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AN ITERATIVE WIENER–HOPF METHOD FOR TRIANGULAR

MATRIX FUNCTIONS WITH EXPONENTIAL FACTORS

ANASTASIA V. KISIL

Abstract. This paper introduces a new method for constructing approximate
solutions to a class of Wiener–Hopf equations. This is particularly useful since
exact solutions of this class of Wiener–Hopf equations, at the moment, cannot
be obtained. The proposed method could be considered as a generalisation of
the pole removal technique. The error in the approximation can be explicitly
estimated, and by a sufficient number of iterations could be made arbitrary
small. Typically only a few iterations are required for practical purposes. The
theory is illustrated by numerical examples that demonstrate the advantages of
the proposed procedure. This method was motivated and successfully applied
to problems in acoustics.

1. Introduction

Many boundary value problems in mathematical physics can be approached by
the Wiener–Hopf method. Originally the Wiener–Hopf technique was developed
for linear PDEs with semi-infinite boundary conditions like the Sommerfeld half-
plane problem. This was later extended to boundary conditions on multiple semi-
infinite lines [25]. Although, the reduction to the Wiener–Hopf equation is still
straightforward, finding a solution of the resulting equation became challenging [6,
9, 10, 12, 16, 32]. This is due to the fact that the Wiener–Hopf factorisation of a
matrix (rather than a scalar) function is now needed. Hence the ability to solve
such equations is crucial to extending the classical use of Wiener–Hopf techniques
to more realistic and complicated settings. Also, such types of matrix Wiener–Hopf
equations are associated with convolution-type operators on a finite interval [8, 14,
15] and arise in a number of applications [18,33]. The aim of this paper is to develop
an algorithmic iterative method of solution for some equations of this type.

More precisely, we construct an approximate solution of a Wiener–Hopf equation
with triangular matrix functions containing exponential factors. The aim is to find

functions Φ
(0)
− (α), Φ

(L)
− (α), Ψ

(0)
+ (α) and Ψ

(L)
+ (α) analytic in respective half-planes,

satisfying the following relationship

(1)

(

Φ
(0)
− (α)

Φ
(L)
− (α)

)

=

(

A(α) B(α)eiαL

C(α)e−iαL 0

)

(

Ψ
(0)
+ (α)

Ψ
(L)
+ (α)

)

+

(

f1(α)
f2(α)

)

,

on the strip a ≤ ℑ(α) ≤ b. The remaining functions A(α), B(α) and C(α) are
known and L is a positive constant. The conditions on the matrix functions are
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2 ANASTASIA V. KISIL

specified in Section 2. The existence of a such factorisation under certain assump-
tions was addressed in [26, p. 150] and [11].

Wiener–Hopf equations of the type (1) have been the topic of previous research,
for example, in the case of meromorphic matrix entries [4, 5] and in the frame-
work of almost periodic functions [20]. However, presently no complete solution
of (1) is known. Furthermore, the general question of constructive Wiener–Hopf
factorisation is widely open [25, 32].

In the literature, concerning applications of the Wiener–Hopf technique, one of
most widely used methods is the so-called “pole removal” or “singularities match-
ing” [31, § 4.4, 5.3] [13, § 4.4.2]. It has a severe limitation that certain functions
have to be rational or meromorphic. One way to extend the use of this method
is by employing a rational approximation [2, 22], which was successfully used in
[1,3,24,33]. However, even with this extension the class of functions, which can be
solved, is rather limited. In this paper we propose a different extension to the pole
removal technique for functions that have arbitrary singularities. This work was
motivated by certain problems in acoustics which are discussed below.

We note, that there is an additional difficulty in finding a factorisation of the
matrix in (1) because of the presence of analytic functions eiαL and e−iαL which
have exponential growth in one of the half-planes. The first step of the procedure
proposed here is a partial factorisation, that has at most polynomial growth in the
respective half-planes. The classes for which this is a complete factorisation are also
discussed. The next step is the Wiener–Hopf additive splitting of the remainder
term that hinders the application of Liouville’s theorem. The additive Wiener–Hopf
splitting is routine unlike the multiplicative one, which is also utilised in other novel
methods [27, 28]. After the application of the analytic continuation there are still
some unknowns in the formula, those are approximated by an iterative procedure.
The presence of the exponential terms speeds up convergence. At each step a scalar
Wiener–Hopf equation is solved. We will compare the proposed method to the pole
removal technique. It is shown that the iterations converge quickly to the exact
solution.

The procedure could be summarised as follows (see Section 3 for details):

(1) A partial factorisation with exponential factors in the desired half-planes.
(2) Additive splitting of some terms.
(3) Application of Liouville’s theorem.
(4) Iterative procedure to determine the remaining unknowns.

This procedure bypasses the need to construct a multiplicative matrix factorisation.
So in particular partial indices (which are know to be linked to stability [24, 26])
are not obtained. Instead the growth at infinity of certain terms play a role. In this
paper we will treat the base case with no growth at infinity and some other cases
will be treated in [21].

The structure of the paper is as follows. In Section 2 the required classes of func-
tions are introduced and their essential properties are listed. We also provide some
motivation behind those Wiener–Hopf systems. In Section 3 the proposed itera-
tive procedure is described in detail and its convergence is examined in Section 4.
Section 5 presents numerical results of two examples (graphically illustrated) to
compare the iterative procedure to the exact solution in a variety of cases. Lastly
we describe possible future work.



AN ITERATIVE WIENER–HOPF METHOD FOR TRIANGULAR MATRIX FUNCTIONS WITH EXPONENTIAL FACTORS3

2. Preliminaries

In order to formulate the problem (1) we have to specify the suitable class of
functions for the all terms in the equation. Those classes of functions are convenient
for formulating scalar Wiener–Hopf splittings which will form the foundation of the
proposed method. We will also need some properties of this class of function which
will ensure we stay the the desired class of functions after each iterations. We will
also briefly describe the motivation behind this method. Firstly, we will recall some
definitions.

2.1. Classes of functions {{[a, b]}}. The Hölder continuous functions on the com-
pactified real line are defined as functions F (x) for which there exist constants C
and λ such that for all real x1 and x2 we have

|F (x1)− F (x2)| ≤ C|x1 − x2|λ, for all x1, x2 ∈ R

and for all real x1 and x2 with modulus greater than one the following holds

|F (x1)− F (x2)| ≤ C

∣

∣

∣

∣

1

x1
− 1

x2

∣

∣

∣

∣

λ

,

which is a Hölder condition around infinity. In the following, the “real line” will
always mean the “compactified real line”.

A Hölder continuous function produces well-defined boundary values G±(t) =
limyց0 G(t±iy) of its Cauchy type integralG(t+iy) at every point t of the compact-
ified real line [29]. The class L2(R) is also very useful since the Fourier transform is
an isometry of L2(R) due to Plancherel’s theorem. Thus, the intersection [17, § 1.2]:

{{[0]}} = L2(R) ∩ Hölder,

turns out to be convenient for the Wiener–Hopf problems. The pre-image of {{[0]}}
under the Fourier transform is denoted {[0]}.

Given a function f ∈ {[0]} on the real line we can define the splitting

(2) f+(t) =

{

f(t) if t > 0,
0 if t < 0,

f−(t) =

{

0 if t > 0,
−f(t) if t < 0.

Using this splitting, we define the class {[0,∞]} to contain functions f+(t) and the
class {[−∞, 0]} to contain functions f−(t) for all f ∈ {[0]}.

In the rest of the paper we will need to refer to functions that are analytic on
strips or (shifted) half-planes. Following [17, § 13], we define f ∈ {[a]} if e−axf ∈ {[0]},
that is a shift in the Fourier space. Finally, f = f+ + f− ∈ {[a, b]} if f+ ∈ {[a]} and
f− ∈ {[b]}. From the definition of f+ and f− it is clear that also f+ ∈ {[a,∞]} and
f− ∈ {[−∞, b]}.

The Fourier transform of functions in the class {[a, b]} is denoted {{[a, b]}} (including
the case a = −∞ and/or b = ∞). The celebrated Paley–Wiener theorem states
that the following

F+(z) ∈ {{[a,∞]}} =⇒ F+(z) analytic in Imz > a,(3)

F−(z) ∈ {{[−∞, b]}} =⇒ F−(z) analytic in Imz < b,(4)

F (z) ∈ {{[a, b]}} =⇒ F (z) analytic in a < Im z < b.(5)

For the remainder of the paper we will assume that a < 0 and b > 0, i.e. the strip
encloses the real axis.
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Now we will recall the additive and multiplicative scalar splitting of functions
belonging to {{[a, b]}}. A convention will be used to distinguish the additive and the
multiplicative splitting by using the superscript and subscript notations: e.g F±

for additive and K± for multiplicative ones.

Theorem 2.1 (Additive splitting [17]). On the real line a function F (t) ∈ {[0]}
is given. There exist two functions F±(z) analytic in the upper and lower half-
planes with boundary functions on the real line belonging to the classes {{[0,∞]}} and
{{[−∞, 0]}}, satisfying:

F (t) = F+(t) + F−(t),

on the real line.

Next, the multiplicative splitting or factorisation problem is examined. The index
of a continuous non-zero function K(t) on the real line is the winding number of
the curve (Re K(t), ImK(t)), t ∈ R.

Theorem 2.2 (Multiplicative splitting [17]). Let a non-zero function K(t), such
that K(t) − 1 ∈ {[0]} and indK(t) = 0, be given. There exist two functions K±(z)
analytic in the upper and lower half-planes respectively with boundary functions
K±(t)−1 on the real line belonging to the classes {{[0,∞]}} and {{[−∞, 0]}}, satisfying:

K(t) = K+(t)K−(t),

on the real line.

Remark 2.3. Note, that if the original function in Theorem 2.1 or Theorem 2.2 is
from the class {[a]} then the components belong to the classes {{[a,∞]}} and {{[−∞, a]}}.

With those definitions we can specify the classes of functions in equation (1).
The given functions A(α)− 1, C(α)− 1, B(α)− 1 are required to be in {{[a, b]}} and
A(α), C(α), B(α) to have zero index. We also need that C(α) and B(α) have no
zeroes on the strip—this corresponds to the determinant of the original Wiener–
Hopf matrix (1) being non-zero. We will also require that A(α) has no zeroes on
the strip, this corresponds to the sub-problem of (1) (when L is very large) being
non-degenerate. The “forcing terms” f1(α) and f2(α) should be in {{[a, b]}}. We look

for Φ
(0)
− (α) and Φ

(L)
− (α) in {{[−∞, b]}} and Ψ

(0)
+ (α) and Ψ

(L)
+ (α) in {{[a,∞]}}.

2.2. Properties of functions in {{[a, b]}}. In this subsection we briefly describe
some of the properties of {{[a, b]}} which will ensure that the solution we seek is in
the desired class. We will need the fact that if G ∈ {{[a, b]}}, F ∈ {{[α, β]}} (a < b,
α < β) and H(z) = F (z)G(z) then

H(z) ∈ {{[max(a, α),min(b, β)]}},
i.e H(z) is analytic in the respective strip. This is a simple but still fundamental
property for the rest of the derivation. Note, that a similar statement does not hold
for the class of L2(R).

We will also use that if G − 1 ∈ {{[a, b]}}, indG(t) = 0 and non-zero on the strip
a ≤ ℑ(α) ≤ b then G−1 − 1 ∈ {{[a, b]}}.

Note that in the proposed method we only solve scalar Wiener-Hopf equations
of the similar form to the ones detailed in [17, § 3.2]. That is for a scalar equations
on the real line

(6) K(t)Φ−(t) = Φ+(t) + F (t).
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we need that K is non-zero function, such that K(t) − 1 ∈ {[0]} and indK(t) = 0.
Also require that F (t) ∈ {[0]} then we will can find Φ+ and Φ− in ({{[0,∞]}} and
{{[−∞, 0]}} on the real axis. We will need the extension of those result for the case
when (6) holds on a strip a ≤ ℑ(α) ≤ b. This has been obtained in [23].

2.3. Motivation. The initial motivation for this work came from the following
acoustics problem: investigate the effect of a finite poroelastic trailing edge on
noise production [7,19]. The situation is modelled with a plane-wave scattering by
a rigid half-line plate (−∞, 0) and an poroelastic edge (0, L) with the poroelastic to
rigid plate transition at x = 0. The matrix Wiener–Hopf problem is obtained from
consideration of the Fourier transform with respect to the ends of the poroelastic
plate at x = 0 and x = L. Define the half-range and full-range Fourier transform
with respect to x = 0:

Φ(α, y) =

∫ 0

−∞

φ(ξ, y)eiαξdξ +

∫ ∞

0

φ(ξ, y)eiαξdξ,(7)

=Φ
(0)
− (α, y) + Φ

(0)
+ (α, y).(8)

In the case when there is only one transition point x = 0, the unknown functions

would be Φ
(0)
− (α, y), Φ

(0)
+ (α, y) (or their derivatives) and we would only need to

solve a scalar Wiener–Hopf equation [31]. Since there is a change of boundary
conditions at x = L as well, we will also define the Fourier transforms with respect
to the point x = L:

Φ(L)(α, y) =

∫ L

−∞

φ(ξ, y)eiα(ξ−L)dξ +

∫ ∞

L

φ(ξ, y)eiα(ξ−L)dξ,(9)

=Φ
(L)
− (α, y) + Φ

(L)
+ (α, y).(10)

The relation between the transforms is:

Φ(L)(α, y) = Φ(α, y)eiαL.

The next step is to write down the relationship between different half-range trans-
forms by using the boundary conditions [13]. These relations can be combined to
form a matrix Wiener–Hopf equation. The resulting matrix, which motivated the
present method, is (see [21] for a detailed discussion):

(

Φ
(0)
− (α)

Φ
(L)
− (α)

)

= −
(

1−γ(α)P
γ(α) PeiαL

1
γ(α)e

−iαL 0

)(

Φ
′(0)
+ (α)

Φ
′(L)
+ (α)

)

+

(

f1(α)
f2(α)

)

,

where γ(α) =
√

α2 − k20 , k0 is the acoustic wave number and, in the simplest case,
P is a constant. The exponentials are due to the boundary conditions since the
half-range Fourier transform with respect to different points are needed.

We note that on the left hand side the unknown functions are minus half-
transforms Φ

(0)
− (α) and Φ

(L)
− (α), and on the right are the derivatives of the plus

half-transforms which are in this paper denoted by Ψ
(0)
+ (α) and Ψ

(L)
+ (α). This prob-

lem is not treated in this paper further since the purpose of this paper is to present
the iterative procedure in the simplest and general case in order to make it easier
to apply to many situations. For a detailed discussion of this particular problem
see [21]. The the later paper we also discuss other examples, the diffraction with
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finite rigid plate, leading to the following Wiener–Hopf equation.
(

Φ
′(0)
− (α)

Φ
(L)
− (α)

)

= −
(

γ(α) eiαL

−e−iαL 0

)

(

Φ
(0)
+ (α)

Φ
′(L)
+ (α)

)

−
(

g1(α)
0

)

,

The advantage in considering the following example is that although the exact
matrix factorisation cannot be constructed, the results of the new iterative proce-
dure can be compared to the exact solution obtained by other methods (Mathieu
functions).

3. Iterative Wiener–Hopf Factorisation

The most characteristic aspect of the Wiener–Hopf method is the application of
Liouville’s theorem in order to obtain two separate equations from one equation.
In order for Liouville’s theorem to be used two conditions have to be satisfied: the
analyticity and (at most) polynomial growth at infinity. These two conditions will
be treated here in turn. First, a partial factorisation is considered that has the
exponential functions in the right place and some of the required analyticity, that
is:

(

−e−iαL

B−(α)
A(α)

C(α)B−(α)
1

B−(α) 0

)(

Φ
(0)
− (α)

Φ
(L)
− (α)

)

=

(

0 −B+(α)
A(α)
B−(α) B+(α)e

iαL

)(

Ψ
(0)
+ (α)

Ψ
(L)
+ (α)

)

+

(

f3
f4

)

,(11)

on a strip a ≤ ℑ(α) ≤ b, where

f3 =
−e−iαL

B−(α)
f1 +

A(α)

C(α)B−(α)
f2 and f4 =

f1

B−(α)
.

Note, that f3 and f4 are still in {{[a, b]}}. There are two cases which would allow

to solve the above equation exactly. The first case is when A(α)
C(α)B−(α) is in {{[−∞, b]}}

and A(α)
B−(α) is in {{[a,∞]}}. Then the matrix factorisation has been already achieved

in 11. In particular, this is true for matrices that have the form:
(

kB−(α)C+(α) B(α)eiαL

C(α)e−iαL 0

)

,

where k is a constant. The second important case is when
(

A(α)
C(α)B−(α)

)+

and
(

A(α)
B−(α)

)−

are rational functions. Then the pole removal method [31, § 4.4, 5.3]

[13, § 4.4.2] could be employed to obtain the factorisation.
In the generic case we start with the partial factorisation (11) and then use the

additive Wiener–Hopf splitting. We present the detailed description now. The
equation (11) can be rearranged as





−e−iαL

B−(α)

(

A(α)
C(α)B−(α)

)−

1
B−(α) 0





(

Φ
(0)
− (α)

Φ
(L)
− (α)

)

+





(

A(α)
C(α)B−(α)

)+

Φ
(L)
− (α)

−
(

A(α)
B−(α)

)−

Ψ
(0)
+ (α)



(12)

=

(

0 −B+(α)
(

A(α)
B−(α)

)+

B+(α)e
iαL

)(

Ψ
(0)
+ (α)

Ψ
(L)
+ (α)

)

+

(

f3
f4

)

,(13)
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on a strip a ≤ ℑ(α) ≤ b. Recall that the additive splitting is denoted F± and the
multiplicative splitting by K±. As the next step we make the additive splittings
of the second term of (12), which are possible since it is in the class {{[a, b]}}—
in the same way as for the second term of (13). Then, the Liouville’s theorem
could be applied because the exponential functions are in the correct place and all
the functions have desired the analyticity. Thus, we can apply the Wiener–Hopf
procedure as usual and the four equations (defined for all α in the complex plane)
then become

−e−iαL

B−
Φ

(0)
− +

(

A

CB−

)−

Φ
(L)
− +

(

(

A

CB−

)+

Φ
(L)
−

)−

− f−
3 =0,

−B+Ψ
(L)
+ −

(

(

A

CB−

)+

Φ
(L)
−

)+

+ f+
3 =0,

1

B−
Φ

(0)
− −

(

(

A

B−

)−

Ψ
(0)
+

)−

− f−
4 =0,

(

A

B−

)+

Ψ
(0)
+ +B+e

iαLΨ
(L)
+ +

(

(

A

B−

)−

Ψ
(0)
+

)−

+ f+
4 =0.

Note that Liouville’s theorem is applied before any approximations are made. The
four equations can be rearranged:

(

A

CB−

)−

Φ
(L)
− =f−

3 −
(

(

A

CB−

)+

Φ
(L)
−

)−

+
e−iαL

B−
Φ

(0)
− ,(14)

B+Ψ
(L)
+ =f+

3 −
(

(

A

CB−

)+

Φ
(L)
−

)+

,(15)

(

A

B−

)+

Ψ
(0)
+ =

(

(

A

B−

)−

Ψ
(0)
+

)+

+ f+
4 +B+e

iαLΨ
(L)
+ ,(16)

Φ
(0)
−

B−
=

(

(

A

B−

)−

Ψ
(0)
+

)−

+ f−
4 .(17)

When the equations are written in this form it is clear that if Φ
(L)
− is known then

it could be used to calculate Ψ
(L)
+ and this, in turn, produces Ψ

(0)
+ followed by the

calculation of Φ
(0)
− and then it loops round. To avoid cumbersome notations, we

will label coefficients in (14–17) by K±
i and obtain the following system:

K−
1 Φ

(L)
− =−

(

K+
1 Φ

(L)
−

)−

+ f−
3 +K+

4 e−iαLΦ
(0)
− ,(18)

K+
2 Ψ

(L)
+ =

(

K+
1 Φ

(L)
−

)+

+ f+
3 ,(19)

K+
3 Ψ

(0)
+ =−

(

K−
3 Ψ

(0)
+

)+

+ f+
4 +K+

2 eiαLΨ
(L)
+ ,(20)

K−
4 Φ

(0)
− =

(

K−
3 Ψ

(0)
+

)−

+ f−
4 .(21)
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Using equations (19) and (21), we eliminate Ψ
(L)
+ and Φ

(0)
− from (18) and (20)

respectively:

K−
1 Φ

(L)
− =f−

3 −
(

K+
1 Φ

(L)
−

)−

+ e−iαL

(

(

K−
3 Ψ

(0)
+

)−

+ f−
4

)

,(22)

K+
3 Ψ

(0)
+ =f+

4 −
(

K−
3 Ψ

(0)
+

)+

+ eiαL
(

(

K+
1 Φ

(L)
−

)+

+ f+
3

)

.(23)

Functions Ψ
(L)
+ and Φ

(0)
− can be found from (19) and (21) once (22) and (23) will

be solved, where K1 = A
CB−

and K3 = A
B−

in the original notation.

So far the equations are exact, but in order to make progress an approximation
will be used now. In order to solve approximately we will describe an iterative

procedure, where the n-th iteration is denoted by Φ
(L)n
− and Ψ

(0)n
+ . If Φ

(L)n
− is

known it could be substituted into (23) to calculate Ψ
(0)n+1
+ and then the function

Ψ
(0)n+1
+ can be used in (22) to find Φ

(L)n+1
− and so on.

Hence, for this iterative procedure it is enough to choose an initial value of

Φ
(L)0
− . Since equation (22) can be considered on a horizontal line ℑ(α) = a < 0, on

that line the term with e−iαL will be small (especially for L large). This justifies

neglecting the term with e−iαL as a first approximation. Hence to find Φ
(L)0
− the

aim is to solve

(24) K−
1 Φ

(L)0
− = f−

3 −
(

K+
1 Φ

(L)0
−

)−

.

The above equation can be rearranged as a scalar Wiener–Hopf equation in the
following manner

(25)
(

K1Φ
(L)0
−

)−

= f−
3 .

Introduce an unknown function D+ defined by

(26) D+ =
(

K1Φ
(L)0
−

)+

.

Then, combining (25) and (26) we obtain a Wiener–Hopf equation:

(27) K1Φ
(L)0
− = D+ + f−

3 .

This equation has the form discussed in Section 2.2 so we will have Φ
(L)0
− ∈ {{[−∞, a]}}

as desired. The solution of this equation is

Φ
(L)0
− =

1

(K1)−

(

f−
3

(K1)+

)−

.

This can be taken as the initial approximation of the solution, which is used in our
iterative procedure.

To compute the next step we will need to solve (23) for Ψ
(0)1
+ on a horizontal

line ℑ(α) = b > 0. Note that Φ
(L)1
− is defined on this line and can be evaluated

numerically. Exactly in the same manner as (24), the solution of

K+
3 Ψ

(0)1
+ =

(

−
(

K−
3 Ψ

(0)1
+

)+

+ f+
4

)

+ eiαL
(

(

K+
1 Φ

(L)0
−

)+

+ f+
3

)

,
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will lead to the scalar Wiener–Hopf equation now on the line ℑ(α) = b. It can be
found that

(28) Ψ
(0)1
+ =

1

(K3)+









f+
4 + eiαL

(

(

K+
1 Φ

(L)0
−

)+

+ f+
3

)

(K3)−









+

.

It is easy to see that this formula holds for all iterations with a trivial change of

Ψ
(0)1
+ to Ψ

(0)n
+ and Φ

(L)0
− to Φ

(L)n−1
− . Similarly, the general recurrence formula for

Φ
(L)n
− is

(29) Φ
(L)n
− =

1

(K1)−









f−
3 + e−iαL

(

(

K−
3 Ψ

(0)n
+

)−

+ f−
4

)

(K1)+









−

.

The convergence of this procedure is examined in the next section. Numeri-
cal examples of this procedure are given in Section 5 and are compared to exact
solutions (which are known for these special cases).

4. Convergence of the method

The convergence of iterations relies on consideration of equations (22) and (23)
on different lines ℑ(α) = a < 0 and ℑ(α) = b > 0 within the strip of analyticity
a ≤ ℑ(a) ≤ b, in a similar way as it was done in [23]. We will employ the following
notation

D+
n =

(

K+
1 (Φ

(L)n
− − Φ

(L)n−1
− )

)+

, E−
n =

(

K−
3 (Ψ

(0)n
+ −Ψ

(0)n−1
+ )

)−

.

From (28)–(29), the difference of the values of the function after n+1 and n times
is

(30) Φ
(L)n+1
− − Φ

(L)n
− =

1

(K1)−

(

e−iαLE−
n+1

(K1)+

)−

,

and

(31) Ψ
(0)n+1
+ −Ψ

(0)n
+ =

1

(K3)+

(

eiαLD+
n

(K3)−

)+

.

Note that the forcing terms f±
i do not influence the convergence. In order to

estimate the differences (30) and (31) in magnitude we need some inequalities for
the Wiener–Hopf additive decomposition. This has been addressed in [22] for all Lp

spaces, here we will need a very special case of that result which has a particularly
simple form. We will use that if F (t) = F+(t) + F−(t), as in Theorem 2.1, then

(32) ‖F±‖2 ≤ ‖F‖2.

The same inequality can be observed from the fact that the map F → F± in L2(R)
is the Szegö orthoprojector with the norm 1. Since we will be looking at the L2
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norm on different lines within the strip of analyticity, the L2 norm of a function
f(x+ ia) on the line ℑ(α) = a will be denoted by

‖f‖a2 :=





∞
∫

−∞

|f(x+ ia)|2 dx





1/2

.

As well as employing (30) to assert convergence we will need to derive a rela-
tionship for E−

n+1 and E−
n . This is done by a similar procedure used to derive (30)

but considering the other unknown in the scalar Wiener-Hopf equation. In other
words the expression of the unknown plus and minus function are obtained. This
is done explicitly below. Write (22) and (23) as they are used on n-th iteration:

K−
1 Φ

(L)n
− =f−

3 −
(

K+
1 Φ

(L)n
−

)−

+ e−iαL

(

(

K−
3 Ψ

(0)n
+

)−

+ f−
4

)

,(33)

K+
3 Ψ

(0)n
+ =f+

4 −
(

K−
3 Ψ

(0)n
+

)+

+ eiαL
(

(

K+
1 Φ

(L)n−1
−

)+

+ f+
3

)

.(34)

We can add K+
1 Φ

(L)n
− to both sides of (33) and K−

3 Ψ
(0)n
+ to both sides of (34) to

obtain

K1Φ
(L)n
− =f−

3 +
(

K+
1 Φ

(L)n
−

)+

+ e−iαL

(

(

K−
3 Ψ

(0)n
+

)−

+ f−
4

)

,(35)

K3Ψ
(0)n
+ =f+

4 +
(

K−
3 Ψ

(0)n
+

)−

+ eiαL
(

(

K+
1 Φ

(L)n−1
−

)+

+ f+
3

)

.(36)

And if we consider the difference between the consecutive iterations we derive

K1(Φ
(L)n
− − Φ

(L)n−1
− ) =D+

n + e−iαLE−
n ,(37)

K3(Ψ
(0)n+1
+ −Ψ

(0)n
+ ) =E−

n+1 + eiαLD+
n .(38)

This makes the coupling between the equations explicit. Note that

D+
n = (K1)+

(

e−iαLE−
n

(K1)+

)+

, E−
n+1 = (K3)−

(

eiαLD+
n

(K3)−

)−

,

where D+
n can be derived by solving the scalar Wiener–Hopf equation (37) with the

unknown minus function Φ
(L)n
− −Φ

(L)n−1
− , unknown plus function D+

n and e−iαLE−
n

is assumed to be known from the previous iterations. Similarly E−
n+1 is obtained

by solving the scalar Wiener–Hopf equation (38).
We will obtain estimates of the size of ‖D+

n ‖a2 . Let maxx∈R |(K1)+(x+ ai)| = d1
and maxx∈R |(K1)

−1
+ (x + ai)e−iL(x+ai)| = ǫ1. Note that K1 is bounded since it is

in L2(R) ∩ Hölder and note that K1 is non-zero. Then using (32) we have

(39) ‖D+
n ‖a2 ≤ d1

∥

∥

∥

∥

∥

(

e−iαLE−
n

(K1)+

)+
∥

∥

∥

∥

∥

a

2

≤ d1

∥

∥

∥

∥

e−iαLE−
n

(K1)+

∥

∥

∥

∥

a

2

≤ d1ǫ1‖E−
n ‖a2 .

Similarly, defining maxx∈R(K3)−(x+bi) = d2 and maxx∈R eiL(x+bi)(K3)
−1
− (x+bi) =

ǫ2, we obtain

(40) ‖E−
n+1‖b2 ≤ d2

∥

∥

∥

∥

∥

(

eiαLD+
n

(K3)−

)−
∥

∥

∥

∥

∥

b

2

≤ d2

∥

∥

∥

∥

(

eiαLD+
n

(K3)−

)∥

∥

∥

∥

a

2

≤ d2ǫ2‖D+
n ‖a2 .



AN ITERATIVE WIENER–HOPF METHOD FOR TRIANGULAR MATRIX FUNCTIONS WITH EXPONENTIAL FACTORS11

Next, we note that the following is true

(41) ‖E−
n+1‖a2 ≤ ‖E−

n+1‖b2, ‖D+
n ‖b2 ≤ ‖D+

n ‖a2 .

This is intuitively clear since E−
n+1 is further from singularities on the line ℑ(α) = a

than on ℑ(α) = b and the other way round forD+
n . The inequalities follows from the

Poisson formula for the real line [30, Cor 6.4.1] and Hölder inequality. Combining
(41) with inequalities (39) and (40) we obtain the key result for demonstrating
convergence:

(42) ‖E−
n+1‖a2 ≤ d1d2ǫ2ǫ1‖E−

n ‖a2 , ‖D+
n+1‖b2 ≤ d1d2ǫ2ǫ1‖D+

n ‖a2 .

The convergence of the procedure is shown in the next theorem.

Theorem 4.1. For sufficiently large L there exists a constant q < 1 such that

‖Φ(L)n+1
− − Φ

(L)n
− ‖a2 = q‖Φ(L)n

− − Φ
(L)n−1
− ‖a2,

for all n and, hence, the error at the n-th iteration is

‖Φ(L)n
− − Φ

(L)
− ‖a2 =

qn

1− q
‖Φ(L)0

− − Φ
(L)1
− ‖a2 .

Analogous statements are true for Ψ
(0)n
+ .

Proof. First consider (30) on the line x + ai. Let maxx∈R |(K1)
−1
− (x + ai)| = c1,

note that K1 is non-zero on the strip so the constant is well defined. Then, using
(32), we have

(43) ‖Φ(L)n+1
− − Φ

(L)n
− ‖a2 ≤ c1

∥

∥

∥

∥

∥

∥

(

e−iαLE−
n+1

(K1)+

)−
∥

∥

∥

∥

∥

∥

a

2

≤ c1ǫ1‖E−
n+1‖a2 .

This implies that

(44) ‖Φ(L)n+1
− − Φ

(L)n
− ‖a2 ≤ ‖E−

n+1‖a2
‖E−

n ‖a2
‖Φ(L)n

− − Φ
(L)n−1
− ‖a2 .

Hence we obtained the desired result with q = d1d2ǫ2ǫ1 using (42). The contraction
mapping theorem can be applied if q < 1 to show that the iterations converge to

the exact solution Φ
(L)
− . Note that we can make ǫ1 and ǫ2 (and hence q) arbitrarily

small by taking L sufficiently large.
Similarly, we consider (31) on the line x+ bi. In the same manner we derive

(45) ‖Ψ(0)n+1
+ −Ψ

(0)n
+ ‖b2 ≤ q‖Ψ(0)n

+ −Ψ
(0)n−1
+ ‖b2.

�

Note that the procedure converges for all possible initial functions. But the
accuracy of the initial step determines how fast the small desired error will be
achieved.



12 ANASTASIA V. KISIL

5. Examples

In this section the method proposed in this paper will be illustrated numerically.
Two examples will be considered, in both cases the exact solutions are known and
will be compared with the outcomes of the iterative procedure. The first example
is of the type (1) and is chosen to be as simple as possible. The second example has
been studied by other researchers in connection to integral equations. The resulting
Wiener–Hopf system is more general than (1), but it can also be reduced to solving
equations similar to (22) and (23) and hence the derivations in this paper apply. A
more involved examples of application of the proposed method is found in [21] and
is used in the setting of acoustics, see Section 2.3 for more details. Note that in the
latter case no exact solution is known.

Example 1. The first numerical example will be the simplest possible in order to
illustrate the theory. Consider (1) with

( 0.5
(α−iλ)(α+iλ) + 1 B+(α)e

iαL

e−iαL 0

)

,

where λ is a complex parameter and B+(α) is an arbitrary function satisfying the
conditions stated in Section 2.1. For the forcing terms take

f−
4 (α) = f−

3 (α) =
1

α− i
, and f+

4 (α) = f+
3 (α) =

1

α+ 2i
.

In this example a = b = ℜ(λ) and so we require ℜ(λ) > 0. We have that

K3(α) = K1(α) =
0.5

(α− iλ)(α + iλ)
+ 1.

Then equation (22) and (23) become

K1(α)Φ
(L)
− (α) =

1

α− i
+

k2

α+ iλ
+ e−iαL

(

k1

α− iλ
+

1

α− i

)

,(46)

K1(α)Ψ
(0)
+ (α) =

1

α+ 2i
− k1

α− iλ
+ eiαL

(

1

α+ 2i
− k2

α+ iλ

)

,(47)

and we are required to find Φ
(L)
− (α) and Ψ

(0)
+ (α). In this simple case we can exactly

solve these coupled equations and find constants k1 and k2 explicitly. Define

b = e−λL, c = 2iλf−
1 (−iλ), and d = 2iλf+

1 (iλ),

then the constants are given by

k1 =
d− bc

1− b
, and k2 =

c− bd

1− b
.

Next, we will solve these coupled Wiener–Hopf equations using an iterative procedure
described in Section 3. The first step is to neglect the the term with e−iαL in (46)

and hence uncouple the equations and obtain a value for k
(0)
2 . This value is then

substituted into (47) to obtain k
(0)
1 . The iterative procedure leads to the following

values

k
(n)
1 = d+ bd− bk

(n)
2 , k

(n)
2 = c+ bc− bk

(n−1)
1 , with k

(0)
2 = c.

This converges to the actual solution as long as b < 1. In most cases the convergence
is very fast and the line of the first iteration is indistinguishable to the approximate
solution. In the cases when the convergence is slow (small L and small ℜ(λ))
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Figure 1. Showing the real part (top figure) and imaginary part

(middle figure) of Φ
(L)
− (solid black line), Φ

(L)0
− (dotted line), Φ

(L)1
−

(blue dashed line) and Φ
(L)2
− (red dashed line). The bottom figure

shows the decrease in the absolute value of Φ
(L)
− − Φ

(L)n
− . The

parameters are λ = 0.7 + 10i and L = 1.
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Figure 2. Showing the real part (top figure) and imaginary part

(middle figure) of Φ
(L)
− (solid black line), Φ

(L)0
− (dotted line), Φ

(L)1
−

(blue dashed line) and Φ
(L)2
− (red dashed line). The bottom figure

shows the decrease in the absolute value of Φ
(L)
− − Φ

(L)n
− . The

parameters are λ = 0.2 and L = 2.
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the first iteration still retains some features of the solution, see Figure 1 and 2.
The first guess has the correct overall shape and all the consecutive iterations have
the maxima and the minima in the right places even when the magnitude is quite
different. Also note that even in the cases of slow convergence, the second iteration
is already close to the actual solution.

In this special case it is possible to say more about the convergence of the solution
compared to the general case (Section 4). It is easy to see that

Φ
(L)n+1
− − Φ

(L)n
− =

1

K1

(

k
(n+1)
2 − k

(n)
2

α+ iλ
+ e−iαL k

(n+1)
1 − k

(n)
1

α− iλ

)

.

Hence

Φ
(L)n+1
− − Φ

(L)n
− =

(k
(n+1)
2 − k

(n)
2 )

K1

(

1

α+ iλ
+ e−iαL −b

α− iλ

)

.

This means that

‖Φ(L)n+1
− − Φ

(L)n
− ‖2 ≤ b2‖Φ(L)n

− − Φ
(L)n−1
− ‖2.

This can be verified numerically and is illustrated in Figure 3.

−30 −20 −10 0 10 20 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Figure 3. Showing the decrease in the absolute value of Φ
(L)
− − Φ

(L)n
− .

Example 2. The next example is more complicated and arises from an integral
equation. The ability to solve integral equations is important in many applications
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[29, 34]. Consider the following (one-sided) integral equation

u(x) = λ

∫ ∞

0

k(x− t)u(t)dt+ f(x), 0 < x < ∞,

with the matrix kernel given by

k(x) =

(

e−|x| e−|x−L|

e−|x+L| e−|x|

)

,

with f(x) a forcing function, λ, L real parameters and u(x) = (u(1)(x), u(2)(x))T

to be determined. This system was considered in [18] and more recently in [5].
This integral equation can be reduced to a Wiener–Hopf equation by extending the
range of x to the whole real line and applying the Fourier transform. The resulting
Wiener–Hopf equation is of a more general type than (1). It has been shown [5] that
the solution could be reduced to finding two constants C1 and C2 by the Wiener–
Hopf method. In this example it is possible to obtain the exact solution, which
provides a good way to test out the ideas that are introduced in this paper. Once the
solution to the Wiener–Hopf equation is obtained, the inverse Fourier transform
will provide the solution to the integral equation. First we will need to define some
functions. Let us take two constants λ0 =

√
1− 2λ and λ1 =

√
1− 4λ for some

λ ∈ (−∞, 0.25], then we define

M−(α) =
α− iλ1

α− iλ0
, M+(α) =

α+ iλ0

α+ iλ1
,

K−(α) =
α− iλ0

α− i
, K+(α) =

α+ i

α+ iλ0
.

The forcing is taken as F+
1 (α) = 1

α−2i and F+
2 = 0 and we use the following additive

splittings

L+
1 (α) − L−

1 (α) =
α− i

(α− iλ0)(α− 2i)
,

L+
2 (α) − L−

2 (α) =
2λe−iαL

(α− 2i)(α+ iλ0)(α − iλ1)
.

The Wiener–Hopf method reduces the solution to equations similar to (22) and

(23). The unknown functions U
(2)
− (α) and U

(1)
+ (α) are the half-range Fourier trans-

forms (8) of u(2)(α) and u(1)(α). They are given by

U
(2)
− (α) =M−(α)

(

L−
2 (α) +

C2

α+ iλ0
+

2λK−(α)e
−iαL

(α+ iλ1)(α − iλ0)

(

L−
1 (α) +

C1

α− iλ0

))

,

U
(1)
+ (α) =K+(α)

(

L+
1 (α) +

C1

α− iλ0
+

2λM+(α)e
iαL

(α+ i)(α− iλ0)

(

L+
2 (α) +

C2

α+ iλ0

))

.

The constants can be found explicitly

C1 =
d1 + d2b

b2 + 1
, C2 =

d2 − d1b

b2 + 1
,

where

b =
2λeiLλ0

(λ0 + 1)(λ0 + λ1)
, d1 = 2ibλ0L

+
2 (iλ0), d2 = 2ibλ0L

−
1 (−iλ0).
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Figure 4. Showing the real part (top figure) and imaginary part

(bottom figure) of U
(1)
+ (solid black line), U

(1)0
+ (red dotted line)

and U
(1)1
+ (blue dashed line). The parameters are λ = −15 and

L = 0.04.

By employing the iterative procedure we obtain

C
(0)
1 =d1, C

(1)
2 =d2 − d1b,

C
(1)
1 =d1 + d2b− d1b

2, C
(1)
2 =d2 − d1b− d2b

2 + d1b
3.

C
(2)
1 =d1 + d2b− d1b

2 − d2b
3 + d1b

4.
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In fact, each iteration adds two more terms in the Taylor expansion of the constants.

For example, for λ = 0.1 and L = 0.0001 the maximum error for U
(2)0
− is 10−4 and

for U
(2)1
− is 10−6. Note that the convergence speed of iterations depends on b2, in

the same way as in the previous example. It fact, it is small for all values of λ and
L and b2 ≤ 0.18. This shows that in this example the convergence is extremely fast
for all values of the parameters. Another factor, which influences the error of the
iterative solution, is suitability of the initial value. For example, with λ = −15 and

L = 0.04 the initial guess U
(1)0
+ is very bad, see Figure 4 the red dotted line. But

since b2 = 0.0747, even the first iteration U
(1)0
+ is already very accurate, see Figure

4 the blue dashed line.

6. Conclusion

TheWiener–Hopf method is a powerful tool for solving boundary value problems,
which has been applied in an impressive array of situations. In the case of scalar
Wiener–Hopf equations the solution is algorithmic. In the matrix case, the matrix
Wiener–Hopf factorisation cannot be in general obtained and hinders the use of the
method. The present paper presents an algorithmic way of bypassing this step, for
a class of matrix functions (1). Only scalar Wiener–Hopf splittings are used in an
iterative procedure. We provide the conditions for the convergence of iterations to
the exact solution. This also enables us to estimate the error at each iteration. The
numerical examples show that in most cases only a few iterations are required.

It is clear that this method could be applied to a wider class of Wiener–Hopf
systems than (1). For instance, the matrix in Example 2 is not triangular, however
it still can be solved using our methods. Further work could be done to extend this
method to non-triangular matrix functions with exponential factors.

This method has been motivated by applications and was already used in [21].
There is scope for using this method in a variety of boundary value problems with
finite geometries or more than one transition point in the boundary conditions.
Possible applications could be in different areas such as electromagnetism, fracture
mechanics and economics. It has also been shown in numerical Example 2 that some
integral equations can also be solved, this even opens a larger scope of applications.
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