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Abstract

The purpose of this work is to introduce and analyze a numerical scheme to efficiently solve
boundary value problems involving the spectral fractional Laplacian. The approach is based on
a reformulation of the problem posed on a semi-infinite cylinder in one more spatial dimension.
After a suitable truncation of this cylinder, the resulting problem is discretized with linear finite
elements in the original domain and with hp-finite elements in the extended direction. The pro-
posed approach yields a drastic reduction of the computational complexity in terms of degrees of
freedom and even has slightly improved convergence properties compared to a discretization using
linear finite elements for both the original domain and the extended direction. The performance
of the method is illustrated by numerical experiments.
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1. Introduction

In this work, we are concerned with boundary value problems involving the fractional Laplacian,
being the prototype of a nonlocal operator. To be more specific: Let Ω ⊂ R

d for d ∈ { 1, 2, 3 }
be a bounded, convex, polygonal or polyhedral domain. We are interested in the solution of the
boundary value problem

(−∆)su = f in Ω,

u = 0 on ∂Ω,
(1.1)

where (−∆)s denotes the spectral fractional Laplacian of order s ∈ (0, 1) defined by the eigen-
values and eigenfunctions of the standard Laplacian, precisely introduced in Section 2. The
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main purpose of this paper is to introduce and analyze a numerical scheme to efficiently solve
problem (1.1).

Our approach is based on the following equivalent reformulation of problem (1.1) posed on the
semi-infinite cylinder { (x, y) ∈ Ω × (0,∞) } ⊂ R

d+1: Let u be the weak solution of the extended
problem

div(y1−2s∇u) = 0 in Ω × (0,∞),

u = 0 on ∂Ω × [0,∞),

∂ν1−2su = dsf on Ω × { 0 } ,
see Section 2 for more details. Then, the trace u = u(·, 0) is the solution of the fractional boundary
value problem (1.1).

In contrast to the nonlocal problem (1.1), the extended problem is localized. However, a direct
application of a finite element method to the extended problem is not feasible because of the
semi-infinite domain. As remedy, the exponential decay of u in direction y towards infinity (see
Proposition 2.9) can be employed such that a truncation of the semi-infinite cylinder to Ω×(0, Y )
becomes reasonable. The extended problem posed on the truncated cylinder can be discretized
using finite elements. However, due to the degenerate/singular nature of the extended problem,
anisotropic meshes are favorable in order to obtain an optimally convergent numerical scheme.
Moreover, the height Y of the truncated cylinder needs to be chosen dependent on the mesh
parameter to ensure the aforementioned convergence. This approach was already pursued in [27]
using a discretization with first degree tensor product finite elements on graded meshes in the
extended direction, see also [14, 15, 26, 28] for related results. If hΩ denotes the mesh parameter
and NΩ the number of degrees of freedom in Ω then the approach from [27] yields a discretization
error of order O(hΩ|ln hΩ|s) in the corresponding energy norm associated with (1.1) while solving

problems with O(N 1+1/d
Ω ) degrees of freedom.

In this work, we introduce and analyze a discretization of the truncated problem with linear
finite elements in the original domain Ω and with hp-finite elements on a geometric mesh in the
extended direction. This drastically reduces the computational complexity to O(NΩ(ln NΩ)2)
degrees of freedom and even yields a slightly better convergence rate of order O(hΩ). Especially,

when NΩ is large, the difference between the factor (ln NΩ)2 and N 1/d
Ω becomes clearly perceptible.

For instance, in our numerical experiments we could reduce the number of degrees of freedom by
a factor of about 111 to obtain an error of less than 9 · 10−3 in the case s = 0.8, see Section 5
for more details. We also notice that our approach and results are not limited to the spectral
fractional Laplacian. They naturally extend by only minor modifications to fractional powers of
general second order elliptic operators.

Let us briefly give an overview on other numerical approaches from the literature to solve
boundary value problems involving the fractional Laplacian: Due to the spectral definition of the
operator, it seems to be natural to compute an approximating, discrete spectral decomposition of
the standard Laplacian in order to get an approximation of the solution of (1.1), see [21, 22, 31].
However, this may result in solving a large number of discrete eigenvalue problems. Another
approach to determine an approximation to the solution of problem (1.1) is analyzed in [8], see
also [6, 7, 9] for related results. In that reference, (−∆)−s is represented in terms of Bochner
integrals involving (I − t2∆)−1 for t ∈ (0,∞). Subsequently, different quadrature formulas to
approximate this integral are analyzed which require multiple evaluations of (I − t2i ∆h)−1 with
ti being a quadrature point and −∆h denoting a finite element discretization to −∆. Numerical

2



Meidner, Pfefferer, Schürholz, Vexler: hp-Finite Elements for Fractional Diffusion

approaches for the integral definition of the fractional Laplacian, which is not equivalent to the
spectral definition considered in the present paper, can be found in [2, 3, 4, 5, 10, 16, 18, 19, 20].

This paper is organized as follows: In Section 2, we state the definition of the fractional
Laplacian, formulate the extended problem in detail, and introduce the functional framework
needed for the subsequent error analysis. Moreover, in this section, we are concerned with
several properties of the solution of the extended problem such as a series representation and
corresponding regularity results. The discrete, extended problem posed on the truncated cylinder
is formulated at the beginning of Section 3. In the extended direction, we distinguish between
graded meshes and h-FEM, and geometric meshes and hp-FEM, see Sections 3.1 and 3.2. The
error analysis is given in Section 4. Thereby, in Section 4.1, we mainly recover the results of [27].
The reason for doing this is twofold. First, we are able to slightly improve the mesh grading
condition used in [27]. However, the main reason to analyze the h-FEM on graded meshes before
developing the analysis for the hp-method considered in Section 4.2 is, that the techniques we use
are almost identical for both cases, but the details are simpler for h-FEM. Implementation aspects
and numerical experiments, which underline the efficiency of our approach, are presented in
Section 5. In the appendix, we collect different results for special functions defined by the modified
Bessel functions of second kind. These are especially needed in Section 2 for the discussion of
the solution of the extended problem.

Finally, we notice that, in the following, c denotes a generic constant which will always be
independent of the mesh parameter hΩ when we analyze the discretization error.

2. Continuous Problem

Let −∆ be the L2(Ω) realization of the Laplacian with homogeneous Dirichlet boundary condi-
tions. It is well-known that −∆ has a compact resolvent and its eigenvalues form a non-decreasing
sequence 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · satisfying limk→∞ λk = ∞. We denote by ϕk the or-
thonormal L2(Ω) eigenfunctions associated with λk fulfilling

∫

Ω
∇ϕk · ∇v dx = λk

∫

Ω
ϕkv dx ∀v ∈ H1

0 (Ω).

For any s ≥ 0, we introduce the fractional order Sobolev space

H
s(Ω) =

{

v ∈ L2(Ω)

∣

∣

∣

∣

∣

‖v‖2
Hs(Ω) =

∞
∑

k=1

λs
kv

2
k < ∞ with vk =

∫

Ω
vϕk dx

}

.

Moreover, we denote by H
−s(Ω) the dual space of Hs(Ω). Then, the spectral fractional Laplacian

is defined for s ∈ (0, 1) on the space H
s(Ω) as the limit

(−∆)su =
∞
∑

k=1

λs
kukϕk ∈ H

−s(Ω) with uk =
∫

Ω
uϕk dx.

Due to the Cauchy-criterion the limit exists for any u ∈ H
s(Ω). Thus, problem (1.1) has to be

understood as: Given f ∈ H
s(Ω), find u ∈ H

s(Ω) such that

∞
∑

k=1

λs
kukvk =

∫

Ω
fv dx ∀v ∈ H

s(Ω) with vk =
∫

Ω
vϕk dx. (2.1)

3
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Proposition 2.1. For any f ∈ H−s(Ω), problem (1.1) admits a unique solution u ∈ Hs(Ω)
fulfilling ‖u‖Hs(Ω) = ‖f‖H−s(Ω). Moreover, there is the series representation

u =
∞
∑

k=1

ukϕk with uk = λ−s
k fk and fk =

∫

Ω
fϕk dx.

Proof. The existence of an unique solution and the equality of the norms is a consequence of the
Riesz representation theorem. The series representation of u is obtained by testing (2.1) with
ϕm ∈ H

s(Ω) and using the orthogonality of the eigenfunctions.

Remark 2.2. Due to the definition of the fractional Laplacian and the previous result, we ob-
serve that problem (1.1) is already meaningful without additionally imposing the homogeneous
Dirichlet boundary conditions since these are already included in the definition of the operator.
Moreover, we notice that the regularity of u can be described in classical fractional Sobolev spaces
as well, since

H
s(Ω) =















Hs(Ω), for 0 < s < 1
2 ,

H
1

2

00(Ω), for s = 1
2 ,

Hs
0(Ω), for 1

2 < s < 1.

For more details we refer to, e.g., [27].

Problem (1.1) can equivalently be posed on a semi-infinite cylinder. In R
d, this is due to

Caffarelli and Silvestre [12]. The restriction to bounded domains Ω was considered by Stinga
and Torrea in [30], see also [11, 13]. This kind of extension is the basis for the computational
approaches in the subsequent sections.

In order to state the extended problem, we first introduce the required notation. We denote by
C = Ω × (0,∞) the aforementioned semi-infinite cylinder and by ∂LC = ∂Ω × [0,∞) its lateral
boundary. We also need to define a truncated cylinder: for Y > 0, the truncated cylinder is given
by CY = Ω × (0, Y ) with its lateral boundary ∂LCY = ∂Ω × [0, Y ]. As C and CY are objects
in R

d+1, we use y to denote the extended variable, such that a vector (x, y) ∈ R
d+1 admits the

representation (x, y) = (x1, x2, . . . , xd, y). Similarly, the gradient in R
d+1 has the representation

∇ = (∇x, ∂y) = (∂x1
, ∂x2

, . . . , ∂xd
, ∂y).

Next we introduce weighted Sobolev spaces with a weight function yα for α ∈ (−1, 1). In this
regard, let D ⊂ R

d × (0,∞) be an open set, such as C or CY . Then, we define the weighted
space L2(D, yα) as the space of all measurable functions on D with finite norm ‖v‖L2(D,yα) =

‖y α
2 v‖L2(D). Similarly, the space H1(D, yα) denotes the space of all functions v ∈ L2(D, yα)

whose weak derivatives of first order belong to L2(D, yα).
To study the extended problems, we introduce the space

H̊1
L(C, yα) =

{

v ∈ H1(yα, C)
∣

∣

∣ v = 0 on ∂LC
}

.

The space H̊1
L(CY , y

α) is defined analogously, but endowed with zero Dirichlet boundary condi-
tions also on Ω × {Y }:

H̊1
L(CY , y

α) =
{

v ∈ H1(yα, CY )
∣

∣

∣ v = 0 on ∂LCY ∪ (Ω × {Y })
}

.

For v ∈ H̊1
L(C, yα), we denote by trΩ v the trace of v onto Ω × { 0 }, i.e., trΩ v = v(·, 0).
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Proposition 2.3. For α = 1 − 2s, it holds

trΩ H̊
1
L(C, yα) = H

s(Ω) and ‖trΩ v‖Hs(Ω) ≤ c‖v‖H̊1
L

(C,yα).

Proof. See [11, Proposition 1.8] for s = 1
2 and [13, Proposition 2.1] for s 6= 1

2 .

Now, we are able to state the extended problem: Given f ∈ H
−s(Ω), find u ∈ H̊1

L(C, yα) such
that

∫

C
yα∇u · ∇v d(x, y) = ds〈f, trΩ v〉H−s(Ω),Hs(Ω) ∀v ∈ H̊1

L(C, yα) (2.2)

with α = 1 − 2s and ds = 2α Γ(1−s)
Γ(s) . That is, the function u ∈ H̊1

L(C, yα) is a weak solution of

div(yα∇u) = 0 in C,

u = 0 on ∂LC,

∂ναu = dsf on Ω × { 0 } ,

where we have set ∂ναu(x, 0) = limy→0 y
α∂yu(x, y). Note that subsequently, the parameter α will

always be equal to 1 − 2s for the considered s ∈ (0, 1).
In the remainder of this section, we discuss several properties of the solution u to (2.2). Due

to the following proposition, it is reasonable to determine the solution u of (2.2) in order to get
the solution u of (1.1).

Proposition 2.4. For f ∈ H
−s(Ω), the extended problem (2.2) admits a unique solution u ∈

H̊1
L(C, yα). Furthermore, u = trΩ u ∈ H

s(Ω) solves (1.1).

Proof. See [13, Lemma 2.1].

We have the following regularity result.

Proposition 2.5. Let u ∈ H̊1
L(C, yα) be the solution of (2.2) and f ∈ H

1−s(Ω). Then, it holds

‖y α
2 ∇2

xu‖2
L2(C) + ‖y α

2 ∂y∇xu‖2
L2(C) ≤ c‖f‖2

H1−s(Ω).

Proof. [27, Theorem 2.7] yields

‖y α
2 ∆xu‖2

L2(C) + ‖y α
2 ∂y∇xu‖2

L2(C) = ds‖f‖2
H1−s(Ω)

with ds given above. Convexity of Ω then implies the assertion.

For a series expansion of the solution to (2.2), we introduce the function ψs : [0,∞) → R given
by

ψs(z) = csz
sKs(z) with cs =

21−s

Γ(s)
. (2.3)

Here, Ks(z) denotes the modified Bessel function of second kind, see, e.g., [1, Section 9.6] and
Γ(s) denotes the gamma function.
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Proposition 2.6. For f ∈ H−s(Ω), let u ∈ Hs(Ω) be the solution of (1.1) and u ∈ H̊1
L(C, yα) be

the solution of (2.2). Then, it holds

u(x, y) =
∞
∑

k=1

ukϕk(x)ψs,k(y),

where uk =
∫

Ω uϕk dx and ψs,k(y) = ψs(
√
λky).

Proof. For s 6= 1
2 , see [13, Proposition 2.1]. For s = 1

2 , the result was proved with ψ 1

2

(z) = e−z

in [11, Proposition 2.2]. However, by [1, 9.6.23] and the relation Γ(1
2) =

√
π, it holds

c 1

2

z
1

2K 1

2

(z) = e−z = ψ 1

2

(z).

Hence, ψs(z) = csz
sKs(z) holds also in the case s = 1

2 .

We state an estimate of the derivatives of ψs,k which we will use later. The result is based on
properties of ψs which are analyzed in the appendix.

Corollary 2.7. Let r ∈ [0, 1]. There exists a constant c > 0 depending only on s, such that for
any y > 0 and n ∈ N it holds

|ynψ
(n)
s,k (y)| ≤ c8nn!λ

s− r
2

k y2s−r.

Proof. Simple calculations yield

ψ
(n)
s,k (y) =

dn

dyn
ψ(
√

λky) = (
√

λk)nψ(n)(
√

λky).

Consequently, we obtain by means of Lemma A.3

|ynψ
(n)
s,k (y)| = |(

√

λky)nψ(n)(
√

λky)| ≤ c8nn!(
√

λky)2s−r = c8nn!λ
s− r

2

k y2s−r.

Next, we state a result about the exponential decay of ψs,k and its derivative. It is based on
corresponding results for ψs and its derivative, proved in the appendix.

Corollary 2.8. Let y ≥ 1, r1 ≥ min(s, 1
2) − s and r2 ≥ min(1 − s, 1

2) − s. Then, there exists a
constant c1 only depending on r1, s, and λ1 and a constant c2 only depending on r2, s, and λ1

such that

|yr1ψs,k(y)| ≤ c1λ
− r1

2

k e−
√

λk
2

y and |yr2ψ′
s,k(y)| ≤ c2λ

− r2
2

k e−
√

λk
2

y.

Proof. Let s0 = min(s, 1
2). According to [25, Theorem 5], we get for z ≥ 0 that zs0ezKs(z) is a

decreasing function. Consequently, we obtain

(
√

λk)s0e
√

λkKs(
√

λk) ≤ (
√

λ1)s0e
√

λ1Ks(
√

λ1) (2.4)

since the sequence (λk)k∈N is non-decreasing. Moreover, due to the definition of ψs,k, we deduce

|yr1ψs,k(y)| = λ
− r1

2

k |(
√

λky)r1ψs(
√

λky)|.

Thus, by setting a =
√
λk and z =

√
λky ≥ a in Lemma A.4 (a), we obtain the validity of the

first inequality of the assertion by means of (2.4). The second inequality can be deduced in the
same manner employing Lemma A.4 (b).
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As already mentioned, for computational reasons, the semi-infinite cylinder C will be truncated
to CY = Ω × (0, Y ) for some Y > 0 later on. Because of this, the behavior of ∇u for y → ∞ will
play a role. It can be estimated as follows:

Proposition 2.9. For f ∈ H
−s(Ω), let u ∈ H̊1

L(C, yα) be the solution of (2.2). Then, there exists
a constant c > 0 such that for every Y ≥ 1, it holds

‖y α
2 ∇u‖L2(C\CY ) ≤ ce−

√
λ1
2

Y ‖f‖H−s(Ω).

Proof. The result can be found in [27, Proposition 3.1]. For the sake of completeness, we state a
(slightly different) proof here. According to Proposition 2.6, we obtain by using the definition of
the eigenfunctions ϕk and its orthogonality

‖y α
2 ∇u‖2

L2(C\CY ) =
∫ ∞

Y
yα
∫

Ω

{|∇xu(x, y)|2 + |∂yu(x, y)|2} dx dy

=
∞
∑

k=1

u2
k

∫ ∞

Y

{

λk|y α
2 ψs,k(y)|2 + |y α

2 ψ′
s,k(y)|2} dy

≤ c
∞
∑

k=1

u2
k

∫ ∞

Y

{

λ
s+ 1

2

k e−√
λky + λ

s− 1

2

k e−√
λky} dy,

where we employed Corollary 2.8 in the last step with r1 = r2 = α
2 = 1

2 − s. Calculating the
integral and using that (λk)k∈N is a non-decreasing sequence, yields

‖y α
2 ∇u‖2

L2(C\CY ) ≤ c
∞
∑

k=1

u2
k

{

λs
ke

−√
λkY + λs−1

k e−√
λkY } ≤ ce−

√
λ1Y

∞
∑

k=1

λs
ku

2
k = ce−

√
λ1Y ‖f‖2

H−s(Ω),

where we used Proposition 2.1 in the last step.

3. Discretization

Let TΩ be a conforming and quasi-uniform triangulation of Ω which is admissible in the sense
of Ciarlet. For each TΩ = {K }, let K ⊂ R

d be an element that is isoparametrically equivalent
either to the unit cube or to the unit simplex in R

d. We introduce the global mesh parameter
hΩ with respect to the triangulation of Ω by hΩ = maxK∈TΩ

diamK. We always assume that
hΩ ≤ 1

2 . On TΩ, we define a finite element space Vh as

Vh =
{

v ∈ C0(Ω)
∣

∣

∣ v
∣

∣

K
∈ P1(K), K ∈ TΩ, v

∣

∣

∂Ω
= 0

}

.

In case that K is a simplex then P1(K) = P1(K), the set of polynomials on the element K of
degree at most 1. If K is a cube then P1(K) equals Q1(K), the set of polynomials on K of degree
at most 1 in each variable. The number of degrees of freedom in Vh is denoted by NΩ. It holds
NΩ = O(h−d

Ω ).
Furthermore, let IY = { Im } be a triangulation of the interval (0, Y ) in the sense that [0, Y ] =

⋃M
m=1 Im with Im = [ym−1, ym] and M ∈ N exactly specified below in the Sections 3.1 and 3.2.

Moreover, let hm = |Im|. Next, we introduce a polynomial degree vector p = (p1, p2, . . . , pM ) ∈

7
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NM which will assign to each element Im ∈ IY a maximal polynomial degree pm. It will be
exactly specified in the Sections 3.1 and 3.2. On IY , we define the finite element space VM as

VM =
{

ξ ∈ C0(I)
∣

∣

∣ ξ
∣

∣

Im
∈ Ppm(Im), Im ∈ IY , ξ(Y ) = 0

}

,

where Ppm(Im) denotes the space of polynomials up to degree pm on Im.
Now, the triangulations TΩ,Y of the cylinder CY are constructed as tensor product triangula-

tions by means of TΩ and IY , i.e., TΩ,Y = {T } with T = K × Im for K ∈ TΩ and Im ∈ IY .
By means of the previous considerations, we define the finite element space Vh,M posed on the
tensor product mesh TΩ,Y by

Vh,M = Vh ⊗ VM = span { v | v(x, y) = v(x)ξ(y), v ∈ Vh, ξ ∈ VM } ⊂ H̊1
L(CY , y

α).

Note, that each function vh ∈ Vh,M vanishes on the lateral boundary of CY and on its top. As
a consequence, the extension by zero of vh to the semi-infinite cylinder C belongs to H̊1

L(C, yα).
Without further mention, we consider this type of extension for each vh ∈ Vh,M whenever needed.

With the just introduced notation, we define approximations to the solution u of (2.2) as
follows: Find uh ∈ Vh,M satisfying

∫

CY

yα∇uh · ∇vh d(x, y) = ds〈f, trΩ vh〉H−s(Ω),Hs(Ω) ∀vh ∈ Vh,M , (3.1)

where we recall that α = 1 − 2s and ds = 2α Γ(1−s)
Γ(s) . Note that trΩ uh = uh(·, 0) will be used as

an approximation of u.
We distinguish two possible types of discretization in the artificial y direction, which will be

defined in the following two sections.

3.1. Graded meshes and h-FEM

In this section, let M ∈ N to be determined later. We set

ym =
(

m

M

)

1

µ

Y for m = 0, 1, . . . ,M and p = (1, 1, . . . , 1) ∈ N
M ,

where µ ∈ (0, 1] represents the grading parameter in direction y. Hence, for µ < 1 the triangu-
lation TΩ,Y is anisotropic. Moreover, due to the choice of the polynomial degree vector p, the
discrete space Vh,M consists of globally continuous and piecewise multilinear functions on CY .

We start with a result regarding the diameter hm of the elements Im.

Lemma 3.1. It holds

h1 = M
− 1

µY and
2

µ−1

µ

µ
y1−µ

m Y µM−1 ≤ hm ≤ 1
µ
y1−µ

m Y µM−1 for m = 2, 3, . . . ,M.

Proof. The first equality is obvious due to the definition of y1. For the second, we observe that
there exists a m∗ ∈ (m− 1,m) such that

hm = ym − ym−1 = (m
1

µ − (m − 1)
1

µ )YM− 1

µ =
1
µ
m

1

µ
−1

∗ YM
− 1

µ =
1
µ

((

m∗
M

)

1

µ

Y

)1−µ

Y µM−1

due to the mean value theorem. Since 1
2m ≤ m− 1 ≤ m for m ≥ 2, the result follows.

Since we consider a discretization with linear polynomials in direction y, the number of degrees
of freedom NY in VM is proportional to M , i.e., it holds NY = O(M).

8
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3.2. Geometric meshes and hp-FEM

For the second possibility of discretization presented here, the mesh in direction y is chosen as
a geometric mesh. That is, for chosen σ ∈ (0, 1) and M ∈ N to be determined later, the nodes
y0, y1, . . . , yM are given by

y0 = 0 and ym = σM−mY for m = 1, 2, . . . ,M. (3.2)

Further, we define p = (p1, p2, . . . , pM ) ∈ N
M to be a linear degree vector with slope β > 0. That

is, there exists a constant c ≥ 1 such that for all m = 1, 2, . . . ,M the following relation is fulfilled:

1 + β ln
hm

h1
≤ pm ≤ 1 + cβ ln

hm

h1
. (3.3)

We start with collecting some basic results for the discretization considered in this subsection.

Lemma 3.2. For a geometric mesh given by (3.2), there holds for hm = |Im|

h1 = y1 = σM−1Y,

hm = (1 − σ)ym = (σ−1 − 1)ym−1 for m = 2, 3, . . . ,M,

hm = (1 − σ)σ1−mh1 for m = 2, 3, . . . ,M.

Proof. The first equation of the assertion is obvious due to the definition of the geometric mesh.
For m = 2, 3, . . . ,M , we obtain

hm = ym − ym−1 = (σM−m − σM−m+1)Y =

{

σM−m(1 − σ)Y = (1 − σ)ym,

σM−m+1(σ−1 − 1)Y = (σ−1 − 1)ym−1.

As a consequence, we get

hm

h1
=
σM−m(1 − σ)Y

σM−1Y
= (1 − σ)σ1−m.

Lemma 3.3. For a geometric mesh given by (3.2) and a linear degree vector p ∈ N
M in the

sense of (3.3), it holds p1 = 1 and there is a constant c ≥ 1 such that

1 + β
(

ln(1 − σ) + (1 −m) ln σ
) ≤ pm ≤ 1 + βc

(

ln(1 − σ) + (1 −m) ln σ
)

for all m = 2, 3, . . . ,M .

Proof. Since ln h1

h1
= 0, there obviously holds p1 = 1. According to Lemma 3.2, we get for

m = 2, 3 . . . ,M − 1

ln
hm

h1
= ln

(

(1 − σ)σ1−m
)

= ln(1 − σ) + (1 −m) ln σ,

which shows the second assertion.

Lemma 3.4. Let IY be a geometric triangulation of (0, Y ) given by (3.2) and let p ∈ N
M be a

linear degree vector as defined in (3.3). Then, for the number of degrees of freedom NY in VM ,
it holds

NY = 1 +
M
∑

m=1

pm = O(M2).

9



Meidner, Pfefferer, Schürholz, Vexler: hp-Finite Elements for Fractional Diffusion

Proof. On each interval Im we locally have pm +1 degrees of freedom. Moreover, two neighboring
intervals always share one degree of freedom. Thus, we have

NY =
M
∑

m=1

(pm + 1) − (M − 1) = 1 +
M
∑

m=1

pm,

which proves the assertion having in mind Lemma 3.3.

4. Error Estimates

We start with providing a general error estimate between the solutions u ∈ H̊1
L(C, yα) of (2.2)

and uh ∈ Vh,M of (3.1) in weighted norms.

Lemma 4.1. Let u ∈ H̊1
L(C, yα) be the solution of (2.2) and uh ∈ Vh,M be the solution of (3.1).

Then, it holds

‖y α
2 ∇(u− uh)‖L2(C) ≤ min

vh∈Vh,M

‖y α
2 ∇(u− vh)‖L2(CY ) + ‖y α

2 ∇u‖L2(C\CY ).

Proof. Testing (2.2) with vh ∈ Vh,M and then subtracting (3.1) from this equation yields
∫

CY

yα∇(u− uh) · ∇vh d(x, y) = 0. (4.1)

Based on this, we deduce for all vh ∈ Vh,M

‖y α
2 ∇(u− uh)‖2

L2(C) =
∫

CY

yα∇(u− uh) · ∇(u− vh) d(x, y) +
∫

C\CY

yα∇(u− uh) · ∇u d(x, y)

≤ ‖y α
2 ∇(u− uh)‖L2(C)

{‖y α
2 ∇(u− vh)‖L2(CY ) + ‖y α

2 ∇u‖L2(C\CY )

}

.

Dividing by ‖y α
2 ∇(u− uh)‖L2(C) ends the proof.

Whereas the last term in the estimate of Lemma 4.1 can be treated by means of Proposition 2.9,
we have to estimate the first term. To this end, we introduce the following approximation
operators separately for the x and y variables:

By πx : L2(Ω) → Vh, we denote the L2 projection with respect to the x variable on Ω. For the
interpolation with respect to the y direction, we consider each interval Im separately. For fixed
m ∈ { 1, 2, . . . ,M }, let q ∈ N and ym−1 = x0, x1, . . . , xq = ym be the Gauss-Lobatto points in
Im and let li,q denote the corresponding Lagrange polynomials of order q. Then, we define the
Gauss-Lobatto interpolant iq : C0(Im) → Pq(Im) by

(iqξ)(y) =
q
∑

i=0

ξ(xi)li,q(y).

Further, we define an interpolant ĩq which admits (̃iqξ)(ym) = 0 given by

(̃iqξ)(y) =
q−1
∑

i=0

ξ(xi)li,q(y).

10
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Based on this, we define the interpolation ipy : C0((0, Y ]) → VM for a linear degree vector p =
(p1, p2, . . . , pM ) ∈ N

M by

(ipyξ)
∣

∣

Im
=















ξ(y1) on I1,

ipmξ
∣

∣

Im
on Im, m = 2, 3, . . . ,M − 1,

ĩpM
ξ
∣

∣

IM
on IM .

(4.2)

In particular, it holds that ipyξ is constant on I1 and (ipyξ)(Y ) = 0. For any function v ∈ H̊1
L(C, yα),

we set
(πxv)(·, y) = πxv(·, y) for a.a. y ∈ (0,∞).

Moreover, for the solution u of (2.2), the application of ipy is defined as

(ipyu)(x, ·) =
∞
∑

k=1

ukϕk(x)ipyψs,k(·) for a.a. x ∈ Ω, (4.3)

which is well-defined because ψs,k ∈ C0(R+). Thus, by construction, we have πxi
p
yu ∈ Vh,M .

For the first term on the right-hand side of the estimate in Lemma 4.1, we have the following
result.

Lemma 4.2. Let u ∈ H̊1
L(C, yα) be the solution of (2.2). Then, it holds

min
vh∈Vh,M

‖y α
2 ∇(u− vh)‖L2(CY ) ≤ ‖y α

2 ∇(u− πxu)‖L2(CY ) + c‖y α
2 ∇(u− ipyu)‖L2(CY ).

Proof. First, we set vh = πxi
p
yu ∈ Vh,M . Then, by introducing πxu as an intermediate function,

we deduce

min
vh∈Vh,M

‖y α
2 ∇(u− vh)‖L2(CY ) ≤ ‖y α

2 ∇(u− πxu)‖L2(CY ) + ‖y α
2 ∇πx(u− ipyu)‖L2(CY ).

According to the definition of πx, we have ∂yπx(u − ipyu) = πx∂y(u − ipyu) almost everywhere in
CY . As a consequence, we deduce by well known stability estimates for the L2 projection πx

‖y α
2 ∇πx(u− ipyu)‖L2(CY ) =

∫ Y

0
yα
∫

Ω

{|∇xπx(u− ipyu)|2 + |∂yπx(u− ipyu)|2} dx dy

=
∫ Y

0
yα
∫

Ω

{|∇xπx(u− ipyu)|2 + |πx∂y(u− ipyu)|2} dx dy

≤ c

∫ Y

0
yα
∫

Ω

{|∇x(u− ipyu)|2 + |∂y(u− ipyu)|2} dx dy,

which shows the assertion.

Lemma 4.3. For f ∈ H
1−s(Ω), let u ∈ H̊1

L(C, yα) be the solution of (2.2). Then, it holds

‖y α
2 ∇(u− πxu)‖L2(CY ) ≤ chΩ‖f‖H1−s(Ω).

11
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Proof. Analogously to the foregoing proof, by classical estimates for the L2 projection πx, we
obtain

‖y α
2 ∇(u− πxu)‖2

L2(CY ) =
∫ Y

0
yα
∫

Ω

{|∇x(u− πxu)|2 + |∂y(u− πxu)|2} dx dy

=
∫ Y

0
yα
∫

Ω

{|∇x(u− πxu)|2 + |∂yu− πx(∂yu)|2} dx dy

≤ ch2
Ω

∫ Y

0
yα
∫

Ω

{|∇2
xu|2 + |∇x∂yu|2} dx dy

= ch2
Ω

{‖y α
2 ∇2

xu‖2
L2(CY ) + ‖y α

2 ∂y∇xu‖2
L2(CY )

}

.

Then, Proposition 2.5 yields the assertion.

Next, we are concerned with estimates for the second term in Lemma 4.2. To this end, we
consider the interpolation error on each subinterval Im ∈ IY . Employing the decomposition from
Proposition 2.6 and the definition of the eigenfunctions ϕk, we obtain

‖y α
2 ∇(u− ipyu)‖2

L2(Ω×Im) =
∫

Im

yα
∫

Ω

{|∇x(u− ipyu)|2 + |∂y(u− ipyu)|2} dx dy

=
∫

Im

yα
∞
∑

k=1

u2
k

{

λk(ψs,k − ipyψs,k)2 + ((ψs,k − ipyψs,k)′)2} dy

=
∞
∑

k=1

u2
k

{

λk‖y α
2 (ψs,k − ipyψs,k)‖2

L2(Im) + ‖y α
2 (ψs,k − ipyψs,k)′‖2

L2(Im)

}

.

(4.4)
By using this identity in the following two subsections, we will estimate the terms

‖y α
2 ∇(u− ipyu)‖2

L2(Ω×Im), i = 1, 2, . . . ,M

for the two types of triangulations IY and polynomial spaces VM introduced in the Section 3.1
and 3.2.

Thereby, in Section 4.1, we will mainly recover the results of [27]. The reason for doing this is
twofold. First, we are able to slightly improve the grading condition from µ < 2

3s (in our notation)
of [27, Section 5.2] to µ < s. However, the main reason to analyze the h-FEM on graded meshes
before developing the analysis for the considered hp-method is, that the techniques we use are
almost identical for both cases, but the details are simpler for h-FEM, of course.

Later, in Section 4.2, we will analyze the hp-method introduced in Section 3.2, which yields
a slightly improved rate of convergence (hΩ vs. hΩ|lnhΩ|s) compared to h-FEM but a drastic

reduction of the computational complexity in terms of degrees of freedom from O(N 1+1/d
Ω ) to

O(NΩ(ln NΩ)2).
Note that in the following estimates, we will track the dependence on Y explicitly since as a

last step Y will be chosen h-dependent.

4.1. Graded meshes and h-FEM

As announced, we are concerned with estimates for (4.4) for the discretization defined in Sec-
tion 3.1. For simplicity, in this subsection, we will write iyu for ipyu, since we have p = (1, 1, . . . , 1)
here.

12
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Lemma 4.4 (Estimate on I1). For f ∈ L2(Ω), let u ∈ H̊1
L(C, yα) be the solution of (2.2) and let

M ≥ h−1
Ω . Then, it holds

‖y α
2 ∇(u− iyu)‖2

L2(Ω×I1) ≤ ch
2s
µ

Ω Y 2s‖f‖2
L2(Ω).

Proof. First, we observe that the interpolant iyψs,k is constant on I1. By its definition (4.2), it
holds (iyψs,k)

∣

∣

I1
= ψs,k(y1). Integration by parts and noting that yα+1(ψs,k − ψs,k(y1))2

∣

∣

y1

0
= 0

yields

‖y α
2 (ψs,k − ψs,k(y1))‖2

L2(I1) =
∫

I1

yα(ψs,k − ψs,k(y1))2 dy

= − 2
α+ 1

∫

I1

yα+1(ψs,k − ψs,k(y1))ψ′
s,k dy

≤ 2
α+ 1

‖y α
2 (ψs,k − ψs,k(y1))‖L2(I1)‖y

α
2

+1ψ′
s,k‖L2(I1).

Then, dividing by ‖y α
2 (ψs,k − iyψs,k)‖L2(I1) implies

‖y α
2 (ψs,k − ψs,k(y1))‖L2(I1) ≤ c‖y α

2
+1ψ′

s,k‖L2(I1)

with c = 1
1−s . By means of Corollary 2.7 with n = 1 and r = 1, we obtain

‖y α
2 (ψs,k − ψs,k(y1))‖L2(I1) ≤ c‖y α

2
+1ψ′

s,k‖L2(I1) ≤ cλ
s− 1

2

k ‖ys− 1

2 ‖L2(I1).

Hence, we get by Lemma 3.1 together with the assumption on M that

λk‖y α
2 (ψs,k − ψs,k(y1))‖2

L2(I1) ≤ cλ2s
k h

2s
1 ≤ cλ2s

k h
2s
µ

Ω Y 2s.

In a similar fashion, we obtain by Corollary 2.7 with n = 1 and r = 0 the relation

‖y α
2 (ψs,k − ψs,k(y1))′‖2

L2(I1) = ‖y α
2 ψ′

s,k‖2
L2(I1) ≤ cλ2s

k ‖ys− 1

2 ‖2
L2(I1) ≤ cλ2s

k h
2s
1 ≤ cλ2s

k h
2s
µ

Ω Y 2s,

where we again used Lemma 3.1 in the last step.
The previous estimates together with (4.4) and Proposition 2.1 yield

‖y α
2 ∇(u− iyu)‖2

L2(Ω×I1) ≤ ch
2s
µ

Ω Y 2s
∞
∑

k=1

λ2s
k u2

k = ch
2s
µ

Ω Y 2s
∞
∑

k=1

f2k,

which implies the assertion.

Lemma 4.5 (Estimates on Im for 2 ≤ m ≤ M − 1). For f ∈ L2(Ω), let u ∈ H̊1
L(C, yα) be the

solution of (2.2). Moreover, let M ≥ h−1
Ω and µ 6= s. Then, it holds

‖y α
2 ∇(u− iyu)‖2

L2(Ω×Im) ≤ ch2
ΩY

2µ{y2(s−µ)
m − y

2(s−µ)
m−1

}‖f‖2
L2(Ω).

13
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Proof. For m ≥ 2, we have that ym−1 ≤ ym ≤ 2
1

µ ym−1. It holds iyψs,k = i1ψs,k such that we
conclude with standard estimates for the linear Lagrange interpolant i1, Lemma 3.1, and the
assumption on M that

‖y α
2 (ψs,k − i1ψs,k)‖2

L2(Im) ≤ cyα
m‖ψs,k − i1ψs,k‖2

L2(Im) ≤ cyα
mh

2
m‖ψ′

s,k‖2
L2(Im)

≤ cyα+2−2µ
m h2

ΩY
2µ‖ψ′

s,k‖2
L2(Im) ≤ ch2

ΩY
2µ‖y α

2
+1−µψ′

s,k‖2
L2(Im).

By using Corollary 2.7 with n = 1 and r = 1, this implies

λk‖y α
2 (ψs,k − i1ψs,k)‖2

L2(Im) ≤ cλ2s
k h

2
ΩY

2µ‖ys−µ− 1

2 ‖2
L2(Im) = cλ2s

k h
2
ΩY

2µ{y2(s−µ)
m − y

2(s−µ)
m−1

}

.

Similarly, using Corollary 2.7 with n = 1 and r = 0, we obtain for the term involving the
derivative

‖y α
2 (ψs,k − i1ψs,k)′‖2

L2(Im) ≤ ch2
ΩY

2µ‖y α
2

+1−µψ′′
s,k‖2

L2(Im) ≤ cλ2s
k h

2
ΩY

2µ‖ys−µ− 1

2 ‖2
L2(Im)

= cλ2s
k h

2
ΩY

2µ{y2(s−µ)
m − y

2(s−µ)
m−1

}

.

The previous estimates in combination with (4.4) yield

‖y α
2 ∇(u− iyu)‖2

L2(Ω×Im) ≤ ch2
ΩY

2µ{y2(s−µ)
m − y

2(s−µ)
m−1

}

∞
∑

k=1

λ2s
k u2

k.

Finally, applying Proposition 2.1, we get

‖y α
2 ∇(u− iyu)‖2

L2(Ω×Im) ≤ ch2
ΩY

2µ{y2(s−µ)
m − y

2(s−µ)
m−1

}

∞
∑

k=1

f2k,

which states the assertion.

Lemma 4.6 (Estimate on IM ). For f ∈ L2(Ω), let u ∈ H̊1
L(C, yα) be the solution of (2.2).

Moreover, let 2h−1
Ω ≥ M ≥ h−1

Ω , µ 6= s, and

Y ≥ max
(

3|ln hΩ|√
λ1

, 1
)

.

Then, it holds

‖y α
2 ∇(u− iyu)‖2

L2(Ω×IM ) ≤ ch2
Ω

(

Y 2µ{Y 2(s−µ) − y
2(s−µ)
M−1

}

+ 1
)

‖f‖2
L2(Ω).

Proof. We recall that Y = yM and iyψs,k = ĩ1ψs,k on IM . We introduce the Lagrange interpola-
tion i1 on IM as an intermediate function such that

‖y α
2 (ψs,k − ĩ1ψs,k)‖L2(IM ) ≤ ‖y α

2 (ψs,k − i1ψs,k)‖L2(IM ) + ‖y α
2 (i1ψs,k − ĩ1ψs,k)‖L2(IM )

= ‖y α
2 (ψs,k − i1ψs,k)‖L2(IM ) + ψs,k(Y )‖y α

2 l1,1‖L2(IM )

≤ ‖y α
2 (ψs,k − i1ψs,k)‖L2(IM ) + cY

α+1

2 ψs,k(Y ),

14
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where we used that ‖l1,1‖L∞(IM ) = ‖y−yM−1

hM
‖L∞(IM ) = 1 in the last step. As in the proof of

Lemma 4.5, we deduce

λk‖y α
2 (ψs,k − i1ψs,k)‖2

L2(IM ) ≤ cλ2s
k h

2
ΩY

2µ{Y 2(s−µ) − y
2(s−µ)
M−1

}

.

Since Y ≥ 1 by assumption, we obtain using Corollary 2.8 with r1 = α+1
2 = 1 − s together with

the monotonicity of e−√
λky

Y
α+1

2 ψs,k(Y ) ≤ cλ
s−1

2

k e−
√

λk
2

Y ≤ cλ
s− 1

2

k e−
√

λ1

2
Y ,

where we notice that (λk)k∈N is a non-decreasing sequence. Combining the previous results yields

λk‖y α
2 (ψs,k − ĩ1ψs,k)‖2

L2(IM ) ≤ cλ2s
k

(

h2
ΩY

2µ{Y 2(s−µ) − y
2(s−µ)
M−1

}

+ e−
√

λ1Y
)

. (4.5)

Similarly, we deduce

‖y α
2 (ψs,k − ĩ1ψs,k)′‖L2(IM ) ≤ ‖y α

2 (ψs,k − i1ψs,k)′‖L2(IM ) + ‖y α
2 (i1ψs,k − ĩ1ψs,k)′‖L2(IM )

= ‖y α
2 (ψs,k − i1ψs,k)′‖L2(IM ) + ψs,k(Y )‖y α

2 l′1,1‖L2(IM )

≤ ‖y α
2 (ψs,k − i1ψs,k)′‖L2(IM ) + ch

− 1

2

M Y
α
2 ψs,k(Y ),

where we used that ‖l′1,1‖L∞(IM ) = ‖h−1
M ‖L∞(IM ) = h−1

M in the last step. The first term can again
be estimated as in the proof Lemma 4.5 such that

‖y α
2 (ψs,k − i1ψs,k)′‖2

L2(Im) ≤ cλ2s
k h

2
ΩY

2µ{Y 2(s−µ) − y
2(s−µ)
M−1

}

.

Employing Corollary 2.8 with r1 = α
2 = 1

2 − s together with the monotonicity of e−√
λky yields

for Y ≥ 1

h
− 1

2

M Y
α
2 ψs,k(Y ) ≤ ch

− 1

2

M λ
s
2

− 1

4

k e−
√

λk
2

Y ≤ ch
− 1

2

M λs
ke

−
√

λ1

2
Y ,

where we used once again that the sequence (λk)k∈N is non-decreasing. Due to the previous
results, we arrive at

‖y α
2 (ψs,k − ĩ1ψs,k)′‖2

L2(IM ) ≤ cλ2s
k

(

h2
ΩY

2µ{Y 2(s−µ) − y
2(s−µ)
M−1

}

+ h−1
M e−

√
λ1Y

)

. (4.6)

By combining (4.4), (4.5) and (4.6), we obtain

‖y α
2 ∇(u− iyu)‖2

L2(Ω×IM ) ≤ c
(

h2
ΩY

2µ{Y 2(s−µ) − y
2(s−µ)
M−1

}

+
{

1 + h−1
M

}

e−
√

λ1Y
)

∞
∑

k=1

λ2s
k u2

k

= c
(

h2
ΩY

2µ{Y 2(s−µ) − y
2(s−µ)
M−1

}

+
{

1 + h−1
M

}

e−
√

λ1Y
)

‖f‖2
L2(Ω),

where we used
∑∞

k=1 λ
2s
k u2

k =
∑∞

k=1 f
2
k (see Proposition 2.1) and the definition of ‖f‖2

L2(Ω). Ac-

cording to Lemma 3.1, there holds h−1
M ≤ cY µ−1Y −µM = cY −1M . Since

Y ≥ 3|ln hΩ|√
λ1

and M ≤ 2h−1
Ω

by assumption, we obtain
{

1 + h−1
M

}

e−
√

λ1Y ≤ h3
Ω + ch2

Ω|ln hΩ|−1 ≤ ch2
Ω,

which ends the proof.
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Corollary 4.7. For f ∈ L2(Ω), let u ∈ H̊1
L(C, yα) be the solution of (2.2). Moreover, let 2h−1

Ω ≥
M ≥ h−1

Ω , µ < s, and

2 max
(

3|ln hΩ|√
λ1

, 1
)

≥ Y ≥ max
(

3|ln hΩ|√
λ1

, 1
)

.

Then, it holds
‖y α

2 ∇(u− iyu)‖L2(CY ) ≤ chΩ|ln hΩ|s‖f‖L2(Ω).

Proof. By the Lemmas 4.4, 4.5, and 4.6, we obtain

‖y α
2 ∇(u− iyu)‖2

L2(CY ) =
M
∑

m=1

‖y α
2 ∇(u− iyu)‖2

L2(Ω×Im)

≤
(

ch
2s
µ

Ω Y 2s + ch2
ΩY

2µ
M
∑

m=2

{

y2(s−µ)
m − y

2(s−µ)
m−1

}

+ ch2
Ω

)

‖f‖2
L2(Ω)

≤ ch2
Ω

(

Y 2s − Y 2µy
2(s−µ)
1 + 1

)

‖f‖2
L2(Ω) ≤ ch2

Ω|ln hΩ|2s‖f‖2
L2(Ω),

where we have used µ < s and the upper bound on Y .

Now, we are able to state the main result for this subsection analyzing the h-FEM on graded
meshes.

Theorem 4.8. For f ∈ H
1−s(Ω), let u ∈ H

s(Ω) and u ∈ H̊1
L(C, yα) be the solutions of (1.1)

and (2.2), respectively, and let uh ∈ Vh,M be the solution of (3.1). Moreover, let 2h−1
Ω ≥ M ≥ h−1

Ω ,
µ < s, and

2 max
(

3|ln hΩ|√
λ1

, 1
)

≥ Y ≥ max
(

3|ln hΩ|√
λ1

, 1
)

.

Then, it holds

‖u − trΩ uh‖Hs(Ω) ≤ c‖y α
2 ∇(u− uh)‖L2(C) ≤ chΩ|ln hΩ|s‖f‖H1−s(Ω).

Proof. The first inequality of the assertion is due to Propositions 2.3 and 2.4. Using the Lem-
mas 4.1 and 4.2, we get

‖y α
2 ∇(u− uh)‖L2(C) ≤ ‖y α

2 ∇(u− πxu)‖L2(CY ) + ‖y α
2 ∇(u− iyu)‖L2(CY ) + ‖y α

2 ∇u‖L2(C\CY ).

The three terms on the right-hand side are estimated in Lemma 4.3, Corollary 4.7, and Proposi-
tion 2.9. Hence, we get

‖y α
2 ∇(u− uh)‖L2(C) ≤ chΩ‖f‖H1−s(Ω) + chΩ|ln hΩ|s‖f‖L2(Ω) + ce−

√
λ1
2

Y ‖f‖H−s(Ω).

Then, the lower bound on Y yields e−
√

λ1

2
Y ≤ ch

3

2

Ω ≤ chΩ, which implies the assertion.

Theorem 4.9. The total number degrees of freedom NΩ,Y in Vh,M to achieve the order of con-
vergence given in Theorem 4.8 behaves like

NΩ,Y = O(N 1+ 1

d

Ω ),

where d denotes the dimension of Ω.

Proof. For the number of degrees of freedom NΩ,Y of the discretization considered in this section,

it holds NΩ,Y = NΩNY = NΩM . Then, the assertion follows from M = O(h−1
Ω ) = O(N 1/d

Ω ).
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4.2. Geometric meshes and hp-FEM

In this section, we derive discretization error estimates for the hp-method described in Section 3.2,
which results in a slightly improved rate of convergence of hΩ compared to the previous subsection.
However, we will have a drastically reduced computational complexity in terms of the number of
degrees of freedom. To this end, we do neither fix the number of elements M in direction y nor
the slope β of the linear degree vector p yet. These will be set below. As before, we start with
estimates for ‖y α

2 ∇(u− ipyu)‖2
L2(Ω×Im) based on (4.4).

Lemma 4.10 (Estimate on I1). For f ∈ L2(Ω), let u ∈ H̊1
L(C, yα) be the solution of (2.2) and

let

M ≥ (1 + ε)|ln hΩ|
s|lnσ|

for some ε ≥ 0. Then, it holds

‖y α
2 ∇(u− ipyu)‖2

L2(Ω×I1) ≤ ch2+2ε
Ω Y 2s‖f‖2

L2(Ω).

Proof. Notice that ipyψs,k = ψs,k(y1) on the first interval I1 as in the previous section. Thus, as
in the proof of Lemma 4.4 but using

h1 = σM−1Y ≤ ch
1+ε

s

Ω Y

from Lemma 3.2 and the assumption on M , we get

λk‖y α
2 (ψs,k − ψs,k(y1))‖2

L2(I1) ≤ cλ2s
k h

2s
1 ≤ cλ2s

k h
2+2ε
Ω Y 2s,

‖y α
2 (ψs,k − ψs,k(y1))′‖2

L2(I1) ≤ cλ2s
k h

2s
1 ≤ cλ2s

k h
2+2ε
Ω Y 2s.

Hence, we obtain

‖y α
2 ∇(u− ipyu)‖2

L2(Ω×I1) ≤ ch2+2ε
Ω Y 2s

∞
∑

k=1

λ2s
k u2

k.

As in the proof of Lemma 4.4, this yields the assertion.

In order to derive estimates on Im for 2 ≤ m ≤ M − 1, we recall the following result which is
a direct consequence of [24, Lemma 3.2.6].

Proposition 4.11. Let w be analytic on Î = (0, 1) and satisfy for some cw, δ > 0 the estimate

‖w(n)‖L∞(Î) ≤ cwδ
nn! ∀n ∈ N.

Then, there are constants c, b > 0 depending only on δ such that the Gauss-Lobatto interpolant
iqw of degree q ∈ N on Î satisfies

‖w − iqw‖L∞(Î) + ‖(w − iqw)′‖L∞(Î) ≤ ccwe
−bq.

Lemma 4.12 (Estimates on Im for 2 ≤ m ≤ M − 1). For f ∈ L2(Ω), let u ∈ H̊1
L(C, yα) be the

solution of (2.2). Moreover, let p ∈ N
M be a linear degree vector as in (3.3) with some β > 0

and let

M ≥ (1 + ε)|ln hΩ|
min(s, βb)|ln σ|

for some ε ≥ 0, where b > 0 is a constant depending on σ only. Then, it holds

‖y α
2 ∇(u− ipyu)‖2

L2(Ω×Im) ≤ ch2+2ε
Ω Y 2s‖f‖2

L2(Ω).
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Proof. For m ≥ 2 it holds ym−1 ≤ ym ≤ σ−1ym−1. By transforming to the reference element
Î = (0, 1), we obtain for (ipyψs,k)

∣

∣

Im
= ipmψs,k

∣

∣

Im
that

‖y α
2 (ψs,k − ipmψs,k)‖L2(Im) ≤ cy

α
2

m−1h
1

2
m‖ψ̂s,k − îpmψ̂s,k‖L2(Î) ≤ cy

α
2

m−1h
1

2
m‖ψ̂s,k − îpmψ̂s,k‖L∞(Î).

By means of Corollary 2.7, applied with r = 1, and Lemma 3.2, we have

‖ψ̂(n)
s,k ‖L∞(Î) = hn

m‖ψ(n)
s,k ‖L∞(Im) ≤ cλ

s− 1

2

k hn
my

2s−1−n
m−1 8nn! ≤ cλ

s− 1

2

k y2s−1
m−1 (8(σ−1 − 1))nn!.

Moreover, due to well known series representations of Ks from [1, 9.6.2 and 9.6.10], we directly
conclude that ψ̂s,k is analytic on Î. Hence, Proposition 4.11 implies with δ = 8(σ−1 − 1) that

‖ψ̂s,k − îpmψ̂s,k‖L∞(Î) ≤ cλ
s− 1

2

k y2s−1
m−1 e

−bpm.

Then, we get by Lemma 3.2

‖y α
2 (ψs,k − ipmψs,k)‖L2(Im) ≤ cy

s− 1

2

m−1h
1

2
mλ

s− 1

2

k e−bpm ≤ chs
mλ

s− 1

2

k e−bpm.

Analogously, we obtain

‖y α
2 (ψs,k − ipmψs,k)′‖L2(Im) ≤ cy

α
2

m−1h
− 1

2
m ‖(ψ̂s,k − îpmψ̂s,k)′‖L2(Î)

≤ cy
α
2

m−1h
− 1

2
m ‖(ψ̂s,k − îpmψ̂s,k)′‖L∞(Î).

By means of Corollary 2.7 with r = 0 and Lemma 3.2, we have

‖ψ̂(n)
s,k ‖L∞(Î) = hn

m‖ψ(n)
s,k ‖L∞(Im) ≤ cλs

kh
n
my

2s−n
m−1 8nn! ≤ cλs

ky
2s
m−1(8(σ−1 − 1))nn!.

Consequently, Proposition 4.11 yields with δ = 8(σ−1 − 1) that

‖(ψ̂s,k − îpmψ̂s,k)′‖L∞(Î) ≤ cλs
ky

2s
m−1e

−bpm .

This implies

‖y α
2 (ψs,k − ipmψs,k)′‖L2(Im) ≤ cy

s+ 1

2

m−1h
− 1

2
m λs

ke
−bpm ≤ cλs

kh
s
me

−bpm .

Collecting the previous results yields

λk‖y α
2 (ψs,k − ipmψs,k)‖2

L2(Im) + ‖y α
2 (ψs,k − ipmψs,k)′‖2

L2(Im) ≤ cλ2s
k h

2s
me

−2bpm .

Relation (3.3) implies
e−2bpm ≤ ch

2βb
1 h−2βb

m .

Thus, we deduce

λk‖y α
2 (ψs,k − ipmψs,k)‖2

L2(Im) + ‖y α
2 (ψs,k − ipmψs,k)′‖2

L2(Im) ≤ cλ2s
k h

2(s−βb)
m h

2βb
1 . (4.7)

Let us now distinguish two cases:
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• s ≤ βb: Since hm ≥ h1, we then obtain

λk‖y α
2 (ψs,k − ipmψs,k)‖2

L2(Im) + ‖y α
2 (ψs,k − ipmψs,k)′‖2

L2(Im) ≤ cλ2s
k h

2(s−βb)
1 h

2βb
1 = cλ2s

k h
2s
1

As before, the relation M ≥ (1+ε)|ln hΩ|
s|ln σ| together with Lemma 3.2 implies h1 ≤ ch

1+ε
s

Ω Y .
Hence, we get

λk‖y α
2 (ψs,k − ipmψs,k)‖2

L2(Im) + ‖y α
2 (ψs,k − ipmψs,k)′‖2

L2(Im) ≤ cλ2s
k h

2+2ε
Ω Y 2s.

• s > βb: With hm ≤ Y , we get from (4.7) that

λk‖y α
2 (ψs,k − ipmψs,k)‖2

L2(Im) + ‖y α
2 (ψs,k − ipmψs,k)′‖2

L2(Im) ≤ cλ2s
k Y

2(s−βb)h
2βb
1 .

Similarly as before, the relation M ≥ (1+ε)|ln hΩ|
βb|ln σ| together with Lemma 3.2 implies h1 ≤

ch
1+ε
βb

Ω Y . Thus, we get

λk‖y α
2 (ψs,k − ipmψs,k)‖2

L2(Im) + ‖y α
2 (ψs,k − ipmψs,k)′‖2

L2(Im) ≤ cλ2s
k h

2+2ε
Ω Y 2s.

The previous results in combination with (4.4) imply

‖y α
2 ∇(u− ipyu)‖2

L2(Ω×Im) ≤ ch2+2ε
Ω Y 2s

∞
∑

k=1

λ2s
k u2

k.

Finally, applying Proposition 2.1 yields the assertion.

Lemma 4.13 (Estimate on IM ). For f ∈ L2(Ω), let u ∈ H̊1
L(C, yα) be the solution of (2.2).

Moreover, let p ∈ N
M be a linear degree vector as in (3.3) with some β > 0 and let

2
(1 + ε)|ln hΩ|

min(s, βb)|ln σ| ≥ M ≥ (1 + ε)|ln hΩ|
min(s, βb)|ln σ| and Y ≥ max

(

2|ln hΩ|√
λ1

, 1
)

for some ε ≥ 0, where b > 0 is a constant depending on σ only. Then, it holds

‖y α
2 ∇(u− ipyu)‖2

L2(Ω×IM ) ≤ c
(

h2+2ε
Ω Y 2s + h2

Ω

)‖f‖2
L2(Ω).

Proof. We proceed as in the proof of Lemma 4.6 and recall that Y = yM = σ−1yM−1 and
hM = (1 − σ)Y = (σ−1 − 1)yM−1. Moreover, according to [17], the Lagrange basis functions li,q
of order q ∈ N on IM have the property

‖li,q‖L∞(IM ) ≤ 1 for i = 0, 1, . . . , q. (4.8)

As a consequence, we obtain by means of an inverse inequality (see, e.g., [24, Lemma 3.2.2])

‖l′i,q‖L∞(IM ) ≤ 2q2‖li,q‖L∞(IM ) ≤ 2q2. (4.9)

Noting that ipyψs,k = ĩpM
ψs,k on IM , we introduce the Gauss-Lobatto interpolant ipM

ψs,k on IM

as an intermediate function such that

‖y α
2 (ψs,k − ĩpM

ψs,k)‖L2(IM ) ≤ ‖y α
2 (ψs,k − ipM

ψs,k)‖L2(IM ) + ‖y α
2 (ipM

ψs,k − ĩpM
ψs,k)‖L2(IM )

= ‖y α
2 (ψs,k − ipM

ψs,k)‖L2(IM ) + ψs,k(Y )‖y α
2 lpM ,pM

‖L2(IM )

≤ ‖y α
2 (ψs,k − ipM

ψs,k)‖L2(IM ) + Y
α+1

2 ψs,k(Y ),
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where we used (4.8) in the last step. As in the proof of Lemma 4.12, we deduce for M ≥
(1+ε)|ln hΩ|

min(s,βb)|ln σ| that

λk‖y α
2 (ψs,k − ipM

ψs,k)‖2
L2(IM ) ≤ cλ2s

k h
2+2ε
Ω Y 2s.

Since Y ≥ 1 by assumption, we obtain using Corollary 2.8 with r1 = α+1
2 = 1 − s together with

the monotonicity of e−√
λky

Y
α+1

2 ψs,k(Y ) ≤ cλ
s−1

2

k e−
√

λk
2

Y ≤ cλ
s− 1

2

k e−
√

λ1
2

Y ,

where we notice that (λk)k∈N is a non-decreasing sequence. Combining the previous results yields

λk‖y α
2 (ψs,k − ĩpM

ψs,k)‖2
L2(IM ) ≤ cλ2s

k

(

h2+2ε
Ω Y 2s + e−

√
λ1Y

)

. (4.10)

Similarly, we deduce by means of (4.9)

‖y α
2 (ψs,k − ĩpM

ψs,k)′‖L2(IM ) ≤ ‖y α
2 (ψs,k − ipM

ψs,k)′‖L2(IM ) + ‖y α
2 (ipM

ψs,k − ĩpM
ψs,k)′‖L2(IM )

= ‖y α
2 (ψs,k − ipM

ψs,k)′‖L2(IM ) + ψs,k(Y )‖y α
2 l′pM ,pM

‖L2(IM )

≤ ‖y α
2 (ψs,k − ipM

ψs,k)′‖L2(IM ) + 2p2
MY −2Y

α+1

2
+2ψs,k(Y ).

Using M ≥ (1+ε)|ln hΩ|
min(s,βb)|ln σ| , the first term can again be estimated as in the proof Lemma 4.12 such

that
‖y α

2 (ψs,k − ipM
ψs,k)′‖2

L2(Im) ≤ cλ2s
k h

2+2ε
Ω Y 2s.

Employing Corollary 2.8 with r1 = α+1
2 + 2 = 3 − s together with the monotonicity of e−√

λky

yields for Y ≥ 1

Y
α+1

2
+2ψs,k(Y ) ≤ cλ

s−3

2

k e−
√

λk
2

Y ≤ cλs
ke

−
√

λ1

2
Y ,

where we used once again that the sequence (λk)k∈N is non-decreasing. Due to the previous
results, we arrive at

‖y α
2 (ψs,k − ĩpM

ψs,k)′‖2
L2(IM ) ≤ cλ2s

k

(

h2+2ε
Ω Y 2s + p4

MY
−4e−

√
λ1Y

)

. (4.11)

By combining (4.4), (4.10) and (4.11), we obtain as in the proof of Lemma 4.6

‖y α
2 ∇(u− ipyu)‖2

L2(Ω×IM ) ≤ c
(

h2+2ε
Ω Y 2s +

{

1 + p4
MY −4}e−

√
λ1Y

)

∞
∑

k=1

λ2s
k u2

k

= c
(

h2+2ε
Ω Y 2s +

{

1 + p4
MY −4}e−

√
λ1Y

)

‖f‖2
L2(Ω).

According to Lemma 3.3, there holds pM ≤ cM . Since

Y ≥ 2|ln hΩ|√
λ1

and M ≤ 2|ln hΩ|
min(s, βb)|ln σ|

by assumption, we obtain

{

1 + p4
MY

−4}e−
√

λ1Y ≤ h2
Ω + ch2

ΩM
4|ln hΩ|−4 ≤ ch2

Ω,

which ends the proof.
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Corollary 4.14. For f ∈ L2(Ω), let u ∈ H̊1
L(C, yα) be the solution of (2.2). Moreover, let p ∈ NM

be a linear degree vector as in (3.3) with some β > 0 and let

2
(1 + ε)|ln hΩ|

min(s, βb)|ln σ| ≥ M ≥ (1 + ε)|ln hΩ|
min(s, βb)|ln σ| and 2 max

(

2|ln hΩ|√
λ1

, 1
)

≥ Y ≥ max
(

2|ln hΩ|√
λ1

, 1
)

for some ε > 0, where b > 0 is a constant depending on σ only. Then, it holds

‖y α
2 ∇(u− ipyu)‖L2(CY ) ≤ chΩ‖f‖L2(Ω).

Proof. By the Lemmas 4.10, 4.12, and 4.13, we obtain

‖y α
2 ∇(u− ipyu)‖2

L2(CY ) =
M
∑

m=1

‖y α
2 ∇(u− ipyu)‖2

L2(Ω×Im) ≤ c
(

h2+2ε
Ω Y 2sM + h2

Ω

)‖f‖2
L2(Ω)

≤ c
(

h2+2ε
Ω |ln hΩ|2s+1 + h2

Ω

)‖f‖2
L2(Ω) ≤ ch2

Ω‖f‖2
L2(Ω),

where we have used the upper bounds on M and Y and the boundedness of h2ε
Ω |ln hΩ|2s+1 for

ε > 0.

Now, we are able to state the main result for this subsection analyzing the hp-FEM on geometric
meshes.

Theorem 4.15. For f ∈ H
1−s(Ω), let u ∈ H

s(Ω) and u ∈ H̊1
L(C, yα) be the solutions of (1.1)

and (2.2), respectively, and let uh ∈ Vh,M be the solution of (3.1). Moreover, let p ∈ N
M be a

linear degree vector as in (3.3) with some β > 0 and let

2
(1 + ε)|ln hΩ|

min(s, βb)|ln σ| ≥ M ≥ (1 + ε)|ln hΩ|
min(s, βb)|ln σ| and 2 max

(

2|ln hΩ|√
λ1

, 1
)

≥ Y ≥ max
(

2|ln hΩ|√
λ1

, 1
)

for some ε > 0, where b > 0 is a constant depending on σ only. Then, it holds

‖u − trΩ uh‖Hs(Ω) ≤ c‖y α
2 ∇(u− uh)‖L2(C) ≤ chΩ‖f‖H1−s(Ω).

Proof. The first inequality of the assertion is due to Propositions 2.3 and 2.4. Using Lemmas 4.1
and 4.2, we get

‖y α
2 ∇(u− uh)‖L2(C) ≤ ‖y α

2 ∇(u− πxu)‖L2(CY ) + ‖y α
2 ∇(u− iyu)‖L2(CY ) + ‖y α

2 ∇u‖L2(C\CY ).

The three terms on the right-hand side are estimated in Lemma 4.3, Corollary 4.14, and Propo-
sition 2.9. Hence, we get

‖y α
2 ∇(u− uh)‖L2(C) ≤ chΩ‖f‖H1−s(Ω) + chΩ‖f‖L2(Ω) + ce−

√
λ1

2
Y ‖f‖H−s(Ω).

Then, the lower bound on Y yields e−
√

λ1
2

Y ≤ chΩ, which implies the assertion.

Theorem 4.16. The total number degrees of freedom NΩ,Y in Vh,M to achieve the order of
convergence given in Theorem 4.15 behaves like

NΩ,Y = O(NΩ(ln NΩ)2).

Proof. As a direct consequence of Lemma 3.4, we obtain that the number of degrees of freedom
NΩ,Y of the discretization considered in this section fulfills NΩ,Y = NΩNY = O(NΩM

2). Then,
the assertion follows from M = O(|ln hΩ|) = O(ln NΩ).
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5. Numerical Experiments

5.1. Implementation

For the discretization with respect to y in h-FEM and hp-FEM, we use hierarchical Lobatto
polynomials (see, e.g., [29]) as local shape functions on Î = (0, 1) which then are transformed
onto each interval Im. Without the weight, i.e., for s = 1

2 , this would result in a very sparse
structure of the local stiffness matrix, since those shape functions are orthogonal. For s 6= 1

2 the
latter does not hold; nevertheless the global matrix is of course still sparse.

Let ηi for i = 1, 2, . . . ,NΩ be the ansatz functions for the discretization of Ω and τj for
j = 1, 2, . . . ,NY ansatz functions for the discretization of (0, Y ). On the cylinder CY we then
use ansatz functions of the form ϕi,j(x, y) = ηi(x)τj(y) with i = 1, 2, . . . ,NΩ and j = 1, . . . ,NY .

Due to this special structure, the system matrix S ∈ R
NΩ,Y ×NΩ,Y for solving (3.1) can be

expressed by means of the Kronecker product as

S = Bmass ⊗Astiff +Bstiff ⊗Amass.

Here, A ∈ R
NΩ×NΩ denotes matrices arising from discretization of Ω and B ∈ R

NY ×NY denotes
matrices arising from discretization of (0, Y ) given as

Amass
ik =

∫

Ω
ηi(x)ηk(x) dx, Astiff

ik =
∫

Ω
∇ηi(x)∇ηk(x) dx, i, k = 1, 2, . . . ,NΩ,

Bmass
jl =

∫ Y

0
yατj(y)τl(y) dy, Bstiff

jl =
∫ Y

0
yατ ′

j(y)τ ′
l (y) dy, j, l = 1, 2, . . . ,NY .

We observe that one can assemble the matrices A and B completely independent from each other.
This is advantageous since the weight yα only affects the B matrices, while the A matrices are
standard FEM matrices, which can be computed by any FEM software.

Using the special structure of S, one can implement a memory efficient solvers for the algebraic
systems without ever fully assembling S. This will be the topic of a forthcoming paper.

5.2. Numerical Results

We take the following configuration from [27, Section 6.1]. For Ω = (0, 1)2 ⊂ R
2 the eigenfunc-

tions of the Dirichlet-Laplacian are known to be ϕk,l(x) = sin(kπx1) sin(lπx2) with corresponding
eigenvalues λk,l = π2(k2 + l2) for k, l = 1, 2, . . . . For the right-hand side f(x) = λs

1,1ϕ1,1(x) =
(2π2)s sin(πx1) sin(πx2), the solution u of (1.1) and u of (2.2) are then given by

u(x) = sin(πx1) sin(πx2) and u(x, y) =
21− s

2πs

Γ(s)
sin(πx1) sin(πx2)ysKs(

√
2πy).

For the discretization by means of h-FEM (cf. the Section 3.1 and 4.1), we choose the param-
eters

µ = 0.8s, M = ⌈h−1
Ω ⌉, and Y = max

(

3|ln hΩ|√
2π

, 1
)

,

whereas for the discretization by means of hp-FEM (cf. the Section 3.2 and 4.2), we choose the
following parameters:

β = 0.7, σ = 0.125, M =
⌈

1.75|ln hΩ|
s|ln σ|

⌉

, and Y = max
(

3|ln hΩ|√
2π

, 1
)

.
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Figure 1: ‖y α
2 ∇(u− uh)‖L2(C) for s = 0.2 (left) and s = 0.8 (right) over hΩ.

The orders of convergence stated by the Theorems 4.8 and 4.15 in terms of hΩ are confirmed by the
results of the numerical computations given in Figure 1. Note, that the error ‖y α

2 ∇(u−uh)‖L2(C)

is evaluated by means of the identity

‖y α
2 ∇(u− uh)‖2

L2(C) = ds

∫

Ω
(f trΩ u− f trΩ uh) dx,

which holds due to the Galerkin orthogonality (4.1).
In Figure 2, we depict the errors for both types of discretizations over the total numbers of

degrees of freedom NΩ,Y . Thereby, the slower growth of NΩ,Y for the hp-discretization given by
Theorem 4.16 in comparison to Theorem 4.9 clearly leads to a drastic reduction of the number
of degrees of freedom compared to h-FEM on a graded mesh. For instance the number of
degrees of freedom to achieve an error of less than 9 · 10−3 in the case s = 0.8 reduces from
NΩ,Y = 1 072 692 225 for h-FEM to NΩ,Y = 9 661 477 for hp-FEM, which is a factor of about 111.

A. Estimates for ψs and its derivatives

We begin with a representation of the derivatives of the expression zsKs(z), where Ks are the
modified Bessel functions of second kind. It which will be used in the sequel to derive estimates
for the derivatives of ψs.

Lemma A.1. The derivatives of zsKs(z) of order n ∈ N0 can be calculated as

(zsKs(z))(n) =
n
∑

m=0

an
mz

s−mKs−(n−m)(z), (A.1)
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Figure 2: ‖y α
2 ∇(u − uh)‖L2(C) for s = 0.2 (left) and s = 0.8 (right) over the total number of

degrees of freedom NΩ,Y .

where the coefficients an
m are given by

an
0 = (−1)n, (A.2)

an
m = (−1)n+m 1

2m

n!
m!(n− 2m)!

for 1 ≤ m ≤
⌊n

2

⌋

, (A.3)

an
m = 0 for

⌊n

2

⌋

< m ≤ n. (A.4)

Proof. We prove this assertion by induction. To this end, we first collect some basic results for
the modified Bessel function of second kind. In [1, 9.6.28], we find for all ν ∈ R

1
z

d

dz
(zνKν(z)) = −zν−1Kν−1(z).

As a consequence, there holds
(zνKν(z))′ = −zνKν−1(z). (A.5)

Using the latter result, we get the following formula for m, l ∈ N0:

(zs−mKs−l(z))
′ = (zl−mzs−lKs−l(z))

′

= −zl−mzs−lKs−l−1(z) + (l −m)zl−m−1zs−lKs−l(z)

= −zs−mKs−(l+1)(z) + (l −m)zs−m−1Ks−l(z).

By means of this, we obtain for m,n ∈ N0 with m ≤ n by setting l = n−m ≥ 0

(zs−mKs−(n−m)(z))
′ = −zs−mKs−(n+1−m)(z) + (n− 2m)zs−m−1Ks−(n−m)(z). (A.6)

These elementary results build the basis for the induction: The hypothesis (A.1) clearly holds
for n = 0.
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Assuming that (A.1) holds for some n ∈ N0, we deduce

(zsKs(z))(n+1) =
n
∑

m=0

an
m(zs−mKs−(n−m)(z))

′.

Employing (A.6), we continue with

(zsKs(z))(n+1) =
n
∑

m=0

an
m

(−zs−mKs−(n+1−m)(z) + (n− 2m)zs−m−1Ks−(n−m)(z)
)

=
n
∑

m=0

−an
mz

s−mKs−(n+1−m)(z)

+
n+1
∑

m=1

an
m−1(n− 2(m − 1))zs−mKs−(n+1−m)(z)

= −an
0z

sKs−(n+1)(z) − nan
nz

s−n−1Ks(z)

+
n
∑

m=1

(−an
m + an

m−1(n− 2(m− 1))
)

zs−mKs−(n+1−m)(z).

It remains to show that

an+1
0 = −an

0 , an+1
m = −an

m + an
m−1(n− 2(m − 1)) for 1 ≤ m ≤ n, an+1

n+1 = −nan
n.

The first and third equation are obvious due to (A.2) and (A.4). Thus, we only elaborate on the
second. We distinguish three cases for 1 ≤ m ≤ n:

• m ≥
⌊

n+1

2

⌋

+ 2: Again due to (A.4), we have an
m = an

m−1 = 0, since m,m − 1 >
⌊n

2

⌋

.
Hence, it holds

−an
m + an

m−1(n− 2(m − 1)) = 0 = an+1
m .

• m =
⌊

n+1

2

⌋

+ 1: Here, it holds m >
⌊

n
2

⌋

and we already know that an
m = 0. Moreover, in

case that n is even, we deduce m = n
2 + 1 and

n− 2(m − 1) = n− 2
(

n

2
+ 1 − 1

)

= 0.

If n is odd, we obtain an
m−1 = 0 since m− 1 = n+1

2 >
⌊n

2

⌋

. As a consequence, we get

−an
m + an

m−1(n− 2(m − 1)) = 0 = an+1
m .

• m ≤
⌊n+1

2

⌋

: Here, we again distinguish between n even and n odd. In the first case, we
have

⌊n+1
2

⌋

=
⌊n

2

⌋

. Hence, it holds m− 1,m ≤ ⌊n
2

⌋

and by means of (A.3), we get

−an
m + (n− 2(m − 1))an

m−1 = (−1)n+m+1 1
2m

n!
m!(n− 2m)!

+ (n− 2(m− 1))(−1)n+m−1 1
2m−1

n!
(m− 1)!(n − 2(m − 1))!

= (−1)n+1+m 1
2m

(n+ 1)!
m!(n+ 1 − 2m)!

= an+1
m .

25



Meidner, Pfefferer, Schürholz, Vexler: hp-Finite Elements for Fractional Diffusion

In case that n is odd, we have that
⌊

n+1
2

⌋

=
⌊

n
2

⌋

+ 1. Thus, for m ≤ ⌊

n+1
2

⌋ − 1, we can
reuse the calculations from before. If m =

⌊

n+1
2

⌋

= n+1
2 , we have an

m = 0 such that

−an
m + (n− 2(m − 1))an

m−1 = an
m−1 = (−1)n+ n−1

2
1

2
n−1

2

n!
(n−1

2

)

!

= (−1)n+1+ n+1

2
1

2
n+1

2

(n+ 1)!
(n+1

2

)

!
= an+1

m .

This ends the proof.

We next analyze ψs defined in (2.3) and its derivatives with respect to its boundedness prop-
erties.

Lemma A.2. For z ≥ 0, it holds

0 < ψs(z) ≤ ψs(0) = 1.

Proof. Since zνKν(z) > 0 for all z > 0 and ν > −1, see, e.g., [1, 9.6.1], and due to (A.5), the
function ψs is positive and monotone decreasing such that ψs(z) ≤ ψs(0) for all z ≥ 0.

In [1, 9.6.9] one can find for ν > 0 the following behavior of the modified Bessel function of
the second kind for z → 0:

Kν(z) ∼ Γ(ν)
21−ν

z−ν .

As a consequence, we obtain by (2.3)

lim
z→0

ψs(z) = lim
z→0

csz
sKs(z) = 1, (A.7)

which yields together with the foregoing observations the assertion.

Lemma A.3. Let r ∈ [0, 1]. There exists a constant c > 0 depending only on s, such that for
any z > 0 and n ∈ N it holds

|znψ(n)
s (z)| ≤ c8nn!z2s−r.

Proof. In order to deduce the bounds for the derivatives of ψs, we continue with collecting some
auxiliary results. As before in the proof of Lemma A.2, we have that zrzνKν(z) is positive for
all z > 0 and ν > −1. Let ν0 = min

(

ν, 1
2

)

. From [25, Theorem 5], we obtain for z > 0 that
zν0ezKν(z) is a decreasing function for all ν ≥ 0. To employ this, we consider the product

zν+rKν(z) = zν+r−ν0e−z · zν0ezKν(z).

and note that

arg max
z≥0

zν+r−ν0e−z = ν + r − ν0 and (zν+r−ν0e−z)′ < 0 for z > ν + r − ν0.

Hence, zν+rKν(z) admits its maximum in the interval [0, ν + r − ν0]. Due to Lemma A.2, we
consequently get by (2.3)

zν+rKν(z) =
zr

cν
ψν(z) ≤ (ν + r − ν0)r

cν
ψν(0) =

(ν + r − ν0)r

cν
. (A.8)
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Next, we are concerned with the bounds for the derivatives of ψs. Employing Lemma A.1 and
the relation Kν(z) = K−ν(z) for ν ∈ R, see [1, 9.6.6], we obtain by (2.3)

|zn−2s+rψ(n)
s (z)| =

∣

∣

∣

∣

∣

∣

zn−2s+r

⌊ n
2

⌋
∑

m=0

csa
n
mz

s−mKs−(n−m)(z)

∣

∣

∣

∣

∣

∣

≤
⌊ n

2
⌋

∑

m=0

cs|an
m||zn−m−s+rKn−m−s(z)|,

where the coefficients are given by Lemma A.1. Let ν(m,n) = n − m − s. We observe that
ν(m,n) > 0 since m ≤ ⌊n

2

⌋

. Consequently, (A.8) yields

|zn−2s+rψ(n)
s (z)| ≤

⌊ n
2

⌋
∑

m=0

cs

cν(m,n)
|an

m|(ν(m,n) + r − ν0(m,n))r

with ν0(m,n) = min
(

ν(m,n), 1
2

)

. Since n−m ≥ 1, it holds

(ν(m,n) + r − ν0(m,n))r ≤ (n −m+ r)r ≤ n−m+ 1. (A.9)

Further, using

Γ(l + ρ) ≤ Γ(l + 1)
(l + ρ

2 )1−ρ

from [23, estimate (8)], which holds for all l ∈ N0 and 0 < ρ < 1 , we get by choosing l = n−m−1
and ρ = 1 − s

cs

cν(m,n)
=

2νΓ(ν(m,n))
2sΓ(s)

=
1

4sΓ(s)
2n−mΓ(ν(m,n)) ≤ 1

4sΓ(s)
2n−mΓ(n−m)

(n−m− 1 + 1−s
2 )s

≤ 1
2sΓ(s)(1 − s)s

2n−m(n−m− 1)! = c2n−m(n−m− 1)!
(A.10)

with a constant c depending only on s. Using (A.9) and (A.10), we get

|zn−2s+rψ(n)
s (z)| ≤ c

⌊ n
2

⌋
∑

m=0

2n−m(n−m+ 1)!|an
m|. (A.11)

Estimating each summand separately, yields by means of Lemma A.1

2n−m(n−m+ 1)!|an
m| = 2n−m(n−m+ 1)!

1
2m

n!
m!(n− 2m)!

= 2n−2m(m + 1)n!
(n−m+ 1)!

(m+ 1)!(n −m+ 1 − (m+ 1))!

= 2n−2m(m + 1)n!

(

n−m+ 1
m+ 1

)

≤ 4nn! .

(A.12)

For the last step, notice that

2−2m(m + 1) ≤ 1 and

(

n−m+ 1
m+ 1

)

≤ 2n.

Finally, (A.11) and (A.12) yield the assertion since
⌊

n
2

⌋

+ 1 ≤ 2n.
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Finally, we state a result about the exponential decay of ψs and its derivative.

Lemma A.4. The following assertions hold:

(a) Let s0 = min(s, 1
2 ). Moreover, let z ≥ a > 0 and r ≥ s0 − s. Then there exists a constant c

only depending on r and s such that

|zrψs(z)| ≤ ce− z
2 · csa

s0eaKs(a).

(b) Let s′
0 = min(1 − s, 1

2). Moreover, let z ≥ a > 0 and r ≥ s′
0 − s. Then there exists a constant

c only depending on r and s such that

|zrψ′
s(z)| ≤ ce− z

2 · csa
s′

0eaK1−s(a).

Proof. We start as in the proof of Lemma A.3. According to [25, Theorem 5], we get for z ≥ 0
that zs0ezKs(z) is a decreasing function. Consequently, having in mind the definition of ψs and
that zνKν(z) > 0 for all z ≥ 0 and ν > −1, see the proof of Lemma A.2, we obtain

|zrψs(z)| = zr+s−s0e−z · csz
s0ezKs(z) ≤ zr+s−s0e−z · csa

s0eaKs(a).

This is already the desired result for r = s0 − s noticing that e− z
2 < 1 = c for z ≥ 0. For

r > s0 − s, we observe that

zr+s−s0e−z = zr+s−s0e− z
2 e− z

2 ≤ ce− z
2 ,

where we used that

max
z≥0

(zr+s−s0e− z
2 ) =

(

2(r + s− s0)
e

)r+s−s0

= c.

Combining the previous results yields the first inequality of the assertion. Next, we deduce by
means of the definition of ψs and (A.5)

zrψ′
s(z) =

cs

c1−s
zr+2s−1c1−sz

1−sK1−s(z) =
cs

c1−s
zr+2s−1ψ1−s(z)

such that the second inequality of the assertion follows from the first one noting that r+2s−1 ≥
s′

0 − s+ 2s − 1 = min(1 − s, 1
2) − (1 − s) by the assumption on r.
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