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Abstract

The purpose of this work is to introduce and analyze a numerical scheme to efficiently solve
boundary value problems involving the spectral fractional Laplacian. The approach is based on
a reformulation of the problem posed on a semi-infinite cylinder in one more spatial dimension.
After a suitable truncation of this cylinder, the resulting problem is discretized with linear finite
elements in the original domain and with hp-finite elements in the extended direction. The pro-
posed approach yields a drastic reduction of the computational complexity in terms of degrees of
freedom and even has slightly improved convergence properties compared to a discretization using
linear finite elements for both the original domain and the extended direction. The performance
of the method is illustrated by numerical experiments.
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1. Introduction

In this work, we are concerned with boundary value problems involving the fractional Laplacian,
being the prototype of a nonlocal operator. To be more specific: Let @ ¢ R? for d € {1,2,3}
be a bounded, convex, polygonal or polyhedral domain. We are interested in the solution of the
boundary value problem

(=A)u=F in €,

1.1
u=20 on 0f), (L.1)

where (—A)® denotes the spectral fractional Laplacian of order s € (0,1) defined by the eigen-
values and eigenfunctions of the standard Laplacian, precisely introduced in Section 2l The
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main purpose of this paper is to introduce and analyze a numerical scheme to efficiently solve
problem (L.I)).

Our approach is based on the following equivalent reformulation of problem (L)) posed on the
semi-infinite cylinder { (z,y) € Q x (0,00) } € R¥*!: Let u be the weak solution of the extended
problem

div(y'=%*Vu) = 0 in Q x (0,00),
u=20 on 09 x [0, 00),
Op—2u=ds onQx{0},

see Section 2 for more details. Then, the trace u = u(-,0) is the solution of the fractional boundary
value problem (LT]).

In contrast to the nonlocal problem (I1J), the extended problem is localized. However, a direct
application of a finite element method to the extended problem is not feasible because of the
semi-infinite domain. As remedy, the exponential decay of u in direction y towards infinity (see
Proposition 2.9) can be employed such that a truncation of the semi-infinite cylinder to 2 x (0,Y)
becomes reasonable. The extended problem posed on the truncated cylinder can be discretized
using finite elements. However, due to the degenerate/singular nature of the extended problem,
anisotropic meshes are favorable in order to obtain an optimally convergent numerical scheme.
Moreover, the height Y of the truncated cylinder needs to be chosen dependent on the mesh
parameter to ensure the aforementioned convergence. This approach was already pursued in [27]
using a discretization with first degree tensor product finite elements on graded meshes in the
extended direction, see also [14], [15] [26], 28] for related results. If hg denotes the mesh parameter
and Ng the number of degrees of freedom in € then the approach from [27] yields a discretization
error of order O(hgq|ln hq|®) in the corresponding energy norm associated with (ILT]) while solving

problems with O(Nglfl/ d) degrees of freedom.

In this work, we introduce and analyze a discretization of the truncated problem with linear
finite elements in the original domain €2 and with Ap-finite elements on a geometric mesh in the
extended direction. This drastically reduces the computational complexity to O(Nq(InNg)?)
degrees of freedom and even yields a slightly better convergence rate of order O(hg). Especially,

when N is large, the difference between the factor (In Ng)? and Ngll/ 4 becomes clearly perceptible.
For instance, in our numerical experiments we could reduce the number of degrees of freedom by
a factor of about 111 to obtain an error of less than 9 - 1072 in the case s = 0.8, see Section
for more details. We also notice that our approach and results are not limited to the spectral
fractional Laplacian. They naturally extend by only minor modifications to fractional powers of
general second order elliptic operators.

Let us briefly give an overview on other numerical approaches from the literature to solve
boundary value problems involving the fractional Laplacian: Due to the spectral definition of the
operator, it seems to be natural to compute an approximating, discrete spectral decomposition of
the standard Laplacian in order to get an approximation of the solution of (L), see [21], 22 [31].
However, this may result in solving a large number of discrete eigenvalue problems. Another
approach to determine an approximation to the solution of problem (LI]) is analyzed in [§], see
also [6] [7, O] for related results. In that reference, (—A)~* is represented in terms of Bochner
integrals involving (I — t?A)~! for ¢t € (0,00). Subsequently, different quadrature formulas to
approximate this integral are analyzed which require multiple evaluations of (I — t?Ah)*l with
t; being a quadrature point and —A, denoting a finite element discretization to —A. Numerical
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approaches for the integral definition of the fractional Laplacian, which is not equivalent to the
spectral definition considered in the present paper, can be found in [2} [3] [4] [5, 10} 16, I8, 191 20].

This paper is organized as follows: In Section 2 we state the definition of the fractional
Laplacian, formulate the extended problem in detail, and introduce the functional framework
needed for the subsequent error analysis. Moreover, in this section, we are concerned with
several properties of the solution of the extended problem such as a series representation and
corresponding regularity results. The discrete, extended problem posed on the truncated cylinder
is formulated at the beginning of Section Bl In the extended direction, we distinguish between
graded meshes and h-FEM, and geometric meshes and hp-FEM, see Sections [3.1] and The
error analysis is given in Section @l Thereby, in Section .T], we mainly recover the results of [27].
The reason for doing this is twofold. First, we are able to slightly improve the mesh grading
condition used in [27]. However, the main reason to analyze the h-FEM on graded meshes before
developing the analysis for the hp-method considered in Section is, that the techniques we use
are almost identical for both cases, but the details are simpler for h-FEM. Implementation aspects
and numerical experiments, which underline the efficiency of our approach, are presented in
Section[Bl In the appendix, we collect different results for special functions defined by the modified
Bessel functions of second kind. These are especially needed in Section 2] for the discussion of
the solution of the extended problem.

Finally, we notice that, in the following, ¢ denotes a generic constant which will always be
independent of the mesh parameter hg when we analyze the discretization error.

2. Continuous Problem

Let —A be the L?(f) realization of the Laplacian with homogeneous Dirichlet boundary condi-
tions. It is well-known that —A has a compact resolvent and its eigenvalues form a non-decreasing
sequence 0 < A; < Ao < - < A < -+ satisfying limg_ oo Ay = 00. We denote by ¢y the or-
thonormal L?(Q) eigenfunctions associated with A fulfilling

/Vgok-Vvdac:)\k/gpkvdx Vo € HY(Q).
Q Q

For any s > 0, we introduce the fractional order Sobolev space
o
H*(Q) = { b€ L3(Q) ‘ [0lfFs () = D ARvi < oo with vy = / vy da } .
Q
k=1

Moreover, we denote by H™*(€2) the dual space of H*(§2). Then, the spectral fractional Laplacian
is defined for s € (0,1) on the space H*(2) as the limit

(“AYu=3 Aupp € H(Q) with 1w, = / wpy da.
k=1 @

Due to the Cauchy-criterion the limit exists for any u € H*(§2). Thus, problem (LI has to be
understood as: Given f € H*(Q2), find u € H*(Q2) such that

Z)\Zukka/fbdZ’ VUEHS(Q) with UkZ/UQOkd.%'. (2.1)
=1 Q Q
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Proposition 2.1. For any f € H™°(Q2), problem ([LI)) admits a unique solution u € H%(Q)
fulfilling |[ul|gs @) = [flle—s (). Moreover, there is the series representation

u= Z uppr  with w, =\ fp and fi = / for dx.
k=1 Q

Proof. The existence of an unique solution and the equality of the norms is a consequence of the
Riesz representation theorem. The series representation of u is obtained by testing (ZII) with
©m € H*(Q) and using the orthogonality of the eigenfunctions. O

Remark 2.2. Due to the definition of the fractional Laplacian and the previous result, we ob-
serve that problem (L) is already meaningful without additionally imposing the homogeneous
Dirichlet boundary conditions since these are already included in the definition of the operator.
Moreover, we notice that the regularity of u can be described in classical fractional Sobolev spaces
as well, since

H(Q), for0<s<3,

H*(Q2) = Hg (@), for s = %a

H§(Q), fori<s<l.
For more details we refer to, e.g., [27].

Problem (LI can equivalently be posed on a semi-infinite cylinder. In R? this is due to
Caffarelli and Silvestre [I2]. The restriction to bounded domains € was considered by Stinga
and Torrea in [30], see also [IT), [13]. This kind of extension is the basis for the computational
approaches in the subsequent sections.

In order to state the extended problem, we first introduce the required notation. We denote by
C = Q x (0,00) the aforementioned semi-infinite cylinder and by 95,C = 9§ x [0, 00) its lateral
boundary. We also need to define a truncated cylinder: for Y > 0, the truncated cylinder is given
by Cy = Q x (0,Y) with its lateral boundary 0;Cy = 092 x [0,Y]. As C and Cy are objects
in R, we use y to denote the extended variable, such that a vector (z,y) € R*! admits the
representation (x,y) = (x1,29,...,24,y). Similarly, the gradient in R%*! has the representation
V = (V,0y) = (0ny00ss -+, Oy, Oy)-

Next we introduce weighted Sobolev spaces with a weight function y® for @ € (—1,1). In this
regard, let D C R? x (0,00) be an open set, such as C' or Cy. Then, we define the weighted
space L?(D,y®) as the space of all measurable functions on D with finite norm ||v|| L2(Dye) =
||y%v\|L2(D). Similarly, the space H'(D,y®) denotes the space of all functions v € L?(D,y%)
whose weak derivatives of first order belong to L?(D,y%).

To study the extended problems, we introduce the space

H(Cy™) = {v e H'(y~,C) ‘ v=0on 3LC}.

The space ﬁi(Cy, y®) is defined analogously, but endowed with zero Dirichlet boundary condi-
tions also on Q@ x {Y }:

HL(Cy,y*) = {v e H'(y*,Cy) ‘ v=0o0n JCy U (2 x {Y})}

For v € H}(C,y®), we denote by trg v the trace of v onto Q2 x {0}, i.e., trqv = v(-,0).
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Proposition 2.3. For a =1 — 2s, it holds
tro ﬁi((j’, y*) =H(Q) and |trg vHHs(Q) < CHUHIfIi(C,y“)'
Proof. See [11, Proposition 1.8] for s = % and [I3], Proposition 2.1] for s # % O

Now, we are able to state the extended problem: Given f € H™*(Q2), find u € ﬁi(C, y“) such
that

/CyO‘Vu -Vvd(z,y) = ds(f, tra v)m-s ) m @) Y0 € H}(C,y®) (2.2)

with &« =1 — 2s and ds = 2¢ Fg(;)s). That is, the function u € H}(C,y®) is a weak solution of

div(y*Vu) =0 in C,
u=20 on 9;,C,
Opou =dgf  onQx {0},

where we have set Oyeu(x,0) = limy_,o y“dyu(zx,y). Note that subsequently, the parameter o will
always be equal to 1 — 2s for the considered s € (0, 1).

In the remainder of this section, we discuss several properties of the solution u to (2:2)). Due
to the following proposition, it is reasonable to determine the solution u of (Z2)) in order to get
the solution u of (LTJ).

Proposition 2.4. For f € H™%(Q), the extended problem (Z2) admits a unique solution u €
H}(C,y®). Furthermore, u = trqu € H*(Q) solves (LI]).

Proof. See [13, Lemma 2.1]. O
We have the following regularity result.
Proposition 2.5. Let u € H}(C,y®) be the solution of Z2) and §f € H'=5(Q). Then, it holds
ly= Vaullfzcy + 1929y Vaul 2oy < elfllfn-s (-

Proof. [27, Theorem 2.7] yields

ly= Aull2 oy + 12 8y Vaulltzoy = dsllfllin-«(q)
with dg given above. Convexity of €} then implies the assertion. O

For a series expansion of the solution to (2:2)), we introduce the function v,: [0,00) — R given
by

21—8
Ys(2) = cs2° Ky(2) with cs = Ok

Here, K(z) denotes the modified Bessel function of second kind, see, e.g., [I, Section 9.6] and
I'(s) denotes the gamma function.

(2.3)
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Proposition 2.6. For f € H5(), let u € H¥(Q) be the solution of (LI) and u € H}(C,y®) be
the solution of (Z2). Then, it holds

Zuktﬂk sk (Y),

where u, = [ upr dr and Vs, (y) = Vs(VARY).
Proof. For s # %, see [13, Proposition 2.1]. For s = %, the result was proved with 1/) (2) =€ 7
in [I1}, Proposition 2.2]. However, by [I}, 9.6.23] and the relation I'(3) = /7, it holds

c%z%K%(z) =e * =Y1(z).

1
2

Hence, ¥;(z) = ¢s2°K4(z) holds also in the case s = O

1
5.

We state an estimate of the derivatives of v, ;, which we will use later. The result is based on
properties of 5 which are analyzed in the appendix.

Corollary 2.7. Let r € [0,1]. There exists a constant ¢ > 0 depending only on s, such that for
any y >0 and n € IN it holds

e W) < e AL 2y

Proof. Simple calculations yield

B () = (;‘ly—”nwmy) = (VA" (v/Ay).

)

Consequently, we obtain by means of Lemma [A.3]

ly"wifz’ @) = (VM) (V)| < 8™ nl(v Agy) > = e8™nlN, 2y O

Next, we state a result about the exponential decay of v ;, and its derivative. It is based on
corresponding results for s and its derivative, proved in the appendix.

Corollary 2.8. Lety > 1, ri > min(s,3) — s and ro > min(1 — s,1) — s. Then, there exists a

constant c1 only depending on r1, s, and A1 and a constant co only depending on ro, s, and A\

such that S /i
- A _ro b
W k@] < adg e TV and [y (y)l < cady Te T

Proof. Let so = min(s, 3). According to [25, Theorem 5], we get for z > 0 that z%e*K,(z) is a
decreasing function. Consequently, we obtain

(VAR 0V Ky (Vg) < (VA1) eY MK (V) (2.4)

since the sequence (A;)rew is non-decreasing. Moreover, due to the definition of v ;, we deduce

Y s 1o (y !—Ak |(VAeY) ™ s (VAky)|.

Thus, by setting a = v/A; and z = /Ay > a in Lemma [A4] (@), we obtain the validity of the
first inequality of the assertion by means of (24]). The second inequality can be deduced in the
same manner employing Lemma [A4] (D). O
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As already mentioned, for computational reasons, the semi-infinite cylinder C will be truncated
to Cy = Q2 x (0,Y) for some Y > 0 later on. Because of this, the behavior of Vu for y — oo will
play a role. It can be estimated as follows:

Proposition 2.9. Forfec H™%(Q), let u € }ofi(C, y®) be the solution of (Z2). Then, there exists
a constant ¢ > 0 such that for every Y > 1, it holds

a RV,
192 Vull 2 oneyy < e 2 Y [[flla-s(o)-

Proof. The result can be found in [27), Proposition 3.1]. For the sake of completeness, we state a
(slightly different) proof here. According to Proposition [Z6, we obtain by using the definition of
the eigenfunctions ¢, and its orthogonality

I8 Valaereyy = [ o° [ (Vaute, ) +10,u(@ )} dedy
= >0 [l Bl + v dy
k=1

R 00 1 _1
<oyt [TOpe e ay,
k=1

where we employed Corollary 2.8l in the last step with r; = ry = § = % — 5. Calculating the

integral and using that (A\;)ren is a non-decreasing sequence, yields

%) 9]
ly% VulZz ooy < e S uk e+ XTI < eI ST AR = e MY ),
k=1 k=1

where we used Proposition [2.1]in the last step. O

3. Discretization

Let 7o be a conforming and quasi-uniform triangulation of €} which is admissible in the sense
of Ciarlet. For each 7o = { K }, let K C R? be an element that is isoparametrically equivalent
either to the unit cube or to the unit simplex in R¢. We introduce the global mesh parameter
hqo with respect to the triangulation of Q by hq = maxger, diam K. We always assume that
hqo < % On Tq, we define a finite element space V}, as

Vh:{neCO(ﬁ)‘blKGPl(K), K € Tq, 0‘89:0}.

In case that K is a simplex then Py (K) = Pi(K), the set of polynomials on the element K of
degree at most 1. If K is a cube then IP;(K) equals Q;(K), the set of polynomials on K of degree
at most 1 in each variable. The number of degrees of freedom in V}, is denoted by Ng. It holds
N = O(hg?).

Furthermore, let Zy = { I,;, } be a triangulation of the interval (0,Y") in the sense that [0,Y] =
U%Zl I, with I, = [ym—1,ym] and M € IN exactly specified below in the Sections Bl and B2
Moreover, let h,, = |I,,|. Next, we introduce a polynomial degree vector p = (p1,p2,...,Pm) €
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INM which will assign to each element I,, € Ty a maximal polynomial degree p,,. It will be
exactly specified in the Sections Bl and On Zy, we define the finite element space Vj; as

Vir = { &€ ) | ¢l € Py (Im), I €Ty, £(Y) =0},

where P, (I,) denotes the space of polynomials up to degree p,, on I,.

Now, the triangulations 7y of the cylinder Cy are constructed as tensor product triangula-
tions by means of To and Zy, ie., Toy = {T} with T' = K x I, for K € Tq and I, € Zy.
By means of the previous considerations, we define the finite element space Vj, s posed on the
tensor product mesh 7oy by

Vi = Vi, @ Vi = span{ v | v(z,y) =v(z)é(y), eV, E€ Vi } C ﬁi(Cy,ya).

Note, that each function v, € Vj, pr vanishes on the lateral boundary of Cy and on its top. As
a consequence, the extension by zero of vy to the semi-infinite cylinder C' belongs to }ofi(C, yY).
Without further mention, we consider this type of extension for each vy, € Vj, s whenever needed.

With the just introduced notation, we define approximations to the solution u of (Z2) as
follows: Find uy € Vi, ar satisfying

g Y*Vuy - Vop d(z,y) = ds(f, tra vp)m-s),m:Q)  Y0h € Vi, (3.1)
Y

where we recall that « =1 — 2s and dy = 2¢ Fg(;)s). Note that trqup = up(-,0) will be used as

an approximation of u.
We distinguish two possible types of discretization in the artificial y direction, which will be
defined in the following two sections.

3.1. Graded meshes and h-FEM

In this section, let M € IN to be determined later. We set

1

m I

Ym = (M) Y for m=0,1,....,M and p=(1,1,...,1) e N¥,

where p € (0,1] represents the grading parameter in direction y. Hence, for p < 1 the triangu-

lation 7Tq y is anisotropic. Moreover, due to the choice of the polynomial degree vector p, the

discrete space V}, as consists of globally continuous and piecewise multilinear functions on Cy .
We start with a result regarding the diameter h,, of the elements I,,.

Lemma 3.1. It holds
p=1

— M 20 iyl L iyt _
hi =M +»Y and Ym "YEM ™ < hyy, < —y,,, "YHM form=23,..., M.
M M

Proof. The first equality is obvious due to the definition of y;. For the second, we observe that
there exists a m, € (m — 1, m) such that

1
1 1 11 i _11 N\ TH
hm:ym_ymflz(mi—(m—l)i)YM i:—mf YM llt:—<<m >IY) YyH ML
p pAN\ M
due to the mean value theorem. Since im <m —1 < m for m > 2, the result follows. O

2

Since we consider a discretization with linear polynomials in direction g, the number of degrees
of freedom Ny in V) is proportional to M, i.e., it holds Ny = O(M).
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3.2. Geometric meshes and hp-FEM

For the second possibility of discretization presented here, the mesh in direction y is chosen as
a geometric mesh. That is, for chosen o € (0,1) and M € IN to be determined later, the nodes

Yo, Y1, - - -, Yp are given by
Yo =0 and Ym =oM"MY  for m=1,2,..., M. (3.2)

Further, we define p = (p1, p2,...,pan) € NM to be a linear degree vector with slope 3 > 0. That
is, there exists a constant ¢ > 1 such that for all m = 1, 2,..., M the following relation is fulfilled:

1+5ln%§pm§1+cﬁln};—?. (3.3)
We start with collecting some basic results for the discretization considered in this subsection.
Lemma 3.2. For a geometric mesh given by B.2), there holds for hy, = ||
hy =y =My,
hn=1=0)ym= (0" =Dym1  form=2,3,..., M,
Bm = (1 — 0)o! ™Ry form=23,... M.

Proof. The first equation of the assertion is obvious due to the definition of the geometric mesh.
For m =2,3,..., M, we obtain

M=m@ — o)y = (1—
hy, = YUm — Ym—1 = (O_M—m _ O_M—m+1)Y _ {U ( 0') ( U)yma

M=+ (=L —1)Y = (67! = Dypm1.
As a consequence, we get

by oM—™(1 - 0)Y

_ _ 1-m
h_l_ Ty =(1-o0)o . O

Lemma 3.3. For a geometric mesh given by B.2) and a linear degree vector p € N in the
sense of [B3), it holds p1 = 1 and there is a constant ¢ > 1 such that

1+8(In(l—0)+(1—=m)lno) <py, <14 Pe(In(l—0)+ (1 —m)lno)
forallm=2,3,..., M.

Proof. Since ln% = 0, there obviously holds p; = 1. According to Lemma [B2] we get for
m=23...,M—1

h
In 27 —n ((1 - g)gl—m) =In(1-0)+ (1—m)lno,

h1
which shows the second assertion. U
Lemma 3.4. Let Iy be a geometric triangulation of (0,Y) given by B.2) and let p € NM be a

linear degree vector as defined in [B3). Then, for the number of degrees of freedom Ny in Vi,
it holds

M
Ny =1+ > pm=O(M?).

m=1
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Proof. On each interval I,,, we locally have p,, + 1 degrees of freedom. Moreover, two neighboring
intervals always share one degree of freedom. Thus, we have

M M
Ny =3+ 1) = (M=1)=1+ > pm,
m=1 =1
which proves the assertion having in mind Lemma 331 O

4. Error Estimates

We start with providing a general error estimate between the solutions u € ﬁi(C, y*) of (22
and up, € Vi of ([31) in weighted norms.

Lemma 4.1. Let u € ﬁi(C, y®) be the solution of (Z2) and uy € Vi, be the solution of (BI).
Then, it holds

ly=V (u—un)llz2e) < fen‘}n ly2 V (u = va) |l L2cy) + 192 Vull2onoy)-

Proof. Testing ([2.2) with v, € Vj, ps and then subtracting (BI]) from this equation yields
/ YOV (u — up) - Vop d(z,y) = 0. (4.1)
Cy
Based on this, we deduce for all vy, € Vj, s
3Vl wmltac = [ vV —w) V- v)dy) + [ V) Vud(,y)

C\Cy
< y2V(u—un)llz2c) vz Viu = vp)llrzcy) + 1y2 Vall zovoy) -

Dividing by [|y2 V(u — up) | z2(cy ends the proof. O

Whereas the last term in the estimate of LemmalZT]can be treated by means of Proposition[2.9],
we have to estimate the first term. To this end, we introduce the following approximation
operators separately for the z and y variables:

By 7,: L?(Q) — Vi, we denote the L? projection with respect to the x variable on €. For the
interpolation with respect to the y direction, we consider each interval I,, separately. For fixed
me {1,2,...,M}, let ¢ € N and y,—1 = 20,21,...,%q = Ym be the Gauss-Lobatto points in
I, and let [; , denote the corresponding Lagrange polynomials of order g. Then, we define the
Gauss-Lobatto interpolant i,: C°(I;,) — Py(Iy) by

(4 (w) = 3 i (v)

Further, we define an interpolant i, which admits (7,¢)(ym) = 0 given by
q—1

(%qf)(y) = Zg(xi)lﬁq(y)-

=0

10
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Based on this, we define the interpolation i#: C°((0,Y]) — Vi for a linear degree vector p =
(p17p27 tee 7pM) S INM by

g(yl) on Il’
(ZZ£)|Im = Z‘pm{|[m on Im7 m = 2737 s 7M - 1, (42)

ing‘IM on Iy.

In particular, it holds that if¢ is constant on 1 and (if¢)(Y") = 0. For any function v € H(C,y),
we set

(m0) (-, y) = mpo(-,y)  for a.a. y € (0,00).

Moreover, for the solution u of (2:2)), the application of il is defined as
[o.¢]
(Pu)(z,-) = Z weok()ihs k(1) for aa. x € Q, (4.3)
k=1

which is well-defined because v, € C O(R,). Thus, by construction, we have Trihu € Vi v
For the first term on the right-hand side of the estimate in Lemma 1], we have the following
result.

Lemma 4.2. Let u € I-Qli(C, y®) be the solution of ([22)). Then, it holds
min ly%V(u—v)ll2(cy) < ly? V(u = mou)ll2(cy) + elly? V(u = i) 2oy

V€V, M

Proof. First, we set vy, = mpihu € Vi ar. Then, by introducing mu as an intermediate function,
we deduce

min [ly=V(u—op)llr2(ey) < 157 V(= mu)ll2 ey + 1y Vs (u — i)l 2oy )-

v €Vi, M

According to the definition of m;, we have d,m;(u — i#u) = 7,0y (u — i)u) almost everywhere in

Cy. As a consequence, we deduce by well known stability estimates for the L? projection m,
a . Y . 2 : 2
I8 Vs (= u)lz2cyy = [ o™ [ {IVamalu = ) + 10,ma(u = )]} do dy

Y

— /0 Y /Q{|Vm7rm(u - iZu)|2 + | T 0y (u — z’y’u)|2} dz dy

Y

<c [y [ {190 ) + 10, (u - )} da dy,

0 Q

which shows the assertion. O

Lemma 4.3. For f € H=5(Q), let u € H}(C,y®) be the solution of (Z2). Then, it holds

ly? ¥ (u = mou) | 2y ) < challfllm-» (o).

11
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Proof. Analogously to the foregoing proof, by classical estimates for the L? projection 7, we
obtain

%
39 0= me) oy = [ 0 [ {1900 = m) P +10,(u = m) P} dody
Y
:/ ya/ﬂ{lvm(u—muw—%layu—ﬂx(ayu)P}dxdy
0

Y
< ché/ yo‘/ {IV2u> + |V,0,ul?} dx dy
0 Q
= ch{lly> Viulliz(cy) + 1920y Vaul T2 oy }-
Then, Proposition yields the assertion. O

Next, we are concerned with estimates for the second term in Lemma To this end, we
consider the interpolation error on each subinterval I,,, € Zy. Employing the decomposition from
Proposition and the definition of the eigenfunctions ¢y, we obtain

198 V= 350) Beer,y = [ o7 [ (Valu = )+ 10, (u — i)} da dy

= /1 Y > i {0 (Vs k — Bhs k) + (Wsk — i0s 1))} dy
mo k=

= Y W {elly® ek — Bbas) T2, + 19% @sk — k) T2, -
=1

- (4.4)
By using this identity in the following two subsections, we will estimate the terms

ly2V (u— igu)\|%2(ﬂxlm), i=1,2,....M

for the two types of triangulations Zy and polynomial spaces Vs introduced in the Section 3.1
and

Thereby, in Section ], we will mainly recover the results of [27]. The reason for doing this is
twofold. First, we are able to slightly improve the grading condition from p < %s (in our notation)
of [27), Section 5.2] to u < s. However, the main reason to analyze the h-FEM on graded meshes
before developing the analysis for the considered hp-method is, that the techniques we use are
almost identical for both cases, but the details are simpler for h-FEM, of course.

Later, in Section 2] we will analyze the hp-method introduced in Section B.2] which yields
a slightly improved rate of convergence (hq vs. hq|lnhq|®) compared to h-FEM but a drastic
reduction of the computational complexity in terms of degrees of freedom from O(./\/}IZH/ d) to
O(NQ(IHNQ)Q).

Note that in the following estimates, we will track the dependence on Y explicitly since as a
last step Y will be chosen h-dependent.

4.1. Graded meshes and h-FEM

As announced, we are concerned with estimates for (44]) for the discretization defined in Sec-
tion[B.l For simplicity, in this subsection, we will write i,u for i u, since we have p = (1,1,...,1)
here.

12
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Lemma 4.4 (Estimate on I1). For f € L3(Q), let u € HL(C,y®) be the solution of 2Z2) and let
M > h@l. Then, it holds

2s
%V (u — iyu) 7201,y < chiy Y720

Proof. First, we observe that the interpolant iy, ;, is constant on I;. By its definition (2, it
holds (%ﬂﬁs,k)}h = 1) 1 (y1). Integration by parts and noting that yo‘*‘l(q/)&k — q,z)syk(yl))z gl =0
yields

9% W = Yooz = [ 9@ = vunlon)) dy
I

2

T ol /11 Y sk — Vs (1)) dy

2 o a
< P lly2 (i — ws’k(yl))”LQ(Il)Hy2+1¢;,kHL2(11)'
Then, dividing by [|y2 (s r — iytsr)|| 12 (1, implies
% (s = )2y < ellyd* 0 lleaan

with ¢ = %_8 By means of Corollary 2.7 with n = 1 and » = 1, we obtain

8 Wk — o)z < ellv3 0 ullizeny < AL 2y Hlzqr
Hence, we get by Lemma [B.T] together with the assumption on M that
25
Melly? (o = o (i) T2 S AT < ARG VP
In a similar fashion, we obtain by Corollary 2.7 with » = 1 and r = 0 the relation

a a _1 28
Y% ek = Do r (W) 1320y = Ikl < XN T2 320,y < AR < eXfth Y2,

where we again used Lemma 31 in the last step.
The previous estimates together with (4.4]) and Proposition 2] yield

2s 0 2s 00
ly= ¥V (u — iyu)|Taanr,) < chy Y DAL = chg Y2 3 3,
k=1 k=1
which implies the assertion. O
Lemma 4.5 (Estimates on I, for 2 < m < M —1). For § € L2(Q), let u € H}(C,y®) be the
solution of [22). Moreover, let M > h§1 and p # s. Then, it holds

o . S— 2(s—
Iy V (u— iyu)|2a0ur,y < chBY {5260 — 2051250

13
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1
Proof. For m > 2, we have that y,,—1 < ¥m < 2¢yp—1. It holds iyt = 919, such that we
conclude with standard estimates for the linear Lagrange interpolant i1, Lemma Bl and the
assumption on M that

Iy s = ivve)llFaz,) < cvmllbs = irdonlFa,) < cvmhmlvirlliz,,)
< ey R P Wl e,y < hY ly> Y e,

By using Corollary 2.7 with n = 1 and r = 1, this implies
] . -1 — 2
Melly? Wk — i1ts ) 1201,y < ACRGY Hly* "2 (172 (r,.y = ARRY * {yt® ) — M

Similarly, using Corollary 27 with n = 1 and r = 0, we obtain for the term involving the
derivative

a . Q] -1
1y (Vs ke — i10s0) 1721,y < PQY 2 Ny 210 L1221,y < APTREY *(ly* 72 |32,
- R — 2

The previous estimates in combination with (£4]) yield
a N 2 v 2, 2(s— 2 2
ly? V (u = iyu)|F2 0,y < hQY*{yn* " — M} Z AU
Finally, applying Proposition 211 we get

Hy%V(u—iyu)Hiz(Qxlm) < chQYH{y2ls—h) — ym 1 }ka,

which states the assertion. O

Lemma 4.6 (Estimate on Ip;). For §f € L3(Q), let u € HL(C,y*) be the solution of (Z2).
Moreover, let 2h51 >M > h&l, uw#s, and

|
Y > max(?)’ nhﬂ’,l).

vor
Then, it holds

ly% Y (u = iyu) [}y < chd (Y#{Y2E = 30 1) |32

Proof. We recall that Y = yy and iy, = %17/13,19 on Ip;. We introduce the Lagrange interpola-
tion 71 on Ip; as an intermediate function such that
ly= (Vsk = s i)l 2ty < N2 (Wsp = 1%s o)l L2 (1) + 192 (s — 0% i) L2(14)
= Y2 (s k — i1¥s k)l 2(10p) + Vs WY 2 Il 221,
< . atl
<y (Wsk — i1¥s k)2 (ryy) + Y 2 YY),
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Y—Ym—1
har

where we used that [|l11]|pe(r,,) = |
Lemma 3], we deduce

a . s s— 2(s—
MellyE (o — i1 i) 21,y < CARRRY 2 {Y 207 — 2070y,

zoo(rp;) = 1 in the last step. As in the proof of

Since Y > 1 by assumption, we obtain using Corollary [Z.8 with r; = O‘TH = 1 — s together with
the monotonicity of e VY

a+1 s=1 m _1 \/H
Y 2 (V) <ch? e 2 Y < C)‘Z 2e_TY,

where we notice that (A;)xew is a non-decreasing sequence. Combining the previous results yields

Melly? Bk — it ) [Fa(ryy < A (RRY Y270 — 2P} 4 VWY 0 (45)

Similarly, we deduce

o

Hy%(ws,k - glws,k),”LQ(IM) < Hy%(ws,k - i1¢8,k),|’L2(1N1) + |’y5(i1ws,k - Ele,k)IHLQ(IM)
= Hy%(ws,k - Z.lqzz)s,k),||[/2(11v1) + ¢s,k(y)”y%l,1,1”L2(1M)

1

< Hy%(ws,k - Z.ITJZ)S,]C)IHLQ(I]VI) + Ch&iygws,k(y)a

where we used that ||l 1 || zec(r,,) = ||hJT41||Loo(I]M) = h}; in the last step. The first term can again
be estimated as in the proof Lemma such that

a . s s— 2(s—
1y (e — i) |22r,) < APRRY 2y 2o g7y,

8]

Employing Corollary 2.8 with r; = § = % — s together with the monotonicity of e VY yields
forY >1

1 s

1, ey 1 N
hfY Bihg o (V) < chyfA2 Te ™2 Y < chy2Aje "z Y,

where we used once again that the sequence (A;)ren is non-decreasing. Due to the previous
results, we arrive at

o ~ s Ss— 2(s— _ _
1y (Ysk — 19s0) 1721,y < X (h?lYm‘{Y?( R R N v my) . (46
By combining (£4]), (£5) and (6], we obtain

ly8 V(u = i) 32y, < € (RRY Y27 = 3070 4 (14 At bRV 37 AP
k=1

= ¢ (R{Y#{Y2e= — i) 4 (14 byt e VM) ),

where we used Y72, A\Zui = Y72, f2 (see Proposition 1)) and the definition of HfH%Q(Q). Ac-
cording to Lemma [31] there holds hX/[l < cYHlY—#M = cY I M. Since

3|In hg|

Y >
IRVAN)

and M < 2h§1

by assumption, we obtain
{1+ hy} e VMY < B+ chd|inhq| ™t < chd,
which ends the proof. O

15
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Corollary 4.7. Forf € L*(Q), let u € HL(C,y®) be the solution of Z2). Moreover, let 2hqt

M Zhﬁl, w<s, and
Inh Inh
2max<3|n Q|,1> 2Y2max<3|n Q|,1).
VA1 VA1

Then, it holds
ly2V(u—iyu)lr2(cy) < challnhal?[[fll L2 (o)
Proof. By the Lemmas [£.4] L.5] and [4.6] we obtain

ly ¥ (u—iyu)lia ey = ZHyV — iyu)| 72 (x1,0)

s M
< <Ch§’; Y2 4 ChéYQM Z {ygn(s—u yfn(s 1# } + ch%) ||ﬂ|%2(ﬂ)

m=2

< ehy (Y2 = Y2y 4 1) ([ ) < chilinhal® [F132(0),
where we have used p < s and the upper bound on Y. O

Now, we are able to state the main result for this subsection analyzing the h-FEM on graded
meshes.

Theorem 4.8. For § € H'=%(Q), let u € H*(Q) and u € ﬁi(C’, y®) be the solutions of (L)
and (Z2)), respectively, and let uy, € Vi, a1 be the solution of [B1]). Moreover, let 2h§1 >M > h@l,

w<s, and
Inh Inh
2max<3|n Q|,1> 2Y2max<3|n Q|,1).
V1 v

Then, it holds

Ju — trg unllpe o) < ely® V(- up)llizio) < challn gl [l —+)-

Proof. The first inequality of the assertion is due to Propositions 23] and 2.4l Using the Lem-
mas [T and E2], we get

ly2V(u —un)ll2c) < ly2V(u — 1wl r2cy) + 1y2 V(u—iyu)ll 2oy + 192 Vul 2ieney)-
The three terms on the right-hand side are estimated in Lemma [4.3] Corollary 4.7, and Proposi-
tion 29l Hence, we get
_V
ly% V (u = up)ll 20y < challfllar-s (@) + challn hal*[[f L2y + ce 2 [flla-s(@)-

NS 3
Then, the lower bound on Y yields e YT Y < ché < chgq, which implies the assertion. U

Theorem 4.9. The total number degrees of freedom Nqy in Vi ar to achieve the order of con-
vergence given in Theorem [{.8 behaves like

Nay = O,

where d denotes the dimension of €.

Proof. For the number of degrees of freedom Nq y of the discretization considered in this section,

it holds Ny = NoNy = NoM. Then, the assertion follows from M = O(hg') = (/\/1/‘1)_ O

16
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4.2. Geometric meshes and hp-FEM

In this section, we derive discretization error estimates for the hp-method described in Section B.2],
which results in a slightly improved rate of convergence of hg compared to the previous subsection.
However, we will have a drastically reduced computational complexity in terms of the number of
degrees of freedom. To this end, we do neither fix the number of elements M in direction y nor
the slope 8 of the linear degree vector p yet. These will be set below. As before, we start with
estimates for ||y2 V (u — iZu)H%Q(QX[m) based on (£4]).

Lemma 4.10 (Estimate on I1). For f € L?(QQ), let u € I-Qli(C, y®) be the solution of (Z2) and

let

M (1+¢)|lnhq|
- s|lno|

for some € > 0. Then, it holds
ly2 V (u = du) | Z2anr,) < G Y (Ifl122 -

Proof. Notice that sk = Y k(1) on the first interval I; as in the previous section. Thus, as
in the proof of Lemma 4] but using

1+e
S

h =MV <chy YV
from Lemma and the assumption on M, we get
Ml (o — o) By < AT < ARG,
% (e — o)) By < AR < ARGV,
Hence, we obtain
o
2 . 2 242612 25, 2
ly2V(u— ZZU)HLQ(QXH) < Chﬂ+ Y Z A -

k=1
As in the proof of Lemma [4.4] this yields the assertion. O

In order to derive estimates on I, for 2 < m < M — 1, we recall the following result which is
a direct consequence of [24, Lemma 3.2.6].

Proposition 4.11. Let w be analytic on I= (0,1) and satisfy for some ¢y, 0 > 0 the estimate
[0 e iy < w8l ¥n € N
Then, there are constants ¢,b > 0 depending only on § such that the Gauss-Lobatto interpolant
iqw of degree ¢ € IN on I satisfies
. . —b
[|w — quHLoo(f) + [[(w — qu)/HLoo(f) < cepe

Lemma 4.12 (Estimates on I,,, for 2 < m < M —1). For § € L*(Q), let u € H}(C,y*) be the
solution of [Z2). Moreover, let p € NM be a linear degree vector as in (B.3) with some 3 > 0

and let
(14 ¢)|ln hq|

~ min(s, fb)|In o]

for some € > 0, where b > 0 is a constant depending on o only. Then, it holds

ly%V (u = bu)llF2xr, < b Yl 720)-

17
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Proof. For m > 2 it holds ym—1 < Ym < 0 ym_1. By transforming to the reference element
I'=(0,1), we obtain for (§¢s k)|, = 1ip,Ysk|, that
a . e 1 A N a 1 A N
[y (¢s,k - mews,k)HL?(Im) < Cyni—lh%”bnw&k - me¢s,k||L2(f) < Cyﬁz—lh%”bnw&k - me¢s,k||Loo(f)-

By means of Corollary 27, applied with » = 1, and Lemma [32] we have

1S oo gy = Pl e (1,0) < X Iyl gl < Xy 2yl (8(o~! — 1)l

m—1

Moreover, due to well known series representations of Ky from [I, 9.6.2 and 9.6.10], we directly
conclude that v is analytic on I. Hence, Proposition EEIT] implies with § = 8(c—! — 1) that

”&s,k - %pml/;s,kHLoo(f) S C)\S 2y72ns 116_1)10m

Then, we get by Lemma

111 1
1y Wk = ipm i) L2(1) S CYm by Ze”Pm < chij Ay 2e P,

Analogously, we obtain

192 Wt = ipm o) 201y < 0 slim? Bk = pm o)l
< ey b Bk = i Do) | e -
By means of Corollary 2.7] with » = 0 and Lemma [B.2] we have
1S e iy = Pl oo 1,) < NI g2 18™ ! < eXfyis 4 (8(0™" = 1),
Consequently, Proposition EIT] yields with § = 8(¢~! — 1) that

H(zﬁs,k - %pmzzs,k)I”Loo(f) < C)‘Zygrf 1€ bpm.

This implies
2 . / SJF% *% s _—bpm s18 _—bpm
ly2 (¢s,k — p Vs k) HL2(Im) < Y hm® Aje < cAphpe .
Collecting the previous results yields

Melly® (st = iy o) 21y + 195 B = ) a1y < T2

Relation (B3) implies
e*?bpm S Ch%ﬁbh%25b

Thus, we deduce

Melly® (s — ipm Vs i) T2 (1) + ly® (s, — ipm s k) 721,y < AP RI, (4.7)

Let us now distinguish two cases:

18
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e s < Bb: Since hy, > hi, we then obtain

@ . a . 2(s—pb b
Nelly® (Ve = ip s [T, + 185 (W = i os) [z, < NPRTTRE = enpone
14e
As before, the relation M > % together with Lemma implies hy < chy® Y.
Hence, we get
Mlly= sk = i Vs )21,y + 192 W = G ¥s,) 721,y S ARTRGY ™
e s > Bb: With h,, <Y, we get from (LT]) that
@ . a . — 2p8b

Melly® Wi = ipm s )20y + 1UF sk = ipnts i) F2(r,,) < AEY2EPORTP,

Similarly as before, the relation M > % together with Lemma implies h; <
1+e

chg’ Y. Thus, we get

)‘k||?/%(¢s7k - ipm¢57k)‘|%2(lm) + ||?/%(7/)s,k - ipm¢s7k)/‘|%2(lm) < CAish?)—ﬂey%-

The previous results in combination with (£4]) imply

o
I8 (u— ) e, < chB Y>3 A,
k=1

Finally, applying Proposition 2] yields the assertion. O

Lemma 4.13 (Estimate on Iys). For f € L*(Q), let u € ﬁi(C, y®) be the solution of (2Z2).
Moreover, let p € INM be a linear degree vector as in B3) with some > 0 and let

(1 +¢)|ln hq| M (1 + ¢)|ln hq| wnd V> max<2|ln ha| ’ 1)
min(s, 8b)|In o min(s, 8b)|In o] V1

for some € > 0, where b > 0 is a constant depending on o only. Then, it holds

9% 9 (u = )| Zary) < bV + W) (11720

Proof. We proceed as in the proof of Lemma and recall that Y = yyr = o 'ya—1 and
hayr = (1—0)Y = (67! = 1)ypr—1. Moreover, according to [I7], the Lagrange basis functions I;
of order ¢ € IN on Ip; have the property

|’li7q”Loo(11w) <1 fori=0,1,...,q. (4.8)
As a consequence, we obtain by means of an inverse inequality (see, e.g., [24, Lemma 3.2.2])
2 2
15 gllzoe (rary < 207 Wligllzoe(y) < 207 (4.9)

Noting that s, = gpMT,Z)&k on Ips, we introduce the Gauss-Lobatto interpolant iy,,1s x on Iny
as an intermediate function such that

‘|y§(w8,k - EPMT/)S,/’C)HLQ(IM) < Hyg(ws,k - Z'vaﬂ/)s‘,k)||L2(IM) + ‘|y§(ip1v1¢s7k - gqub&k)HL?(lM)
= Hy5(¢8,k‘ - ipM¢S,k)|’L2(IA1) + wS,k(Y)|’y§lpA17pMHLQ(IM)
a . atl
<y2 (Wsk = ipp Vs i)z +Y 2 ¥si(Y),

19
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where we used (48 in the last step. As in the proof of Lemma T2l we deduce for M >

(14¢)|In hq|
min(s,8b)|Ino| that

Melly® sk = ioa o) T2(1,) < ARGV

Since Y > 1 by assumption, we obtain using Corollary [Z8 with 7 = ¢t =1 — s together with

2
the monotonicity of e~V Ay

atl s=1 Dy -1
Y 2 1/137k(Y)§c)\k2 e 2 ch)\k 2772 Y,

where we notice that (A;)xew is a non-decreasing sequence. Combining the previous results yields
Melly® Bk = Tpa o)y < A (REFFY2 4+ eV, (4.10)
Similarly, we deduce by means of (£9)
”yi(’[/}&k - %PMwS,k),HL%IM) S HyE (1/}37]? - Z‘prsyk)IHLP(IM) + ”yE(ZpM,l/}SJC - ‘erMwS,k)/”[?(IM)
= Hyi (¢57k‘ - ipwwa,k),||L2(IM) + ¢S,k‘(y)||y5l;]w7pM||L2(11VI)
g . _9y,ofl
< Hy2 (¢s,k - ZpMTzz)s,k),HLQ(IM) + 2p?\/1Y 2y ™2 +2¢s,k(y)'

Using M > %, the first term can again be estimated as in the proof Lemma .12] such
that

1y (s = iy Vs ) 21,y < ARGV

Employing Corollary 2.8 with r; = O‘TH + 2 = 3 — s together with the monotonicity of e~ VY
yields for Y > 1

atl s=3 /A vZs)
Y +2¢s,k(Y) SC)\k2 e 2 Y Sc)\Ze 2 Y7

where we used once again that the sequence (\;)ren is non-decreasing. Due to the previous
results, we arrive at

Hy%(¢57k - gpM¢s7/€)/‘|i2(IM) < C)‘zs (h?Z+2EY2S +p%4Yi4eimY) ' (411)

By combining (44]), (£10) and (4.I1]), we obtain as in the proof of Lemma

o
9% 9 (0= ) [Fa(ry < € (RG2Y™ + {1+ e M) 30N
k=1

= e (MY + {14 phY e YY) [l (o)

According to Lemma B3] there holds pys < ¢M. Since

Y > 2|In hq| and M < — 2|In hq|
VAL min(s, 5b)|lno|

by assumption, we obtain
{1+ pd, Y e VMY < B2 + chA M |In hq|™* < ch,

which ends the proof. O
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Corollary 4.14. Forf € L*(Q), letu € H}(C,y®) be the solution of (Z2). Moreover, let p € NM
be a linear degree vector as in (3.3) with some > 0 and let

(1 + ¢)|ln hq| M (1 + ¢)|ln hg and 2max<2|ln hQ|’1> Sy > max<2|lnhg|,1>
min(s, 8b)|In | min(s, 4b)|ln o V1 VA1

for some € > 0, where b > 0 is a constant depending on o only. Then, it holds

ly%V(u = ifu)llzoy) < challfllz -

Proof. By the Lemmas [4.10] [£.12] and [£.13] we obtain

M
I3V (= ) oy = D I3 V= i) Faqper, < (b Y2 + K5 120
m=1

< c(hg [ ha* ™ + 1d) [flZ2) < chdllfl72 (),

where we have used the upper bounds on M and Y and the boundedness of hZ|In hq|?**! for
e > 0. O

Now, we are able to state the main result for this subsection analyzing the hp-FEM on geometric
meshes.

Theorem 4.15. For § € H'"5(Q), let u € H5(Q) and v € HL(C,y*) be the solutions of (LI
and Z2), respectively, and let u, € Vi, be the solution of BI). Moreover, let p € NM be a
linear degree vector as in [B.3) with some 8> 0 and let

(1 + €)|In hq| S M > (1 + ¢)|In hq| nd 2max<2|ln hQ|’1> Sy s max<2|lnhg|,1>
min(s, 3b)|In o] min(s, 30)|In o] V1 VA1

for some € > 0, where b > 0 is a constant depending on o only. Then, it holds

[u = tra unllps@) < clly? V(w— )2y < challfllm-sq)-
Proof. The first inequality of the assertion is due to Propositions 2.3 and 2.4 Using Lemmas [4.1]
and [£2], we get
%V (u—un)ll2(c) < 12 V(= 7wl 2oy ) + 192 V(= iyu) | 2 ey + 192 Vel 2ieney)-

The three terms on the right-hand side are estimated in Lemma [43] Corollary A.T4], and Propo-
sition 2.9 Hence, we get

Vi

Iy V(u—up)l 2oy < challflm-s @) + challfllz@) +ce "2 ¥ [Ifllg-s(q)-
. Yy S .
Then, the lower bound on Y yields e” "2 * < chg, which implies the assertion. U

Theorem 4.16. The total number degrees of freedom Nqy in Vi ar to achieve the order of
convergence given in Theorem [{.1)] behaves like

NQ7Y = O(NQ(IHNQ)2).

Proof. As a direct consequence of Lemma [3.4], we obtain that the number of degrees of freedom
Nay of the discretization considered in this section fulfills Ny = NoNy = O(NqM?). Then,
the assertion follows from M = O(|ln hg|) = O(In Ng). O
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5. Numerical Experiments

5.1. Implementation

For the discretization with respect to y in h-FEM and hp-FEM, we use hierarchical Lobatto
polynomials (see, e.g., [29]) as local shape functions on I = (0,1) which then are transformed
onto each interval I,,. Without the weight, i.e., for s = %, this would result in a very sparse
structure of the local stiffness matrix, since those shape functions are orthogonal. For s # % the
latter does not hold; nevertheless the global matrix is of course still sparse.

Let n; for ¢ = 1,2,...,Ng be the ansatz functions for the discretization of Q and 7; for
j =1,2,..., Ny ansatz functions for the discretization of (0,Y). On the cylinder Cy we then
use ansatz functions of the form ¢; j(x,y) = n;(z)7;(y) with i = 1,2,... ,Ng and j =1,..., Ny.

Due to this special structure, the system matrix S € RNevy*Nay for solving BJ) can be
expressed by means of the Kronecker product as

G — pmass ® Astiff+ Bstiﬁ® Amass

Here, A € RNV2*Me denotes matrices arising from discretization of Q and B € RV *M denotes
matrices arising from discretization of (0,Y") given as

AGESS = / ni(x)nk(z) dz, Af-’,?ﬁ = / Vni(x)Vng(x) de, i,k=1,2,...,Ng,
Q Q

Y ) Y
B = /0 yr)nly)dy, BT = /O W) dy,  Gl=1,2... Ny,

We observe that one can assemble the matrices A and B completely independent from each other.
This is advantageous since the weight y® only affects the B matrices, while the A matrices are
standard FEM matrices, which can be computed by any FEM software.

Using the special structure of S, one can implement a memory efficient solvers for the algebraic
systems without ever fully assembling S. This will be the topic of a forthcoming paper.

5.2. Numerical Results

We take the following configuration from [27, Section 6.1]. For Q = (0,1)? C R? the eigenfunc-
tions of the Dirichlet-Laplacian are known to be ¢y, () = sin(knz ) sin(lmzs) with corresponding
eigenvalues Ay, = m2(k% +1?) for k,l = 1,2,.... For the right-hand side f(z) = Alp11(r) =
(272)% sin(7z1 ) sin(ra2), the solution u of (L) and u of (2:2)) are then given by

21—%7.‘.3
I'(s)

For the discretization by means of h-FEM (cf. the Section Bl and [£.1]), we choose the param-
eters

u(x) = sin(mzy) sin(rze) and u(z,y) = sin(may ) sin(ma)y* Ko (vV2my).

_ 3’1nhQ‘
=0.8s, M =[h5'], d Y= ( ,1),
i s [hg' ], an max Jon

whereas for the discretization by means of hp-FEM (cf. the Section and [£.2)), we choose the
following parameters:

1.75(In &
8=07, 0=0125, M= {MW

1
and Y:max(?)‘n}m’ 1).
sllno|

Ver
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Figure 1: ||y2V(u — up)||r2(c) for s = 0.2 (left) and s = 0.8 (right) over hg.

The orders of convergence stated by the TheoremsH.8 and LT5]in terms of hq are confirmed by the
results of the numerical computations given in Figure[ll Note, that the error [ly2>V(u—up)||z2(c
is evaluated by means of the identity

Hy%v(u — uh)”%g(c) =ds /Q(ftrgu — ftrouy)dz,

which holds due to the Galerkin orthogonality (4.1]).

In Figure 2 we depict the errors for both types of discretizations over the total numbers of
degrees of freedom Nq y. Thereby, the slower growth of Nqy for the hp-discretization given by
Theorem in comparison to Theorem clearly leads to a drastic reduction of the number
of degrees of freedom compared to A-FEM on a graded mesh. For instance the number of

degrees of freedom to achieve an error of less than 9 - 1073 in the case s = 0.8 reduces from
Ngy = 1072692225 for h-FEM to Ngy = 9661477 for hp-FEM, which is a factor of about 111.

A. Estimates for v, and its derivatives

We begin with a representation of the derivatives of the expression z°Kg(z), where K, are the
modified Bessel functions of second kind. It which will be used in the sequel to derive estimates
for the derivatives of ;.

Lemma A.1. The derivatives of z2°Ks(z) of order n € Ny can be calculated as

n

(2"Ks(2)" = 37 ap 2" Ky oy (2), (A1)

m=0
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Figure 2: ||y2V(u — up)||r2(c) for s = 0.2 (left) and s = 0.8 (right) over the total number of
degrees of freedom Nq y .

where the coefficients a}, are given by

ag = (=1)", (A.2)
n nam 1 n! n
ay, =0 for {gJ <m <n. (A.4)

Proof. We prove this assertion by induction. To this end, we first collect some basic results for
the modified Bessel function of second kind. In [I, 9.6.28], we find for all v € R

1d

. dz(z”Ky(z)) = 21K, 1(2).

As a consequence, there holds
(2K (2)) = —2"K, 1(2). (A.5)

Using the latter result, we get the following formula for m, [l € INg:

(Zsfm sfl(z))/ — (Zl7m2’87le,l(Z))/
= 2T K () + (L= m) T TR (2)
=—2""K_qy1)(2) + (1 - m)25 UK (2).

By means of this, we obtain for m,n € Ny with m <n by settingl=n—m >0
(Zs*m s—(n—m) (Z))I = _Z87mst(n+lfm) (Z) + (’I’L - 2m)287m71st(nfm) (Z) (AG)

These elementary results build the basis for the induction: The hypothesis (A.J]) clearly holds
for n = 0.
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Assuming that (A.]) holds for some n € Ny, we deduce

n

(z"Ks(2) ") = 37 ap, (=" " Ky (2))-

m=0

Employing (A.6]), we continue with

(sts(z))(”H) = Z a”m(—zsmes,(nJrl,m)(z) + (n— 2m)zsfm71Ks,(n,m)(z))

m=0
n
=D a2 K (ny1-m)(2)
m=0
n+1
+ U1 (N —2(m = 1))2" " K (n41-m)(2)
m=1

m=1
It remains to show that
ag“ = —af, a:j;rl =—ap +ap_1(n—2(m—1)) for 1 <m <n, aﬁﬁ = —naj.

The first and third equation are obvious due to (A.2)) and (A.4). Thus, we only elaborate on the
second. We distinguish three cases for 1 < m < n:

e m > || 4 2: Again due to (&), we have al, = a?,_; = 0, since m,m — 1 > |%].
Hence, it holds
—a 4+ a” _(n—2(m—1))=0=a""

e m = {"T‘HJ + 1: Here, it holds m > L%J and we already know that a;, = 0. Moreover, in
case that n is even, we deduce m = 5 + 1 and

n—2(m—1):n—2(g+1—1):0.

If n is odd, we obtain ay,_; =0 since m — 1 = "TH > |%]. As a consequence, we get

—a +a’_(n—2m—1))=0=a%"

em < "—HJ: Here, we again distinguish between n even and n odd. In the first case, we

have {#J = |5 |. Hence, it holds m — 1,m < [%| and by means of (A.3)), we get

_on _9 _ 1)) n _ (_1)n+m+1iL
a,, + (TL (m Ap—1 = om ml(n — Qm)l
1 n!
(= 2(m = D) ()" (m—1(n —2(m —1))!
= (—1)n+1+mL (n+ 1) =a™t,

2m ml(n+ 1 —2m)! "
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reuse the calculations from before. If m = |2 | = 2L we have a?, = 0 such that
—ap + (n=2(m = D)ap,_y =ap_ = (D" o555
2"z ("7)!
(~1)mHHEE . T (n Ll)! = aptt,
25 ("g)!
This ends the proof. O

We next analyze 1, defined in (Z3]) and its derivatives with respect to its boundedness prop-
erties.

Lemma A.2. For z > 0, it holds

0< %(Z) < ws(o) =1

Proof. Since zYK,(z) > 0 for all z > 0 and v > —1, see, e.g., [1, 9.6.1], and due to (A.H), the
function 1) is positive and monotone decreasing such that ¥s(z) < 14(0) for all z > 0.

In [T, 9.6.9] one can find for v > 0 the following behavior of the modified Bessel function of
the second kind for z — O:

'(v) _
KI/(Z) ~ 21711 v
As a consequence, we obtain by (Z3])
. . s .
ll_)r%ibs(z) = lll)%csz Ks(z) =1, (A.7)
which yields together with the foregoing observations the assertion. O

Lemma A.3. Let r € [0,1]. There exists a constant ¢ > 0 depending only on s, such that for
any z > 0 and n € N it holds
127 (2)] < e8"nl2? 7.

Proof. In order to deduce the bounds for the derivatives of 5, we continue with collecting some
auxiliary results. As before in the proof of Lemma [A.2] we have that 2"2” K, (z) is positive for
all z > 0 and v > —1. Let vy = min(v, %) From [25, Theorem 5], we obtain for z > 0 that
2Y0e* K, (z) is a decreasing function for all v > 0. To employ this, we consider the product

TR (2) = 2V e 2P K (2).

and note that

arg max 2" = v 41 — 1y and (/T <0 for z>v4r— 1.

z>0
Hence, 2”*"K,(z) admits its maximum in the interval [0, 4+ r — 1y]. Due to Lemma [A2] we
consequently get by (2.3])
v4+r—1)" v+r—19)"
gzpy(o) = g (A.8)

ZT’
K (2) = c—w,,(z) < . .
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Next, we are concerned with the bounds for the derivatives of ;. Employing Lemma [A.T] and
the relation K, (z) = K_,(z) for v € R, see [1, 9.6.6], we obtain by (2.3)

5] 3]
|22 (2)] = 2PN a2 T K e (2)] <Y cslap |2V K (2),
m=0

m=0

where the coefficients are given by Lemma [AJl Let v(m,n) = n —m — s. We observe that
v(m,n) > 0 since m < |§|. Consequently, (A.8) yields

15]
‘Zn—23+rwgn)(z)‘ < Z

m=0 Cu(m,n)

Cs

|am| (v (m, ) + 7 = vo(m, n))"

with vo(m,n) = min(v(m,n), 3). Since n —m > 1, it holds
(v(m,n)+r—ry(m,n))" < (n—m+r) <n—m+1. (A.9)

Further, using
r'i+1)
(I+5)tr
from [23, estimate (8)], which holds for all I € Ny and 0 < p < 1, we get by choosing l = n—m—1
and p=1—s

L{l+p) <

v n—m _
cs 2 L'(v(m,n)) _ 1 P () < 1 2" (n 72)
Cu(myn) 25T°(s) 45T(s) 45T(s) (n —m — 1+ 52)3 (A.10)
< MMy 1) = 2" (n —m — 1)
S S T) 1 =) (mn—m-1)!=c (n—m-—1)
with a constant ¢ depending only on s. Using (A.9) and (A.10]), we get
5]
|22y () < e 2" (n—m+ 1)a]|. (A.11)
m=0
Estimating each summand separately, yields by means of Lemma [A]]
2 (1 — 4+ D)l | = 27— Y e
m 2 ml(n — 2m)!
— |
— 972y 4 1) (n—m+ 1)
= 2772 (1, 4 1)n! nomtd
m+1
< 4™n!.
For the last step, notice that
— 1
272M(m +1) <1 and (n met ) <o,
m+1
Finally, (A1) and (A12) yield the assertion since [%| 41 < 2™ O
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Finally, we state a result about the exponential decay of s and its derivative.
Lemma A.4. The following assertions hold:

(a) Let sy = min(s,3). Moreover, let 2> a >0 and r > so — s. Then there exists a constant c
only depending on r and s such that

270 (2)] < ceF - ca%e K, (a).

(b) Let sj = min(1 —s, ). Moreover, let z > a >0 and r > s\, —s. Then there exists a constant
c only depending on r and s such that

|27 (2)| < ce™ T - csa®0e" Ky _s(a).

Proof. We start as in the proof of Lemma [A.3l According to |25, Theorem 5], we get for z > 0
that 2%0e®K(z) is a decreasing function. Consequently, having in mind the definition of 15 and
that 2V K, (z) > 0 for all z > 0 and v > —1, see the proof of Lemma [A.2] we obtain

|27 hs(2)| = 2" T3 750077 L 0 2%0e* Ky(2) < 2" T57%0e 7% . a0 e Ky (a).

This is already the desired result for r = sy — s noticing that e 3 <1=cforz>0. For

r > sy — S, we observe that

_ _ _ _z _
zr-‘,—s soe z:zr-l—s soe Ze

V1IN
V1IN

<ce

)

where we used that

=C.

+ —
ZrJrsstef%) _ (2(7’+5—80))T s—580

e

max(
2>0

Combining the previous results yields the first inequality of the assertion. Next, we deduce by

means of the definition of ¢ and (A.5)

er;(z) _ inJrstlCliszlszlis(Z) _ izr+2371¢178(2)
Cl—s Cl—s

such that the second inequality of the assertion follows from the first one noting that r+2s—1 >

sh—s+2s—1=min(l —s,3) — (1 — s) by the assumption on 7. O
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