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Abstract
A key result in the field of kernelization, a subfield of parameterized complexity, states that the
classic Disjoint Cycle Packing problem, i.e. finding k vertex disjoint cycles in a given graph
G, admits no polynomial kernel unless NP ⊆ coNP/poly. However, very little is known about
this problem beyond the aforementioned kernelization lower bound (within the parameterized
complexity framework). In the hope of clarifying the picture and better understanding the types
of “constraints” that separate “kernelizable” from “non-kernelizable” variants of Disjoint Cycle
Packing, we investigate two relaxations of the problem. The first variant, which we call Almost
Disjoint Cycle Packing, introduces a “global” relaxation parameter t. That is, given a graph
G and integers k and t, the goal is to find at least k distinct cycles such that every vertex of G
appears in at most t of the cycles. The second variant, Pairwise Disjoint Cycle Packing,
introduces a “local” relaxation parameter and we seek at least k distinct cycles such that every two
cycles intersect in at most t vertices. While the Pairwise Disjoint Cycle Packing problem
admits a polynomial kernel for all t ≥ 1, the kernelization complexity of Almost Disjoint
Cycle Packing reveals an interesting spectrum of upper and lower bounds. In particular, for
t = k

c , where c could be a function of k, we obtain a kernel of size O(2c2
k7+c log3 k) whenever

c ∈ o(
√
k). Thus the kernel size varies from being sub-exponential when c ∈ o(

√
k), to quasi-

polynomial when c ∈ o(log` k), ` ∈ R+, and polynomial when c ∈ O(1). We complement these
results for Almost Disjoint Cycle Packing by showing that the problem does not admit a
polynomial kernel whenever t ∈ O(kε), for any 0 ≤ ε < 1.
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1 Introduction

Polynomial-time preprocessing is one of the widely used methods to tackle NP-hard problems
in practice, as it plays well with exact algorithms, heuristics, and approximation algorithms.
Until recently, there was no robust mathematical framework to analyze the performance of
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26:2 Kernelization of Cycle Packing with Relaxed Disjointness Constraints

preprocessing routines. Progress in parameterized complexity [11] made such an analysis
possible. In parameterized complexity, each problem instance is coupled with a parameter
k and the parameterized problem is said to admit a kernel if there is a polynomial-time
algorithm, called a kernelization algorithm, that reduces the input instance down to an
instance whose size is bounded by a function f(k) in k, while preserving the answer. Such
an algorithm is called an f(k)-kernel for the problem. If f(k) is a polynomial, quasi-
polynomial, subexponential, or exponential function of k, we say that this is a polynomial,
quasi-polynomial, subexponential, or exponential kernel, respectively. Over the last decade
or so, kernelization has become a very active field of study, especially with the development
of complexity-theoretic tools to show that a problem does not admit a polynomial kernel [3,
12, 16, 18], or a kernel of a specific size [8, 9, 19]. We refer the reader to the survey articles
by Kratsch [20] and Lokshtanov et al. [21] for recent developments.

One of the first and important problems to which the lower-bounds machinery was applied
is the NP-complete Disjoint Cycle Packing problem. In the Disjoint Cycle Packing
problem, we are given as input an n-vertex graph G and an integer k, and the task is to find a
collection C of at least k pairwise disjoint vertex sets of G, such that every set C ∈ C induces
a cycle in G. The Disjoint Cycle Packing problem can be solved in O(kk log knO(1)) using
dynamic programming over graphs of bounded treewidth [2, 4]. Bodlaender et al. [5] showed
that, when parameterized by k, Disjoint Cycle Packing does not admit a polynomial
kernel unless NP ⊆ coNP/poly (and the polynomial hierarchy collapses to its third level,
which is considered very unlikely). Beyond the aforementioned negative result for polynomial
kernels and the folklore O(kk log knO(1))-time algorithm, the Disjoint Cycle Packing
problem has remained mostly unexplored from the viewpoint of parameterized complexity.

Our problems and results. In this paper we study two variants of Disjoint Cycle
Packing, obtained by relaxing the disjointness constraint. In particular, we focus on the
kernelization complexity of the Disjoint Cycle Packing problem by considering two
relaxed versions of the problem, one with a “local” relaxation parameter and the other with
a “global” relaxation parameter. In the locally relaxed variant, which we call Pairwise
Disjoint Cycle Packing, the goal is to find at least k distinct cycles in a graph G such
that they pairwise intersect in at most t vertices.

Pairwise Disjoint Cycle Packing Parameter: k

Input: An undirected (multi) graph G and integers k and t
Question: Does G have at least k distinct cycles C1, . . . , Ck such that |V (Ci)∩V (Cj)| ≤ t
for all i 6= j?

We consider two cycles to be distinct whenever their edge sets differ by at least one element.
Note that when t = 0, Pairwise Disjoint Cycle Packing corresponds to the original
Disjoint Cycle Packing problem. However, when t = |V (G)| the Pairwise Disjoint
Cycle Packing problem is solvable in time polynomial in |V (G)| and k since we can
enumerate distinct cycles in a graph with polynomial delay [24]. In other words, any k

distinct cycles in a graph will trivially pairwise intersect in at most |V (G)| vertices. We
show that Pairwise Disjoint Cycle Packing remains NP-complete when t = 1. Then,
we complement this result by showing that the problem admits a polynomial kernel for t = 1
and a polynomial compression for t ≥ 2. An interesting problem which remains unclear is to
determine what value of t separates NP-hard instances from polynomial-time solvable ones.

The second relaxation we consider is Almost Disjoint Cycle Packing. The goal in
Almost Disjoint Cycle Packing is to determine whether G contains at least k distinct
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Figure 1 Spectrum of kernelization algorithms for Almost Disjoint Cycle Packing as c grows
in the denominator of t = k

c
.

cycles such that every vertex in V (G) appears in at most t of them. As we shall see, the
kernelization complexity landscape for Almost Disjoint Cycle Packing is much more
diverse than that of Pairwise Disjoint Cycle Packing. In some sense, this suggests
that the global relaxation parameter does a “better job” of capturing the “hardness” of the
original problem.

Almost Disjoint Cycle Packing Parameter: k

Input: An undirected (multi) graph G and integers k and t
Question: Does G have at least k distinct cycles C1, . . . , Ck such that every vertex in
V (G) appears in at most t of them?

Again, for t = 1, Almost Disjoint Cycle Packing corresponds to Disjoint Cycle
Packing and when t = k the problem is solvable in time polynomial in |V (G)| and k by
simply enumerating distinct cycles. However, and rather surprisingly, we show that t has to
be “very close” to k for this relaxation to become “easier” than the original problem, at least
in terms of kernelization. In fact, we show that as long as t = O(k1−ε), where 0 < ε ≤ 1,
Almost Disjoint Cycle Packing remains NP-complete and admits no polynomial kernel
unless NP ⊆ coNP/poly. We complement our hardness result by a spectrum of kernel upper
bounds. To that end, we consider the case t = k

c , where c is a constant or a function of
k. We show that we can (in polynomial time) compress an instance of Almost Disjoint
Cycle Packing into an equivalent instance with O(2c2

k7+c log3 k) vertices. This implies
polynomial, quasi-polynomial, or subexponential size kernels for Almost Disjoint Cycle
Packing, depending on whether c is a constant, c ∈ o(log k), or c ∈ o(

√
k), respectively. It

remains open whether the problem is in P or NP-hard for t = k
c , when c is a constant. A high

level summary of our results for Almost Disjoint Cycle Packing is given in Figure 1.
Most of the technical details and proofs have been omitted from this extended abstract.

Related Results. Our results also fit into the relatively new direction of research that is
concerned with the parameterized complexity of problems with relaxed packing/covering
constraints. For several important problems (that we need to solve), there are settings
in which we need not be very strict about constraints. This is particularly interesting
for “strict” problems where, e.g., (a) it is known that no polynomial kernels are possible
unless NP ⊆ coNP/poly, or where (b) the algorithm with the best running time matches
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26:4 Kernelization of Cycle Packing with Relaxed Disjointness Constraints

the known lower bound, or where (c) no considerable improvements have been made either
algorithmically or in terms of kernel upper/lower bounds. The Disjoint Cycle Packing
problem falls into categories (a) and (c) and is the main subject of this work. Before we state
our results, let us look at some examples where the introduction of relaxation parameters
has been successful. Abasi et al. [1], followed by Gabizon et al. [17], studied a generalization
of the k-Path problem, namely r-Simple k-Path, where the task is to find a walk of length
k that never visits any vertex more than r times. Here r is the relaxation parameter. By
definition, the generalized problem is computationally harder than the original. However,
observe that for r = 1 the problem is exactly the problem of finding a simple path of length
k in G. On the other hand, for r = k the problem is easily solvable in polynomial time, as
any walk in G of length k will suffice. In some sense, the “further away” an instance of the
generalized problem is from being an instance of the original, the easier the instance is. Put
differently, gradually increasing r from 1 to k should make the problem computationally
easier. This intuition was confirmed by the authors by providing, amongst other results,
algorithms for the generalized problem whose worst-case running time matches the running
time of the best algorithm for the original problem up to constants in the exponent, and
improves significantly as the relaxation parameter increases. Also closely related is the work
of Romero et. al. [26, 27] and Fernau et al. [14] who studied relaxations of graph packing
problems allowing certain overlaps.

2 Preliminaries

We let N denote the set of natural numbers, R denote the set of real numbers, R+ denote
the set of non-zero positive real numbers, and R≥1 denote the set of real numbers greater
than or equal to one. For r ∈ N, by [r] we denote the set {1, 2, . . . , r}.

Graphs. We use standard terminology from the book of Diestel [10] for those graph-related
terms which are not explicitly defined here. We only consider finite graphs possibly having
loops and multi-edges. For a graph G, V (G) and E(G) denote the vertex and edge sets of
the graph G, respectively. For a vertex v ∈ V (G), we use dG(v) to denote the degree of v,
i.e the number of edges incident on v, in the (multi) graph G. We also use the convention
that a loop at a vertex v contributes two to its degree. For a vertex subset S ⊆ V (G), G[S]
and G − S are the graphs induced on S and V (G) \ S, respectively. For a vertex subset
S ⊆ V (G), we let NG(S) and NG[S] denote the open and closed neighborhood of S in G.
That is, NG(S) = {v | (u, v) ∈ E(G), u ∈ S} \ S and NG[S] = NG(S) ∪ S. For a graph G
and an edge e ∈ E(G), G/e denotes the graph obtained by contracting e in G.

A path in a graph is a sequence of distinct vertices v0, v1, . . . , v` such that (vi, vi+1) is
an edge for all 0 ≤ i < `. A cycle in a graph is a sequence of distinct vertices v0, v1, . . . , v`
such that (vi, v(i+1) mod `) is an edge for all 0 ≤ i ≤ `. We note that both a double edge
and a loop are cycles. If P is a path from a vertex u to a vertex v in graph G then we
say that u and v are the end vertices of the path P and P is a (u, v)-path. For a path P ,
we use V (P ) to denote the set of vertices in the path P and the length of P is denoted
by |P | (i.e, |P | = |V (P )|). For a cycle C, we use V (C) to denote the set of vertices in the
cycle C and length of C, denoted by |C|, is |V (C)|. For a path or a cycle Q we use NG(Q)
and NG[Q] to denote the set NG(V (Q)) and NG[V (Q)], respectively. For a collection of
paths/cycles Q, we use |Q| to denote the number of paths/cycles in Q and V (Q) to denote
the set

⋃
Q∈Q V (Q). We sometimes refer to a path or a cycle Q as a |Q|-path or |Q|-cycle.

Given a vertex v ∈ V (G), a v-flower of order k is a set of k cycles in G whose pairwise
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intersection is exactly {v}. We say a set of distinct vertices P = {v1, . . . , v`} in G forms a
degree-two path if P is a path and all vertices {v1, . . . , v`} have degree exactly two in G. We
say P is a maximal degree-two path if no proper superset of P also forms a degree-two path.
Finally, a feedback vertex set is a subset S of vertices such that G− S is a forest.

I Theorem 1 ([13]). There exists a constant c such that every (multi) graph either contains
k vertex disjoint cycles or it has a feedback vertex set of size at most ck log k. Moreover,
there is a polynomial-time algorithm that takes a graph G and an integer k as input, and
outputs either k vertex disjoint cycles or a feedback vertex set of size at most ck log k.

Parameterized Complexity. We only state the basic definitions and general results needed
for our purposes. For more details on parameterized complexity in general, and kernelization
in particular, we refer the reader to the books of Downey and Fellows [11], Flum and
Grohe [15], Niedermeier [23], and the more recent book by Cygan et al. [7].

I Definition 2. A polynomial compression of a parameterized language L ⊆ Σ× N into a
language R ⊆ Σ∗ is an algorithm that takes as input an instance (I, k) ∈ Σ× N, works in
time polynomial in |I|+ k, and returns a string I ′ such that:
|I ′| ≤ p(k) for some polynomial p(.), and
|I ′| ∈ R if and only if (I, k) ∈ L.

In case |Σ| = 2, the polynomial p(.) is called the bitsize of the compression.

Note that polynomial compressions are a generalization of kernels and being able to rule
out a compression algorithm automatically rules out a kernelization algorithm.

I Definition 3. Let L,R ⊆ Σ×N be two parameterized problems. An algorithm A is called
a polynomial parameter transformation from L to R if, given an instance (I, k) of problem :,
A works in polynomial time and outputs an equivalent instance (I ′, k′) of problem R, i.e.,
(I, k) ∈ L if and only if (I ′, k′) ∈ R, such that k′ ≤ p(k) for some polynomial p(.).

I Theorem 4 ([7]). Let L,R ⊆ Σ×N be two parameterized problems and assume there exists
a polynomial parameter transformation from L to R. Then, if R does not admit a polynomial
compression, neither does L. In particular, if R does not admit a polynomial kernel unless
NP ⊆ coNP/poly then the same holds for L.

3 Almost Disjoint Cycle Packing

As previously noted, Bodlaender et al. [5] showed that Disjoint Cycle Packing admits no
polynomial kernel unless NP ⊆ coNP/poly. On the other hand, finding k distinct cycles in a
graph is solvable in time polynomial in n and k [24]. The intuition is that the more cycles we
allow a vertex to belong to, the easier the problem of finding k distinct cycles should become.
In this section, we study the spectrum of kernelization algorithms for Almost Disjoint
Cycle Packing based on the “distance” between k and t. Recall that given an instance
(G, k, t) of Almost Disjoint Cycle Packing, our goal is to find at least k distinct cycles
such that each vertex appears in at most t of them. To formalize the notion of distance
between k and t, we define the following class of problems.

Let L = {(G, k, t) | G has k cycles such that every vertex appears in at most t of them}.
Basically, L is the language Almost Disjoint Cycle Packing. For a monotonically
increasing computable function f : N→ R+, we define the following sub-language of L.

Lf = {(G, k, t) | (G, k, t) ∈ L and t = dk/f(k)e}.
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26:6 Kernelization of Cycle Packing with Relaxed Disjointness Constraints

When f is the identity function, i.e. when f(k) = k, Lf is exactly the Disjoint Cycle
Packing problem which is known not to admit a polynomial kernel [5]. In Section 3.1,
we show that even when f(k) = kε, for any fixed 0 < ε ≤ 1, Lf (or equivalently Almost
Disjoint Cycle Packing with t = k1−ε) is NP-complete and does not admit a polynomial
kernel unless NP ⊆ coNP/poly. If f = a (a constant function), where a ≤ 1 and a ∈ R+,
then Lf can be decided in polynomial time (as finding any k distinct cycles is enough). This
implies that for f = a we have a constant kernel. In Section 3.2, we obtain a polynomial
kernel for f = c (another constant function), where c > 1 and c ∈ R. In fact, our result
implies that for f ∈ O(1), f ∈ o(log` k) (` ∈ N), or f ∈ o(

√
k), we can (in polynomial time)

compress an instance of Almost Disjoint Cycle Packing into an equivalent instance of
polynomial, quasi-polynomial, or subexponential size, respectively (see Figure 1).

Before we consider the kernelization complexity of the Almost Disjoint Cycle Packing
problem, we first show, using standard arguments, that the problem is fixed-parameter
tractable when parameterized by k. Armed with Theorem 1, we can assume that, for an
instance (G, k, t) of Almost Disjoint Cycle Packing, the treewidth of G is at most
O(k log k); as G has a feedback vertex set of size at most O(k log k). Courcelle’s Theorem [6]
gives a powerful way of quickly showing that a problem is fixed-parameter tractable on
bounded treewidth graphs. That is, it suffices to show that our problem can be expressed in
monadic second-order logic (MSO2).

I Theorem 5 ([6]). If a graph property can be described as a formula φ in the monadic
second-order logic of graphs, then it can be recognized in time f(||φ||, tw(G))(|E(G)|+ |V (G)|)
if a given graph G has this property, where f is a computable function, ||φ|| is the length of
the encoding of φ as a string, and tw(G) is the treewidth of G.

I Lemma 6. Almost Disjoint Cycle Packing can be solved in f(k)nO(1) time, for
some computable function f . In other words, the problem is fixed-parameter tractable when
parameterized by k.

3.1 Refuting polynomial kernels for t = O(k1−ε)
We now show that Almost Disjoint Cycle Packing restricted to Lf , where f(k) = kε,
does not admit a polynomial kernel, for any 0 < ε ≤ 1, unless NP ⊆ coNP/poly. Here k is
the number of required cycles and t = k

f(k) = k1−ε is the maximum number of cycles a vertex
can belong to. Below we define the Disjoint Factors problem [5] which is known to admit
no polynomial compression unless NP ⊆ coNP/poly.

Let Σq be an alphabet set of q elements. By Σ?q we denote the set of all strings over Σq.
A factor of a string ȳ = y1y2 . . . yn ∈ Σ?q is a pair (s, e), where s, e ∈ [n] and s < e, such that
ysys+1 . . . ye is a substring of ȳ and ys = ye. Two factors (s, e) and (s′, e′) of ȳ are said to be
disjoint if {s, s + 1, . . . , e} ∩ {s′, s′ + 1, . . . , e′} = ∅. The string ȳ is said to have a disjoint
factor over Σq if for all x ∈ Σq there is a factor (sx, ex) such that ysx = yex = x, and for all
x, x̂ ∈ Σq, (sx, ex) and (sx̂, ex̂) are disjoint factors.

Disjoint Factors Parameter: q

Input: Alphabet set Σq, string ȳ ∈ Σ?q
Question: Does ȳ have a disjoint factor?

Construction. We give a polynomial parameter transformation from an instance (Σq, ȳ)
of Disjoint Factors to an instance (G, k, t) of Almost Disjoint Cycle Packing. For
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technical reasons, we will assume that t − 1 = 2l, for some l ∈ N. Note that this can be
achieved by at most doubling the value of t while keeping t in O(k1−ε). We let l = log2(t−1).
The end goal will be to construct a graph in which we have to find k cycles such that every
vertex appears in at most t = O(k1−ε) of them.

The reduction is as follows. Let Σq = {x1, x2, . . . xq}. We create a vertex x̂i ∈ V (G)
corresponding to each element xi, where i ∈ [q]. For ȳ = y1y2 . . . yn ∈ Σ?

q we create a path
Py = (u, ŷ1, ŷ2, . . . ŷn, u

′). We add an edge between x̂i and ŷj , for i ∈ [q] and j ∈ [n], if
and only if xi = yj . We also add four more vertices u1, u2, u′1, and u′2 to V (G) and add
edges (u1, u2), (u2, u), (u, u1), (u′1, u′2), (u′2, u′), and (u′, u′1) to E(G). For each xi ∈ Σ,
we attach t − 1 triangles to x̂i, i.e. we add edges {(z1

i , z̃
1
i ), (z2

i , z̃
2
i ), . . . , (zt−1

i , z̃t−1
i )} and

(zji , x̂i), (x̂i, z̃
j
i ), for j ∈ [t− 1]. Next, we create a path Pw = (w1, w

′
1, w2, w

′
2, . . . , wl, w

′
l) in

G. We add a set R = {ri | i ∈ [l]} of l of independent vertices and for i ∈ [l], we add
the edges (wi, ri) and (w′i, ri) to E(G). Finally, we add edges (u,w1) and (w′l, u′). We set
k = tq + t+ l + 1, which completes the construction.

I Proposition 7. Let P = (s, a1, a
′
1, a2, a

′
2, . . . , an, a

′
n, s
′) be a path and B = {bi | i ∈ [n]}

be a set of independent vertices. Let H be the graph consisting of path P , the set B, and,
for i ∈ [n], the edges (ai, bi) and (a′i, bi). Then, for each B′ ⊆ B, there is a path PB′ such
that V (PB′) ∩B = B′. Moreover, the set B = {PB′ | B′ ⊆ B} is the set of all possible paths
between s, s′ in H.

Applying Proposition 7 to G, for each R′ ⊆ R, we have a (unique) cycle CR′ which
contains all the vertices in V (Py), all the vertices in Pw, and exactly R′ vertices from R.
We define a family of cycles R = {CR′ | R′ ⊆ R} ∪ {(wi, w′i, ri) | i ∈ [l]}. Note that
|R| = 2l + l = t+ l − 1 and each C ∈ R is a cycle in G. The intuition of having the set of
cycles {CR′ | R′ ⊆ R} in G is that each vertex in path Py must be used t− 1 times and can
therefore participate in one additional cycle (which contains vertices in V (Py)). We associate
each such extra cycle with a factor.

I Theorem 8. Let f : N → R≥1 be a computable monotonically increasing function such
that f(k) ∈ O(kε), where 0 < ε ≤ 1. Then, Almost Disjoint Cycle Packing admits no
polynomial kernel over Lf unless NP ⊆ coNP/poly.

3.2 A kernel for Almost Disjoint Cycle Packing
Let f : N→ R≥1 be a computable monotonically increasing function such that f(k) ∈ o(

√
k).

In this section, we consider the Almost Disjoint Cycle Packing problem restricted to Lf .
The kernelization algorithm presented below is inspired by the lossy kernel for the Cycle
Packing problem given in [22]. To simplify notation, we let c = f(k) and use c instead of
f(k) throughout the section, which implies that t = dkc e. As we shall see, the assumption
c ∈ o(

√
k) is required to guarantee that our kernelization algorithm does in fact run in time

polynomial in the input size. We show that, as long as c ∈ o(
√
k), we can in polynomial time

reduce an instance to at most O(2dce2k7+dce log3 k) vertices. Our kernelization algorithm
can be more or less divided into three stages. We start by computing (using Theorem 1) a
feedback vertex set of size at most O(k log k) and denote this set by F (assuming no k vertex
disjoint cycles were found). We let T = G− F and let T≤1, T2, and T≥3, denote the sets of
vertices in T having degree at most one in T , degree exactly two in T , and degree greater
than two in T , respectively. Moreover, we let P denote the set of all maximal degree-two
paths in G[T2]. Next, we bound the size of T≤1, which implies a bound on the size of T≥3
and P. In the second stage, we show that (roughly speaking) the graph can have at most
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26:8 Kernelization of Cycle Packing with Relaxed Disjointness Constraints

dce − 1 vertices of high degree. Using this fact, the last stage consists of bounding the size
of T2.

Bounding the size of T≤1. First, we get rid of vertices of degree one and two using
Reduction Rules A1 and A2.

I Reduction Rule A1. Delete vertices of degree zero or one in G.

I Reduction Rule A2. If there is a vertex v of degree exactly two in G then delete v and
connect its two neighbors by a new edge.

I Reduction Rule A3. If there exists an edge (u, v) ∈ E(G) of multiplicity more than 2t
then reduce its multiplicity to 2t ≤ 2k.

The fact that we can assume 2t ≤ 2k follows from the observation that when t = k the
problem becomes solvable in time polynomial in n and k. Once Reduction Rules A1, A2,
and A3 are no longer applicable, the minimum degree of the graph is three and the multiplicity
of every edge is at most 2t. Note that every vertex in T≤1 is either a leaf or an isolated vertex
in T . Therefore, every vertex of T≤1 has at least two neighbours in F . For (u, v) ∈ F ×F , let
L(u, v) be the set of vertices of degree at most one in T = G− F such that each x ∈ L(u, v)
is adjacent to both u and v (if u = v, then L(u, u) is the set of vertices which have degree at
most one in T = G− F and at least two edges to u). For each pair (u, v) ∈ F × F , we mark
|F |dkc e+ 2k + 1 vertices from L(u, v) if L(u, v) > |F |dkc e+ 2k + 1 and mark all vertices in
L(u, v) if L(u, v) ≤ |F |dkc e+ 2k + 1.

I Reduction Rule A4 [22]. If |T≤1| ≥ |F |2(|F |dkc e+2k+1)+1 then there exists an unmarked
vertex v ∈ T≤1.

If dG−F (v) = 0 then delete v.
If dG−F (v) = 1 contract the unique edge in G−F which is incident to v. We let e denote
this unique edge and we let w denote the other endpoint onto which we contract e.

Bounding the number of high-degree vertices. When none of the aforementioned reduc-
tion rules are applicable, the size of T≤1, T≥3, and P, is at most |F |2(|F |dkc e+ 2k + 1) =
O(k4 log3 k). Consider P , i.e. the collection of maximal degree-two paths in T2, and assume
that there exists a set Fdce = {x1, . . . , xdce} ⊆ F (of size dce) such that for every vertex
x ∈ Fdce there exists a path P ∈ P such that x has at least 4kdce neighbours in P . We show
that if Fdce exists then we have a yes-instance.

I Reduction Rule A5. If there exists a set of dce vertices Fdce = {x1, . . . , xdce} ⊆ F such
that for all xi, 1 ≤ i ≤ dce, |NG(xi) ∩ V (P)| > |F |2(|F |dkc e + 2k + 1)4kdce, then return a
trivial yes-instance.

After applying Reduction Rule A5, there can be at most dce − 1 vertices in F having
more than |F |2(|F |dkc e+ 2k + 1)4kdce = O(k5 log3 k) neighbors in T2. We let Fdce−1 ⊆ F

denote the maximum sized such subset and we let F ? = F \ Fdce−1. For any vertex
x ∈ F ?, |NG(x) ∩ V (P)| ≤ |F |2(|F |dkc e+ 2k + 1)4kdce and, consequently, |NG(F ?) ∩ V (P)|
≤ |F |2(|F |dkc e+ 2k + 1)4kdce|F ?| ≤ |F |3(|F |dkc e+ 2k + 1)4kdce = O(k6 log3 k).

Bounding the size of T2. We start by marking all vertices in F , T≤1, T≥3, and NG(F ?) ∩
V (P). The total number of marked vertices is therefore in O(k6 log3 k). Moreover, all the
unmarked vertices must be in T2 and form degree-two paths. Each unmarked vertex must
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have at least one neighbor in Fdce−1 and cannot have neighbors in F ?. We call a set of
unmarked vertices a region if they form a maximal path in G[T2]. At this point, the total
number of regions is in O(k6 log3 k), as the number of marked vertices is in O(k6 log3 k).
Therefore, our last step is to bound the size of each region. To do so, we first recursively
further subdivide each region as follows. Fix a region R and check for each vertex xi ∈ Fdce−1,
the value of |NG(xi) ∩R|. If |NG(xi) ∩R| < 4kdce2dce, then we again mark the vertices in
NG(xi) ∩R, increasing the number of regions by a multiplicative factor of at most 4kdce2dce.
We repeat this process as long as there exists a region R and a vertex xi ∈ Fdce−1 satisfying
|NG(xi)∩R| < 4kdce2dce. Since |Fdce−1| < dce, repeating this procedure for every region and
every vertex in Fdce−1 increases the number of regions to at most O(2dce2k6+dce log3 k); each
of the initial O(k6 log3 k) regions can be subdivided into at most (4kdce2dce)dce subregions.

I Lemma 9. Let H be a graph consisting of a path P and an independent set X =
{x1, . . . , xdce} of size dce ≥ 1. Let k ≥ dce2 be an integer. If ∀x ∈ X we have |NH(x)| ≥
4kdce2dce and ∀p ∈ V (P ) we have |NH(p) ∩X| > 0, then we can construct a set of distinct
cycles C = C1 ∪ . . . ∪ Cdce such that (a) |Ci| = dkc e, (b) all cycles in Ci pairwise intersect in
xi, and (c) every vertex in P appears in at most one cycle in C.

Using Lemma 9, we can get an upper bound on the size of a region R by applying the
following reduction rule. Recall that by construction (and after subdividing regions), vertices
of a region have neighbours only in Fdce−1, where Fdce−1 is a set of at most dce − 1 vertices.
In fact, for each region R, there exists a set FR ⊆ Fdce−1 such that each vertex in R has at
least one neighbor in FR and each vertex in FR has at least 4kdce2dce neighbors in R.

I Reduction Rule A6. Let R be a region such that |R| > 4kdce4dce. Let Q = {Q1, Q2, . . .} be
a family of sets which partitions R such that for any two vertices u, v ∈ R, we have u, v ∈ Qi
if and only if NG(u) ∩ FR = NG(v) ∩ FR. In other words, two vertices belong to the same
set in Q if and only if they share the same neighborhood in FR. Since |R| > 4kdce4dce and
|Q| ≤ 2dce, there exists a set Q ∈ Q such that |Q| > 4kdce2dce. Let v be a vertex in Q and let
w be a neighbor of v in R (v can have at most two neighbors in R). Contract the edge (v, w)
onto w. Note that since |Q| > 4kdce2dce, each vertex in FR has at least 4kdce2dce neighbors
in R even after the contraction.

Since the number of regions is in O(2dce2k6+dce log3 k) and the size of a region is at most
4kc4c, the theorem follows.

I Theorem 10. Let f : N→ R≥1 be a computable monotonically increasing function such
that f(k) ∈ o(

√
k). For c = f(k), Almost Disjoint Cycle Packing admits a kernel

consisting of at most O(2c2
k7+c log3 k) vertices over Lf .

Theorem 10 implies that when c ∈ o(
√
k) the Almost Disjoint Cycle Packing

problem admits a subexponential kernel. When c ∈ o(log` k), ` ∈ N, the problem admits a
quasi-polynomial kernel. Finally, when c ∈ O(1) the problem admits a polynomial kernel.

4 Pairwise Disjoint Cycle Packing

Recall that in the Pairwise Disjoint Cycle Packing problem, given a graph G and
integers k and t, the goal is to find at least k cycles such that every pair of cycles intersects
in at most t vertices. To show NP-completeness of Pairwise Disjoint Cycle Packing,
for t = 1, we give a reduction from a variant of SAT called 2/2/4-SAT defined as follows:
Each clause contains four literals, each variable appears four times in the formula, twice
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negated and twice not negated, and the question is whether there is a truth assignment of
the variables such that in each clause there are exactly two true literals. This variant was
shown NP-complete by Ratner and Warrnuth [25].

I Theorem 11. Pairwise Disjoint Cycle Packing is NP-complete for t = 1.

4.1 A polynomial kernel for t = 1
There are many similarities but also some subtle differences when dealing with the cases
t = 1 and t ≥ 2. For instance, for any value of t ≥ 1, finding a flower of order k in the
graph is sufficient to solve the problem. On the other hand, not all vertices of degree two
can be bypassed when t ≥ 2. More importantly, finding two vertices in G with more than
2k common neighbors is enough to solve the problem for t ≥ 2 but not for t = 1. As we
shall see, this seemingly small difference requires major changes when dealing with the case
t = 1. We start with some classical results and reduction rules which will be used throughout.
Whenever some reduction rule applies, we apply the lowest-numbered applicable rule.

The first step in our kernelization algorithm is to run the algorithm of Theorem 1 and
either output a trivial yes-instance (if k vertex disjoint cycles are found) or mark the vertices
of the feedback vertex set and denote this set by F . We proceed with the following simple
reduction rules to handle low-degree vertices and self-loops in the graph.

I Reduction Rule B1. Delete vertices of degree zero or one in G.

I Reduction Rule B2. If there is a vertex v of degree exactly two in G then delete v and
connect its two neighbors by a new edge.

I Reduction Rule B3. If there exists a vertex v ∈ V (G) with a self-loop then delete the loop
(not the vertex) and decrease the parameter k by one.

I Reduction Rule B4. If there is a pair of vertices u and v in V (G) such that there are
more than two parallel edges between them then reduce the multiplicity of the edge to two.

Once none of the above reduction rules are applicable, our next goal is to bound the
maximum degree in the graph. To do so, we make use of the following.

I Lemma 12 ([7]). Given a (multi) graph G, an integer k, and a vertex v ∈ V (G), there is
a polynomial-time algorithm that either finds a v-flower of order k or finds a set Zv such that
Zv ⊆ V (G) \ {v} intersects all cycles passing through v, |Zv| ≤ 2k, and there are at most 2k
edges incident to v and with second endpoint in Zv.

A q-star, q ≥ 1, is a graph with q+ 1 vertices, one vertex of degree q and all other vertices of
degree 1. Let G be a bipartite graph with vertex bipartition (A,B). A set of edgesM ⊆ E(G)
is called a q-expansion of A into B if (i) every vertex of A is incident with exactly q edges of
M and (ii) M saturates exactly q|A| vertices in B, i.e. there is a set of q|A| vertices in B
which are incident to edges in M .

I Lemma 13 (See [7, 28]). Let q be a positive integer and G be a bipartite graph with vertex
bipartition (A,B) such that |B| ≥ q|A| and there are no isolated vertices in B. Then, there
exist nonempty vertex sets X ⊆ A and Y ⊆ B such that:

X has a q-expansion into Y and
no vertex in Y has a neighbour outside X, i.e. N(Y ) ⊆ X.

Furthermore, the sets X and Y can be found in time polynomial in the size of G.



A. Agrawal, D. Lokshtanov, D. Majumdar, A. E. Mouawad, and S. Saurabh 26:11

For every vertex v ∈ V (G) of high degree (which will be specified later), we apply the
algorithm of Lemma 12. If the algorithm finds a v-flower of order k, the following reduction
rule allows us to deal with it.

I Reduction Rule B5. If G has a vertex v such that there is a v-flower of order at least k
then return a trivial yes-instance.

Hence, in what follows we assume that no such flower was found but instead we have a set Zv
of size at most 2k such that Zv ⊆ V (G) intersects all cycles passing through v. Consider the
connected components of the graph G[V (G)\ (Zv ∪{v})]. At most k−1 of those components
can contain a cycle, as otherwise we again have a trivial yes-instance consisting of k vertex
disjoint cycles.

I Reduction Rule B6. If there are k or more components in G \ ({v} ∪ Zv) containing a
cycle then return a trivial yes-instance.

Moreover, for every component D of G[V (G) \ (Zv ∪ {v})], we have |NG(v) ∩ V (D)| ≤ 1. In
other words, v has at most one neighbor in any component and out of those components
at most k − 1 are not trees. Let D = {D1, D2, . . . , Dq} denote those trees in which v has a
neighbor. Since the minimum degree of the graph is three, every leaf of a tree in D must
have at least one neighbor in Zv.

I Lemma 14. Let C = {C1, . . . , Ck} be a solution in G and let C be a cycle in C such that
V (C) ∩ (Zv ∪ {v}) 6= ∅. Then, C can intersect with at most 2k + 1 components in D and
therefore the solution C can intersect with at most 2k2 + k components in D.

We now construct a bipartite graph H with bipartition (A = Zv, B = D). We slightly
abuse notation and assume that every component in D corresponds to a vertex in B and
every vertex in Zv corresponds to a vertex in A. For every Di ∈ D and for every z ∈ Zv,
(Di, z) ∈ E(H) if and only if there exists u ∈ V (Di) such that (u, z) ∈ E(G). After exhaustive
application of Reduction Rule B4, every pair of vertices in G can have at most two edges
between them. In particular, there can be at most two edges between any z ∈ Zv and v.
Therefore, if the degree of v in G is more than (2k2 + k + 2)2k + 3k − 1 then the number of
components |D| is at least (2k2 + k + 2)2k (taking into account the at most k − 1 neighbors
of v in components containing a cycle as well as the at most 2k edges incident to v and some
vertex in Zv). Consequently, |D| ≥ (2k2 + k + 2)|Zv|. We are now ready to state our main
reduction rule.

I Reduction Rule B7. If there exists a vertex v ∈ V (G) such that dG(v) > (2k2 + k+ 2)2k+
3k − 1 then apply Lemma 13 with q = 2k2 + k + 2 in the bipartite graph H.

Let D′ ⊆ D and Z ′v ⊆ Zv be the sets obtained after applying Lemma 13 with q = 2k2+k+2,
A = Zv, and B = D, such that Z ′v has a (2k2 + k + 2)-expansion into D′ in H.
Delete all the edges of the form (u, v) ∈ E(G) such that u ∈ Di and Di ∈ D′.
Add two parallel edges between v and every vertex in Z ′v.

We now have all the required ingredients to bound the size of our kernel. From Theorem 1,
we know that the graph has a feedback vertex set F of size at most O(k log k). The degree
of any vertex in the graph is at least three (Reduction Rule B2) and at most in O(k3)
(Reduction Rule B7). Theorem 16 follows from combining these facts with Lemma 15.

I Lemma 15 ([7]). Let G = (V,E) be an undirected (multi) graph having minimum degree
at least three, maximum degree at most d, and a feedback vertex set of size at most r. Then,
|V (G)| < (d+ 1)r and |E(G)| < 2dr.
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I Theorem 16. For t = 1, Pairwise Disjoint Cycle Packing admits a kernel with
O(k4 log k) vertices and O(k4 log k) edges.

4.2 A polynomial compression for t ≥ 2 (independent of t)
When t ≥ 2, finding two vertices in G with 2k internally vertex-disjoint paths connecting them
is enough to pack k cycles pairwise intersecting in at most 2 vertices. Hence, bounding the
maximum degree is relatively easy. We first mark the feedback vertex set F and exhaustively
apply Reduction Rule B1 and the following modified variant of Reduction Rule B2.

I Reduction Rule B8. If there exists a set of vertices P = {v1, . . . , vt+2} ⊆ V (G) such that
G[P ] is a path, dG(vi) = 2, 2 ≤ i ≤ t+ 1, and |P | ≥ t+ 2, then contract the edge v1v2.

As before, for every vertex v ∈ V (G), we apply the algorithm of Lemma 12. If the
algorithm finds a v-flower of order k, we apply Reduction Rule B5. Otherwise, consider
the connected components of the graph G[V (G) \ (Zv ∪ {v})]. We ignore the at most k − 1
components that can contain a cycle and focus on the set D = {D1, D2, . . . , Dq} of trees in
which v has a neighbor (recall that |NG(v) ∩ V (D)| ≤ 1 for all D ∈ D and each component
D must have a neighbor in Zv).

I Reduction Rule B9. If |D| > 4k − 2 (or equivalently if dG(v) > 7k − 3) return a trivial
yes-instance.

Having bounded the maximum degree of any vertex by O(k), we immediately obtain a
bound of O(k2 log k) on |T≤1|, |T≥3|, and the number of maximal degree-two paths in T2.
Recall that T≤1, T2, and T≥3, are the sets of vertices in T = G[V (G) \ F ] having degree
at most one in T , degree exactly two in T , and degree greater than two in T , respectively.
To bound the size of T2, note that if we mark all vertices in F ∪ NG(F ) we would have
marked a total of O(k2 log k) vertices and the only unmarked vertices form (not necessarily
maximal) degree-two paths in T2 (and G), which we call segments. However, we know from
Reduction Rule B8 that the size of any segment is at most t+ 1. Moreover, the total number
of such segments is at most O(k2 log k). Putting it all together, we now have a kernel with
O(tk2 log k) vertices.

I Lemma 17. For any t ≥ 2, Pairwise Disjoint Cycle Packing admits a kernel with
O(tk2 log k) vertices.

More work is needed to get rid of the dependence on t. The first step is to show that
we can solve Pairwise Disjoint Cycle Packing in cp(k)nO(1) time, where c is a fixed
constant and p(.) is a polynomial function in k. In the second step, we introduce a “succinct”
version of Pairwise Disjoint Cycle Packing, namely Succinct Pairwise Disjoint
Cycle Packing, and show that we can reduce Pairwise Disjoint Cycle Packing to an
instance of Succinct Pairwise Disjoint Cycle Packing where all the information can
be encoded using a number of bits polynomially bounded in k alone.

Succinct Pairwise Disjoint Cycle Packing Parameter: k

Input: An undirected (multi) graph G, integers k and t, a weight function α : V (G)→ N,
and a weight function β : E(G)→ N
Question: DoesG have at least k distinct cycles C1, . . . , Ck such that α(V (Ci)∩V (Cj)) ≤
t and β(E(Ci) ∩ E(Cj)) ≤ t for all i 6= j?
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I Lemma 18. For any t ≥ 2, Pairwise Disjoint Cycle Packing can be solved in
2k3 log knO(1) time.

I Theorem 19. For any t ≥ 2, we can compress an instance of Pairwise Disjoint Cycle
Packing to an equivalent instance of Succinct Pairwise Disjoint Cycle Packing using
at most O(k5 log2 k) bits. In other words, Pairwise Disjoint Cycle Packing admits a
polynomial compression.
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