational inequalities of second kind (see Theorem 42).

4.1 Convergent supporting hyperplane

In the t-independent framework, the following proposition relating the twice epi-differentiability of a

function f ∈ Γ0(H) and the proto-differentiability of its subdifferential operator ∂f is a well-known

result. We refer to [24, 26] for the finite-dimensional case and to [3] for the infinite-dimensional

one.

Proposition 29. Let f ∈ Γ0(H) (that is t-independent), x ∈ f−1(R) and v ∈ ∂f(x). The following

assertions are equivalent:

(i) f is twice epi-differentiable at x for v;

(ii) ∂f is proto-differentiable at x for v and Dp(∂f)(x|v) is a maximal monotone operator.

In that case d2ef(x|v) belongs to Γ0(H) with d
2
ef(x|v)(0) = 0 and

Dp(∂f)(x|v) = ∂(d2ef(x|v)).

This classical result is based on Attouch’s theorems (see Theorems 12 and 13) and on Propo-

sition 28. However it is worth to note here that Proposition 29 is also based on the following

lemma.

Lemma 30. Let f ∈ Γ0(H) (that is t-independent), x ∈ f−1(R) and v ∈ ∂f(x). Then, ∆2
τf(x|v)(0) =

0 and ∆2
τf(x|v)(w) ≥ 0 for all w ∈ H and all τ > 0. In particular, it holds that 0 ∈ ∂(∆2

τf(x|v))(0)

for all τ > 0.

Let us recall the proof of Proposition 29 in order to highlight the crucial role of Lemma 30.

Proof of Proposition 29. Let us assume that f is twice epi-differentiable at x for v. Our first aim

is to prove that d2ef(x|v) ∈ Γ0(H). Firstly, let us assume by contradiction that there exists w ∈ H

such that d2ef(x|v)(w) = −∞. Since (w,−1) ∈ Epi(d2ef(x|v)) = lim supEpi(∆2
τf(x|v)), there exist

(tn) → 0 and (wn, λn) → (w,−1) such that (wn, λn) ∈ Epi(∆2
tnf(x|v)), that is, ∆

2
tnf(x|v)(wn) ≤

λn for all n ∈ N. For sufficiently large n, it holds that ∆2
tnf(x|v)(wn) ≤ λn < 0 which raises a

contradiction with Lemma 30. Secondly, since Epi(d2ef(x|v)) = lim inf Epi(∆2
τf(x|v)), we easily

conclude that d2ef(x|v) is lower semi-continuous and convex (see Remarks 1 and 2 and Proposi-

tion 28). Thirdly, since (0, 0) ∈ Epi(∆2
τf(x|v)) for all τ > 0, we deduce that (0, 0) ∈ Epi(d2ef(x|v))
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and thus d2ef(x|v)(0) ≤ 0. This concludes that d2ef(x|v) is proper. Our second aim is to prove

that d2ef(x|v)(0) = 0. By contradiction, let us assume that d2ef(x|v)(0) < 0. Then, there exists

ε > 0 such that (0,−ε) ∈ Epi(d2ef(x|v)) = lim supEpi(∆2
τf(x|v)). Thus, there exist (tn) → 0

and (wn, εn) → (0, ε) such that (wn,−εn) ∈ Epi(∆2
tnf(x|v)), that is, ∆2

tnf(x|v)(wn) ≤ −εn for

all n ∈ N. For sufficiently large n, it holds that ∆2
tnf(x|v)(wn) ≤ −εn < 0 which constitutes a

contradiction with Lemma 30. Our last aim is to prove that ∂f is proto-differentiable at x for v

with Dp(∂f)(x|v) = ∂(d2ef(x|v)). This result directly follows from Proposition 28 and Theorem 12.

Now let us assume that ∂f is proto-differentiable at x for v andDp(∂f)(x|v) is a maximal monotone

operator. From Proposition 28, we get that (∂(∆2
τf(x|v)))τ>0 = (∆τ (∂f)(x|v))τ>0 G-converges to

the maximal monotone operatorDp(∂f)(x|v). We deduce from Theorem 13 thatDp(∂f)(x|v) = ∂ϕ

for some ϕ ∈ Γ0(H). Our aim is now to apply Theorem 12 in order to conclude that (∆2
τf(x|v))τ>0

M-converges. Let us consider zτ := 0 and ξτ := 0 for all τ > 0. In particular, we have (zτ , ξτ ) →

(0, 0) and since 0 ∈ ∂(∆2
τf(x|v))(0) (see Lemma 30), we deduce that (zτ , ξτ ) ∈ Gr(∂(∆2

τf(x|v)))

for all τ > 0. From Remark 8, we deduce that (0, 0) ∈ Gr(∂ϕ) and thus 0 ∈ dom(ϕ). Considering

ψ := ϕ − ϕ(0) ∈ Γ0(H), we have ψ(0) = 0 and ∂ψ = ∂ϕ. Since ∆2
τf(x|v)(ξτ ) = 0 → ψ(0), the

proof is complete from Theorem 12.

However it should be noted that Lemma 30 is not true in the general t-dependent setting. As a

consequence the above proof cannot be fully adapted to the t-dependent framework. Actually, in

the t-dependent setting, we can even prove that the above proposition is not true with a simple

counter-example provided below.

Example 31. Let H = R and f(t, x) := |x− t| for all (t, x) ∈ R+ × R. Let us consider x = 0 and

v = 0 ∈ ∂f(0, x). One can easily compute that

∆2
τf(x|v)(w) =

|w − 1| − 1

τ
,

for all τ > 0 and all w ∈ R. One can easily deduce that f is twice epi-differentiable at x for v with

d2ef(x|v)(w) =

{

−∞ if w ∈ [0, 2],

+∞ if w /∈ [0, 2].

In particular note that d2ef(x|v) /∈ Γ0(H) and that d2ef(x|v)(0) 6= 0.

We deduce from Example 31 that Proposition 29 does not admit an exact counterpart in the t-

dependent framework. Thus our aim is now to introduce a new concept that allows to recover

Proposition 29 in the t-dependent framework. We refer to Section 2.4 for the notion of supporting

hyperplane.

Definition 32 (Convergent supporting hyperplane). Let (fτ )τ>0 be a parameterized family of

functions in Γ0(H). We say that (fτ )τ>0 admits a convergent supporting hyperplane if there exists

(zτ , ξτ , βτ )τ>0 → (z, ξ, β) such that (zτ , ξτ , βτ ) is a supporting hyperplane of fτ for all τ > 0.

Remark 33. Let us point out that the existence of a convergent supporting hyperplane to a

parameterized family (fτ )τ>0 of functions in Γ0(H) is equivalent to the existence of (zτ , ξτ )τ>0 →

(z, ξ) such that (zτ , ξτ ) ∈ Gr(∂fτ ) for all τ > 0 and such that fτ (zτ ) → γ for some γ ∈ R.

We are now in position in order to state and prove the counterpart of Proposition 29 in the

t-dependent framework, under the assumption of the existence of a convergent supporting hyper-

plane. The following theorem is in this sense.
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Theorem 34. Let f ∈ Γ0(·,H), x ∈ f−1(·,R) and v ∈ ∂f(0, x). Let us assume that (∆2
τf(x|v))τ>0

admits a convergent supporting hyperplane (zτ , ξτ , βτ )τ>0 → (z, ξ, β). Then the following assertions

are equivalent:

(i) f is twice epi-differentiable at x for v;

(ii) ∂f is proto-differentiable at x for v and Dp(∂f)(x|v) is a maximal monotone operator.

In that case d2ef(x|v) belongs to Γ0(H) with β ≤ d2ef(x|v)(0) ≤ 0 and

Dp(∂f)(x|v) = ∂(d2ef(x|v)).

Proof. Let us assume that f is twice epi-differentiable at x for v. Our first aim is to prove that

d2ef(x|v) ∈ Γ0(H). Firstly, let us assume by contradiction that there exists w ∈ H such that

d2ef(x|v)(w) = −∞. Let λ ∈ R such that λ < 〈ξ, w〉 + β. Since (w, λ) ∈ Epi(d2ef(x|v)) =

lim supEpi(∆2
τf(x|v)), we know that there exist (tn) → 0 and (wn, λn) → (w, λ) such that

(wn, λn) ∈ Epi(∆2
tnf(x|v)), that is, ∆2

tnf(x|v)(wn) ≤ λn for all n ∈ N. From Definition 32,

we get that 〈ξtn , wn〉 + βtn ≤ λn for all n ∈ N. Letting n → +∞ raises a contradiction.

We prove that d2ef(x|v) is lower semi-continuous, convex and that d2ef(x|v)(0) ≤ 0 as in the

proof of Proposition 29. Our second aim is to prove that d2ef(x|v)(0) ≥ β. By contradic-

tion, let us assume that d2ef(x|v)(0) < β. Then, there exists ε > 0 such that (0, β − ε) ∈

Epi(d2ef(x|v)) = lim supEpi(∆2
τf(x|v)). Thus, there exist (tn) → 0 and (wn, λn) → (0, β − ε)

such that (wn, λn) ∈ Epi(∆2
tnf(x|v)), that is, ∆2

tnf(x|v)(wn) ≤ λn for all n ∈ N. From Defini-

tion 32, we get that 〈ξtn , wn〉+βtn ≤ λn for all n ∈ N. Letting n→ +∞ constitutes a contradiction.

Our last aim is to prove that ∂f is proto-differentiable at x for v with Dp(∂f)(x|v) = ∂(d2ef(x|v)).

This result directly follows from Proposition 28 and Theorem 12.

Now let us assume that ∂f is proto-differentiable at x for v andDp(∂f)(x|v) is a maximal monotone

operator. From Proposition 28, we get that (∂(∆2
τf(x|v)))τ>0 = (∆τ (∂f)(x|v))τ>0 G-converges to

the maximal monotone operatorDp(∂f)(x|v). We deduce from Theorem 13 thatDp(∂f)(x|v) = ∂ϕ

for some ϕ ∈ Γ0(H). Our aim is now to apply Theorem 12 in order to conclude that (∆2
τf(x|v))τ>0

M-converges. From Definition 32, we have (zτ , ξτ ) → (z, ξ) and since ξτ ∈ ∂(∆2
τf(x|v))(zτ ),

we deduce that (zτ , ξτ ) ∈ Gr(∂(∆2
τf(x|v))) for all τ > 0. From Remark 8, we deduce that

(z, ξ) ∈ Gr(∂ϕ) and thus z ∈ dom(ϕ). Considering ψ := ϕ − ϕ(z) + 〈ξ, z〉 + β ∈ Γ0(H), we have

∂ψ = ∂ϕ and ∆2
τf(x|v)(zτ ) = 〈ξτ , zτ 〉+βτ → ψ(z) since (zτ , ξτ , βτ )τ>0 is a convergent supporting

hyperplane of (∆2
τf(x|v))τ>0. The proof is thereby completed using Theorem 12.

Remark 35. In the t-independent framework, Theorem 34 exactly coincides with Proposition 29.

Indeed, in that case, Lemma 30 ensures that (∆2
τf(x|v))τ>0 admits a convergent supporting hy-

perplane with (zτ , ξτ , βτ ) = (0, 0, 0) for all τ > 0.

Remark 36. In Example 31, one can easily see that (∆2
τf(x|v))τ>0 does not admit a convergent

supporting hyperplane.

Remark 37. In contrary to Proposition 29, it might be possible that d2ef(x|v)(0) 6= 0 in Theo-

rem 34. We refer to Example 38 below.

Example 38. Let H = R and f(t, x) := |x− t2| for all (t, x) ∈ R+ ×R. Let us consider x = 0 and

v = 0 ∈ ∂f(0, x). One can easily compute that

∆2
τf(x|v)(w) =

|w − τ | − τ

τ
,
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for all τ > 0 and all w ∈ R. One can easily deduce that f is twice epi-differentiable at x for v with

d2ef(x|v)(w) =

{

−1 if w = 0,

+∞ if w 6= 0.

In particular note that d2ef(x|v)(0) 6= 0 and thus d2ef(x|v) is not positively homogeneous of degree

two.

We conclude this section by proving that the concept of convergent supporting hyperplane is a

necessary and sufficient condition in a sense given by the following proposition.

Proposition 39. Let f ∈ Γ0(·,H), x ∈ f−1(·,R) and v ∈ ∂f(0, x). If f is twice epi-differentiable

at x for v, then the following assertions are equivalent:

(i) d2ef(x|v) ∈ Γ0(H);

(ii) (∆2
τf(x|v))τ>0 admits a convergent supporting hyperplane.

Proof. From Theorem 34, we only need to prove the implication (i)⇒(ii). Let us assume that

d2ef(x|v) ∈ Γ0(H). From Theorem 12, we deduce that there exists (zτ , ξτ )τ>0 → (z, ξ) such that

(zτ , ξτ ) ∈ Gr(∂(∆2
τf(x|v))) for all τ > 0 and ∆2

τf(x|v)(zτ ) → d2ef(x|v)(z). From Remark 14, we

know that d2ef(x|v)(z) ∈ R. This concludes the proof from Remark 33.

4.2 Proto-differentiability of the proximity operator and sensitivity anal-

ysis

Let (A, f) ∈ A(·,H)× Γ0(·,H). For the simplicity of notations we introduce

ProxA,f : R+ ×H → H

(t, x) 7→ ProxA,f (t, x) := proxA(t,·),f(t,·)(x).

Using the notations introduced at the beginning of Section 3, note that ProxA,f = (A + ∂f)−1.

From Propositions 21 and 22, one can easily conclude the following lemma.

Lemma 40. Let (A, f) ∈ A(·,H)×Γ0(·,H) and x ∈ H. Let us assume that A is semi-differentiable

at v := ProxA,f (0, x). Then, ProxA,f is proto-differentiable at x for v if and only if ∂f is proto-

differentiable at v for v0 := x−A(0, v) ∈ ∂f(0, v). In that case, it holds that

Dp(ProxA,f )(x|v) =
(

DsA(v) +Dp(∂f)(v|v0)
)−1

.

From Theorem 34, Proposition 39 and Lemma 40, we deduce the following theorem.

Theorem 41. Let (A, f) ∈ A(·,H) × Γ0(·,H) and x ∈ H. If the following assertions are satisfied:

(i) A ∈ Aunif(·,H);

(ii) A is semi-differentiable at v := ProxA,f (0, x);

(iii) f is twice epi-differentiable at v for v0 := x−A(0, v) ∈ ∂f(0, v);

(iv) d2ef(v|v0) ∈ Γ0(H);
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then ProxA,f is proto-differentiable at x for v with

Dp(ProxA,f)(x|v) = proxDsA(v), d2
ef(v|v0)

.

Proof. From Proposition 17, we know thatDsA(v) ∈ A(H). Hence, the mapping proxDsA(v), d2
ef(v|v0)

:

H → H is well-defined (see Section 2.4). The proof of Theorem 41 easily follows from Theorem 34,

Proposition 39 and Lemma 40.

Now we return to the initial motivation of the present paper, that is, the sensitivity analysis, with

respect to the parameter t ≥ 0, of the general nonlinear variational inequality of second kind given

by
(VI(A(t, ·), f(t, ·), x(t))) ∀z ∈ H, 〈A(t, y), z − y〉+ f(t, z)− f(t, y) ≥ 〈x(t), z − y〉,

where (A, f) ∈ A(·,H)×Γ0(·,H) and where x : R+ → H is a given function. From Section 2.4, the

above variational inequality admits for all t ≥ 0 a unique solution y(t) ∈ H given by

y(t) = proxA(t,·),f(t,·)(x(t)) = ProxA,f (t, x(t)).

The next theorem is the major result of the present paper. It provides sufficient conditions on A, f

and x under which y : R+ → H is differentiable at t = 0 and provides an explicit formula for y′(0).

Theorem 42. Let (A, f) ∈ A(·,H) × Γ0(·,H) and let x : R+ → H be a function. We consider the

function y : R+ → H defined by

y(t) := proxA(t,·),f(t,·)(x(t)),

for all t ≥ 0. If the following assertions are satisfied:

(i) x is differentiable at t = 0;

(ii) A ∈ Aunif(·,H);

(iii) A is semi-differentiable at y(0);

(iv) f is twice epi-differentiable at y(0) for v0 := x(0)−A(0, y(0)) ∈ ∂f(0, y(0));

(v) d2ef(y(0)|v0) ∈ Γ0(H);

then y : R+ → H is differentiable at t = 0 with

y′(0) = proxDsA(y(0)), d2
ef(y(0)|v0)

(x′(0)).

Proof. For the ease of notations, we denote by proxχ := proxDsA(y(0)), d2
ef(y(0)|v0)

. Recall that

proxχ is 1
α -Lipschitz continuous where α > 0 denotes the uniform strong monotonicity coefficient

of A ∈ Aunif(·,H) (see Section 2.4 and Remark 18). From Theorem 41, we deduce that ProxA,f is

proto-differentiable at x(0) for y(0) with

Dp(ProxA,f )(x(0)|y(0)) = proxχ.

By contradiction, let us assume that there exist ε > 0 and (tn) → 0 such that

ε ≤

∥

∥

∥

∥

y(tn)− y(0)

tn
− proxχ(x

′(0))

∥

∥

∥

∥

,
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for all n ∈ N. Since proxχ(x
′(0)) = Dp(ProxA,f )(x(0)|y(0))(x′(0)), we deduce that there exist

(wn, zn)n∈N → (x′(0), proxχ(x
′(0))) and N ∈ N such that

(wn, zn) ∈ Gr
(

∆tn(ProxA,f )(x(0)|y(0))
)

for all n ≥ N . We deduce that

proxA(tn,·),f(tn,·)(x(0) + tnwn) = y(0) + tnzn,

for all n ≥ N . Finally, we obtain that

ε ≤

∥

∥

∥

∥

proxA(tn,·),f(tn,·)(x(tn))− proxA(tn,·),f(tn,·)(x(0) + tnwn)

tn

∥

∥

∥

∥

+

∥

∥

∥

∥

proxA(tn,·),f(tn,·)(x(0) + tnwn)− y(0)

tn
− zn

∥

∥

∥

∥

+ ‖zn − proxχ(x
′(0))‖,

for all n ∈ N. The second term is equal to zero for all n ≥ N . Using the 1
α -Lipschitz continuity

of proxA(tn,·),f(tn,·), we obtain that ε ≤ 1
α‖

x(tn)−x(0)
tn

− wn‖ + ‖zn − proxχ(x
′(0))‖ for all n ≥ N .

This raises a contradiction since wn → x′(0) and zn → proxχ(x
′(0)). The proof is complete.

Remark 43. Let us assume that all assumptions of Theorem 42 are satisfied. Then its con-

clusion can be rewritten as follows. If y(t) is the unique solution of the variational inequality

(VI(A(t, ·), f(t, ·), x(t))) for all t ≥ 0, then y : R+ → H is differentiable at t = 0 and y′(0) is the

unique solution of (VI(DsA(y(0)), d
2
ef(y(0)|v0), x

′(0))).

5 Applications to parameterized convex minimization prob-

lems

In this section our aim is to apply our main result (Theorem 42) to the sensitivity analysis of

parameterized convex minimization problems. We start with a general result (see Proposition 44

in Section 5.1), then we give a simple illustration in the one-dimensional setting (see Section 5.2).

We conclude by studying in details the case of parameterized smooth convex minimization problems

with inequality constraints in a finite-dimensional setting (see Proposition 47 in Section 5.3).

5.1 A general result

In this section we will prove from Theorem 42 that the derivative of the solution of a parameterized

convex minimization problem is still, under some appropriate assumptions, the solution of a convex

minimization problem. The following proposition is in this sense.

Proposition 44. Let f ∈ Γ0(·,H) and ℓ : R+ → H be given functions. Let g : R+ × H → R be

such that g(t, ·) is differentiable on H with ∇xg(t, ·) ∈ A(H) for all t ≥ 0. Then, for all t ≥ 0, the

parameterized convex minimization problem

(M1(t))
argmin

x∈H

[

f(t, x) + g(t, x)− 〈ℓ(t), x〉
]

admits a unique solution denoted by y(t). If moreover the following assumptions are satisfied:
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(i) ℓ is differentiable at t = 0;

(ii) ∇xg ∈ Aunif(·,H);

(iii) ∇xg is of class C1 on R+ ×H;

(iv) f is twice epi-differentiable at y(0) for v0 := ℓ(0)−∇xg(0, y(0)) ∈ ∂f(0, y(0));

(v) d2ef(y(0), v0) ∈ Γ0(H);

then y : R+ → H is differentiable at t = 0 and y′(0) is the unique solution of the convex minimiza-

tion problem given by

(M′
1(0))

argmin
x∈H

[

d2ef(y(0), v0)(x) +
1

2
〈∇2

xxg(0, y(0))(x), x〉

+ 〈∇2
txg(0, y(0))− ℓ′(0), x〉

]

.

Proof. Since ∇xg(t, ·) is monotone, we deduce that g(t, ·) is convex on H for all t ≥ 0. As a

consequence, for all t ≥ 0, y(t) is a solution of the convex minimization problem (M1(t)) if and

only if

0 ∈ ∂
(

f(t, ·) + g(t, ·)− 〈ℓ(t), ·〉
)

(y(t)) = ∂f(t, y(t)) + ∂g(t, y(t))− ℓ(t).

In the above equation, since g(t, ·) is differentiable and 〈ℓ(t), ·〉 is linear continuous, the subdif-

ferential of the sum is equal to the sum of the subdifferentials. Denoting by A(t, ·) := ∂g(t, ·) =

∇xg(t, ·) ∈ A(H), one can easily conclude that the convex minimization problem (M1(t)) admits

a unique solution y(t) given by

y(t) = proxA(t,·),f(t,·)(ℓ(t)).

Let us prove the second part of Proposition 44. Since ∇xg is of class C1 on R+×H, one can easily

prove that A is semi-differentiable on H with

DsA(x)(w) = ∇2
xxg(0, x)(w) +∇2

txg(0, x),

for all x, w ∈ H. From Theorem 42, we deduce that y : R+ → H is differentiable at t = 0 with

y′(0) = proxDsA(y(0)), d2
ef(y(0)|v0)

(ℓ′(0)).

We deduce that

ℓ′(0) ∈ DsA(y(0))(y
′(0)) + ∂

(

d2ef(y(0)|v0)
)

(y′(0)).

Since the function x ∈ H 7→ 1
2 〈∇

2
xxg(0, y(0))(x), x〉 ∈ R is convex and differentiable on H, we obtain

that

0 ∈ ∂
(

d2ef(y(0)|v0) +
1

2
〈∇2

xxg(0, y(0))(·), ·〉+ 〈∇2
txg(0, y(0))− ℓ′(0), ·〉

)

(y′(0)),

which concludes the proof.
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5.2 Illustration with a one-dimensional example

In this section we denote by x+ := max(0, x) and by x− := min(0, x) for all x ∈ R.

In order to illustrate Proposition 44, we study in this section a one-dimensional example. Precisely

we consider the parameterized one-dimensional convex minimization problem given by

(M2(t))
argmin

x∈R

(

a(t)|x − b(t)|+
c(t)

2
x2 − d(t)x

)

,

where

• a : R+ → R is differentiable at t = 0 and a(t) > 0 for all t ≥ 0;

• b : R+ → R is twice differentiable at t = 0 and b′(0) = 0;

• c : R+ → R is of class C1 on R+ and α ≤ c(t) ≤ β for all t ≥ 0 for some 0 < α ≤ β;

• d : R+ → R is differentiable at t = 0.

In order to apply Proposition 44, one has to consider H = R and

f(t, x) := a(t)|x − b(t)|, g(t, x) :=
c(t)

2
x2 and ℓ(t) := d(t),

for all (t, x) ∈ R+ ×R. Almost all hypotheses of Proposition 44 are easily checkable. Actually the

only difficult part is to check that f is twice epi-differentiable and that its second epi-derivative

belongs to Γ0(H). This follows from the following lemma.

Lemma 45. Let f : R+ × R → R be defined by f(t, x) := a(t)|x − b(t)| for all (t, x) ∈ R+ × R,

where

• a : R+ → R is differentiable at t = 0 and a(t) > 0 for all t ≥ 0;

• b : R+ → R is twice differentiable at t = 0 and b′(0) = 0.

Then f is twice epi-differentiable at every x ∈ R for every v ∈ ∂f(0, x) and we obtain five different

cases:

(i) If x > b(0), then v = a(0) and we obtain that d2ef(x|v)(w) = a′(0)w for all w ∈ R;

(ii) If x = b(0), then v ∈ [−a(0), a(0)].

(a) If v = a(0), we obtain that

d2ef(x|v)(w) =

{

a′(0)w − a(0)(b′′(0))+ if w ≥ 0,

+∞ if w < 0,

for all w ∈ R.

(b) If v ∈ (−a(0), a(0)), we obtain that

d2ef(x|v)(w) =







(

a(0)− v

2

)

b′′(0)− a(0)(b′′(0))+ if w = 0,

+∞ if w 6= 0,

for all w ∈ R.
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(c) If v = −a(0), we obtain that

d2ef(x|v)(w) =

{

−a′(0)w − a(0)(−b′′(0))+ if w ≤ 0,

+∞ if w > 0,

for all w ∈ R.

(iii) If x < b(0), then v = −a(0) and we obtain that d2ef(x|v)(w) = −a′(0)w for all w ∈ R.

In each above case, it holds that d2ef(x|v) ∈ Γ0(H).

Proof. One can easily compute that

∆2
τf(x|v)(w) =



















(

a(τ) − v

τ

)

w − 2a(τ)

(

b(τ)− x

τ2

)+

if w ≥
b(τ)− x

τ
,

−

(

a(τ) + v

τ

)

w − 2a(τ)

(

x− b(τ)

τ2

)+

if w ≤
b(τ)− x

τ
,

for all τ > 0, all (w, x) ∈ R× R and all v ∈ ∂f(0, x). Lemma 45 follows.

Remark 46. Note that Lemma 45 encompasses the result of Example 38. In Example 31, all

assumptions of Lemma 45 are satisfied except b′(0) = 0.

From Proposition 44 and Lemma 45, we obtain that, for all t ≥ 0, the convex minimization

problem (M2(t)) admits a unique solution denoted by y(t). Moreover, we know that y : R+ → H

is differentiable at t = 0 and that y′(0) is solution of the convex minimization problem

(M′
2(0)) argmin

x∈R

[

d2ef
(

y(0)|d(0)− c(0)y(0)
)

(x) +
c(0)

2
x2 + (c′(0)y(0)− d′(0))x

]

.

At this step recall that d(0)− c(0)y(0) ∈ ∂f(0, y(0)). Thus we get three cases:

(i) if y(0) > b(0), then d(0)− c(0)y(0) = a(0);

(ii) if y(0) = b(0), then d(0)− c(0)y(0) ∈ [−a(0), a(0)];

(iii) if y(0) < b(0), then d(0)− c(0)y(0) = −a(0).

Finally, from Lemma 45 and (M′
2(0)), we obtain that

y′(0) =



















































































(

d− a

c

)′

(0) if y(0) > b(0),

(

(

d− a

c

)′

(0)

)+

if y(0) = b(0) =
d(0)− a(0)

c(0)
,

0 if y(0) = b(0) ∈

(

d(0)− a(0)

c(0)
,
d(0) + a(0)

c(0)

)

,

(

(

d+ a

c

)′

(0)

)−

if y(0) = b(0) =
d(0) + a(0)

c(0)
,

(

d+ a

c

)′

(0) if y(0) < b(0).
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The above results are perfectly coherent since it can be proved that the unique solution y(t) of the

parameterized convex minimization problem (M2(t)) is given by

y(t) =



































d(t)− a(t)

c(t)
if b(t) ≤

d(t)− a(t)

c(t)
,

b(t) if
d(t) − a(t)

c(t)
< b(t) <

d(t) + a(t)

c(t)
,

d(t) + a(t)

c(t)
if

d(t) + a(t)

c(t)
≤ b(t),

for all t ≥ 0.

5.3 Applications to parameterized smooth convex minimization prob-

lems with inequality constraints

Let m, d ∈ N
∗. In the whole section we denote by R− the set of all nonpositive real numbers and

by R
d
− := R− × . . .× R−.

In this section we focus on a general finite-dimensional parameterized convex minimization problem

with inequality constraints given by

argmin
x∈R

m

F (t,x)∈R
d
−

g(t, x)

where F := (Fi)i=1,...,d : R+ × R
m → R

d and g : R+ × R
m → R are smooth functions.

Precisely, under some appropriate assumptions, we will prove in Proposition 47 that the above

minimization problem admits, for all t ≥ 0, a unique solution denoted by y(t), and that the

function y : R+ → R
m is differentiable at t = 0 where y′(0) is the unique solution of a convex

minimization problem with linear inequality/equality constraints. We refer to Proposition 47 and

Remarks 48 and 49 for details.

To this aim, we need to recall first some classical notions and notations. Let N(w) (resp. T(w))

denote the normal cone (resp. tangent cone) to R
d
− at some w ∈ R

d
−. Recall that N(w) and

T(w) are both closed convex cones of Rd containing 0Rd , and that they are mutually polar. Let

δY ∈ Γ0(R
d) (resp. σY ∈ Γ0(R

d)) denote the indicator function (resp. support function) of a

nonempty closed convex subset Y ⊂ R
d
−. We refer to standard books like [7, 17, 26] and references

therein for details.

If F is of class C2 on R+×R
m, we denote byD2F (t, x) the classical second-order Fréchet differential

of F at (t, x) ∈ R+ × R
m. We also introduce the following sets:

K(y|v) := {x ∈ R
m | ∇xF (0, y)x ∈ T(F (0, y)) and 〈x, v〉 = 0}

and

Y(y|v) := {w ∈ R
d | w ∈ N(F (0, y)) and ∇xF (0, y)

⊤w = v},

for all (y, v) ∈ R
m × R

m such that F (0, y) ∈ R
d
−.

We are now in position to state and prove the main result of this section.

23



Proposition 47. Let m, d ∈ N
∗. Let F := (Fi)i=1,...,d : R+×R

m → R
d be such that Fi ∈ Γ0(·,Rm)

for every i = 1, . . . , d. We assume that C(t) := {x ∈ R
m | F (t, x) ∈ R

d
−} is not empty for all

t ≥ 0. Let g : R+ × R
m → R be such that g(t, ·) is differentiable on R

m with ∇xg(t, ·) ∈ A(Rm)

for all t ≥ 0. Then, for all t ≥ 0, the parameterized convex minimization problem with inequality

constraints

(M3(t))

argmin
x∈R

m

F (t,x)∈R
d
−

g(t, x)

admits a unique solution denoted by y(t). If moreover the following assumptions are satisfied:

(i) ∇xg ∈ Aunif(·,Rm);

(ii) ∇xg is of class C1 on R+ × R
m;

(iii) F is of class C2 on R+ × R
m;

(iv) ∇tF (0, y(0)) = 0Rd;

(v) y(0) ∈ C(t) for all t ≥ 0;

(vi) ‖∇xF (t, y(0))
⊤w‖Rm ≥ α for all w ∈ N(F (t, y(0))) with ‖w‖Rd = 1 and all t ≥ 0, for some

α > 0;

then y : R+ → R
m is differentiable at t = 0 and y′(0) is the unique solution of the convex

minimization problem with linear inequality/equality constraints given by

(M′
3(0))

argmin
x∈R

m

x∈K(y(0)|v0)

[

1

2
〈∇2

xxg(0, y(0))(x), x〉 + 〈∇2
txg(0, y(0)), x〉

+σY(y(0)|v0)

(

1

2
D2F (0, y(0))(1, x)

)]

,

where v0 := −∇xg(0, y(0)).

Proof. Let us prove the first part of Proposition 47. In order to apply the first part of Proposition 44

with H = R
m, we introduce f : R+×R

m → R∪{+∞} defined by f(t, x) := δC(t)(x) = δRd
−

(F (t, x))

for all (t, x) ∈ R+ × R
m. Thus, the minimization problem (M3(t)) can be rewritten as

argmin
x∈Rm

[

f(t, x) + g(t, x)
]

.

Since Fi ∈ Γ0(·,Rm) for every i = 1, . . . , d and since C(t) is not empty for all t ≥ 0, one can easily

deduce that f ∈ Γ0(·,Rm) and thus the first part of Proposition 44 can be applied.

Now let us prove the second part of Proposition 47. In order to apply the second part of Propo-

sition 44 with H = R
m, we only need to prove that f is twice epi-differentiable at y(0) for v0 and

that d2ef(y(0), v0) ∈ Γ0(R
m). To do so, we will essentially adapt the proof of [26, Theorem 13.14

p.594] to the t-dependent framework.

First of all, we need to state some assertions:
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• Note that Y(y(0)|v0) is a closed convex subset of Rd. Moreover, since v0 = −∇xg(0, y(0)) ∈

∂f(0, y(0)) = ∇xF (0, y(0))
⊤N(F (0, y(0))), we deduce that Y(y(0)|v0) is nonempty. Fi-

nally, since ‖∇xF (0, y(0))
⊤x‖Rm ≥ α for all x ∈ N(F (0, y(0))) with ‖x‖Rd = 1, one can

easily prove that Y(y(0)|v0) is compact. In particular, it follows that σY(y(0)|v0)(x) =

maxw∈Y(y(0)|v0)〈w, x〉Rd < +∞ for all x ∈ R
d.

• Note that K(y(0)|v0) is a closed convex cone of Rm containing 0Rm . Then we can easily

deduce that the function ϕ : Rm → R ∪ {+∞}, defined by

ϕ(x) := δK(y(0)|v0)(x) + σY(y(0)|v0)

(

1

2
D2F (0, y(0))(1, x)

)

,

for all x ∈ R
m, is such that ϕ ∈ Γ0(R

m). In particular we used the fact that each component

of some w ∈ Y(y(0)|v0) are nonnegative.

• For all w ∈ Y(y(0)|v0), δRd
−

is twice epi-differentiable at F (0, y(0)) for w and it holds that

d2eδRd
−

(F (0, y(0))|w)(∇xF (0, y(0))x) = δK(y(0)|v0)(x),

for all x ∈ R
m. We refer to [26, Exercice 13.17 p.600] for details. In particular, note that the

above formula is independent of the choice of w ∈ Y(y(0)|v0).

Our aim from now is to prove that f is twice epi-differentiable at y(0) for v0 with d2ef(y(0)|v0) = ϕ

from the characterization of epi-convergence recalled in Proposition 11 (with H = R
m is finite-

dimensional). Firstly, let z ∈ R
m and (zτ )τ>0 → z. Adapting the proof of [26, Theorem 13.14

p.594] to the t-dependent framework, one can easily show that

∆2
τf(y(0)|v0)(zτ ) = ∆2

τ δRd
−

(F (0, y(0))|w)(∆̃τF ) +

〈

w,
τ∆̃τF − τ∇xF (0, y(0))zτ

τ2

〉

,

for any w ∈ Y(y(0)|v0), where ∆̃τF := F (τ,y(0)+τzτ)−F (0,y(0))
τ . Since ∇tF (0, y(0)) = 0Rd , one has

∆̃τF → ∇xF (0, y(0))z. Moreover, since δRd
−

is twice epi-differentiable at F (0, y(0)) for w and since

τ∆̃τF−τ∇xF (0,y(0))zτ
τ2 → 1

2D
2F (0, y(0))(1, z), we deduce that

lim inf
τ→0

∆2
τf(y(0)|v0)(zτ ) ≥ d2eδRd

−

(F (0, y(0))|w)(∇xF (0, y(0))z)

+
1

2
〈w,D2F (0, y(0))(1, z)〉.

Since d2eδRd
−

(F (0, y(0))|w)(∇xF (0, y(0))z) = δK(y(0)|v0)(z) and since the last inequality is satisfied

for any w ∈ Y(y(0)|v0) compact, we get that lim infτ→0∆
2
τf(y(0)|v0)(zτ ) ≥ ϕ(z).

Secondly, our objective is now to exhibit a sequence (zτ )τ>0 → z that satisfies lim supτ→0∆
2
τf(y(0)|v0)(zτ ) ≤

ϕ(z). If ϕ(z) = +∞, nothing has to be proved. Thus we assume from now that ϕ(z) < +∞, that

is, z ∈ K(y(0)|v0). It is sufficient to construct a sequence (zτ )τ>0 → z such that

lim
τ→0

∆2
τf(y(0)|v0)(zτ ) =

1

2
〈w,D2F (0, y(0))(1, z)〉

where w ∈ argmaxw∈Y(y(0)|v0)〈w,D
2F (0, y(0))(1, z)〉. From [26, Theorem 11.42 and Example 11.43

p.506], we deduce the existence of z ∈ R
m such that −〈v0, z〉 = 〈w,D2F (0, y(0))(1, z)〉 and η :=
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∇xF (0, y(0))z +D2F (0, y(0))(1, z) ∈ T(F (0, y(0))). Since η ∈ T(F (0, y(0))) and ∇xF (0, y(0))z ∈

T(F (0, y(0))) and from [26, Theorem 13.11 and Proposition 13.12 p.591-592], there exists λ :

R+ → R
d such that λ(t) ∈ R

d
− for all t ≥ 0 and λ(0) = F (0, y(0)), λ′(0) = ∇xF (0, y(0))z and

λ′′(0) = η. On the other hand, from Assumption (vi) and from the metric regularity property (see

[26, Theorem 9.43 and Example 9.44 p.387-388]), we know that

d

(

y(0) + tz +
t2

2
z, C(t)

)

≤
1

α
d

(

F

(

t, y(0) + tz +
t2

2
z

)

,Rd
−

)

,

for sufficiently small t ≥ 0. Thus we deduce that

d

(

z,
C(t) − y(0)− tz

t2/2

)

≤
1

α
d

(

∆̃2
tF,

R
d
− − F (0, y(0))− t∇xF (0, y(0))z

t2/2

)

≤
1

α

∥

∥

∥

∥

∆̃2
tF −

λ(t) − λ(0)− tλ′(0)

t2/2

∥

∥

∥

∥

Rd

for sufficiently small t ≥ 0, where ∆̃2
tF :=

F (t,y(0)+tz+ t2

2 z)−F (0,y(0))−t∇xF (0,y(0))z

t2/2 . Since ∆̃2
tF →

η = λ′′(0), we deduce that there exists ξ : R+ → R
m such that ξ(t) ∈ C(t) for all t ≥ 0 and

ξ(0) = y(0), ξ′(0) = z and ξ′′(0) = z. Finally, we define zτ := ξ(τ)−ξ(0)
τ → ξ′(0) = z. Since

F (t, y(0)) ∈ R
d
− and F (t, ξ(t)) ∈ R

d
− for all t ≥ 0 and since 〈z, v0〉 = 0, we get that

∆2
τf(y(0)|v0)(zτ ) = −

〈

v0,
zτ − z

τ

〉

−→ −
1

2
〈v0, z〉 =

1

2
〈w,D2F (0, y(0))(1, z)〉,

which concludes the proof.

Remark 48. Note that the constraints x ∈ K(y(0)|v0) in the convex minimization problem (M′
3(0))

can be written as linear inequality/equality constraints.

Remark 49. Let us assume that all hypotheses of Proposition 47 are satisfied. In that case, recall

that Y(y(0)|v0) is a nonempty compact convex subset of Rd and thus

σY(y(0)|v0)

(

1

2
D2F (0, y(0))(1, x)

)

=
1

2
max

w∈Y(y(0)|v0)
〈w,D2F (0, y(0))(1, x)〉,

for all x ∈ R
m. In particular, if D2F (0, y(0)) = 0, then the above term vanishes. In that par-

ticular case, the convex minimization problem (M′
3(0)) has a quadratic cost with linear inequal-

ity/equality constraints (see Remark 48), while the original parameterized convex minimization

problem (M3(t)) has a nonlinear cost with nonlinear inequality constraints.

6 Additional comments

We conclude this paper with some additional comments about the choice of Formula (1) and about

the twice epi-differentiability of the conjugate function.

6.1 Comments on the choice of Formula (1)

In the whole paragraph we consider f ∈ Γ0(·,H), x ∈ f−1(·,R) and v ∈ ∂f(0, x).
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As mentioned at the beginning of Section 4, the whole paper is based on Attouch’s theorems (see

Theorems 12 and 13) and on Proposition 28. One can easily see that these results are totally

independent of the definition of ∆2
τf(x|v), provided that ∆2

τf(x|v) ∈ Γ0(H) and ∂(∆2
τf(x|v)) =

∆τ (∂f)(x|v).

As a consequence it is clear that one could easily adapt the whole paper with a different definition

of ∆2
τf(x|v), as long as ∆2

τf(x|v) ∈ Γ0(H) and ∂(∆
2
τf(x|v)) = ∆τ (∂f)(x|v). For example, instead

of Formula (1), one could consider

∆2
τf(x|v)(w) :=

f(τ, x+ τw) − f(0, x)− τ〈v, w〉

τ2
, (2)

or

∆2
τf(x|v)(w) :=

f(τ, x+ τw) − f(τ, x)− τ〈v(τ), w〉

τ2
, (3)

where v(t) ∈ ∂f(t, x) for all t ≥ 0. This is the reason why we think that it is important to justify

our choice of Formula (1). Actually this choice was natural and has prevailed with respect to our

initial motivation and followed from the case where f is smooth.

Indeed let us assume that f is smooth on R
+ × H and let y, z : R+ → H be two given functions

differentiable at t = 0 that are related by the expression

y(t) = proxf(t,·)(z(t)) = proxId,f(t,·)(z(t)),

for all t ≥ 0. We deduce that y(t)+∇xf(t, y(t)) = z(t) for all t ≥ 0 and thus y′(0)+∇2
txf(0, y(0))+

∇2
xxf(0, y(0))(y

′(0)) = z′(0). Finally we obtain that y′(0) = (Id+∂ϕy(0))
−1(z′(0)) = proxϕy(0)

(z′(0))

where ϕx : H → R is defined by

ϕx(w) :=
1

2

〈

∇2
xxf(0, x)(w), w

〉

+
〈

∇2
txf(0, x), w

〉

,

for all w ∈ H. Hence it was natural to choose a general expression of ∆2
τf(x|v) that converges

pointwise on H to ϕx (up to an additive constant) whenever f is smooth. Note that Formula (1)

does (see Remark 26).

In contrast, if f is smooth and if ∆2
τf(x|v)(w) is defined as in (2), then ∆2

τf(x|v)(w) does not

converge if ∇tf(0, x) 6= 0. Similarly, if f is smooth and if ∆2
τf(x|v)(w) is defined as in (3), then

∆2
τf(x|v)(w) converges to 1

2 〈∇
2
xxf(0, x)(w), w〉 that is different (even up to an additive constant)

from ϕx(w) if ∇2
txf(0, x) 6= 0.

6.2 Comments on the twice epi-differentiability of the conjugate func-

tion

In the t-independent framework, recall that the classical Fenchel conjugate f∗ ∈ Γ0(H) of a function

f ∈ Γ0(H) is defined by

f∗(v) := sup
x∈H

{〈v, x〉 − f(x)},

for all v ∈ H. Recall the following result stated by U. Mosco in [15, Theorem 1].

Theorem 50. Let (fτ )τ>0 be a parameterized family of functions in Γ0(H) and f ∈ Γ0(H). Then,

f = E-lim fτ if and only if f∗ = E-lim f∗
τ .
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It can be easily proved that f∗(v) + f(x) ≥ 〈v, x〉 for all (x, v) ∈ H×H, with equality if and only

if v ∈ ∂f(x). From elementary calculus rules for conjugates, for some x ∈ f−1(R) and v ∈ ∂f(x),

one can get that the conjugate of ∆2
τf(x|v) ∈ Γ0(H) is given by

(

∆2
τf(x|v)

)∗

= ∆2
τf

∗(v|x),

for all τ > 0. As a consequence, we obtain from Theorem 50 that f is twice epi-differentiable at x

for v if and only if f∗ is twice epi-differentiable at v for x. In that case, d2ef(x|v) and d
2
ef

∗(v|x) both

belong to Γ0(H) from Proposition 29 and are mutually conjugate, that is, (d2ef(x|v))
∗ = d2ef

∗(v|x).

We refer to [26, Theorem 13.21 p.604] for details.

In the t-dependent framework, for the simplicity of notations, we denote by f∗ : R+×H → R∪{+∞}

the conjugate of any function f ∈ Γ0(·,H) defined by

f∗(t, v) := (f(t, ·))∗(v)

for all (t, v) ∈ R+×H. Our aim in this section is to rely the twice epi-differentiability introduced in

this paper (see Definition 23) of f with the twice epi-differentiability of f∗ as in the t-independent

setting. However, as in Section 4.1, we will see that the situation is more complicated in the

t-dependent framework and requires additional assumptions.

Let f ∈ Γ0(·,H), x ∈ f−1(·,R) and v ∈ ∂f(0, x). We introduce the nonnegative function

Φf
(x|v) : R+ → R+

t 7→ Φf
(x|v)(t) := f∗(t, v) + f(t, x)− 〈v, x〉.

Note that Φf
(x|v)(0) = 0. In the particular case where f is t-independent, it holds that Φf

(x|v)(t) = 0

for all t ≥ 0. Imitating the above t-independent framework, it can be proved that

(

∆2
τf(x|v)

)∗

= ∆2
τf

∗(v|x) +
Φf

(x|v)(τ)

τ2
,

for all τ > 0. We deduce the following proposition.

Proposition 51. Let f ∈ Γ0(·,H), x ∈ f−1(·,R) and v ∈ ∂f(0, x). If Φf
(x|v) is twice differentiable

at t = 0 with (Φf
(x|v))

′(0) = 0, then f is twice epi-differentiable at x for v with d2ef(x|v) ∈ Γ0(H) if

and only if f∗ is twice epi-differentiable at v for x with d2ef
∗(v|x) ∈ Γ0(H). In that case

(d2ef(x|v))
∗ = d2ef

∗(v|x) +
1

2
(Φf

(x|v))
′′(0).
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(Perpignan, 1987).

[24] R. T. Rockafellar. Generalized second derivatives of convex functions and saddle functions.

Trans. Amer. Math. Soc., 322(1):51–77, 1990.

[25] R. T. Rockafellar. Second-order convex analysis. J. Nonlinear Convex Anal., 1(1):116, 2000.

[26] R. T. Rockafellar and R. J.-B. Wets. Variational analysis, volume 317 of Grundlehren

der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].

Springer-Verlag, Berlin, 1998.

[27] A. Shapiro. Directionally nondifferentiable metric projection. J. Optim. Theory Appl.,

81(1):203204, 1994.

[28] A. Shapiro. Differentiability properties of metric projections onto convex sets. J. Optim. The-

ory Appl., 169(3):953964, 2016.

[29] E. H. Zarantonello. Projections on convex sets in Hilbert space and spectral theory. I. Pro-

jections on convex sets. pages 237–341, 1971.

30


	1 Introduction
	1.1 Context of the paper
	1.2 Contributions of the paper
	1.3 Applications and additional comments
	1.4 Organization of the paper

	2 Recalls on convergence notions and convex analysis
	2.1 Two convergence modes of a parameterized family of subsets
	2.2 Graphical convergence of a parameterized family of set-valued maps
	2.3 M-convergence of a parameterized family of extended-real-valued functions
	2.4 Basics of convex analysis
	2.5 Recalls about Attouch's theorems

	3 Setting, objective and generalized notions of differentiability
	3.1 Setting and main objective of the paper
	3.2 Semi-differentiability of a parameterized single-valued map
	3.3 Proto-differentiability of a parameterized set-valued map
	3.4 Twice epi-differentiability of parameterized extended-real-valued functions

	4 Main results
	4.1 Convergent supporting hyperplane
	4.2 Proto-differentiability of the proximity operator and sensitivity analysis

	5 Applications to parameterized convex minimization problems
	5.1 A general result
	5.2 Illustration with a one-dimensional example
	5.3 Applications to parameterized smooth convex minimization problems with inequality constraints

	6 Additional comments
	6.1 Comments on the choice of Formula (1)
	6.2 Comments on the twice epi-differentiability of the conjugate function


