
ANALYSIS OF OPTIMIZATION ALGORITHMS VIA INTEGRAL
QUADRATIC CONSTRAINTS: NONSTRONGLY CONVEX

PROBLEMS∗

MAHYAR FAZLYAB† , ALEJANDRO RIBEIRO† , MANFRED MORARI† , AND

VICTOR M. PRECIADO†

Abstract. In this paper, we develop a unified framework able to certify both exponential and
subexponential convergence rates for a wide range of iterative first-order optimization algorithms. To
this end, we construct a family of parameter-dependent nonquadratic Lyapunov functions that can
generate convergence rates in addition to proving asymptotic convergence. Using Integral Quadratic
Constraints (IQCs) from robust control theory, we propose a Linear Matrix Inequality (LMI) to
guide the search for the parameters of the Lyapunov function in order to establish a rate bound.
Based on this result, we formulate a Semidefinite Programming (SDP) whose solution yields the best
convergence rate that can be certified by the class of Lyapunov functions under consideration. We
illustrate the utility of our results by analyzing the gradient method, proximal algorithms and their
accelerated variants for (strongly) convex problems. We also develop the continuous-time counter-
part, whereby we analyze the gradient flow and the continuous-time limit of Nesterov’s accelerated
method.

Key words. Convex optimization, first-order methods, Nesterov’s accelerated method, proximal
gradient methods, integral quadratic constraints, linear matrix inequality, semidefinite programming.

AMS subject classifications. 90C22, 90C25, 90C30, 93C10, 93D99, 93C15

1. Introduction. The analysis and design of iterative optimization algorithms
is a well-established research area in optimization theory. Due to their computational
efficiency and global convergence properties, first-order methods are of particular
interest, especially in large-scale optimization arising in current machine learning
applications. However, these algorithms can be very slow, even for moderately well-
conditioned problems. In this direction, accelerated variants of first-order algorithms,
such as Polyak’s Heavy-ball algorithm [25] or Nesterov’s accelerated method [22], have
been developed to speed up the convergence in ill-conditioned and nonstrongly convex
problems.

In numerical optimization, convergence analysis is an integral part of algorithm
tuning and design. This task, however, is often pursued on a case-by-case basis and the
analysis techniques heavily depend on the particular algorithm under study, as well as
the underlying assumptions. However, by interpreting iterative algorithms as feedback
dynamical systems, it is possible to incorporate tools from control theory to analyze
and design these algorithms in a more systematic and unified manner [12, 15, 30, 31].
Moreover, control techniques can be exploited to address more complex tasks, such
as analyzing robustness against uncertainties, deriving nonconservative worst-case
bounds, and providing convergence guarantees under less restrictive assumptions [6,
15,19].

A universal approach to analyzing the stability of dynamical systems is to con-
struct a Lyapunov function that decreases along the trajectories of the system, proving
asymptotic convergence. In the context of iterative optimization algorithms, it is of
particular importance to certify a convergence rate in addition to proving asymptotic

∗Submitted to the editors DATE.
Funding: This work was supported in part by the NSF under grants CAREER-ECCS-1651433

and IIS-1447470.
†Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia,

PA mahyarfa@seas.upenn.edu.

1

This manuscript is for review purposes only.

ar
X

iv
:1

70
5.

03
61

5v
2

 [
m

at
h.

O
C

]
 2

3
Fe

b
20

18

mailto:mahyarfa@seas.upenn.edu

2 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

convergence. Construction of Lyapunov functions that can achieve this goal is not
straightforward, especially for nonstrongly convex problems, in which the convergence
rate is subexponential. It is important to remark that in a considerable number of
applications in machine learning, the underlying optimization problem is not strongly
convex [3].

The goal of the present work is to develop a semidefinite programming (SDP)
framework for the construction of Lyapunov functions that can characterize both ex-
ponential and subexponential convergence rates for iterative first-order optimization
algorithms. The main pillars of our framework are time-varying Lyapunov functions,
originally proposed in [27] for analyzing gradient-based momentum methods [32, 33],
as well as Integral Quadratic Constraints (IQCs) from robust control theory [20, 34],
which have recently been adapted by Lessard et al. [19] in the context of optimization
algorithms. Specifically, we propose a family of nonquadratic Lyapunov functions
equipped with time-dependent parameters that can establish both exponential and
subexponential convergence rates. We then develop an LMI to guide the search for
the parameters of the Lyapunov function in order to generate analytical/numerical
convergence rates. Based on this result, we formulate an SDP to compute the fastest
convergence rate that can be certified by the class of Lyapunov functions under con-
sideration. In this SDP, the properties of the objective function (e.g., convexity, Lip-
schitz continuity, etc.) can be systematically encoded into the SDP, providing a mod-
ular approach to obtaining convergence rates under various regularity assumptions,
such as quasiconvexity [14], weak quasiconvexity [13], quasi-strong convexity [21],
quadratic growth [21], and Polyak- Lojasiewicz condition [17]. Furthermore, we extend
our framework to continuous-time settings, in which we analyze the continuous-time
limits (by taking infinitesimal stepsizes) of relevant iterative optimization algorithms.
We will illustrate the generality of our framework by analyzing several first-order opti-
mization algorithms; namely, unconstrained (accelerated) gradient methods, gradient
methods with projection, and (accelerated) proximal methods.

Finally, we consider algorithm design. Specifically, we develop a robust counter-
part of the developed LMI whose feasibility provides the algorithm with an additional
stability margin in the sense of Lyapunov. As a design experiment, we use the LMI to
tune the stepsize and momentum coefficient of Nesterov’s accelerated method applied
to strongly convex functions, considering robustness as a design criterion.

1.1. Related work. There is a host of results in the literature using SDPs to
analyze the convergence of first-order optimization algorithms [10,18,28,29]. The first
among them is [10], in which Drori and Teboulle developed an SDP to derive analyt-
ical/numerical bounds on the worst-case performance of the unconstrained gradient
method and its accelerated variant. An extension of this framework to the proximal
gradient method–for the case of strongly convex problems–has been recently proposed
in [28]. These SDP formulations, despite being able to yield new performance bounds,
are highly algorithm dependent. To depart from classical algorithmic view, Lessard
et. al [19] developed an SDP framework based on quadratic Lyapunov functions and
IQCs to derive sufficient conditions for exponential stability of an algorithm when the
objective function is strongly convex [19, Theorem 4]. Specifically, they formulate a
small SDP whose feasibility verifies exponential convergence at a specified rate. It
is important to remark that Lessard’s framework is specifically tailored to analyze
strongly convex problems with exponential convergence [19, 24] and subexponential
rates cannot be captured. Finally, another related work is by Hu and Lessard [16], in
which they have independently proposed an LMI framework based on quadratic Lya-

This manuscript is for review purposes only.

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 3

punov functions and dissipativity theory to analyze Nesterov’s accelerated method.
In contrast, the present work, inspired by [19], develops an IQC framework using
time-dependent nonquadratic Lyapunov functions for the analysis of a broader family
of functionals, as well as algorithms involving projections and proximal operators,
including the proximal variant of Nesterov’s method.

1.2. Notation and preliminaries. We denote the set of real numbers by R,
the set of real n-dimensional vectors by Rn, the set of m×n-dimensional matrices by
Rm×n, and the n-dimensional identity matrix by In. We denote by Sn, Sn+, and Sn++

the sets of n-by-n symmetric, positive semidefinite, and positive definite matrices,
respectively. For M ∈ Rn×n and x ∈ Rn, we have that x>Mx = 1

2x
>(M + M>)x.

The p-norm (p ≥ 1) is displayed by ‖ · ‖p : Rn → R+. For two matrices A ∈ Rm×n
and B ∈ Rp×q of arbitrary dimensions, their Kronecker product is given by

A⊗B =



A11B · · · A1nB

...
. . .

...
Am1B . . . AmnB


 .

Further, we have that (A ⊗ B)> = A> ⊗ B> and (AC) ⊗ (BD) = (A ⊗ B)(C ⊗D),
for matrices of appropriate dimensions. Let f : Rn → R ∪ {+∞} be a closed proper
function. The effective domain of f is denoted by dom f = {x ∈ Rn : f(x) <∞}. The
indicator function IX : Rn → R ∪ {+∞} of a closed nonempty convex set X ⊂ Rn is
defined as IX (x) = 0 if x ∈ X , and IX (x) = +∞ otherwise. The Euclidean projection
of x ∈ Rn onto a set X is denoted by [x]X = argminy∈X ‖y − x‖2.

Definition 1.1 (Smoothness). A differentiable function f : Rd → R is Lf -smooth
on S ⊆ dom f if the following inequality holds.

‖∇f(x)−∇f(y)‖2 ≤ Lf‖x− y‖2 for all x, y ∈ S.(1.1)

An equivalent definition is that

f(y) ≤ f(x) +∇f(x)>(y − x) +
Lf
2
‖y − x‖22 for all x, y ∈ S.(1.2)

Definition 1.2 (Strong convexity). A differentiable function f : Rd → R is mf -
strongly convex on S ⊆ dom f if the following inequality holds.

mf‖x− y‖22 ≤ (x− y)>(∇f(x)−∇f(y)) for all x, y ∈ S.(1.3)

An equivalent definition is that

f(x) +∇f(x)>(y − x) +
mf

2
‖y − x‖22 ≤ f(y) for all x, y ∈ S.(1.4)

We denote the class of Lf -smooth and mf -strongly convex functions by F(mf , Lf).
Note that, by setting mf = 0, we recover convex functions. For the class F(mf , Lf),
we denote the condition number by κf = Lf/mf ≥ 1.

2. Algorithm representation. Iterative algorithms can be represented as lin-
ear dynamical systems interacting with one or more static nonlinearities [19]. The
linear part describes the algorithm itself, while the nonlinear components depend ex-
clusively on the first-order oracle of the objective function. In this paper, we consider

This manuscript is for review purposes only.

4 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

first-order algorithms that have the following state-space representation,

ξk+1 = Akξk +Bkuk,(2.1)

yk = Ckξk,

uk = φ(yk),

xk = Ekξk,

where at each iteration index k, ξk ∈ Rn is the state, uk ∈ Rd is the input (d ≤ n),
yk ∈ Rd is the feedback output that is transformed by the nonlinear map φ : Rd → Rd
to generate uk, and xk ∈ Rd is the output at which the suboptimality will be evaluated
for convergence analysis. See Figure 1 for a block diagram representation.1


A B
C 0

�

�

x

yu

1

Fig. 1: Block diagram representation of a first-order algorithm in state-space form.

A broad family of first-order algorithms can be represented in the canonical form
(2.1), where the matrices (Ak, Bk, Ck, Ek) differ for each algorithm. In this represen-
tation, the nonlinear feedback component φ depends on the oracle of the objective
function. For instance, in unconstrained smooth minimization problems, we have that
φ = ∇f , where f is the objective function. In composite optimization problems, φ is
the generalized gradient mapping of the composite function, which we will describe in
§5. As an illustration, consider the following recursion defined on the two sequences
{xk} and {yk},

xk+1 = xk + βk(xk − xk−1)− hk∇f(yk),(2.2)

yk = xk + γk(xk − xk−1),

where hk, βk and γk are nonnegative scalars, {xk} is the primary sequence, and {yk}
is the sequence at which the gradient is evaluated. By defining the state vector
ξk = [x>k−1 x

>
k]> ∈ R2d, we can represent (2.2) in the canonical form (2.1), where the

matrices (Ak, Bk, Ck) are given by

[
Ak Bk
Ck 0

]
=




0 Id
−βkId (βk + 1)Id

0
−hkId

−γkId (γk + 1)Id 0


 .(2.3)

Notice that depending on the selection of βk and γk, (2.2) describes various existing
algorithms. For example, the gradient method corresponds to the case βk = γk = 0.
In Nesterov’s accelerated method, we have βk = γk. Finally, we recover the Heavy-ball
method by setting γk = 0.

1Since the input u = φ(y) is an explicit function of the output, we set the feedforward matrix D
to zero in the representation of the linear dynamics to ensure the explicit dependence of the feedback
input on the output, i.e., the feedback system is well-posed.

This manuscript is for review purposes only.

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 5

For an algorithm represented in the canonical form (2.1), its fixed points (if they
exist) are characterized by

ξ? = Akξ? +Bku?, y? = Ckξ?, u? = φ(y?), x? = Ekξ? for all k.(2.4)

For well-designed algorithms, the fixed-point equation must coincide with the opti-
mality conditions of the underlying optimization problem.

3. Main results. In this paper, we are concerned with the convergence analysis
of first-order algorithms designed to solve optimization problems of the form

X? = argminx∈Rd{F (x) = f(x) + g(x)},(3.1)

where f : Rd → R is closed, proper, and differentiable, while g : Rd → R ∪ {+∞}
is closed convex proper (CCP), and possibly nondifferentiable. Depending on the
choice of f and g, (3.1) describes various specialized optimization problems. For
instance, when g(x) = IX (x) is the indicator function of a nonempty, closed, convex
set X ⊆ Rd, (3.1) is equivalent to constrained smooth programming; when g(x) ≡ 0,
we obtain unconstrained smooth programming; and, when f(x) ≡ 0, (3.1) simplifies
to an unconstrained nonsmooth optimization problem. In all cases, we assume that
the optimal solution set X? is nonempty and closed, and the optimal value F? =
infx∈Rd F (x) is finite.

Consider an iterative first-order algorithm, represented in the state-space form
(2.1), that under appropriate initialization solves (3.1) asymptotically; that is, the
sequence of outputs {xk} satisfies limk→∞ F (xk) = F (x?), where x? ∈ X?. We
assume that the fixed point y? of the sequence {yk}, defined in (2.4), satisfies y? = x?.
In other words, both {xk} and {yk} are convergent to the same optimal point x?.
To establish a rate bound for the algorithm under study, we propose the following
Lyapunov function:

Vk(x, ξ) = ak(F (x)− F (x?)) + (ξ − ξ?)>Pk(ξ − ξ?),(3.2)

where ak ≥ 0, Pk ∈ Sn+ for all k, and are to be determined. The first term is the
suboptimality of x scaled by ak and the second term quantifies the suboptimality of
the state ξ with respect to the optimal state ξ?. Notice that by this definition, we
have that Vk(x, ξ) ≥ 0 for all k, and Vk(x?, ξ?) = 0, i.e., the Lyapunov function is
nonnegative everywhere and zero at optimality. Suppose we select {ak} and {Pk} such
that the Lyapunov function becomes nonincreasing along the trajectories of (2.1), i.e.,
the following condition holds.

Vk+1(xk+1, ξk+1) ≤ Vk(xk, ξk) for all k.(3.3)

Then, we can conclude ak(F (xk)− F (x?)) ≤ Vk(xk, ξk) ≤ V0(x0, ξ0), or equivalently,

0 ≤ F (xk)− F (x?) ≤
V0(x0, ξ0)

ak
= O(

1

ak
) for all k.(3.4)

In other words, the sequence {ak} generates an upper bound on the suboptimality or,
equivalently, a lower bound on the convergence rate. As a result, the task of certifying
a convergence rate for the algorithm translates into finding sufficient conditions to
guarantee (3.3). In the following theorem, we develop an LMI whose feasibility is
sufficient for (3.3) to hold.

This manuscript is for review purposes only.

6 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

Theorem 3.1 (Main result). Let x? ∈ argminx∈Rd F (x) be a minimizer of
F : Rd → R ∪ {+∞} with a finite optimal value F (x?). Consider an iterative first-
order algorithm in the state-space form (2.1).

1. Suppose the fixed points (ξ?, u?, y?, x?) of (2.1) satisfy

ξ? = Akξ? +Bku?, y? = Ckξ?, u? = φ(y?), x? = Ekξ? = y? for all k.(3.5)

2. Suppose there exist symmetric matrices M1
k ,M

2
k ,M

3
k such that the following in-

equalities hold for all k.

F (xk+1)− F (xk) ≤ e>kM1
kek,(3.6a)

F (xk+1)− F (x?) ≤ e>kM2
kek,(3.6b)

0 ≤ e>kM3
kek,(3.6c)

where ek = [(ξk − ξ?)> (uk − u?)>]> ∈ Rn+d and M3
k is either zero or indefinite.

3. Suppose there exists a nonnegative and nondecreasing sequence of reals {ak}, a
sequence of nonnegative reals {σk}, and a sequence of n × n positive semidefinite
matrices {Pk} satisfying

M0
k + akM

1
k + (ak+1 − ak)M2

k + σkM
3
k � 0 for all k,(3.7)

where

M0
k =

[
A>k Pk+1Ak − Pk A>k Pk+1Bk
B>k Pk+1Ak B>k Pk+1Bk

]
.(3.8)

Then the sequence {xk} satisfies

F (xk)− F (x?) ≤
a0(F (x0)− F (x?)) + (ξ0 − ξ?)>P0(ξ0 − ξ?)

ak
for all k.(3.9)

Before proving Theorem 3.1, we briefly discuss the assumptions made in the statement
of the theorem. The first inequality in (3.6) bounds the difference between two consec-
utive iterates. In particular, if M1

k is negative semidefinite for all k, then the sequence
{F (xk)} is monotone. The second inequality in (3.6) bounds the suboptimality; and
finally, the third inequality in (3.6) is a quadratic constraint on the input-output pairs
(ξk, uk) that are related via the rule uk = φ(Ckξk). These bounds will be required
to satisfy condition (3.3) and will feature heavily throughout the paper. Note that
the matrices (M1

k ,M
2
k ,M

3
k) in (3.6) depend on the algorithm parameters, i.e., the

matrices (Ak, Bk, Ck, Ek) that define the algorithm, as well as the assumptions about
the objective function F .

Proof of Theorem 3.1. First, by (2.1) and (3.5), we can write

ξk+1 − ξ? = Ak(ξk − ξ?) +Bk(uk − u?),

Using the above identity, we can write

(ξk+1 − ξ?)>Pk+1(ξk+1 − ξ?)−(ξk − ξ?)>Pk(ξk − ξ?) = e>kM
0
kek.(3.10a)

Multiply (3.6a) by ak and (3.6b) by (ak+1 − ak) and add both sides of the resulting
inequalities to obtain

ak+1(F (xk+1)− F (x?))− ak(F (xk)− F (x?)) ≤ 0.(3.10b)

This manuscript is for review purposes only.

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 7

By adding both sides of the inequalities in (3.10) and recalling the definition of
Vk(xk, ξk) in (3.2), we can write

Vk+1(xk+1, ξk+1)−Vk(xk, ξk) ≤ e>k
(
M0
k + akM

1
k + (ak+1 − ak)M2

k

)
ek.(3.11)

Suppose the matrix inequality in (3.7) holds. By multiplying this inequality from the
left and right by e>k and ek, respectively, we obtain

e>k
(
M0
k + akM

1
k + (ak+1 − ak)M2

k + σkM
3
k

)
ek ≤ 0.(3.12)

Finally, adding both sides of (3.11) and (3.12) yields

Vk+1(xk+1, ξk+1)− Vk(xk, ξk) ≤ −σke>kM3
kek ≤ 0,(3.13)

where the second inequality follows from (3.6c). Hence, the sequence {Vk(xk, ξk)}
is nonincreasing, implying ak(F (xk) − F (x?)) ≤ Vk(xk, ξk) ≤ V0(x0, ξ0). The proof
becomes complete by dividing both sides of the last inequality by ak.

Some remarks are in order regarding Theorem 3.1:

1. We do not make the assumption that the algorithm under consideration is a descent
method. In other words, the sequence {F (xk)} of function values is not necessar-
ily monotone, which is a hallmark of accelerated algorithms [23]. In contrast, we
require the sequence {Vk(xk, ξk)} of “energy” values to be monotonically decreas-
ing. From this perspective, the LMI (3.7) provides a guideline for the construction
energy functions with this property.

2. There is no restriction on the sequence {ak} other than nonnegativity and mono-
tonicity. Hence, we can characterize both exponential (ak = ρ−k, 0 ≤ ρ < 1) and
subexponential (ak = kp, p > 0, for example) convergence rates.

3. We have made no explicit assumptions about the objective function in Theorem
3.1, other than the quadratic bounds in (3.6). In fact, the matrices M1

k ,M
2
k ,M

3
k

that characterize these bounds depend on the parameters of the algorithm (e.g.
stepsize, momentum coefficient, etc.), as well as the assumptions about F . In §4
and §5, we will describe a general procedure for deriving these matrices for a wide
range of algorithms and assumptions.

3.1. Time-invariant algorithms with exponential convergence. In this
subsection, we specialize the results of Theorem 3.1 to time-invariant algorithms with
exponential convergence. Under these assumptions, we can precondition ak and Pk
to simplify the LMI in (3.7). Explicitly, suppose the matrices (Ak, Bk, Ck, Ek) that
define the algorithm do not change with k. By the particular selection

ak = ρ−2ka0, a0 > 0, Pk = ρ−2kP0, P0 � 0, 0 < ρ ≤ 1 for all k,(3.14)

the Lyapunov function in (3.2) reads as

Vk(ξ) = ρ−2k
(
a0(F (x)−F (x?)) + (ξ − ξ?)>P0(ξ − ξ?)

)
.(3.15)

The unknown parameters of the Lyapunov function are now a0 > 0, P0 � 0, and the
decay rate 0 < ρ ≤ 1. With this parameter selection, the LMI in (3.7) simplifies
greatly. The following result is a special case of Theorem 3.1 for the selection (3.14).

This manuscript is for review purposes only.

8 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

Theorem 3.2 (Exponential convergence of time-invariant algorithms). In theo-
rem 3.1, assume that the algorithm parameters as well as the matrices M1

k ,M
2
k ,M

3
k

in (3.6) do not change with k. In other words,

(Ak, Bk, Ck, Ek,M
1
k ,M

2
k ,M

3
k) = (A0, B0, C0, E0,M

1
0 ,M

2
0 ,M

3
0) for all k.

Suppose there exists a0 > 0, P0 ∈ Sn+, and λ0 ≥ 0 that satisfy

[
A>0 P0A0 − ρ2P0 A>0 P0B0

B>0 P0A0 B>0 P0B0

]
+ a0ρ

2M1
0 + a0(1−ρ2)M2

0 + λ0M
3
0 � 0,(3.16)

for some 0 < ρ ≤ 1. Then the sequence {xk} satisfy

F (xk)− F (x?) ≤
a0(F (x0)−F (x?)) + (ξ0 − ξ?)>P0(ξ0 − ξ?)

a0
ρ2k.(3.17)

Proof. By substituting the parameter selection (3.14) in (3.7) and factoring out
the positive term ρ−2k−2 from the resulting LMI, we obtain (3.16), which no longer
depends on k. Utilizing Theorem 3.1, the feasibility of (3.16) ensures (3.3), which in
turn implies (3.17). The proof is complete.

Remark 1. Regarding the parameter selection in (3.14), if we instead select ak ≡
0, Pk = ρ−2kP0 with P0 � 0 and 0 < ρ ≤ 1, the Lyapunov function (3.2) simplifies to
the quadratic function

Vk(ξ) = ρ−2k(ξ − ξ?)>P0(ξ − ξ?), P0 � 0.(3.18)

Correspondingly, the LMI (3.16) in Theorem 3.2 reduces to

[
A>0 P0A0 − ρ2P0 A>0 P0B0

B>0 P0A0 B>0 P0B0

]
+ λ0M

3
0 � 0.(3.19)

By Theorem 3.1, if (3.19) is feasible for some P0 � 0, λ0 ≥ 0 and 0 < ρ ≤ 1, then
the Lyapunov function in (3.18) would satisfy the decreasing property Vk+1(ξk+1) ≤
Vk(ξk), which translates to

(ξk+1 − ξ?)>P0(ξk+1 − ξ?) ≤ ρ2(ξk − ξ?)>P0(ξk − ξ?),

or equivalently,

‖ξk − ξ?‖22 ≤ ρ2kcond(P0)‖ξ0 − ξ?‖22.(3.20)

The matrix inequality (3.19) is precisely the condition derived in [19, Theorem 4] for
the case of strongly convex objective functions, time-invariant first-order algorithms,
and pointwise IQCs.

Having established the main result, it now remains to determine the matrices
M i
k, i ∈ {0, 1, 2, 3} that construct the LMI in (3.7). To this end, we first need to

introduce IQCs in the context of optimization algorithms.

3.2. IQCs for optimization algorithms. In control theory, there are various
approaches and criteria for stability of linear dynamical systems in feedback intercon-
nection with a memoryless and possibly time-varying nonlinearity. In this context,
IQCs, originally proposed by Megretski and Rantzer [20], is a powerful tool for de-
scribing various classes of nonlinearities, and are particularly useful for LMI-based

This manuscript is for review purposes only.

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 9

stability analysis. Lessard et al. [19] have recently adapted the theory of IQCs for
use in optimization algorithms. Specifically, they translate the first-order defining
properties of convex functions into various forms of IQCs for their gradient mappings.
In the following, we briefly describe the notion of pointwise IQCs [19] (or quadratic
constraints), that will be essential for subsequent developments.

3.2.1. Pointwise IQCs. Consider a mapping φ :Rd → Rd and a chosen “refer-
ence” input-output pair2 (x?, φ(x?)), x? ∈ domφ. We say that φ satisfies the pointwise
IQC defined by (Qφ, x?, φ(x?)) on S ⊆ domφ if for all x ∈ S, the following inequality
holds [19].

[
x− x?

φ(x)− φ(x?)

]>
Qφ

[
x− x?

φ(x)− φ(x?)

]
≥ 0,(3.21)

where Qφ ∈ S2d is a symmetric, indefinite matrix.3 Many inequalities in optimization
can be represented as IQCs of the form (3.21). For instance, suppose φ(x) is Lφ-
Lipschitz continuous on S ⊆ domφ for some positive and finite Lφ, i.e., ‖φ(x) −
φ(x?)‖2 ≤ Lφ‖x−x?‖2 for all (x, x?) ∈ S×S. By squaring both sides and rearranging
terms, we obtain

[
x− x?

φ(x)− φ(x?)

]> [
L2
φId 0

0 −Id

] [
x− x?

φ(x)− φ(x?)

]
≥ 0,(3.22)

which equivalently describes Lipschitz continuity. As another example, assume φ is
a firmly nonexpansive mapping on S. That is, for all (x, x?) ∈ S × S, we have that
‖φ(x)− φ(x?)‖22 ≤ (x− x?)>(φ(x)− φ(x?)). This inequality can be rewritten as

[
x− x?

φ(x)− φ(x?)

]> [
0 1

2Id
1
2Id −Id

] [
x− x?

φ(x)− φ(x?)

]
≥ 0.(3.23)

Note that by the Cauchy-Schwartz inequality, firm non-expansiveness implies Lips-
chitz continuity with Lipschitz parameter equal to one, i.e., (3.23) implies (3.22) with
Lφ = 1. There are many other interesting properties such as monotonicity (also known
as incremental passivity), one-sided Lipschitz continuity, cocoercivity, etc., that could
be represented by quadratic constraints. In the next subsection, we will focus on the
gradient mapping of a convex function from an IQC perspective.

3.2.2. IQCs for (strongly) convex functions. Consider the gradient map-
ping φ = ∇f , where f ∈ F(mf , Lf). It directly follows from the definition of (strong)
convexity in (1.3) that, ∇f satisfies the quadratic constraint

[
x−y

∇f(x)−∇f(y)

]> [−mfId
1
2Id

1
2Id 0

] [
x−y

∇f(x)−∇f(y)

]
≥ 0.(3.24)

Similarly, the Lipschitz inequality in (1.1) can be represented as

[
x−y

∇f(x)−∇f(y)

]> [
L2
fId 0

0 −1

] [
x−y

∇f(x)−∇f(y)

]
≥ 0.(3.25)

2As we will see later, the reference point is chosen as the fixed point of the interconnected system
we wish to analyze.

3If Qφ is positive (semi)definite, the quadratic constraint holds trivially and is not informative
about φ.

This manuscript is for review purposes only.

10 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

To combine strong convexity and Lipschitz continuity in a single inequality, we note
that ∇f also satisfies [23]

mfLf
mf+Lf

‖y−x‖22+
1

mf+Lf
‖∇f(y)−∇f(x)‖22 ≤ (∇f(y)−∇f(x))>(y−x).(3.26)

The above inequality can be represented by the following quadratic constraint [19],

[
x−y

∇f(x)−∇f(y)

]>
Qf

[
x−y

∇f(x)−∇f(y)

]
≥ 0, Qf =

[−mfLf

mf+Lf
Id

1
2Id

1
2Id

−1
mf+Lf

Id

]
.(3.27)

In the language of IQCs, we can say that the map φ = ∇f satisfies the pointwise IQC
defined by (Qf , x?,∇f(x?)), where the reference point x? = y ∈ S is arbitrary. Note
that (3.27) encapsulates both (strong) convexity and Lipschitz continuity in a single
IQC. It turns out that this quadratic constraint is both necessary and sufficient for
the inclusion f ∈ F(mf , Lf).

Non-differentiable convex functions. The above analysis can be extended to non-
differentiable convex functions. Formally, the subdifferential ∂f of a convex function
f : Rd → R ∪ {+∞} is defined as

∂f(x) = {γ : γ>(y − x) + f(x) ≤ f(y), ∀y ∈ dom f},(3.28)

where γ is any subgradient of f , which we denote by Tf (x). Adding the inequality in
(3.28) to the same inequality but with x and y interchanged, we obtain

(Tf (x)− Tf (y))>(x− y) ≥ 0,

which is equivalent to monotonicity of the subdifferential operator. Therefore, any
subgradient of f satisfies (3.27) with Lf = ∞. Note that this property holds even
when f is not convex.

4. Performance results for unconstrained smooth programming. In this
section, we consider first-order algorithms designed to solve problems of the form

x? ∈ argminx∈Rd f(x) where f ∈ F(mf , Lf).(4.1)

The well-known optimality condition in this case is

X? = {x? ∈ dom f : ∇f(x?) = 0}.

We now consider an iterative first-order algorithm in the canonical form (2.1) for
solving (4.1), where the feedback nonlinearity is given by φ = ∇f . Since the sequences
{xk} and {yk} converge to the same fixed point in the optimal set by assumption,
we must have that ∇f(y?) = ∇f(x?) = 0. In other words, the fixed points of (2.1)
satisfy

ξ? = Akξ?, y? = Ckξ?, u? = ∇f(y?) = 0, x? = Ekξ? = y?, for all k.(4.2)

In the following result, we characterize the quadratic bounds in (3.6) for the class
F(mf , Lf).

This manuscript is for review purposes only.

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 11

Lemma 4.1. Let x? ∈ argminx∈Rd f(x) be a minimizer of f ∈ F(mf , Lf) with
a finite optimal value f(x?). Consider an iterative first-order algorithm in the state-
space form (2.1) with φ = ∇f , where the fixed points (ξ?, u?, y?, x?) satisfy

ξ? = Akξ?, y? = Ckξ?, u? = ∇f(y?) = 0, x? = Ekξ? = y? for all k.(4.3)

Define ek = [(ξk − ξ?)> (uk − u?)>]>. Then the following inequalities hold for all k.

f(xk+1)− f(xk) ≤ e>kM1
kek,(4.4a)

f(xk+1)− f(x?) ≤ e>kM2
kek,(4.4b)

0 ≤ e>kM3
kek,(4.4c)

where M1
k ,M

2
k ,M

3
k are given by

M1
k = N1

k +N2
k , M2

k = N1
k +N3

k , M3
k = N4

k .(4.5)

with

N1
k =

[
Ek+1Ak−Ck Ek+1Bk

0 Id

]> [Lf

2 Id
1
2Id

1
2Id 0

] [
Ek+1Ak−Ck Ek+1Bk

0 Id

]
,

N2
k =

[
Ck − Ek 0

0 Id

]> [−mf

2 Id
1
2Id

1
2Id 0

] [
Ck − Ek 0

0 Id

]
,

N3
k =

[
Ck 0
0 Id

]> [−mf

2 Id
1
2Id

1
2Id 0

] [
Ck 0
0 Id

]
,

N4
k =

[
Ck 0
0 Id

]> [−mfLf

mf+Lf
Id

1
2Id

1
2Id

−1
mf+Lf

Id

] [
Ck 0
0 Id

]
.

Proof. First, by Lipschitz continuity of ∇f , we can write

f(xk+1)− f(yk) ≤
[
xk+1 − yk
∇f(yk)

]> [Lf

2 Id
1
2Id

1
2Id 0

] [
xk+1 − yk
∇f(yk)

]
.(4.6)

From the recursion in (2.1), we have that

[
xk+1 − yk
∇f(yk)

]
=

[
Ek+1Ak − Ck Ek+1Bk

0 Id

] [
ξk − ξ?
uk − u?

]
.(4.7)

Substituting (4.7) in (4.6) yields

f(xk+1)− f(yk) ≤ e>k N1
kek.(4.8)

Next, we use (strong) convexity and the identity yk−xk = (Ck−Ek)(ξk−ξ?) to write

f(yk)− f(xk) ≤
[
yk − xk
∇f(yk)

]> [−mf

2 Id
1
2Id

1
2Id 0

] [
yk − xk
∇f(yk)

]
(4.9)

≤ e>k
[
Ck − Ek 0

0 Id

]> [−mf

2 Id
1
2Id

1
2Id 0

] [
Ck − Ek 0

0 Id

]
ek

= e>k N
2
kek.

This manuscript is for review purposes only.

12 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

Adding both sides of (4.8) and (4.9) yields

f(xk+1)− f(xk) ≤ e>k (N1
k +N2

k)ek = e>kM
1
kek.

By (strong) convexity and the identity yk − y? = Ck(ξk − ξ?), we can write

f(yk)− f(y?) ≤
[
yk − y?
∇f(yk)

]> [−mf

2 Id
1
2Id

1
2Id 0

] [
yk − y?
∇f(yk)

]
(4.10)

= e>k

[
Ck 0
0 Id

]> [−mf

2 Id
1
2Id

1
2Id 0

] [
Ck 0
0 Id

]
ek

= e>k N
3
kek.

By adding both sides of (4.8) and (4.10) we obtain

f(xk+1)− f(x?) ≤ e>k (N1
k +N3

k)ek = e>kM
2
kek.

Finally, since f ∈ F(mf , Lf), the gradient function ∇f satisfies the IQC in (3.27).
Since yk − y? = Ck(ξk − ξ?), we can write

e>k N
4
kek = e>k

[
Ck 0
0 Id

]>
Qf

[
Ck 0
0 Id

]
ek =

[
yk − y?
uk − u?

]>
Qf

[
yk − y?
uk − u?

]
≥ 0.(4.11)

The proof is now complete.

In Lemma 4.1, we have used Lipschitz continuity and strong convexity assump-
tions to find the matrices in (4.4). Explicitly, N1

k follows from Lipschitz continuity,
while N2

k and N3
k are due to strong convexity. Finally, the matrix M3

k = N4
k describes

the quadratic constraints between the input-output pairs (ξk, uk) that are related via
uk = ∇f(Ckξk). Note that M3

k = N4
k is an indefinite matrix as required.

Remark 2 (Exploiting block diagonal structure). We can often exploit some
special structure in the data matrices (Ak, Bk, Ck, Ek) to reduce the dimension of
the LMI (3.7). For many algorithms, the matrices (Ak, Bk, Ck, Ek) are in the form
(Ak = Āk⊗ Id, Bk = B̄k⊗ Id, Ck = C̄k⊗ Id, Ek = Ēk⊗ Id) where (Āk, B̄k, C̄k, Ēk) are
lower dimensional matrices independent of d [19, §4.2]. By selecting Pk = P̄k ⊗ Id,
where P̄k is a lower dimensional matrix, we can factor out all the Kronecker products
⊗Id from the matrices M0

k ,M
1
k ,M

2
k ,M

3
k and make the dimension of the corresponding

LMI (3.7) independent of d. In particular, a multi-step method with r ≥ 1 steps yields
an (r+1)× (r+1) LMI. For instance, the gradient method (r = 1) and the Nesterov’s
accelerated method (r = 2) yield 2× 2 and 3× 3 LMIs, respectively. We will use this
dimensionality reduction in the forthcoming case studies.

We can now use Lemma 4.1 in tandem with Theorem 3.1 to derive convergence
rates for some existing algorithms in the literature.

4.1. Symbolic rate bounds. In order to certify a convergence rate for a given
algorithm, we must first represent the algorithm in the canonical form (2.1) and obtain
the matrices M1

k ,M
2
k ,M

3
k that characterize the bounds in (3.6). These matrices are

provided in Lemma 4.1 for the case f ∈ F(mf , Lf). Then, we must formulate the
LMI (3.7) and search for a feasible triple (ak, Pk, σk). In view of (3.4), we seek to
find the fastest convergence rate, i.e., the fastest growing {ak}. In what follows,
we illustrate this approach via analyzing the gradient method and the Nesterov’s
accelerated algorithm.

This manuscript is for review purposes only.

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 13

4.1.1. The gradient method. Consider the gradient method applied to f ∈
F(mf , Lf) with constant stepsize:

xk+1 = xk − h∇f(xk).(4.12)

This recursion corresponds to the the state-space form (2.1) with (Ak, Bk, Ck, Ek) =
(Id,−hId, Id, Id). By choosing Pk = pkId (pk ≥ 0), we can apply the dimension-
ality reduction outlined in Remark 2 and reduce the dimension of the LMI. After
dimensionality reduction, the matrices M i

k, i ∈ {0, 1, 2, 3} in the LMI (3.7) read as

M0
k =

[
pk+1−pk −hpk+1

−hpk+1 h2pk+1

]
,(4.13)

M1
k =

[
0 0
0 1

2 (Lfh
2 − 2h)

]
,

M2
k =

[
−mf

2
1
2

1
2

1
2 (Lfh

2 − 2h)

]
,

M3
k =

[−mfLf

mf+Lf

1
2

1
2

−1
mf+Lf

]
.

We first consider strongly convex functions (mf > 0) for which we make two parameter
selections, as follows.
• By setting pk = σk = 0, we obtain the LMI

[
−mf

2 (ak+1 − ak) 1
2 (ak+1 − ak)

1
2 (ak+1 − ak) (

Lfh
2

2 − h)ak+1

]
� 0 for all k.

It is easy to verify that this matrix inequality is equivalent to the conditions ak+1 ≤
ρ−1ak and 0 ≤ h ≤ 2/Lf , where ρ = 1 + mf (Lfh

2 − 2h). Solving for ak and
substituting all the parameters in (3.3), we conclude the following convergence rate
for strongly convex functions:

f(xk)− f(x?) ≤
(
1 +mf (Lfh

2 − 2h)
)k

(f(x0)− f(x?)), 0 ≤ h ≤ 2

Lf
.

Notice that the decay rate ρ obeys 0 ≤ ρ ≤ 1 as h varies on [0, 2/Lf]. In particular,
by optimizing ρ over h, we obtain the optimal step size h = 1/Lf , yielding the
decay rate ρ = 1−mf/Lf .

• By the parameter selection ak ≡ 0 and pk = ρ−2kp0 σk = λ0ρ
−2k−2, the LMI

simplifies to

[
p0−ρ2p0 −hp0

−hp0 h2p0

]
+ λ0

[−mfLf

mf+Lf

1
2

1
2

−1
mf+Lf

]
� 0,(4.14)

which is the same LMI as the one proposed in [19] and yields the optimal decay
rate ρ = max(|1− hmf |, |1− hLf |).

We now consider convex functions (mf = 0). By the particular selection pk = p and
σk = σ, the LMI (3.7) reduces to

[
0 1

2 (ak+1 − ak − 2ph+ σ)
1
2 (ak+1 − ak − 2ph+ σ) (

Lfh
2

2 − h)ak+1 + ph2 − σ
Lf

]
� 0 for all k,(4.15)

This manuscript is for review purposes only.

14 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

which is homogeneous in (ak, ak+1, p, σ). We can therefore assume p = 1, without loss
of generality. With this selection, the above LMI becomes equivalent to the following
inequalities.

ak+1 = ak + 2h− σ, (
Lfh

2

2
− h)ak+1 + h2 − σ

Lf
≤ 0 for all k.

Assuming a0 = 0 and solving for the fastest growing ak that satisfies the above
constraints, we obtain the following rate bound:

f(xk)− f(x?) ≤
Lf‖x0 − x?‖22

Ck
,(4.16a)

where C is given by

C =





2Lfh for 0 ≤ Lfh ≤ 1
2(Lfh)2(2− Lfh)

(Lfh)2 − 2Lfh+ 2
for 1 ≤ Lfh ≤ 2

.(4.16b)

We have provided the detailed derivations in Appendix A.

4.1.2. Nesterov’s accelerated method. We now analyze Nesterov’s acceler-
ated method [22] applied to f ∈ F(mf , Lf), which consists in the following recursions:

xk+1 = yk − h∇f(yk),(4.17)

yk = xk + βk(xk − xk−1),

where βk ≥ 0 is the momentum coefficient, and h > 0 is the step size. With an
appropriate tuning, this method exhibits an O(1/k2) convergence rate when mf = 0.
One such tuning is [3, 22]

βk = t−1
k (tk−1 − 1), tk =

1

2
(1 +

√
1 + 4t2k−1), t−1 = 1, 0 < h ≤ L−1

f .(4.18)

Notice that by this selection, we can verify that t2k − t2k−1 = tk and tk−1 ≥ (k + 2)/2.

By defining the state vector ξk = [x>k−1 x
>
k]>, we can write (4.17) in the canonical

form

ξk+1 =

[
0 Id

−βkId (1 + βk)Id

]
ξk +

[
0
−hId

]
∇f(yk),(4.19)

yk =
[
−βk (1 + βk)Id

]
ξk,

xk =
[
0 1

]
ξk.

The fixed points of (4.19) are (ξ?, u?, y?, x?) = ([x>? x>?]>, 0, x?, x?), where x? ∈ X?
is any optimal solution to (4.1). Making use of Lemma 4.1, the matrices M i

k i ∈

This manuscript is for review purposes only.

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 15

{0, 1, 2, 3} for Nesterov’s accelerated method read as

M0
k =

[
A>k Pk+1Ak−Pk A>k Pk+1Bk
B>k Pk+1Ak B>k Pk+1Bk

]
,(4.20)

M1
k =



− 1

2mfβ
2
k

1
2mfβ

2
k − 1

2βk
1
2mfβ

2
k − 1

2mfβ
2
k

1
2βk

− 1
2βk

1
2βk

1
2Lfh

2 − h


 ,

M2
k =




− 1
2mfβ

2
k

1
2mfβk(βk + 1) − 1

2βk
1
2mfβk(βk + 1) − 1

2mf (βk + 1)2 1
2 (βk + 1)

− 1
2βk

1
2 (βk + 1) 1

2Lfh
2 − h


 ,

M3
k =



−βkId 0

(1 + βk)Id 0
0 Id



[−mfLf

mf+Lf

1
2

1
2

−1
mf+Lf

] [
−βkId (1 + βk)Id 0

0 0 Id

]
.

We consider convex settings (mf = 0). It is straightforward to verify that for the
parameter selection σk = 0, ak = t2k−1 (with a0 = 1) , and

Pk =
1

2h

[
1− tk−1

tk−1

] [
1− tk−1 tk−1

]
,

the LMI (3.7) holds with equality, i.e., all the entries of the matrix is zero. Therefore,
Theorem 3.1 implies

f(xk)− f(x?) ≤
f(x0)− f(x?) + 1

2h‖x0 − x?‖22
t2k−1

= O(
1

k2
).(4.21)

where the equality follows from the fact that tk−1 ≥ (k + 2)/2.
The analysis of Nesterov’s method shows that finding a symbolic feasible pair

(ak, Pk) to the LMI (3.7) can be subtle. Nevertheless, we can also search for these
parameters via a numerical scheme, as we describe next.

4.2. Numerical bounds for exponential rates. We could also use the results
of Theorem 3.1 to search for the parameters (ak, Pk) numerically. This approach
is particularly efficient for time-invariant algorithms with exponential convergence.
Under these assumptions, the sequence of LMIs in (3.7) collapses into the single LMI
in (3.16), which no longer depends on the iteration index k. We can then use this
LMI to find the exponential decay rate numerically. Explicitly, the matrix inequality
(3.16) is an LMI in (a0, P0, λ0) for a fixed ρ2. We can therefore use a bisection search
aiming to find the smallest value of the convergence rate ρ that satisfies (3.16) for some
(a0, P0, λ0). Notice that the LMI in (3.16) is homogeneous in its decision variables.
We can therefore assume λ0 = 1, without loss of generality.

In Figure 2, we compare the numerical rate bounds with the theoretical lower
bound and the analytical rate bound of Nesterov’s method with the parameter selec-
tion h = 1/Lf and β = (

√
κf − 1)/(

√
κf + 1) [23]. We observe that, the SDP yields

slightly better bounds than the analytical rate bound.
We remark that, in [19] the authors make use of quadratic Lyapunov functions

and “off-by-one” IQCs to obtain numerical rate bounds for strongly convex problems.
They have shown that pointwise IQCs alone exhibit crude bounds and the use of
off-by-one IQCs improve the numerical solutions greatly. In contrast, we have utilized
nonquadratic Lyapunov functions and pointwise IQCs, which yield nonconservative

This manuscript is for review purposes only.

16 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Fig. 2: Comparison of rate bounds in Nesterov’s method for different ratios κf = Lf/mf

using the parameter selection h = 1/Lf and β =
√
κf−1
√
κf+1

. For this parameter selection, the

analytical rate bound is ρ =
√

1 − 1√
κf

[23].

rate bounds. This nonconservatism is due to the inclusion of the term ak(F (xk) −
F (x?)) in the Lyapunov function. We conjecture that, by using off-by-one IQCs or
other IQCs developed in [19] in our Lyapunov framework, we can further improve the
numerical bounds.

4.3. Numerical bounds for subexponential rates. For time-varying algo-
rithms and nonstrongly convex functions, the convergence rate is subexponential and
the LMI (3.7) becomes dependent on the iteration number. In this case, a numerical
approach amounts to solving an infinite sequence of LMIs to find a rate-generating
sequence {ak}. Nevertheless, we can truncate the sequence of LMIs in order to obtain
rate bounds for a finite number of iterations. Specifically, for a given N > 0, we
consider the following SDP:

maximize aN(4.22)

subject to for k = 0, 1, · · · , N − 1:

M0
k + akM

1
k + (ak+1 − ak)M2

k + σkM
3
k � 0,

ak+1 ≥ ak, σk ≥ 0, Pk � 0.

with decision variables {(ak, Pk, σk)}Nk=1. Denoting the optimal solution of (4.22) by
a?N , Theorem 3.1 immediately implies

f(xN)− f(x?) ≤
V0(x0, ξ0)

a?N
.(4.23)

In other words, (4.22) searches for the smallest upper bound on the N -th (last) iterate
suboptimality, subject to the stability constraint imposed by LMI (3.7). Notice that
(4.22) is homogeneous in the decision variables. To get a sensible problem, we must
normalize the variables by, for example, requiring all of them to add up to a positive
constant. Furthermore, the k-th LMI in (4.22) is a function of ak, ak+1, Pk, Pk+1,
and σk. This implies the SDP is banded with a fixed bandwidth independent of N ,

This manuscript is for review purposes only.

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 17

the number of iterations. We can exploit this sparsity structure in solving the SDP
efficiently. For instance, for the Nesterov’s method and N = 103 iterations, solving
the SDP takes less than 10 seconds to solve with an off-the-shelf solver.

In Figure 3, we plot numerical rate bounds obtained by solving (4.22) for the
Nesterov’s accelerated method with the parameter selection given in (4.18). We also
plot the analytical rate bound given in (4.21). We observe that the numerical rate
bound coincides with the analytical rate.

0 50 100 150 200 250
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 3: Comparison of rate bounds obtained by numerically solving the SDP in (4.22) and
analytical rate bounds for the Nesterov’s accelerated method with the parameter selection
given in (4.18).

5. Composite optimization problems. In this section, we consider composite
optimization problems of the form

X? = argminx∈Rd{F (x) = f(x) + g(x)},(5.1)

where f : Rd → R is differentiable CCP, while g : Rd → R∪{+∞} is nondifferentiable
and CCP. We assume the optimal solution set X? is nonempty and closed, and the
optimal value F (x?) is finite. Under these assumptions, the optimality condition for
(5.1) is given by

X? = {x? ∈ dom f ∩ dom g : 0 ∈ ∇f(x?) + ∂g(x?)}.(5.2)

Formally, the objective function in (5.1) is nonsmooth and subgradient methods are
very slow. Splitting methods such as proximal algorithms circumvent this issue by
exploiting the special structure of the objective function to achieve comparable conver-
gence rates to their counterparts in smooth programming. In this section, we analyze
proximal algorithms using Theorem 3.1. To this end, we first show that we can rep-
resent these algorithms in the canonical form (2.1), where the feedback nonlinearity
φ is the generalized gradient mapping of F . By deriving the proximal counterpart of
Lemma 4.1, we can then immediately apply Theorem 3.1 to proximal algorithms.

5.1. Generalized gradient mapping. Let g : Rd → R ∪ {+∞} be a CCP
function. The proximal operator Πg,h : Rd → Rd of g with parameter h > 0 is defined

This manuscript is for review purposes only.

18 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

as

Πg,h(x) = argminy∈Rd {g(y) +
1

2h
‖y − x‖22}.(5.3)

For the composite function in (5.1), we define the generalized gradient mapping
φh : Rd → Rd as

φh(x) =
1

h
(x−Πg,h(x− h∇f(x))), h > 0.(5.4)

with domφh = dom f . Notice that when g(x) ≡ 0 (so that Πg,h(x) = x), the gen-
eralized gradient mapping simplifies to the gradient function ∇f . Furthermore, we
have that φh(x?) = 0 for x? ∈ X?, i.e., φh vanishes at optimality. In the following
proposition, we characterize several properties of φh, which will prove useful.

Proposition 5.1. Consider the composite function F = f+g with f ∈F(mf , Lf)
and g ∈ F(0,∞). Correspondingly, define the generalized gradient mapping φh of F
as in (5.4) .

1. φh satisfies the pointwise IQC defined by (Qφh
, x?, φh(x?)), where Qφh

is given by

Qφh
=




1

2h
(γ2
f − 1)

1

2
1

2
−h

2


⊗ Id,(5.5)

with γf = max{|1− hLf |, |1− hmf |}.
2. The following inequality

F (y−hφh(y))−F (x) ≤φh(y)>(y−x)−mf

2
‖y−x‖22 + (

1

2
Lfh

2−h)‖φh(y)‖22,(5.6)

holds for all h ≥ 0 and x, y ∈ domF .

3. φh(x?) = 0 if and only if x? ∈ argmin F (x).

Proof. See Appendix B.

5.2. Proximal algorithms. Using the definition of generalized gradient map-
ping in (5.4), we can represent proximal algorithms with the same state-space struc-
ture as in (2.1), where the feedback nonlinearity is φ = φh. For example, the Nes-
terov’s accelerated proximal gradient method is defined by

xk+1 = Πg,h(yk − h∇f(yk)),(5.7)

yk = xk + βk(xk − xk−1),

which, by using (5.4), can be rewritten as

xk+1 = xk + βk(xk − xk−1)− hφh(yk),(5.8)

yk = xk + βk(xk − xk−1).

By defining the state vector ξk = [x>k−1 x
>
k]> ∈ R2d, the corresponding state-space

matrices (Ak, Bk, Ck) are given by

[
Ak Bk
Ck 0

]
=




0 Id
−βkId (βk + 1)Id

0
−hId

−βkId (βk + 1)Id 0


 .(5.9)

This manuscript is for review purposes only.

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 19

Recall the assumption that the sequences {xk} and {yk} converge to the same fixed
point in the optimal set. Since φh is zero at optimality, we must therefore have that
φh(y?) = φh(x?) = 0. In other words, the fixed points satisfy

ξ? = Akξ?, y? = Ckξ?, u? = φh(y?) = 0, x? = Ekξ? = y?, for all k.(5.10)

Having characterized the generalized gradient mapping with quadratic constraints,
we are now ready to develop the proximal counterpart of Lemma 4.1.

Lemma 5.2. Let x? ∈ argmin F (x) be a minimizer of F = f + g with a finite
optimal value F (x?), where f ∈ F(mf , Lf) and g ∈ F(0,∞). Consider a proximal
first-order algorithm in the state-space form (2.1) with φ = φh defined as in (5.4).
Suppose the fixed points (ξ?, u?, y?, x?) satisfy

ξ? = Akξ?, y? = Ckξ?, u? = φh(y?) = 0, x? = Ekξ? = y? for all k.(5.11)

Then the following inequalities hold for all k.

F (xk+1)− F (xk) ≤ e>kM1
kek,(5.12a)

F (xk+1)− F (x?) ≤ e>kM2
kek,(5.12b)

0 ≤ e>kM3
kek,(5.12c)

where ek = [(ξk − ξ?)> (uk − u?)>]> and M1
k ,M

2
k ,M

3
k are given by

M1
k =

[
Ck−Ek 0

0 Id

]> [−mf

2
1
2

1
2 (1

2Lfh
2−h)

] [
Ck−Ek 0

0 Id

]
,(5.13)

M2
k =

[
Ck 0
0 Id

]> [−mf

2
1
2

1
2 (1

2Lfh
2−h)

] [
Ck 0
0 Id

]
,

M3
k =

[
Ck 0
0 Id

]>
Qφh

[
Ck 0
0 Id

]
.

Proof. See Appendix C.

Remark 3. In [19], the authors use a different block diagonal representation of
proximal algorithms, in which the linear component is in parallel feedback connections
with the gradient function ∇f , as well as the subdifferential operator ∂g. Then,
each nonlinear block is described by its corresponding IQC, i.e., the IQC of gradient
mappings and subdifferential operators. In contrast, we collectively represent all the
nonlinearities in a single feedback component (the generalized gradient mapping),
whose IQC is given in Lemma 5.1.

In the following, we use Lemma 5.2 in conjunction with Theorem 3.1 to analyze
the proximal gradient method and the proximal variant of Nesterov’s accelerated
method.

5.2.1. Proximal gradient method. The classical proximal gradient method
is defined by the recursion

xk+1 = Πhg(xk − h∇f(xk)),(5.14)

which, by using the definition of the generalized gradient mapping in (5.4), can be
written as

xk+1 = xk − hφh(xk).(5.15)

This manuscript is for review purposes only.

20 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

The state-space matrices are therefore given by (Ak, Bk, Ck, Ek) = (Id,−hId, Id, Id).
By selecting Pk = pkId, pk ≥ 0, the matrices M i

k i = 0, 1, 2, 3 are given by

M0
k =

[
pk+1−pk −hpk+1

−hpk+1 h2pk+1

]
⊗ Id,(5.16a)

M1
k =

[
0 0
0 1

2 (Lfh
2−2h)

]
⊗ Id,(5.16b)

M2
k =

[
− 1

2mf
1
2

1
2

1
2 (Lfh

2 − 2h)

]
⊗ Id,(5.16c)

M3
k =

[
1

2h (γ2
f − 1) 1

2
1
2 −h2

]
⊗ Id,(5.16d)

where γf = max{|1− hLf |, |1− hmf |.
Strongly Convex Case. We first consider the selection ak ≡ 0 for strongly convex

settings. Then the LMI (5.16) simplifies to

[
pk+1−pk −hpk+1

−hpk+1 h2pk+1

]
+ σk

[
γ2
f−1

2h
1
2

1
2 −h2

]
≤ 0.

It can be verified that the above LMI is equivalent to the conditions

σk/(2h) ≤ pk/γ2
f , pk+1 − pk ≤ σk(1− γ2

f)/(2h).

These two conditions together imply pk+1 ≤ pk/γ
2
f . Therefore, we can write pk =

γ−2k
f p0, p0 > 0. Using the bound (3.20), we can establish the bound

‖xk−x?‖22 ≤ (max{|1−hLf |, |1−hmf |})2k ‖x0−x?‖22.

On the other hand, setting pk ≡ 0 in (5.16) yields the LMI



−mf

2
(ak+1 − ak)

ak+1 − ak
2

ak+1 − ak
2

(
Lfh

2

2
− h)ak+1


 � 0.

Omitting the details, we obtain from the above LMI that ak+1 ≤ ρ−2ak and 0 ≤ h ≤
2/Lf , where ρ2 = 1 +mf (Lfh

2 − 2h). Substituting ak in (3.17) yields the bound

F (xk)−F (x?) ≤ (1 +mf (Lfh
2−2h))k(F (x0)− F (x?)).

In particular, the optimal decay rate is attained at h = 1/Lf , and is equal to ρ =
1−mf/Lf .

Convex Case. When the differentiable component of the objective is convex (mf =
0), we select pk = p > 0, σk = σ in (5.16) to arrive at the LMI




σ

2h
(γ2
f − 1)

1

2
(ak+1 − ak − 2ph+ σ)

1

2
(ak+1 − ak − 2ph+ σ) (

Lfh
2

2
− h)ak+1 + ph2 − σh

2


 � 0.

This manuscript is for review purposes only.

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 21

To further simplify the LMI, we take σ = 0. Then the LMI enforces that

ak+1 = ak + 2ph, a0 ≥ 0, (Lfh
2/2− h)(ak+1) + ph2 ≤ 0

Solving for ak leads to

F (xk)− F (x?) ≤
a0(F (x0)− F (x?)) + p‖x0 − x?‖22

a0 + 2phk
.

In particular, if a0 = 0, then it must hold that 0 ≤ h ≤ 1/Lf , and we recover the
convergence result in [3, Theorem 3.1].

5.2.2. Accelerated proximal gradient method. Consider the proximal vari-
ant of Nesterov’s accelerated method outlined in (5.7), for which the state-space ma-
trices are given in (5.9). Making use of Lemma 5.2, the matrices M i

k i ∈ {0, 1, 2, 3}
read as

M0
k =

[
A>k Pk+1Ak−Pk A>k Pk+1Bk
B>k Pk+1Ak B>k Pk+1Bk

]
,(5.17)

M1
k =



− 1

2mfβ
2
k

1
2mfβ

2
k − 1

2βk
1
2mfβ

2
k − 1

2mfβ
2
k

1
2βk

− 1
2βk

1
2βk

1
2Lfh

2 − h


 ,

M2
k =




− 1
2mfβ

2
k

1
2mfβk(βk + 1) − 1

2βk
1
2mfβk(βk + 1) − 1

2mf (βk + 1)2 1
2 (βk + 1)

− 1
2βk

1
2 (βk + 1) 1

2Lfh
2 − h


 ,

M3
k =



−βkId 0

(1 + βk)Id 0
0 Id



[

1
2h (γ2

f − 1)Id
1
2Id

1
2Id −h2 Id

] [
−βkId (1 + βk)Id 0

0 0 Id

]
.

Observe that the matrices M0
k ,M

1
k , and M2

k are precisely the same as those of Nes-
terov’s method without proximal operation. The only difference is in M3

k . As a result,
by setting σk = 0 (the coefficient of M3

k) in the LMI (3.7), the analysis of Nesterov’s
accelerated method in §4.1.2 immediately applies to the proximal variant [11].

Remark 4 (Gradient methods with projection). For the case that g(x) = IX (x)
is the indicator function of a nonempty, closed convex set X ⊂ Rd, the proximal
operator Πg,h reduces to projection onto X . Due to projection, we must have xk ∈ X
for all k, implying g(xk) = 0. Therefore, the convergence result of Theorem 3.1 holds
for the suboptimality f(xk)− f(x?).

6. Further topics. In this section, we consider further applications of the de-
veloped framework, namely, calculus of IQCs for various operators in optimization,
continuous-time models and, more importantly, algorithm design.

6.1. Calculus of IQCs. We now describe some operations on mappings from
an IQC perspective, namely, inversion, affine operations, and function composition.
These operations form a calculus that is useful for determining IQCs for commonly
used nonlinear operators in optimization algorithms, such as proximal operators, pro-
jection operators, reflection operators, etc., and their compositions.

It directly follows from the definition of pointwise IQCs in (3.21) that if φ satisfies
multiple pointwise IQCs defined by (Qφ,i, x?, φ(x?)), i = 1, 2, . . . , `, it also satisfies

the pointwise IQC defined by (
∑`
i=1σiQφ,i , x?, φ(x?)), where σi ≥ 0, i = 1, 2, . . . , `.

Further, φ also satisfies the IQC defined by (Q, x?, φ(x?)) for any Q � Qφ. In the
next two lemmas, we study the effect of inversion and affine transformation on IQCs.

This manuscript is for review purposes only.

22 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

Lemma 6.1 (IQC for inversion). Consider an invertible map φ : Rd → Rd with
φ−1(domφ) ⊆ domφ satisfying the pointwise IQC defined by (Qφ, x?, φ(x?)). Then,
the inverse map φ−1 : Rd → Rd satisfies the pointwise IQC defined by (Qφ−1 ,φ(x?),x?),
where

Qφ−1 =

[
0 Id
Id 0

]
Qφ

[
0 Id
Id 0

]
.(6.1)

Proof. By the substitution x← φ−1(x) in (3.21), we obtain

[
φ−1(x)− φ−1(x?)

x− x?

]>
Qφ

[
φ−1(x)− φ−1(x?)

x− x?

]
≥ 0.(6.2)

Further, we have
[
φ−1(x)− φ−1(x?)

x− x?

]
=

[
0 Id
Id 0

] [
x− x?

φ−1(x)− φ−1(x?)

]
.(6.3)

Substituting (6.3) in (6.2) yields (6.1).

Lemma 6.2 (IQC for affine operations). Consider a map φ : Rd → Rd satisfy-
ing the pointwise IQC defined by (Qφ, x?, φ(x?)). Correspondingly, define the map
ψ(x) = S2x+ S1φ(S0x) with S0(domφ) ⊆ domφ, where S0, S1, S2 ∈ Rd×d, and S1 is
invertible. Then, ψ satisfies the pointwise IQC defined by (Qψ, x?, ψ(x?)), where

Qψ =

[
S>0 −(S−1

1 S2)>

0 S−1
1

]
Qφ

[
S0 0

−S−1
1 S2 (S−1

1)>

]
.(6.4)

Proof. By the substitution x← S0x in (3.21), we obtain

[
S0x− S0x?

φ(S0x)− φ(S0x?)

]>
Qφ

[
S0x− S0x?

φ(S0x)− φ(S0x?)

]
≥ 0.(6.5)

Further, since ψ(x) = S2x+ S1φ(S0x), we have
[

S0x− S0x?
φ(S0x)− φ(S0x?)

]
=

[
S0 0

−S−1
1 S2 S−1

1

] [
x− x?

ψ(x)− ψ(x?)

]
.(6.6)

Substituting (6.6) in (6.5) yields (6.4).

Finally, we study the composition of mappings. Specifically, consider the cascade
connection of two mappings φ1, φ2 : Rd → Rd, i = 1, 2 as in Figure 4, where y =
φ1(x) and z = φ2(y). Further assume φ1 and φ2 satisfy pointwise IQCs defined by
(Qφ1 , x?, y?) and (Qφ2 , y?, z?), respectively. By definition, these mappings impose the
following quadratic constraints on the pairs (x, y) and (y, z):

[
x− x?
y − y?

]>
Qφ1

[
x− x?
y − y?

]
≥ 0,

[
y − y?
z − z?

]>
Qφ2

[
y − y?
z − z?

]
≥ 0.

These two constraints separately define a quadratic constraint on the triple (x, y, z),
which can be encapsulated in a single constraint, as follows:



x− x?
y − y?
z − z?



>

Qψ



x− x?
y − y?
z − z?


 ≥ 0,(6.7a)

This manuscript is for review purposes only.

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 23

where Qψ ∈ S3d is given by

Qψ =



Id 0
0 Id
0 0


σ1Qφ1

[
Id 0 0
0 Id 0

]
+




0 0
Id 0
0 Id


σ2Qφ2

[
0 Id 0
0 0 Id

]
,(6.7b)

with σ1, σ2 ≥ 0. The quadratic constraint in (6.7a) follows by substituting (6.7b)
into (6.7a). In the language of IQCs, we can say that the map ψ = [φ>1 (φ2 ◦ φ1)>]>

: Rd → R2d satisfies the pointwise IQC defined by (Qψ, x?, ψ(x?)), where Qψ is given
by (6.7b).

�1(·) �2(·)
yx z

1

Fig. 4: Cascade connection of two nonlinear mappings.

We remark that the above treatment can be extended to multiple compositions.
Specifically, for ` mappings in a cascade connection, the corresponding ` individual
IQCs can be grouped into a single quadratic constraint on the concatenated vector of
the input-output signals.

6.1.1. Proximal operators. Recall the definition of proximal operator for f :
Rd → R ∪ {+∞}:

Πf,h(x) = argminy∈Rd{f(y) +
1

2h
‖y − x‖22}.(6.8)

To characterize Πf,h from an IQC perspective, we note that for any given x ∈ dom f ,
a necessary condition for optimality in (6.8) is that

0 ∈ ∂f(Πg,h(x)) +
1

h
(Πf,h(x)− x), for all x ∈ dom f,(6.9)

which is an implicit equation on Πf,h(x). In the next proposition, we show how
to obtain a quadratic constraint for the proximal operator Πf,h from that of the
subgradient Tf by using the necessary optimality condition (6.9) that couples these
two operators.

Proposition 6.3 (IQCs for proximal operators). Let f : Rd → R ∪ {+∞} be
a closed proper function whose subgradient Tf satisfies the pointwise IQC defined by
(Qf , x?, Tf (x?)), where Tf (x?) ∈ ∂f(x?). Then, the proximal operator Πhf satisfies
the pointwise IQC defined by (QΠhf

, x?,Πhf (x?)), where

QΠhf
=

[
0 h−1Id
Id −h−1Id

]
Qf

[
0 Id

h−1Id −h−1Id

]
.(6.10)

Proof. Suppose Tf (x) ∈ ∂f(x) (Tf (x) = ∇f(x) when f is differentiable) satisfies
the pointwise IQC defined by (Qf , x?, Tf (x?)). By the substitution x ← Πhf (x) and
x? ← Πhf (x?) in (3.21), we obtain

[
Πhf (x)−Πhf (x?)

Tf (Πhf (x))− Tf (Πhf (x?))

]>
Qf

[
Πhf (x)−Πhf (x?)

Tf (Πhf (x))− Tf (Πhf (x?))

]
≥ 0.(6.11)

This manuscript is for review purposes only.

24 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

On the other hand, by the optimality condition (6.9), we have Tf (Πhf (x)) = 1
h (x −

Πhf (x)). Substituting this into (6.11), we obtain

[
Πhf (x)−Πhf (x?)

1

h
(x− x?)−

1

h
(Πhf (x)−Πhf (x?))

]>
Qf

[
Πhf (x)−Πhf (x?)

1

h
(x− x?)−

1

h
(Πhf (x)−Πhf (x?))

]
≥ 0.

(6.12)

Further, we can write

[
Πhf (x)−Πhf (x?)

1

h
(x− x?)−

1

h
(Πhf (x)−Πhf (x?))

]
=

[
0 Id

1

h
Id − 1

h
Id

] [
x− x?

Πhf (x)−Πhf (x?)

]
.

(6.13)

By substituting (6.13) in (6.12), we will arrive at the desired inequality in (6.10).

Notice that by (6.9), we have that Πhf = (I + h∂f)−1. In other words, the proximal
operator is obtained by the operations ∂f → I + h∂f → (I + h∂f)−1, i.e., an affine
operation on ∂f followed by an inversion. Therefore, for obtaining the IQC of Πhf

from that of ∂f , we can directly use Lemma 6.1 and 6.2 to arrive at an alternative
derivation of (6.10).

6.1.2. IQCs for projection operators. The projection operator is the proxi-
mal operator Πhf for the particular selection f(x) = IX (x), where IX is the extended-
value indicator function of the nonempty closed convex set X ⊂ Rd onto which we
project. Since f is nondifferentiable and convex in this case, its subgradient operator
Tf satisfies the pointwise IQC defined by (Qf , x?, Tf (x?)), where Qf is given by (3.27)
with Lf = ∞. It then follows from Proposition 6.3 that the projection operator ΠX
satisfies the IQC defined by (QΠX , x?,ΠX (x?)), where

QΠX =




0
1

2
1

2
−1


⊗ Id.(6.14)

This IQC corresponds to the firm nonexpansiveness property of the projection oper-
ator [7], which implies the Lipschitz continuity of ΠX with Lipschitz parameter equal
to one.

6.2. Beyond convexity. The convergence analysis of several algorithms do not
make a full use of convexity. In other words, convexity is sufficient for convergence
of these algorithms. This has motivated the introduction of function classes that are
relaxation of convexity. In this subsection, we briefly discuss some of these classes and
how they can be related to the developed framework in this paper. Formally, consider
a continuously differentiable function f : Rd → R that satisfies the following bounds.

[
x− x?
∇f(x)

]>
R′f

[
x− x?
∇f(x)

]
≤ f(x)− f(x?) ≤

[
x− x?
∇f(x)

]>
Rf

[
x− x?
∇f(x)

]
,(6.15)

where Rf , R
′
f ∈ S2d are symmetric matrices and x? is such that ∇f(x?) = 0. It

follows from (6.15) that

[
x− x?
∇f(x)

]>
(Rf −R′f)

[
x− x?
∇f(x)

]
≥ 0.(6.16)

This manuscript is for review purposes only.

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 25

Note that since ∇f(x?) = 0, the above inequality implies that ∇f satisfies the point-
wise IQC defined by (Rf − R′f , x?,∇f(x?)). Several function classes can be written
in the form (6.15), where Rf and R′f differ for each class. We give three examples
below.

(Strongly) convex functions. In §3.2.2, we considered IQCs for convex functions.
Specifically, the quadratic inequality (3.26) is necessary and sufficient for the inclusion
f ∈ F(mf , Lf). An equivalent inequality involving function values is [29]4

f(y)−f(x)−∇f(x)>(y−x) ≥ 1

2(Lf−mf)
‖∇f(y)−∇f(x)‖22(6.17)

+
mfLf

2(Lf−mf)
‖y−x‖22−

mf

Lf−mf
(∇f(y)−∇f(x))>(y − x),

If we restrict (6.17) to hold only for the particular selection (x, y) = (x?, x) and
(x, y) = (x, x?), we obtain a new class of functions that can be put in the form (6.15)
with R′f , Rf given by

R′f =

[
mfLf

2(Lf−mf)
−mf

2(Lf−mf)
−mf

2(Lf−mf)
1

2(Lf−mf)

]
⊗ Id, Rf =

[−mfLf

2(Lf−mf)
Lf

2(Lf−mf)
Lf

2(Lf−mf)
−1

2(Lf−mf)

]
⊗ Id,(6.18)

Using (6.16), we can conclude

[
x− x?
∇f(x)

]> [− mfLf

mf+Lf
Id

1
2Id

1
2Id − 1

mf+Lf
Id

] [
x− x?
∇f(x)

]
≥ 0.(6.19)

Note that this quadratic inequality is the same as that of convex functions but only
holds when the reference point x? in the definition of pointwise IQC satisfies∇f(x?) =
0.

Weakly smooth weakly quasiconvex functions. Suppose f is continuously differen-
tiable and satisfies [13]:

1

Γf
‖∇f(x)‖22 ≤ f(x)− f(x?) ≤

1

τf
∇f(x)>(x− x?) for all x ∈ S,(6.20)

where x? is a global minimum of f , and 0 < τf ,Γf < ∞. These inequalities ensure
that any point with vanishing gradient is optimal [13], i.e., ∇f(x?) = 0. The inequality
(6.20) can be put in the form (6.15), where R′f , Rf , and Qf are given by

R′f =

[
0 0
0 1

Γf

]
⊗ Id, Rf =

[
0 1

2τf
1

2τf
0

]
⊗ Id, Qf =

[
0 1

2τf
1

2τf
− 1

Γf

]
⊗ Id.(6.21)

Polyak- Lojasiewicz (PL) condition. Suppose f is continuously differentiable and
satisfies

0 ≤ f(x)− f(x?) ≤
1

2mf
‖∇f(x)‖22 for all x ∈ S,(6.22)

for some mf > 0. Again, this class can be put in the form (6.15).

4Note that, by adding both sides of (6.17) to the inequality obtained by interchanging x and y
in (6.17), we obtain (3.26).

This manuscript is for review purposes only.

26 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

6.3. Continuous-time models. There is a close connection between iterative
algorithms and discretization of ordinary differential equations (ODE). In fact, many
iterative first-order optimization algorithms reduce to their “generative” ODEs by
time-scaling and infinitesimal step sizes. In this subsection, we consider convergence
analysis of continuous-time models for solving the unconstrained problem in (4.1).
Specifically, consider the following continuous-time dynamical system in state-space
form:

ξ̇(t) = A(t)ξ(t) +B(t)u(t), y(t) = C(t)ξ(t), u(t) = ∇f(y(t)) for all t ≥ t0,(6.23)

where at each continuous time t ≥ t0, ξ(t) ∈ Rn is the state, y(t) ∈ Rd is the
output (d ≤ n), and u(t) = ∇f(y(t)) is the feedback input. We assume (6.23)
solves (4.1) asymptotically from all admissible initial conditions, i.e., y(t) satisfies
limt→∞ f(y(t)) = f(y?), where the optimal point y? obeys ∇f(y?) = 0. Therefore,
any fixed point of (6.23) satisfies

0 = A(t)ξ?, y? = C(t)ξ?, u? = ∇f(y?) = 0 for all t ≥ t0.(6.24)

We replicate the convergence analysis of discrete-time models using the Lyapunov
function

V (ξ(t), t) = a(t)(f(y(t))− f(y?)) + (ξ(t)− ξ?)>P (t)(ξ(t)− ξ?),(6.25)

where (ξ(t), y(t)) satisfies (6.23) and (ξ?, y?) satisfies (6.24). The Lyapunov function
is parameterized by P (t) ∈ Sn+, as well as a(t) ≥ 0. If a(t) and P (t) are such that

V̇ (ξ(t), t) ≤ 0, then we could guarantee that V (ξ(t), t) ≤ V (ξ(t0), t0), which in turn
implies

0 ≤ f(y(t))− f(y?) ≤ V (ξ(t0), t0)/a(t) = O(1/a(t)) for all t ≥ t0.(6.26)

In other words, a(t) provides a lower bound on the convergence rate. Ideally, we are
interested in finding the best bound, which translates into the fastest growing a(t).
In the following theorem, we develop an LMI to find such an a(t).

Theorem 6.4. Let f ∈ F(mf , Lf) and consider the continuous-time dynamics
in (6.23), whose fixed points satisfy (6.24). Suppose there exist a differentiable non-
decreasing a(t) : [t0,∞)→ R+, a differentiable P (t) : [t0,∞)→ Sn+, and a continuous
σ(t) : [t0,∞)→ R+ that satisfy

M0(t) + a(t)M1(t) + ȧ(t)M2(t) + σ(t)M3(t) � 0 for all t ≥ t0,(6.27)

where

M0(t) =

[
P (t)A(t)+A(t)>P (t)+Ṗ (t) P (t)B(t)

B(t)>P (t) 0

]
,

M1(t) =
1

2

[
0 (C(t)A(t) + Ċ(t))>

C(t)A(t) + Ċ(t) C(t)B(t) +B(t)>C(t)>

]
,

M2(t) =

[
C(t)> 0

0 Id

] [
−mf

2 Id
1
2Id

1
2Id 0

] [
C(t) 0

0 Id

]
,

M3(t) =

[
C(t)> 0

0 Id

] [− mfLf

mf+Lf
Id

1
2Id

1
2Id − 1

mf+Lf
Id

] [
C(t) 0

0 Id

]
,

This manuscript is for review purposes only.

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 27

Then, for any y(t0) ∈ dom f , the following inequality holds for all t ≥ t0.

f(y(t))− f(y?) ≤
a(t0)(f(y(t0))−f(y?)) + (ξ(t0)−ξ?)>P (t0)(ξ(t0)−ξ?)

a(t)
(6.28)

Proof. It suffices to show that the LMI condition in (6.27) implies V̇ (ξ(t), t) ≤ 0.
The time derivative of the Lyapunov function (6.25) is

V̇ = ȧ(f(y)− f(y?)) + a∇f(y)>ẏ+2(ξ − ξ?)>P ξ̇ + (ξ − ξ?)>Ṗ (ξ − ξ?).(6.29)

We have dropped the arguments for notational simplicity. We proceed to bound all
the terms in the right-hand side of (6.29), using the assumption f ∈ F(mf , Lf). By
invoking (strong) convexity, we can write

f(y)−f(y?) ≤
[

y − y?
∇f(y)−∇f(y?)

]> [−mf

2 Id
1
2Id

1
2Id 0

] [
y − y?

∇f(y)−∇f(y?)

]
(6.30)

=

[
ξ − ξ?
u− u?

]> [
C 0
0 Id

]> [−mf

2 Id
1
2Id

1
2Id 0

] [
C 0
0 Id

] [
ξ − ξ?
u− u?

]
.

= e>M2e.

where we have defined e =
[
(ξ − ξ?)> (u− u?)>

]
. Further, we can write

∇f(y)>ẏ = (u− u?)>(CA(ξ − ξ?) + CB(u− u?) + Ċ(ξ − ξ?))(6.31)

=

[
ξ − ξ?
u− u?

]> [
0 1

2 (CA+ Ċ)>
1
2 (CA+ Ċ) 1

2 (CB +B>C>)

] [
ξ − ξ?
u− u?

]

= e>M1e.

where we have used (6.23) and (6.24). Similarly, we can write

2(ξ − ξ?)>P ξ̇ =

[
ξ − ξ?
u− u?

]> [
PA+A>P PB
B>P> 0

] [
ξ − ξ?
u− u?

]
= e>M0e.(6.32)

Finally, since f ∈ F(mf , Lf), ∇f satisfies the quadratic constraint in (3.27). There-
fore, we can write

e>M3e =

[
ξ − ξ?
u− u?

]> [
C 0
0 Id

]> [− mfLf

mf+Lf
Id

1
2Id

1
2Id − 1

mf+Lf
Id

] [
C 0
0 Id

] [
ξ − ξ?
u− u?

]
(6.33)

=

[
y − y?
u− u?

]> [− mfLf

mf+Lf
Id

1
2Id

1
2Id − 1

mf+Lf
Id

] [
y − y?
u− u?

]
≥ 0.

By substituting (6.30)-(6.32) in (6.29) and rearranging terms, we can write

V̇ ≤ e> (M0 + aM1 + ȧM2) e(6.34)

The LMI in (6.27) implies

M0 + aM1 + ȧM2 � −σM3(6.35)

Multiplying (6.35) on the left and right by e> and e, respectively, and substituting
the result back in (6.34) yields

V̇ ≤ −σe>M3e ≤ 0,

where the second inequality follows from (6.33). The proof is now complete.

This manuscript is for review purposes only.

28 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

According to Theorem 6.4, we can find the rate generating function a(t) by solving
the LMI in (6.27). More precisely, this LMI defines a first-order differential inequality
on a(t) whose solutions certify an O(1/a(t)) convergence rate. The best lower bound
on the convergence rate (i.e., the fastest growing a(t)) can be found by solving the
following symbolic optimization problem:

maximize
ȧ(t)≥0,σ(t)≥0

ȧ(t) subject to ȧ(t)M0(t) + a(t)M1(t) +M2(t) + σ(t)M3(t) � 0,(6.36)

The optimality condition for (6.36) translates into a first-order differential equation
(ODE) on a(t). The solution to this ODE yields the best rate bound that can be
certified using the Lyapunov function (6.25). In the following, we specialize the model
in (6.23) to the particular case of the gradient flow (§6.3.1) and its accelerated variant
(§6.3.2), where we will use Theorem 6.4 to derive the corresponding convergence rates.

6.3.1. Continuous-time gradient flow. Consider the following ODE for solv-
ing (4.1):

ẋ(t) = −α∇f(x(t)), x(0) ∈ dom f,(6.37)

where α > 0. This ODE can be represented in the form of (6.23) with n = d,
and (A,B,C) = (0d,−αId, Id). By selecting P (t) = pId, p ≥ 0, and applying the
dimensionality reduction outlined in Remark 2, we obtain the following LMI:

[
−mf

2
ȧ(t) 1

2 ȧ(t)− pα
1
2 ȧ(t)− pα −αa(t)

]
+ σ(t)

[−mfLf

mf+Lf

1
2

1
2

−1
mf+Lf

]
� 0.(6.38)

By elementary calculations, it can be verified that the solution to the corresponding
optimization problem in (6.36) is σ(t) = 0, and ȧ(t) = 2p+mfαa(t) + ((mfαa(t))2 +
2pmfαa(t))1/2. Setting p = 0 and solving the latter ODE with initial condition
a(0) > 0 yields a(t) = a(0) exp(2mfαt). Therefore, the gradient flow (6.37) exhibits
the following convergence rate for strongly convex f :

f(x(t))− f(x?) ≤ e−2mfαt(f(x(0))− f(x?)).

Now we consider convex functions (mf = 0) for which the LMI reduces to




0 1
2 ȧ(t)− pα+

σ(t)

2
1
2 ȧ(t)− pα+

σ(t)

2
−αa(t)− σ(t)

Lf


 ≤ 0.

This LMI condition is equivalent to the condition ȧ(t) ≤ 2pα − σ(t). Therefore, by
setting σ(t) = 0, we obtain the optimal (fastest growing) a(t), which satisfies the
ODE ȧ(t) = 2pα. Solving this ODE with the initial condition a(0) ≥ 0, we obtain the
following rate bound.

f(x(t))− f(x?) ≤
a(0)(f(x(0))− f(x?)) + p‖x(0)− x?‖22

a(0) + 2pαt
.

6.3.2. Continuous-time accelerated gradient flow. As a second case study,
we consider the following second-order ODE for solving (4.1):

ẍ(t) +
r

t
ẋ(t) +∇f(x(t)) = 0, r > 0.(6.39)

This manuscript is for review purposes only.

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 29

This ODE is the continuous-time limit of Nesterov’s accelerated scheme combined
with an appropriate time scaling [27]. The ODE (6.39) and its variants have been
investigated extensively in the literature [1,2,5]. A state-space representation of (6.39)
is given by

ξ̇(t) =

[
−r − 1

t
Id

r − 1

t
Id

0 0

]
ξ(t) +

[
0

− t

r − 1
Id

]
∇f(y(t)),(6.40)

y(t) =
[
Id 0

]
ξ(t),

where ξ1 = x, ξ2 = x+ t/(r− 1)ẋ are the states, ξ = [ξ>1 ξ>2]> ∈ R2d is state vector,
and y = ξ1 is the output. The fixed points of (6.40) are (ξ?, y?, u?) = ([x>? x

>
?]>, x?, 0),

where x? ∈ X? is any optimal solution satisfying ∇f(x?) = 0.
We now analyze the convergence rate of (6.40) for convex functions (mf = 0).

By selecting P (t) = P̂ Id, where P̂ ∈ S2
++ is time-invariant, and applying the dimen-

sionality reduction of Remark 2, we arrive at the following 3× 3 LMI,




− 2(r−1)p11
t

(r−1)(p11−p21)
t

ȧ(t)+σ
2 − (r−1)a(t)

2t − tp12
r−1

(r−1)(p11−p21)
t

2(r−1)p21
t

(r−1)a(t)
2t − tp22

r−1
ȧ(t)+σ

2 − (r−1)a(t)
2t − tp12

r−1
(r−1)a(t)

2t − tp22
r−1 − ȧ(t)

2Lf
− σ

Lf


 � 0,

where P̂ = [pij]. A simple analytic solution to the above LMI can be obtained by
choosing p11 = p12 = p21 = 0. With this particular choice, the LMI simplifies to the
following conditions:

ȧ(t) + σ(t)

2
− (r − 1)a(t)

2t
= 0, p22 = (

r − 1

t
)2 a(t)

2
.(6.41)

Using the assumption that p22 is constant together with the condition σ(t) ≥ 0, the
above conditions enforce a(t) = ct2, and p22 = c(r − 1)2/2 for arbitrary c > 0 along
with the condition r ≥ 3. Using Theorem 6.4, we obtain the convergence rate:

f(x(t))− f(x?) ≤
(r − 1)2‖x(0)− x?‖22

2t2
r ≥ 3.

This convergence result agrees with [27, Theorem 5]. More generally, by allowing the
matrix P (t) to be time-dependent, the LMI (6.27) can be used to directly answer the
following question: How does the convergence rate of the accelerated gradient flow
change with the parameter r.

6.4. Algorithm design. In this subsection, we briefly explore algorithm tuning
and design using the developed LMI framework. In particular, we consider robustness
as a design criterion. It has been shown in [8, 9, 19] that there is a trade-off between
an algorithm’s rate of convergence and its robustness against inexact information
about the oracle. In particular, fast methods such as the Nesterov’s accelerated
method require first-order information with higher accuracy than standard gradient
methods to obtain a solution with a given accuracy [9]. To explain this trade-off in our
framework, we recall the proof of Theorem 3.1, in which we showed that the following
LMI

M0
k + akM

1
k + (ak+1 − ak)M2

k + σkM
3
k � 0 for all k,(6.42)

This manuscript is for review purposes only.

30 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

ensures that the Lyapunov function satisfies

Vk(ξk+1) ≤ V (ξk)− σke>kM3
kek for all k.(6.43)

In view of (6.43), the nonnegative term σke
>
kM

3
kek provides an additional stability

margin and hence, safeguards the algorithm against uncertainties in the algorithm or
underlying assumptions. Based on this observation, we propose the LMI

M0
k + akM

1
k + (ak+1 − ak)M2

k + σkM
3
k + Sk � 0 for all k,(6.44)

where Sk is any symmetric matrix that satisfies e>k Skek ≥ 0 for all k. In particular,
any Sk � 0 is a valid choice. By revisiting the proof of Theorem 3.1, the feasibility of
the above LMI imposes the stricter condition

Vk+1(ξk+1) ≤ Vk(ξk)− e>k (σkM
3
k + Sk)ek e>k Skek ≥ 0,(6.45)

on the decrement of the Lyapunov function. The LMI in (6.44) is the robust counter-
part of (3.7). Now we can use (6.44) to search for the parameters of the algorithm,
considering Sk as a tuning parameter that makes the trade-off between robustness
and rate of convergence.

Robust gradient method. As an illustrative example, consider the gradient method
applied to f ∈ F(mf , Lf). Consider the robust counterpart of the LMI in (4.14):

[
p−ρ2p −hp
−hp h2p

]
+ λ

[−mfLf

mf+Lf

1
2

1
2

−1
mf+Lf

]
+

[
0 0
0 s

]
� 0 s ≥ 0.(6.46)

This LMI is homogeneous in (p, λ, s). We can hence assume p = 1. Using the Schur
Complement, the above LMI is equivalent to



−ρ2 − λ mfLf

mf+Lf

λ
2 1

λ
2 − λ

mf+Lf
+ s −h

1 −h −1


 � 0.(6.47)

which is now an LMI in (ρ2, λ, h, s). By treating s as a tuning parameter and min-
imizing the convergence factor ρ2 over (λ, h), we can design stepsizes that yield the
best convergence rate for a given level of robustness. Conversely, by treating ρ2 as a
tuning parameter and maximizing s over (λ, h), we can design stepsizes which yield
the largest robustness margin for a desired convergence rate.

Robust Nesterov’s accelerated method. As our design experiment, we consider the
Nesterov’s accelerated method applied to a strongly convex f :

xk+1 = yk − h∇f(yk),(6.48)

yk = xk + β(xk − xk−1).

Specifically, we consider the robust version of the LMI in (3.16), where the matrices
M i
k i ∈ {0, 1, 2, 3} are given in (4.20) and the robustness matrix is chosen as sI3, s ≥ 0.

For a given condition number κf =
Lf

mf
and robustness margin s, we use the LMI to

compute the convergence factor ρ on the grid (h, β) ∈ [0 2
Lf

]× [0 1]. See §4.2.

In Figure 5, we plot the contour plots of ρ for s = 0 and s = 0.01, respectively.
The condition number is fixed at Lf/mf = 10. We observe that when s is nonzero,
the parameters of the robust algorithm shift towards smaller stepsizes and higher
momentum coefficients, leading to higher robustness and lower convergence rates.

This manuscript is for review purposes only.

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 31

Robustness margin s = 0

0.820.84

0.84

0
.8

6

0.86

0.88

0.880
.9

0.9

0.9

0
.9

2

0.92

0.92

0
.9

4

0.94

0.94

0
.9

6

0.96

0.96

0.98

0
.9

8 1

1
1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Normalized stepsize hLf

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
o
m
en
tu
m

co
effi

ci
en
t
β

Robustness margin s = 0.01

0.880
.9

0.9

0
.9

2

0.92

0.94

0.940
.9

6

0.96

0
.9

8

0.98

0.98

1

1

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Normalized stepsize hLf

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
o
m
en
tu
m

co
effi

ci
en
t
β

Fig. 5: Plot of convergence rate ρ of the Nesterov’s accelerated method as a function of
stepsize h and momentum parameter β, and for two values of the robustness parameter
s. Higher values of s increases the robustness of the algorithm at the expense of reduced
convergence rate.

7. Concluding remarks. In this paper, we have developed an LMI framework,
built on the notion of Integral Quadratic Constraints from robust control theory
and Lyapunov stability, to certify both exponential and subexponential convergence
rates of first-order optimization algorithms. To this end, we proposed a class of time-
varying Lyapunov functions that are suitable generating convergence rates in addition
to proving stability. We showed that the developed LMI can often be solved in closed
form. In particular, we applied the technique to the gradient method, the proximal
gradient method, and their accelerated extensions to recover the known analytical
upper bounds on their performance. Furthermore, we showed that numerical schemes
can also be used to solve the LMI.

In this paper, we have only used pointwise IQCs to model nonlinearities. More
complicated IQCs, such as“off-by-one” IQCs, have shown to be fruitful in improving
numerical rate bounds in strongly convex settings [19]. One direction for future work

This manuscript is for review purposes only.

32 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

would be to use these IQCs in tandem with the Lyapunov function used in this paper
to further improve the numerical bounds in nonstrongly convex problems. Obtaining
better worst-case bounds is useful in a variety of applications, such as Model Predictive
Control (MPC). MPC is a sequential optimization-based control scheme, which is
particularly useful for constrained and nonlinear control tasks. Implementation of
MPC requires the solution of a constrained optimization problem in real time within
the sampling period to a specific accuracy determined from stability considerations
[26]. It is thus important to bound a priori, in a nonconservative manner, the number
of iterations needed for a specified accuracy. Improving the numerical rate bounds
will allow us to optimize this bound for every problem instance. More generally,
having a nonconservative estimation of convergence rate allows us to compare different
algorithms, which must be done by extensive simulations otherwise. We will pursue
these applications in future work.

Appendix A. Symbolic convergence rates for the gradient method.
The LMI in (4.15) with p = 1 along with the condition ak+1 ≥ ak is equivalent to the
inequalities

ak+1 ≥ ak,(A.1)

(
Lfh

2

2
− h)ak+1 + h2 − σ

Lf
≤ 0,(A.2)

−
(ak+1 − ak − 2h+ σ

2

)2

≥ 0.(A.3)

The last inequality implies ak+1 = ak + 2h− σ. Assuming a0 = 0 and solving for ak,
we obtain ak = (2h− σ)k. Therefore, the fastest convergence rate corresponds to the
smallest σ. By substituting ak in (A.1) and (A.2), we obtain

2h− σ ≥ 0, (
Lfh

2

2
− h)(2h− σ)(k + 1) + h2 − σ

Lf
≤ 0.(A.4)

Since the second inequality must hold for all k ≥ 0, we must have that Lfh
2/2−h ≤ 0

or equivalently, 0 ≤ h ≤ 2/Lf . Under this condition, it suffices to ensure the second
inequality in (A.4) holds for k = 0. This leads to

max(0,
(Lfh)(Lfh− 1)(2h)

(Lfh)2 − 2(Lfh) + 2
) ≤ σ ≤ 2h.(A.5)

Therefore, the optimal (minimum) σ is

σopt =





0 if 0 ≤ hLf ≤ 1
(Lfh)(Lfh− 1)(2h)

(Lfh)2 − 2(Lfh) + 2
if 1 < hLf ≤ 2.

(A.6)

By substituting all the parameters in (3.4), we obtain

f(xk)− f(x?) ≤
‖x0 − x?‖22

(2h− σopt)k
,(A.7)

which is the same as (4.16). �

This manuscript is for review purposes only.

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 33

Appendix B. Proof of Proposition 5.1. Proof of part 1: Since g is nondif-
ferentiable and convex, it follows from the discussion in §6.1.1 and §6.1.2 that Πg,h

is firmly non-expansive and is hence Lipschitz continuous with Lipschitz parameter
equal to one. Further, it is well-known that the map x 7→ x−h∇f(x) is Lipschitz con-
tinuous with Lipschitz constant γf = max{|1− hLf |, |1− hmf |}; see, for example, [4]
for a proof. Therefore, the composition Πg,h(x−h∇f(x)) is Lipschitz continuous with
parameter γf . In other words, we can write

‖Πg,h(x− h∇f(x))−Πg,h(x? − h∇f(x?))‖22 ≤ γ2
f‖x− x?‖22.

Making the substitution Πg,h(x−h∇f(x)) = x−hφh(x), completing the squares, and
rearranging terms yield

[
x− x?

φh(x)− φh(x?)

]>



1

2h
(γ2
f − 1)Id

1

2
Id

1

2
Id −h

2
Id



[

x− x?
φh(x)− φh(x?)

]
≥ 0.

Proof of part 2: First, note that the optimality condition of the proximal operator,
defined in (5.3), is that

0 ∈ ∂g(Πg,h(w)) +
1

h
(Πg,h(w)− w),

or equivalently,

0 = Tg(Πg,h(w)) +
1

h
(Πg,h(w)− w), Tg ∈ ∂g,(B.1)

where Tg(w) denotes a subgradient of g at w. On the other hand, by the definition
of the generalized gradient mapping in (5.4), we have that

Πg,h(y − h∇f(y)) = y − hφh(y).(B.2)

Substituting (B.2) and w = y − h∇f(y) in (B.1), we can equivalently write φh(y) as

φh(y) = ∇f(y) + Tg(y − hφh(y)).(B.3)

Consider the points x, y, z ∈ dom f . We can write

f(z)− f(y) ≤ ∇f(y)>(z−y)+
Lf
2
‖z−y‖22,

f(y)− f(x) ≤ ∇f(y)>(y−x)−mf

2
‖y−x‖22.

In the first and second inequality, we have used Lipschitz continuity and strong con-
vexity, respectively. Adding both sides yields

f(z)−f(x)≤∇f(y)>(z−x) +
Lf
2
‖z−y‖22−

mf

2
‖y−x‖22.(B.4)

Further, since g is convex, we can write

g(z)− g(x) ≤ Tg(z)>(z − x), Tg(z) ∈ ∂g(z), x, z ∈ dom g.(B.5)

This manuscript is for review purposes only.

34 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

Adding both sides of (B.4) and (B.5) for all x, z ∈ dom f ∩ dom g, y ∈ dom f , and
making the substitutions z = y − hφh(y) and (B.3) yields (5.6).

Proof of part 3: Suppose φh(y) = 0 for some y ∈ domφh. It then follows from
(B.3) that 0 = ∇f(y) + Tg(y), or equivalently, 0 ∈ ∇f(y) + ∂g(y). This implies
that y ∈ X?, according to (5.2). Conversely, suppose y ∈ X?. We therefore have
∇f(y) = −Tg(y). Substituting this in (B.3) yields φh(y) = Tg(y − hφh(y)) − Tg(y).
Since Tg is monotone, we can write

0 ≤ (Tg(y − hφh(y))− Tg(y))>(y − hφh(y)− y) = −h‖φh(y)‖22 for all h.

Therefore, we must have that φh(y) = 0. The proof is now complete. �

Appendix C. Proof of Lemma 5.2. In order to bound F (xk+1)−F (xk) and
F (xk+1)− F (x?), we use the inequality

F (y−hφh(y))−F (x) ≤φh(y)>(y−x)−mf

2
‖y−x‖22 + (

1

2
Lfh

2−h)‖φh(y)‖22,(C.1)

which we proved in Proposition 5.1. Specifically, we substitute (x, y) = (x?, yk) in
(C.1) to get

F (xk+1)−F (x?) ≤ (uk − u?)>(yk−y?)+(
Lfh

2

2
−h)‖uk − u?‖22−

mf

2
‖yk−y?‖22

=

[
yk − y?
uk − u?

]> [−mf

2
1
2

1
2 (1

2Lfh
2−h)

] [
yk − y?
uk − u?

]
.

=

[
ξk − ξ?
uk − u?

]> [
Ck 0
0 Id

]> [−mf

2
1
2

1
2 (1

2Lfh
2−h)

] [
Ck 0
0 Id

] [
ξk − ξ?
uk − u?

]

= e>kM
2
kek.

where we have used the identities u? = φh(y?) = 0 and yk − y? = Ck(ξk − ξ?).
Similarly, in (C.1) we substitute (x, y) = (xk, yk) to obtain

F (xk+1)−F (xk) ≤ (uk − u?)>(yk − xk)+(
1

2
Lfh

2−h)‖uk−u?‖22−
mf

2
‖yk−xk‖22

(C.2)

=

[
yk − xk
uk − u?

]> [−mf

2
1
2

1
2 (1

2Lfh
2−h)

] [
yk − xk
uk − u?

]

=

[
ξk − ξ?
uk − u?

]> [
Ck−Ek 0

0 Id

]> [−mf

2
1
2

1
2 (1

2Lfh
2−h)

] [
Ck−Ek 0

0 Id

] [
ξk − ξ?
uk − u?

]

= e>kM
1
kek.

where we have used x? = y? and yk − xk = (Ck − Ek)(ξk − ξ?) to obtain the second
equality. Finally, by Proposition 5.1 uk = φh(yk) satisfies the pointwise IQC defined
by (Qφh

, x?, φh(x?)). Therefore, we can write

e>kM
3
kek =

[
ξk − ξ?
uk − u?

]> [
Ck 0
0 Id

]>
Qφh

[
Ck 0
0 Id

] [
ξk − ξ?
uk − u?

]
(C.3)

=

[
yk − y?
uk − u?

]>
Qφh

[
yk − y?
uk − u?

]

≥ 0,

This manuscript is for review purposes only.

A UNIFIED ANALYSIS OF OPTIMIZATION ALGORITHMS 35

where we have used the identity yk−y? = Ck(ξk−ξ?) to obtain the second inequality.
The proof is complete.

REFERENCES

[1] F. Alvarez, On the minimizing property of a second order dissipative system in hilbert spaces,
SIAM Journal on Control and Optimization, 38 (2000), pp. 1102–1119.

[2] H. Attouch, J. Peypouquet, and P. Redont, Fast convex optimization via inertial dynamics
with hessian driven damping, Journal of Differential Equations, 261 (2016), pp. 5734–5783.

[3] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM journal on imaging sciences, 2 (2009), pp. 183–202.

[4] D. P. Bertsekas, Convex optimization algorithms, Athena Scientific Belmont, 2015.
[5] A. Cabot, H. Engler, and S. Gadat, On the long time behavior of second order differential

equations with asymptotically small dissipation, Transactions of the American Mathemat-
ical Society, 361 (2009), pp. 5983–6017.

[6] A. Cherukuri, E. Mallada, S. Low, and J. Cortes, The role of convexity on saddle-point
dynamics: Lyapunov function and robustness, arXiv preprint arXiv:1608.08586, (2016).

[7] P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing, in
Fixed-point algorithms for inverse problems in science and engineering, Springer, 2011,
pp. 185–212.

[8] S. Cyrus, B. Hu, B. Van Scoy, and L. Lessard, A robust accelerated optimization algorithm
for strongly convex functions, arXiv preprint arXiv:1710.04753, (2017).

[9] O. Devolder, F. Glineur, and Y. Nesterov, First-order methods of smooth convex opti-
mization with inexact oracle, Mathematical Programming, 146 (2014), pp. 37–75.

[10] Y. Drori and M. Teboulle, Performance of first-order methods for smooth convex minimiza-
tion: a novel approach, Mathematical Programming, 145 (2014), pp. 451–482.

[11] M. Fazlyab, A. Ribeiro, M. Morari, and V. M. Preciado, A dynamical systems perspective
to convergence rate analysis of proximal algorithms, in 2017 55th Annual Allerton Con-
ference on Communication, Control, and Computing (Allerton), Oct 2017, pp. 354–360,
https://doi.org/10.1109/ALLERTON.2017.8262759.

[12] D. Feijer and F. Paganini, Stability of primal–dual gradient dynamics and applications to
network optimization, Automatica, 46 (2010), pp. 1974–1981.

[13] M. Hardt, T. Ma, and B. Recht, Gradient descent learns linear dynamical systems, arXiv
preprint arXiv:1609.05191, (2016).

[14] E. Hazan, K. Levy, and S. Shalev-Shwartz, Beyond convexity: Stochastic quasi-convex
optimization, in Advances in Neural Information Processing Systems, 2015, pp. 1594–1602.

[15] B. Hu and L. Lessard, Control interpretations for first-order optimization methods, in Amer-
ican Control Conference, May 2017, pp. 3114–3119, https://doi.org/10.23919/ACC.2017.
7963426.

[16] B. Hu and L. Lessard, Dissipativity theory for Nesterovs accelerated method, in International
Conference on Machine Learning, Aug. 2017, pp. 1549–1557.

[17] H. Karimi, J. Nutini, and M. Schmidt, Linear convergence of gradient and proximal-gradient
methods under the polyak- Lojasiewicz condition, in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, Springer, 2016, pp. 795–811.

[18] D. Kim and J. A. Fessler, Optimized first-order methods for smooth convex minimization,
Mathematical programming, 159 (2016), pp. 81–107.

[19] L. Lessard, B. Recht, and A. Packard, Analysis and design of optimization algorithms via
integral quadratic constraints, SIAM Journal on Optimization, 26 (2016), pp. 57–95.

[20] A. Megretski and A. Rantzer, System analysis via integral quadratic constraints, IEEE
Transactions on Automatic Control, 42 (1997), pp. 819–830.

[21] I. Necoara, Y. Nesterov, and F. Glineur, Linear convergence of first order methods for
non-strongly convex optimization, arXiv preprint arXiv:1504.06298, (2015).

[22] Y. Nesterov, A method of solving a convex programming problem with convergence rate o
(1/k2), in Soviet Mathematics Doklady, vol. 27, 1983, pp. 372–376.

[23] Y. Nesterov, Introductory lectures on convex optimization: A basic course, 2013.
[24] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. I. Jordan, A general analysis of

the convergence of ADMM, arXiv preprint arXiv:1502.02009, (2015).
[25] B. Polyak, Some methods of speeding up the convergence of iteration methods, USSR

Computational Mathematics and Mathematical Physics, 4 (1964), pp. 1 – 17, https:
//doi.org/https://doi.org/10.1016/0041-5553(64)90137-5, http://www.sciencedirect.com/
science/article/pii/0041555364901375.

This manuscript is for review purposes only.

https://doi.org/10.1109/ALLERTON.2017.8262759
https://doi.org/10.23919/ACC.2017.7963426
https://doi.org/10.23919/ACC.2017.7963426
https://doi.org/https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/https://doi.org/10.1016/0041-5553(64)90137-5
http://www.sciencedirect.com/science/article/pii/0041555364901375
http://www.sciencedirect.com/science/article/pii/0041555364901375

36 M. FAZLYAB, A. RIBEIRO, M. MORARI, AND V.M. PRECIADO

[26] S. Richter, C. N. Jones, and M. Morari, Computational complexity certification for real-
time mpc with input constraints based on the fast gradient method, IEEE Transactions on
Automatic Control, 57 (2012), pp. 1391–1403.

[27] W. Su, S. Boyd, and E. J. Candes, A differential equation for modeling nesterovs accelerated
gradient method: theory and insights, Journal of Machine Learning Research, 17 (2016),
pp. 1–43.

[28] A. B. Taylor, J. M. Hendrickx, and F. Glineur, Exact worst-case convergence rates
of the proximal gradient method for composite convex minimization, arXiv preprint
arXiv:1705.04398, (2017).

[29] A. B. Taylor, J. M. Hendrickx, and F. Glineur, Smooth strongly convex interpolation
and exact worst-case performance of first-order methods, Mathematical Programming, 161
(2017), pp. 307–345.

[30] J. Wang and N. Elia, Control approach to distributed optimization, in Communication, Con-
trol, and Computing (Allerton), 2010 48th Annual Allerton Conference on, IEEE, 2010,
pp. 557–561.

[31] J. Wang and N. Elia, A control perspective for centralized and distributed convex optimization,
in 2011 50th IEEE Conference on Decision and Control and European Control Conference,
IEEE, 2011, pp. 3800–3805.

[32] A. Wibisono, A. C. Wilson, and M. I. Jordan, A variational perspective on acceler-
ated methods in optimization, Proceedings of the National Academy of Sciences, (2016),
p. 201614734.

[33] A. C. Wilson, B. Recht, and M. I. Jordan, A lyapunov analysis of momentum methods in
optimization, arXiv preprint arXiv:1611.02635, (2016).

[34] V. Yakubovich, Frequency conditions for the absolute stability of control systems with several
nonlinear or linear nonstationary blocks, Avtomatika i telemekhanika, 6 (1967), pp. 5–30.

This manuscript is for review purposes only.

	1 Introduction
	1.1 Related work
	1.2 Notation and preliminaries

	2 Algorithm representation
	3 Main results
	3.1 Time-invariant algorithms with exponential convergence
	3.2 IQCs for optimization algorithms
	3.2.1 Pointwise IQCs
	3.2.2 IQCs for (strongly) convex functions

	4 Performance results for unconstrained smooth programming
	4.1 Symbolic rate bounds
	4.1.1 The gradient method
	4.1.2 Nesterov's accelerated method

	4.2 Numerical bounds for exponential rates
	4.3 Numerical bounds for subexponential rates

	5 Composite optimization problems
	5.1 Generalized gradient mapping
	5.2 Proximal algorithms
	5.2.1 Proximal gradient method
	5.2.2 Accelerated proximal gradient method

	6 Further topics
	6.1 Calculus of IQCs
	6.1.1 Proximal operators
	6.1.2 IQCs for projection operators

	6.2 Beyond convexity
	6.3 Continuous-time models
	6.3.1 Continuous-time gradient flow
	6.3.2 Continuous-time accelerated gradient flow

	6.4 Algorithm design

	7 Concluding remarks
	Appendix A. Symbolic convergence rates for the gradient method
	Appendix B. Proof of Proposition 5.1
	Appendix C. Proof of Lemma 5.2
	References

