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Abstract. We introduce a new algorithm of proper generalized decomposition (PGD) for para-
metric symmetric elliptic partial differential equations. For any given dimension, we prove the exis-
tence of an optimal subspace of at most that dimension which realizes the best approximation---in
the mean parametric norm associated to the elliptic operator---of the error between the exact solution
and the Galerkin solution calculated on the subspace. This is analogous to the best approximation
property of the proper orthogonal decomposition (POD) subspaces, except that in our case the norm
is parameter-dependent. We apply a deflation technique to build a series of approximating solutions
on finite-dimensional optimal subspaces, directly in the online step, and we prove that the partial
sums converge to the continuous solution in the mean parametric elliptic norm. We show that the
standard PGD for the considered parametric problem is strongly related to the deflation algorithm
introduced in this paper. This opens the possibility of computing the PGD expansion by directly
solving the optimization problems that yield the optimal subspaces.
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1. Introduction. The Karhunen--Lo\`eve expansion (KLE) is a widely used tool
that provides a reliable procedure for a low-dimensional representation of spatiotem-
poral signals (see [13, 23]). It is referred to as the principal components analysis (PCA)
in statistics (see [15, 17, 30]) and called singular value decomposition (SVD) in linear
algebra (see [14]). It is named proper orthogonal decomposition (POD) in mechanical
computation, where it is also widely used (see [5]). Its use allows large savings of
computational costs and makes affordable the solution of problems that need a large
amount of solutions of parameter-dependent partial differential equations (PDEs); see
[4, 10, 16, 21, 30, 31, 32, 34].
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However, the computation of the POD expansion requires knowledge of the func-
tion to be expanded, or at least its values at the nodes of a fine enough net. This
makes it rather expensive to solve parametric elliptic PDEs, as it requires the pre-
vious solution of the PDE for a large enough number of values of the parameter
(``snapshots""; see [18]), even if these can be located at optimal positions (see [20]).
Galerkin-POD strategies are well suited to solving parabolic problems, where the
POD basis is obtained from the previous solution of the underlying elliptic operator
(see [19, 26]).

An alternative approach is proper generalized decomposition (PGD) which itera-
tively computes a tensorized representation of the parameterized PDE that separates
the parameter and the independent variables; this approach was introduced in [3]. It
has been interpreted as a power type generalized spectral decomposition (see [27, 28]).
It has experienced rapid development, being applied to the low-dimensional tensorized
solution of many applied problems. The mathematical analysis of the PGD has ex-
perienced an important development in recent years. The convergence of a version
of the PGD for symmetric elliptic PDEs via minimization of the associated energy
has been proved in [22]. Also, in [11] the convergence of a recursive approximation
of the solution of a linear elliptic PDE is proved, based on the existence of optimal
subspaces of rank 1 that minimize the elliptic norm of the current residual.

The present paper is aimed at the direct determination of a variety of reduced
dimension for the solution of parameterized symmetric elliptic PDEs. We intend to
determine online an optimal subspace of given dimension that yields the best approx-
imation in the mean (with respect to the parameter) of the error (in the parametric
norm associated to the elliptic operator) between the exact solution and the Galerkin
solution calculated on the subspace. The optimal POD subspaces can no longer be
characterized by means of a spectral problem for a compact self-adjoint operator (the
standard POD operator), and thus the spectral theory for compact self-adjoint opera-
tors does not apply. We build recursive approximations on finite-dimensional optimal
subspaces by minimizing the mean parametric error of the current residual, similar to
the one introduced in [11], that we prove to be strongly convergent in the ``intrinsic""
mean parametric elliptic norm. For this reason we call the method introduced the
``intrinsic"" PGD.

In addition, we prove that the method introduced is a genuine extension of both
POD and PGD methods when applied to the solution of parametric elliptic equations.
In particular it is strongly related to the PGD method in the sense that the standard
formulation of the PGD method actually provides the optimality conditions of the
minimization problem satisfied by the optimal 1D subspaces. As a consequence of
the analysis developed in the paper, the PGD expansion is strongly convergent to the
targeted solution in the parametric elliptic norm whenever it is implemented in such
a way that all modes are optimal. Furthermore, the characterization of the modes by
means of optimization problems opens the door to their computation by optimization
techniques, in addition to the usual power iteration algorithm.

The abstract framework considered includes several kind of problems of practical
interest, to which the PGD has been and continues to be applied. This is the case of
the design analysis in computational mechanics. For instance, in the design of energy
efficient devices (HVACs) or buildings, it is mandatory to address the heat equation
with several structural parameters, for instance, the thermal diffusivity or transmit-
tance, and the geometric shape of the device, among others. Also, the optimal design
of heterogeneous materials that behave with linear law fits into the framework con-
sidered, as the parameters model the structural configuration of the various materials
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(cf. [29, 33]). Moreover, in practice the structural configuration that optimizes a cer-
tain predefined criterion (e.g., construction costs, benefits, etc.) needs to take into
account the unavoidable uncertainties in the structural performance. This leads to el-
liptic problems, including modeling of the targeted uncertainty, which, when the PDE
model is linear, also fits into the abstract framework considered. In addition classical
homogenization problems governed by linear symmetric elliptic PDEs also formally fit
into this general framework, although the kind of approximation of the solution that
is proposed in this work is different from the usual one, which looks for a limit aver-
aged solution. Here we rather approximate the whole family of parameter-dependent
solutions by a function series.

The method, however, does not apply, for instance, to nonsymmetric elliptic forms
or to nonlinear problems.

The present paper focuses on theoretical aspects: We study the existence of the
intrinsic POD and give a convergence result for the deflation algorithm. We defer the
quantitative analysis of the convergence as well as numerical investigations to future
work.

The paper is structured as follows: In section 2 we state the general problem
of finding optimal subspaces of a given dimension. In section 3 we prove that there
exists a solution for 1D optimal subspaces, characterized as a maximization problem
with a nonlinear normalization restriction. We extend this existence result in section
4 to general dimensions. In section 5 we use the results from sections 3 and 4 to
build a deflation algorithm to approximate the solution of a parametric family of
elliptic problems, and we show the convergence. Section 6 explains why the method
introduced is a genuine extension of both POD and PGD algorithms, and provides a
theoretical analysis for the latter. Finally, in section 7 we present the main conclusions
of the paper.

2. Statement of the problem. Let H be a separable Hilbert space endowed
with the scalar product (\cdot , \cdot ). The related norm is denoted by \| \cdot \| . We denote by
Bs(H) the space of bilinear, symmetric, and continuous forms in H.

Assume a given measure space (\Gamma ,\scrB , \mu ), with standard notation, so that \mu is
\sigma -finite.

Let a \in L\infty (\Gamma , Bs(H); d\mu ) be such that there exists \alpha > 0 satisfying

(1) \alpha \| u\| 2 \leq a(u, u; \gamma ) \forall u \in H, d\mu -a.e. \gamma \in \Gamma .

For \mu -a.e \gamma \in \Gamma , the bilinear form a(\cdot , \cdot ; \gamma ) determines a norm uniformly equivalent to
the norm \| \cdot \| . Moreover, a \in Bs(L

2(\Gamma , H; d\mu )) defined by

(2) a(v, w) =

\int 
\Gamma 

a(v(\gamma ), w(\gamma ); \gamma ) d\mu (\gamma ) \forall v, w \in L2(\Gamma , H; d\mu )

defines an inner product in L2(\Gamma , H; d\mu ) which generates a norm equivalent to the
standard one in L2(\Gamma , H; d\mu ).

Let there be given a data function f \in L2(\Gamma , H \prime ; d\mu ). We are interested in the
following variational problem:

(3) Find u(\gamma ) \in H such that a(u(\gamma ), v; \gamma ) = \langle f(\gamma ), v\rangle \forall v \in H, d\mu -a.e. \gamma \in \Gamma ,

where \langle \cdot , \cdot \rangle denotes the duality pairing between H \prime and H.
By the Riesz representation theorem, problem (3) admits a unique solution for

d\mu -a.e. \gamma \in \Gamma . On the other hand, we claim that the \~u solution of

(4) \~u \in L2(\Gamma , H; d\mu ), \=a(\~u, \=v) =

\int 
\Gamma 

\langle f(\gamma ), \=v(\gamma )\rangle d\mu (\gamma ) \forall \=v \in L2(\Gamma , H; d\mu )
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also satisfies (3): Indeed, taking \=v = v\chi B , with v \in H fixed and B \in \scrB arbitrary,
implies that there exists a subset Nv \in \scrB with \mu (Nv) = 0 such that

a(\~u(\gamma ), v; \gamma ) = \langle f(\gamma ), v\rangle \forall \gamma \in \Gamma \setminus Nv.

The separability of H implies that Nv can be chosen independent of v, which proves
the claim. By the uniqueness of the solution of (3) this shows that

(5) \~u = u d\mu -a.e. \gamma \in \Gamma .

This proves that u defined by (3) belongs to L2(\Gamma , H; d\mu ) and provides an equivalent
definition of u, namely, that u is the solution of (4).

Given a closed subspace Z of H, let us denote by uZ(\gamma ) the solution of the
Galerkin approximation of problem (3) on Z, which is defined as

(6) uZ(\gamma ) \in Z, a(uZ(\gamma ), z; \gamma ) = \langle f(\gamma ), z\rangle \forall z \in Z, d\mu -a.e. \gamma \in \Gamma 

or, equivalently, as

(7) uZ \in L2(\Gamma , Z; d\mu ), \=a(uZ , z) =

\int 
\Gamma 

\langle f(\gamma ), z(\gamma )\rangle d\mu (\gamma ) \forall z \in L2(\Gamma , Z; d\mu ).

For every k \in IN, we intend to find the best subspace W of H of dimension less
than or equal to k that minimizes the mean error (in the norm defined by \=a) between
u and uW . That is, W solves

(8) min
Z\in \BbbG \leq k

\=a(u - uZ , u - uZ),

where \BbbG \leq k is the family of subspaces of H of dimension less than or equal to k. Note
that \BbbG \leq k is a connected component of the Grassmaniann variety \BbbG \leq k of H, defined
as

\BbbG \leq k =
\bigcup 
k\geq 0

\BbbG k,

where \BbbG k is the set formed by all subspaces of H of dimension k. The set \BbbG k is a
Hilbert manifold modeled in a particular Hilbert space (see [1, 25]).

Problem (8) will be proved to have a solution in sections 3 and 4. We will then
use this result in section 5 to approximate the solution u of problem (3) by a deflation
algorithm.

Note that when looking at the formulation of the minimization problem (8), it
seems that solving it requires the knowledge of the solution u of (3). But such is not
the case, since Proposition 2.6 below provides an equivalent formulation of (8) which
does not depend on the knowledge of u but only on the data f .

Let us provide some equivalent formulations of problem (8). First we observe the
following.

Proposition 2.1. For every closed subspace Z \subset H, the function uZ defined by
(7) is also the unique solution of

(9) min
z\in L2(\Gamma ,Z;d\mu )

\=a(u - z, u - z).

Moreover, for d\mu -a.e. \gamma \in \Gamma , the vector uZ(\gamma ) is the solution of

(10) min
z\in Z

a(u(\gamma ) - z, u(\gamma ) - z; \gamma ).
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Proof. It is a classical property of the Galerkin approximation of the variational
formulation of linear elliptic problems that uZ satisfies (9). Indeed, the symmetry of
\=a gives

\=a(u - z, u - z) = \=a(u - uZ , u - uZ) + 2\=a(u - uZ , uZ  - z) + \=a(uZ  - z, uZ  - z)

for every z \in L2(\Gamma , H; d\mu ), where by (4), (5), and (7) the second term on the right-
hand side vanishes, while the third one is nonnegative. This proves (9).

The proof of (10) is the same by taking into account (3) and (6) instead of (4)
and (7).

As a consequence of Proposition 2.1 and definition (2) of \=a, we have the following
corollary.

Corollary 2.2. A space W \in \BbbG \leq k is a solution of (8) if and only if it is a
solution of

(11) min
Z\in \BbbG \leq k

min
z\in L2(\Gamma ,Z;d\mu )

\=a(u - z, u - z).

Moreover,

(12) min
Z\in \BbbG \leq k

min
z\in L2(\Gamma ,Z;d\mu )

\=a(u - z, u - z) = min
Z\in \BbbG \leq k

\int 
\Gamma 

min
z\in Z

a(u(\gamma ) - z, u(\gamma ) - z; \gamma )d\mu (\gamma ).

Remark 2.3. Optimization problem (11) is reminiscent of the Kolmogorov k-
width related to the best approximation of the manifold (u(\gamma ))\gamma \in \Gamma by subspaces in
H with dimension k as presented in [24]. In the present minimization problem, we
use the norm of L2(\Gamma , H; d\mu ) instead of the norm of L\infty (\Gamma , H; d\mu ) as used there. The
minimization problem in [24] can indeed be written as

(13) min
Z\in \BbbG \leq k

esssup
\gamma \in \Gamma 

min
z\in Z

a(u(\gamma ) - z, u(\gamma ) - z; \gamma )

if one uses a(\cdot , \cdot ; \gamma ) as the inner product in H.
The analysis performed in the present paper is strongly based on the Hilbertian

framework associated to the minimization in L2(\Gamma , H; d\mu ). To the best of our knowl-
edge, few facts are known about problem (13); in particular, there is no proof of
existence of solutions. The extension to this problem of the techniques used in the
present paper is far from being straightforward, and we intend to discuss this in a
future paper. Indeed, the L\infty (\Gamma , H; d\mu ) framework is especially interesting whenever
uniform error estimates with respect to the parameter are needed. This happens,
for instance, when upper bounds for energy consumption (mechanical, thermal, etc.)
should be respected.

For a function v \in L2(\Gamma , H; d\mu ), we denote by R(v) the closure of the vectorial
space spanned by v(\gamma ) when \gamma belongs to \Gamma ; more exactly, taking into account that v
is only defined up to sets of zero measure, the correct definition of R(v) is given by

(14) R(v) =
\bigcap 

\mu (N)=0

Span
\bigl\{ 
v(\gamma ) : \gamma \in \Gamma \setminus N

\bigr\} 
.

The following result proves that in (14) the intersection can be replaced by a
single closed spanned space corresponding to a single set M \in \scrB . This proves in
particular that it does not reduce to \{ 0\} if R(v) is not zero d\mu -a.e. \gamma \in \Gamma .
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Proposition 2.4. For every v \in L2(\Gamma , H; d\mu ) there existsM \in \scrB , with \mu (M) = 0
such that

R(v) = Span
\bigl\{ 
v(\gamma ) : \gamma \in \Gamma \setminus M

\bigr\} 
.

Proof. For every N \in \scrB , we define PN as the orthogonal projection of H into

RN := Span
\bigl\{ 
v(\gamma ) : \gamma \in \Gamma \setminus N

\bigr\} 
.

We also define P as the orthogonal projection of H into R(v).
Let us first prove that

(15) \forall z \in H, \exists Mz \in \scrB with \mu (Mz) = 0 such that Pz = PMz
z.

In order to prove this result, we consider Nn \in \scrB , with \mu (Nn) = 0, such that

\| PNnz\| \rightarrow inf
\mu (N)=0

\| PNz\| .

TakingMz = \cup nNn, we have that \mu (Mz) = 0. Moreover, using that Nn \subset Mz implies
RMz \subset RNn , we get

inf
\mu (N)=0

\| PNz\| \leq \| PMz
z\| \leq \| PNn

z\| \forall n \geq 1.

Therefore,
\| PMzz\| = inf

\mu (N)=0
\| PNz\| .

Now, we use that for every N \in \scrB with Mz \subset N , \mu (N) = 0, we have

RN \subset RMz , \| PMzz\| \leq \| PNz\| ,

and then

(16) PNz = PMz
z \forall N \supset Mz with \mu (N) = 0.

We take now an arbitrary N \in \scrB with \mu (N) = 0. UsingMz \subset N\cup Mz, \mu (N\cup Mz) = 0,
and (16), we get

PMz
z = PN\cup Mz

z \in RN\cup Mz
\subset RN \forall N \in \scrB , with \mu (N) = 0,

and so PMz
z belongs to R(v). On the other hand, observe that R(v) \subset RMz

and the
definition of PMz imply

\| z  - PMz
z\| \leq \| z  - \eta \| \forall \eta \in R(v),

and thus PMz
z = Pz. This proves (15).

Let us now use (15) to prove the statement of Proposition 2.4. We consider an
orthonormal basis \{ zk\} of R(v)\bot . By (15), we know that for every k \geq 1, there exists
Mzk \in \scrB with \mu (Mzk) = 0 such that PMk

zk = 0. Then we define

M =
\bigcup 
k\geq 1

Mzk .

Let us prove that M satisfies the thesis of the proposition. Clearly \mu (M) = 0; more-
over, (16) and Mzk \subset M for every k \geq 1 imply

PMek = 0 \forall k \geq 1.

This shows PMz = 0 for every z \in R(v)\bot , and then R(v)\bot \subset R\bot 
M or, equivalently,

RM \subset R(v). Since the other contention is immediate, we have then proved RM =
R(v), which finishes the proof.
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Taking into account (11), a new formulation of (8) is given by the following.

Proposition 2.5. If W is a solution of (8), then uW is a solution of

(17) min
v\in L2(\Gamma ,H;d\mu )
dimR(v)\leq k

\=a(u - v, u - v).

Reciprocally, if \^u is a solution of (17), then R(\^u) is a solution of (8) and \^u = uR(\^u).

As announced above, the next proposition provides an equivalent formulation for
(8) which does not depend on the knowledge of the solution u of (3) but only on the
data f .

Proposition 2.6. The subspace W \in \BbbG \leq k solves problem (8) if and only if it is
a solution of the problem

(18) max
Z\in \BbbG \leq k

\int 
\Gamma 

\langle f(\gamma ), uZ(\gamma )\rangle d\mu (\gamma ),

where uZ is defined by (7).

Proof. As in the proof of the first part of Proposition 2.1, one deduces from (4),
(5), and (7) that

\=a(u - uZ , z) = 0 \forall z \in L2(\Gamma , Z; d\mu ).

Using the symmetry of \=a, we then have

\=a(u - uZ , u - uZ) = \=a(u, u) - a(uZ , u) = \=a(u, u) - \=a(uZ , uZ)

= \=a(u, u) - 
\int 
\Gamma 

\langle f(\gamma ), uZ(\gamma )\rangle d\mu (\gamma ).

Thus W solves (8) if and only if it solves (18).

3. One-dimensional approximations. In section 4 we shall show the existence
of the solution of problem (8) for any arbitrary k. However a particularly interesting
case from the point of view of the applications is k = 1. We dedicate this section
to this special case. Observe that for Z \in \BbbG 1, there exists z \in H \setminus \{ 0\} such that
Z = Span\{ z\} . The problem to solve can be reformulated as follows.

Lemma 3.1. Assume f \not \equiv 0. Then, the subspace W \in \BbbG 1 solves problem (18) if
and only if W = Span\{ w\} , where w is a solution of

(19) max
z\in H
z \not =0

\int 
\Gamma 

\langle f(\gamma ), z\rangle 2

a(z, z; \gamma )
d\mu (\gamma ).

Proof. Let Z \in \BbbG 1. Then Z = Span\{ z\} , for some z \in H \setminus \{ 0\} , and there exists a
function \varphi : \Gamma \mapsto \rightarrow \BbbR such that

uZ(\gamma ) = \varphi (\gamma ) z, d\mu -a.e. \gamma \in \Gamma .

As z \not = 0, then, as uZ(\gamma ) is the solution to the variational equation (6), we derive
that

\varphi (\gamma ) =
\langle f(\gamma ), z\rangle 
a(z, z; \gamma )

, d\mu -a.e. \gamma \in \Gamma .

Using this formula we obtain that

(20)

\int 
\Gamma 

\langle f, uZ(\gamma )\rangle d\gamma =

\int 
\Gamma 

\langle f(\gamma ), z\rangle 2

a(z, z; \gamma )
d\mu (\gamma ).
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If the maximum in (18) is obtained by a space of dimension one, then formula
(20) proves the desired result.

In contrast, if the maximum in (18) is obtained by the null space, then the max-
imum in \BbbG 1 is equal to zero. Therefore the right-hand side of (20) is zero for every
z \in H, which implies that f = 0 d\mu -a.e. in \Gamma , in contradiction with the assumption
f \not \equiv 0.

Remark 3.2. Since the integrand which appears in (19) is homogeneous of degree
zero in z, problem (19) is equivalent to

max
z\in H

\| z\| =1

\int 
\Gamma 

\langle f(\gamma ), z\rangle 2

a(z, z; \gamma )
d\mu (\gamma ).

We now prove the existence of a solution to problem (19).

Theorem 3.3. Assume f \not \equiv 0. Problem (19) admits at least one solution.

Note that if f \equiv 0, then every vector w \in H \setminus \{ 0\} is a solution of (19).

Proof. Define

(21) M\ast := sup
z\in H

\| z\| =1

\int 
\Gamma 

\langle f(\gamma ), z\rangle 2

a(z, z; \gamma )
d\mu (\gamma ),

and consider a sequence wn \subset H, with \| wn\| = 1 such that

(22) lim
n\rightarrow \infty 

\int 
\Gamma 

\langle f(\gamma ), wn\rangle 2

a(wn, wn; \gamma )
d\mu (\gamma ) =M\ast .

Up to a subsequence, we can assume the existence of w \in H, such that wn converges
weakly in H to w. Taking into account that f(\gamma ) \in H \prime , a(\cdot , \cdot , \gamma ) \in Bs(H) d\mu -a.e.
\gamma \in \Gamma , and (1) is satisfied, we get

(23) lim
n\rightarrow \infty 

\langle f(\gamma ), wn\rangle = \langle f(\gamma ), w\rangle , d\mu -a.e. \gamma \in \Gamma ,

(24) lim inf
n\rightarrow \infty 

a(wn, wn; \gamma ) \geq a(w,w; \gamma ), d\mu -a.e. \gamma \in \Gamma .

On the other hand, we observe that (1) and \| wn\| = 1 imply

(25) | \langle f(\gamma ), wn\rangle | \leq \| f(\gamma )\| H\prime ,
1

a(wn, wn; \gamma )
\leq 1

\alpha 
, d\mu -a.e. \gamma \in \Gamma .

If w = 0, then (23), (25), and Lebesgue's dominated convergence theorem imply

lim
n\rightarrow \infty 

\int 
\Gamma 

\langle f(\gamma ), wn\rangle 2

a(wn, wn; \gamma )
d\mu (\gamma ) = 0,

which by (22) is equivalent to M\ast = 0. Taking into account (1) and the definition
(21) of M\ast , this is only possible if f \equiv 0 is the null function. As we are assuming
f \not \equiv 0, we conclude that w is different from zero. Then, (25) proves

0 \leq \| f(\gamma )\| 2H\prime 

\alpha 
 - \langle f(\gamma ), wn\rangle 2

a(wn, wn; \gamma )
, d\mu -a.e. \gamma \in \Gamma ,
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while (23) and (24) prove

(26) lim inf
n\rightarrow \infty 

\biggl( 
\| f(\gamma )\| 2H\prime 

\alpha 
 - \langle f(\gamma ), wn\rangle 2

a(wn, wn; \gamma )

\biggr) 
\geq \| f(\gamma )\| 2H\prime 

\alpha 
 - \langle f(\gamma ), w\rangle 2

a(w,w; \gamma )
, d\mu -a.e. \gamma \in \Gamma .

Using (22), Fatou's lemma (see [6, section 4.1]) implies\int 
\Gamma 

\biggl( 
\| f(\gamma )\| 2H\prime 

\alpha 
 - \langle f(\gamma ), w\rangle 2

a(w,w; \gamma )

\biggr) 
d\mu (\gamma ) \leq lim inf

n\rightarrow \infty 

\int 
\Gamma 

\biggl( 
\| f(\gamma )\| 2H\prime 

\alpha 
 - \langle f(\gamma ), wn\rangle 2

a(wn, wn; \gamma )

\biggr) 
d\mu (\gamma )

=

\int 
\Gamma 

\| f(\gamma )\| 2H\prime 

\alpha 
d\mu (\gamma ) - M\ast 

or, equivalently,

(27) M\ast \leq 
\int 
\Gamma 

\langle f(\gamma ), w\rangle 2

a(w,w; \gamma )
d\mu (\gamma ).

By definition (21) ofM\ast , this proves that the above inequality is an equality and that
w is a solution of (19).

Remark 3.4. Actually, in place of (26), one has the stronger result

lim inf
n\rightarrow \infty 

\biggl( 
\| f(\gamma )\| 2H\prime 

\alpha 
 - \langle f(\gamma ), wn\rangle 2

a(wn, wn; \gamma )

\biggr) 
=

\| f(\gamma )\| 2H\prime 

\alpha 
 - \langle f(\gamma ), w\rangle 2

lim inf
n\rightarrow \infty 

a(wn, wn; \gamma )
, d\mu -a.e. \gamma \in \Gamma ,

which by the proof used to prove (27) shows

M\ast \leq 
\int 
\Gamma 

\langle f(\gamma ), w\rangle 2

lim inf
n\rightarrow \infty 

a(wn, wn; \gamma )
d\mu (\gamma ).

Combined with

M\ast =

\int 
\Gamma 

\langle f(\gamma ), w\rangle 2

a(w,w; \gamma )
d\mu (\gamma )

and (24), this implies

a(w,w; \gamma ) = lim inf
n\rightarrow \infty 

a(wn, wn; \gamma ) d\mu -a.e. \gamma \in \Gamma such that \langle f(\gamma ), w\rangle \not = 0.

By (1) and f \not \equiv 0, this proves the existence of a subsequence of wn which converges
strongly to w a.e. \gamma .

Since this proof can be carried out by replacing wn with any subsequence of wn,
we conclude that the whole sequence wn (which we extracted just after (22), assuming
that it converges weakly to some w) actually converges strongly to w.

The above result may be used to build a computable approximation of a solution
of (19). Indeed, for f \not \equiv 0, let \{ Hn\} n\geq 1 be an internal approximation of H, that is, a
sequence of subspaces of finite dimension of H such that

lim
n\rightarrow \infty 

inf
\psi \in Hn

\| z  - \psi \| = 0 \forall z \in H,

and consider a solution wn of

max
z\in Hn
\| z\| =1

\int 
\Gamma 

\langle f(\gamma ), z\rangle 2

a(z, z; \gamma )
d\mu (\gamma ).
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The existence of such a wn can be obtained by the same reasoning as in the proof of
Theorem 3.3 or by just using the Weierstrass theorem because the dimension of Hn

is finite.
Taking \~w a solution of (19) and a sequence \~wn \in Hn converging to \~w in H, we

have\int 
\Gamma 

\langle f(\gamma ), \~w\rangle 2

a( \~w, \~w; \gamma )
d\mu (\gamma ) = lim

n\rightarrow \infty 

\int 
\Gamma 

\langle f(\gamma ), \~wn\rangle 2

a( \~wn, \~wn; \gamma )
d\mu (\gamma )

\leq lim inf
n\rightarrow \infty 

\int 
\Gamma 

\langle f(\gamma ), wn\rangle 2

a(wn, wn; \gamma )
d\mu (\gamma ) \leq lim sup

n\rightarrow \infty 

\int 
\Gamma 

\langle f(\gamma ), wn\rangle 2

a(wn, wn; \gamma )
d\mu (\gamma ) \leq 

\int 
\Gamma 

\langle f(\gamma ), \~w\rangle 2

a( \~w, \~w; \gamma )
d\mu (\gamma ),

and thus

lim
n\rightarrow \infty 

\int 
\Gamma 

\langle f(\gamma ), wn\rangle 2

a(wn, wn; \gamma )
d\mu (\gamma ) =

\int 
\Gamma 

\langle f(\gamma ), \~w\rangle 2

a( \~w, \~w; \gamma )
d\mu (\gamma ) =M\ast .

This proves that the sequence wn satisfies (22). Therefore any subsequence of wn that
converges weakly to some w converges strongly to w which is a solution of (19).

4. Higher-dimensional approximations. This section is devoted to the proof
of the existence of an optimal subspace which is a solution of (8) when k \geq 1 is any
given number.

Theorem 4.1. For any given k \geq 1, problem (8) admits at least one solution.

Proof. As in the proof of Theorem 3.3, we use the direct method of the calculus
of variations. Denoting by mk

(28) mk = inf
Z\in \BbbG \leq k

\=a(u - uZ , u - uZ),

we consider a sequence of spaces Wn \in \BbbG \leq k such that wn := uWn
satisfies

(29) lim
n\rightarrow \infty 

\=a(u - wn, u - wn) = mk.

Taking into account that by Proposition 2.1

(30) Z \subset \~Z =\Rightarrow \=a(u - u \~Z , u - u \~Z) \leq \=a(u - uZ , u - uZ),

we can assume that the dimension of Wn is equal to k. Moreover, we observe that
(29) implies that wn is bounded in L2(\Gamma , H; d\mu ).

Let (z1n, . . . , z
k
n) be an orthonormal basis of Wn. It holds that

(31) wn(\gamma ) =

k\sum 
j=1

(wn(\gamma ), z
j
n) z

j
n, d\mu -a.e. \gamma \in \Gamma .

Since the norm of the vectors zjn is one, there exists a subsequence of n and k vectors
zj \in H such that

(32) zjn \rightharpoonup zj in H \forall j \in \{ 1, . . . , k\} .

Using also
| (wn(\gamma ), zjn)| \leq \| wn(\gamma )\| , d\mu -a.e \gamma \in \Gamma ,

we get that (wn, z
j
n) is bounded in L2(\Gamma , H; d\mu ) for every j, and thus there exists a

subsequence of n and k functions pj \in L2(\Gamma ; d\mu ) such that

(33) (wn, z
j
n)\rightharpoonup pj in L2(\Gamma , H; d\mu ) \forall j \in \{ 1, . . . , k\} .
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We claim that

(34) wn \rightharpoonup w :=

n\sum 
j=1

pjzj in L2(\Gamma ; d\mu ).

Indeed, taking into account that wn is bounded in L2(\Gamma , H; d\mu ) and (31), it is enough
to show
(35)

lim
n\rightarrow \infty 

\int 
\Gamma 

\bigl( 
(wn, z

j
n)z

j
n, \varphi v

\bigr) 
d\mu (\gamma ) =

\int 
\Gamma 

(pjzj , \varphi v) d\mu (\gamma ) \forall \varphi \in L2(\Gamma ; d\mu ), \forall v \in H.

This is a simple consequence of\int 
\Gamma 

\bigl( 
(wn, z

j
n)z

j
n, \varphi v

\bigr) 
d\mu (\gamma ) = (zjn, v)

\int 
\Gamma 

(wn, z
j
n)\varphi d\mu (\gamma ),

combined with (32) and (33).
From the continuity and convexity of the quadratic form associated to \=a, as well

as from (34) and (29), we have

(36) \=a(u - w, u - w) \leq lim
n\rightarrow \infty 

\=a(u - wn, u - wn) = mk.

Using that W = Span\{ z1, . . . , zk\} \in \BbbG \leq k, and that (see Proposition 2.1)

(37) \=a(u - uW , u - uW ) \leq \=a(u - w, u - w),

we conclude that W is a solution of (8).

Remark 4.2. From (36), (37), definition (28) of mk, and Proposition 2.1, we have
that w = uW in the proof of Theorem 4.1. Moreover,

\=a(u - w, u - w) = mk = lim
n\rightarrow \infty 

\=a(u - wn, u - wn),

which combined with (34) proves that wn converges strongly to w in L2(\Gamma , H; d\mu ).
As in Remark 3.4, this can be used to build a strong approximation of a solution of
(8) by using an internal approximation of H.

5. An iterative algorithm by deflation. In the previous section, for any
given k \geq 1, we have proved the existence of an optimal subspace for problem (8).
We use this fact here to build an iterative approximation of the solution of (3) by a
deflation approach. We build recursive approximations on finite-dimensional optimal
subspaces by minimizing the mean parametric error of the current residual, similar
to the recursive approximations introduced in [11]. Let us denote

(38) \Pi k(v) =

\biggl\{ 
vW | W solves min

Z\in \BbbG \leq k

\=a(v  - vZ , v  - vZ),

\biggr\} 
\forall v \in L2(\Gamma , H; d\mu ),

where vZ is defined by (7).
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The deflation algorithm is as follows:
\bullet Initialization:

(39) u0 = 0.

\bullet Iteration: Assuming ui - 1 \in H known for i = 1, 2, . . . , set

(40) ei - 1 = u - ui - 1, choose si \in \Pi k(ei - 1), and define ui = ui - 1 + si.

Remark 5.1. Note that si (and therefore ui) in general is not defined in a unique
way.

Note also that algorithm (40) does not need to know the solution u of (4), since
ei - 1 = u - ui - 1 is directly defined from f and ui - 1 by

(41)

\left\{     
ei - 1 \in L2(\Gamma , H; d\mu ),

\=a(ei - 1, v) =

\int 
\Gamma 

\langle f(\gamma ), v(\gamma )\rangle d\mu (\gamma ) - \=a(ui - 1, v) \forall v \in L2(\Gamma , H; d\mu ).

Then Proposition 2.6, applied to the case where f is replaced by the function fi
defined by

(42)

\int 
\Gamma 

\langle fi(\gamma ), v(\gamma )\rangle d\mu (\gamma ) =
\int 
\Gamma 

\langle f(\gamma ), v(\gamma )\rangle d\mu (\gamma ) - \=a(ui - 1, v) \forall v \in L2(\Gamma , H; d\mu ),

proves that
si \in \Pi k(ei - 1) \Leftarrow \Rightarrow si = (ei - 1)Wi ,

where Wi is a solution of

(43) max
Z\in \BbbG \leq k

\biggl\{ \int 
\Gamma 

\langle f(\gamma ), (ei - 1)Z(\gamma )\rangle d\mu (\gamma ) - \=a(ui - 1, (ei - 1)Z)

\biggr\} 
,

where, in accordance with (7), (ei - 1)Z denotes the solution of

(44)

\left\{     
(ei - 1)Z \in L2(\Gamma , Z; d\mu ),

\=a
\bigl( 
(ei - 1)Z , z

\bigr) 
=

\int 
\Gamma 

\langle f(\gamma ), z(\gamma )\rangle d\mu (\gamma ) - \=a(ui - 1, z) \forall z \in L2(\Gamma , Z; d\mu ).

This observation allows one to carry out the iterative process without knowing the
function u.

Note also that

ui =

i\sum 
j=1

sj ,

namely that ui is the partial sum of the series
\sum 
j\geq 1 sj .

Remark 5.2. In this remark we take k = 1. Then every space of \BbbG \leq 1 is spanned
by an element of H, and in particular Wi = Span\{ wi\} for some wi \in H; then

ui(\gamma ) =
\sum i
j=1 \Phi j(\gamma )wj , where \Phi j(\gamma ) \in L2(\Gamma , d\mu ) is defined by sj = \Phi j(\gamma )wj . Note

also that if wi = 0 for some i \geq 0, then fi = 0 and thus u \equiv ui - 1,

The convergence of the algorithm is given by the following theorem. Its proof
follows the ideas of [11].
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Theorem 5.3. The sequence ui provided by the least-squares PGD algorithm
(39)--(40) strongly converges in L2(\Gamma , H; d\mu ) to the parameterized solution \gamma \in \Gamma \mapsto \rightarrow 
u(\gamma ) \in H of problem (3).

Remark 5.4. In view of the last assertion of Remark 5.1, Theorem 5.3 proves that
the series

\sum 
j\geq 1 sj converges in L2(\Gamma , H; d\mu ) to the parameterized solution \gamma \in \Gamma \mapsto \rightarrow 

u(\gamma ) \in H of problem (3).
When k = 1, Remark 5.2 implies that the series

\sum 
j\geq 1 \Phi j(\gamma )wj converges in

L2(\Gamma , H; d\mu ) to this parameterized solution.

Proof. By (40) and Proposition 2.5 applied to the case where u is replaced by
ei - 1, we have that si is a solution of

(45) min
v\in L2(\Gamma ,H;d\mu )
dimR(v)\leq k

\=a(ei - 1  - v, ei - 1  - v).

This proves in particular that si is a solution of

min
v\in L2(\Gamma ,H;d\mu )
R(v)\subset R(si)

\=a(ei - 1  - v, ei - 1  - v),

and therefore,

\=a(ei - 1  - si, v) = 0 \forall v \in L2(\Gamma , H; d\mu ) with R(v) \subset R(si).

But (40) implies that

(46) ei - 1  - si = ei,

which gives

(47) \=a(ei, v) = 0 \forall v \in L2(\Gamma , H; d\mu ) with R(v) \subset R(si).

Taking v = si and using again (46) we get

(48) \=a(ei - 1, ei - 1) = \=a(si, si) + \=a(ei, ei) \forall i \geq 1,

and therefore,

(49) \=a(ei, ei) +

i\sum 
j=1

\=a(sj , sj) = \=a(e0, e0) \forall i \geq 1.

Thus, we have that

(50) ei is bounded in L2(\Gamma , H; d\mu ),

(51)

\infty \sum 
j=1

\=a(sj , sj) \leq \=a(e0, e0).

By (50), there exists a subsequence ein of ei and e \in L2(\Gamma , H; d\mu ), such that

(52) ein \rightharpoonup e in L2(\Gamma , H; d\mu ).
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On the other hand, since sin+1 is a solution of (45) with i - 1 replaced by in, we get
(53)
\=a(ein  - sin+1, ein  - sin+1) \leq \=a(ein  - v, ein  - v) = \=a(ein , ein) - 2\=a(ein , v) + \=a(v, v)

\forall v \in L2(\Gamma , H; d\mu ), dimR(v) \leq k,

and then

\=a(ein  - sin+1, ein  - sin+1) - \=a(ein , ein)

\leq  - 2\=a(ein , v) + \=a(v, v) \forall v \in L2(\Gamma , H; d\mu ), dimR(v) \leq k,

or in other terms,

 - 2\=a(ein , sin+1) + \=a(sin+1, sin+1)

\leq  - 2\=a(ein , v) + \=a(v, v) \forall v \in L2(\Gamma , H; d\mu ), dimR(v) \leq k.

Thanks to (50) and (51), the first line tends to zero when n tends to infinity, while in
the second line we can pass to the limit by (52). Thus, we have

2\=a(e, v) \leq \=a(v, v) \forall v \in L2(\Gamma , H; d\mu ), dimR(v) \leq k.

Replacing in this equality v by tv with t > 0, dividing by t, letting t tend to zero, and
writing the resulting inequality for v and  - v, we get

\=a(e, v) = 0 \forall v \in L2(\Gamma , H; d\mu ), dimR(v) \leq k.

Taking v = w\varphi , with w \in H, \varphi \in L2(\Gamma ; d\mu ), and recalling definition (2) of \=a, we
deduce \int 

\Gamma 

a(e(\gamma ), w; \gamma )\varphi (\gamma ) d\mu (\gamma ) = 0 \forall z \in H, \forall \varphi \in L2(\Gamma ; d\mu ),

and then for any w \in H, there exists a subset Nw \in \scrB with \mu (Nw) = 0 such that

a(e(\gamma ), w; \gamma ) = 0 \forall \gamma \in \Gamma \setminus Nw.

The separability of H implies that Nw can be chosen independent of w, and then we
have

a(e(\gamma ), w; \gamma ) = 0 \forall w \in H, d\mu -a.e. \gamma \in \Gamma ,

and therefore,

(54) e(\gamma ) = 0 d\mu -a.e. \gamma \in \Gamma .

This proves that e does not depend on the subsequence in (52) and that

(55) ei \rightharpoonup 0 in L2(\Gamma , H; d\mu ).

Let us now prove that in (55) the convergence is strong in L2(\Gamma , H; d\mu ). We use
the fact that thanks to (46), we have

ei =  - 
i\sum 

j=1

sj + e0 \forall i \geq 1,
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and so,

(56) \=a(ei, ei) =  - 
i\sum 

j=1

\=a(ei, sj) + \=a(ei, e0) \forall i \geq 1.

In order to estimate the right-hand side of the latest equality, we introduce, for
i, j \geq 1, the function zi,j as the solution of

(57) zi,j \in L2(\Gamma ,R(sj); d\mu ), \=a(zi,j , v) = \=a(ei - 1, v) \forall v \in L2(\Gamma ,R(sj); d\mu ).

We have

(58)
\bigm| \bigm| \=a(ei - 1, sj)

\bigm| \bigm| = \bigm| \bigm| \=a(zi,j , sj)\bigm| \bigm| \leq \=a(zi,j , zi,j)
1
2 \=a(sj , sj)

1
2 .

Using (48), (46), the fact that si is a solution of (45), and dimR(sj) \leq k, we have

\=a(ei - 1, ei - 1) - \=a(si, si) = \=a(ei - 1  - si, ei - 1  - si) \leq \=a(ei - 1  - zi,j , ei - 1  - zi,j).

Expanding the right-hand side and using v = zi,j in (57) gives

\=a(zi,j , zi,j) \leq \=a(si, si),

which combined with (58) provides the estimate\bigm| \bigm| \=a(ei - 1, sj)
\bigm| \bigm| \leq \=a(si, si)

1
2 \=a(sj , sj)

1
2 \forall i, j \geq 1.

Using the latest estimate in (56) and then the Cauchy--Schwarz inequality, we get

(59)

\left\{                 

\=a(ei, ei) \leq \=a(si+1, si+1)
1
2

i\sum 
j=1

\=a(sj , sj)
1
2 + \=a(ei, e0)

\leq \=a(si+1, si+1)
1
2 i

1
2

\left(  \infty \sum 
j=1

\=a(sj , sj)

\right)  1
2

+ \=a(ei, e0) \forall i \geq 1.

But the criterion of comparison of two series with nonnegative terms, and the facts
that (see (51))

\infty \sum 
i=1

1

i
= \infty ,

\infty \sum 
i=1

\=a(si, si) <\infty ,

prove that

lim inf
i\rightarrow \infty 

\=a(si+1, si+1) i = lim inf
i\rightarrow \infty 

\=a(si+1, si+1)
1
i

= 0.

Since \=a(ei, ei) is a decreasing sequence by (48), and since (55) asserts that ei converges
weakly to zero, we can pass to the limit in (59) to deduce

lim
i\rightarrow \infty 

\=a(ei, ei) = lim inf
i\rightarrow \infty 

\=a(ei, ei)

\leq lim inf
i\rightarrow \infty 

\left(   \=a(si+1, si+1)
1
2 i

1
2

\left(  \infty \sum 
j=1

\=a(sj , sj)

\right)  1
2

+ \=a(ei, e0)

\right)   = 0.

This proves that ei converges strongly to zero in L2(\Gamma , H; d\mu ). Since ei = u - ui this
finishes the proof of Theorem 5.3.
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Remark 5.5. In many cases the corrections si decrease exponentially in the sense
that

| | | si| | | = O(\rho  - i) as i\rightarrow +\infty for some \rho > 1,

where | | | \cdot | | | denotes the norm in L2(\Gamma , H; d\mu ). This occurs in particular for the standard
POD expansion when \Gamma is an open set of \BbbR N , \mu is the Lebesgue measure, and the
function f = f(\gamma ) is analytic with respect to \gamma (see [7]). Then | | | si| | | is a good estimator
for the error | | | u - ui| | | .

6. Relationship with POD and PGD methods. The ``intrinsic"" PGD
method developed in the previous sections is a genuine extension of both the POD
and PGD methods.

Indeed, to analyze the connections with the POD method, let us consider the
problem studied in [11], namely,

(60) (Pk)
\prime min

Z\in \BbbG \leq k

\int 
\Gamma 

(u(\gamma ) - uZ(\gamma ), u(\gamma ) - uZ(\gamma ))H d\mu (\gamma ),

where (\cdot , \cdot )H is an inner product on H. In this case, a solution of (Pk)
\prime is the space

generated by the first k eigenfunctions of the POD operator \scrP : H \mapsto \rightarrow H, which is
given by (see below)

\scrP (v) =

\int 
\Gamma 

(u(\gamma ), v)H u(\gamma ) d\mu (\gamma ) \forall v \in H.

In the present case, due to the dependence of a with respect to \gamma , it does not
seem that the problem can be reduced to a spectral problem.

As an example, from now on we fix in this section

k = 1.

Then problem (17) can be written as

(61) min
v\in H,\varphi \in L2(\Gamma ;d\mu )

\int 
\Gamma 

a(u(\gamma ) - \varphi (\gamma )v, u(\gamma ) - \varphi (\gamma )v; \gamma )d\mu (\gamma ).

Note that problem (61) has at least a solution (see section 3 above). So, taking the
derivative of the functional

(v, \varphi ) \in H \times L2(\Gamma ; d\mu ) \mapsto \rightarrow 
\int 
\Gamma 

a(u(\gamma ) - \varphi (\gamma )v, u(\gamma ) - \varphi (\gamma )v; \gamma ) d\mu (\gamma ),

we deduce that if (w,\psi ) \in H \times L2(\Gamma ; d\mu ) is a solution of (61), with w \not = 0, then

(62) \psi (\gamma ) =
a(u(\gamma ), w; \gamma )

a(w,w; \gamma )
, d\mu -a.e. \gamma \in \Gamma ,

and w is a solution of the nonlinear variational problem
(63)\int 

\Gamma 

a(u(\gamma ), w; \gamma )

a(w,w; \gamma )
a(u(\gamma ), v; \gamma )d\mu (\gamma ) =

\int 
\Gamma 

a(u(\gamma ), w; \gamma )2

a(w,w; \gamma )2
a(w, v; \gamma )d\mu (\gamma ) \forall v \in H.

Note that if w = 0,\int 
\Gamma 

a(u(\gamma ) - \varphi (\gamma )v, u(\gamma ) - \varphi (\gamma )v; \gamma ) d\mu (\gamma )

\geq 
\int 
\Gamma 

a(u(\gamma ), u(\gamma ); \gamma ) d\mu (\gamma ) \forall v \in H, \forall \varphi \in L2(\Gamma , d\mu ).
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This implies that u = 0 and therefore f = 0.
If a does not depend on \gamma , statement (63) can be written as

a

\biggl( \int 
\Gamma 

a(u(\gamma ), w)u(\gamma )d\mu (\gamma ), v

\biggr) 
= a

\left(    
\int 
\Gamma 

a(u(\gamma ), w)2d\mu (\gamma )

a(w,w)
w, v

\right)    \forall v \in H,

which implies that\int 
\Gamma 

a(u(\gamma ), w)u(\gamma )d\mu (\gamma ) =

\int 
\Gamma 
a(u(\gamma ), w)2d\mu (\gamma )

a(w,w)
w,

which proves that w is an eigenvector of the operator

v \in H \mapsto \rightarrow \scrP (v) =

\int 
\Gamma 

a(u(\gamma ), v)u(\gamma )d\mu (\gamma )

for the eigenvalue \int 
\Gamma 
a(u(\gamma ), w)2d\mu (\gamma )

a(w,w)
.

In contrast, when a depends on \gamma it does not seem that problem (63) corresponds to
an eigenvalue problem.

To analyze the relationship of the intrinsic PGD with the standard PGD method,
let us remember that this method approximates the solution u of problem (8) by
a series similar to that provided by the deflation algorithm introduced in section 5,
namely,

u(\gamma ) =
\sum 
i\geq 1

\widetilde \Phi i(\gamma ) \widetilde wi,
where the pair (\widetilde \Phi i, \widetilde wi) \in L2(\Gamma , d\mu ) \times H is recursively obtained as a solution of the
nonlinear coupled problems
(64)\left\{       

\int 
\Gamma 

a(\widetilde \Phi i(\gamma ) \widetilde wi, \widetilde \Phi i(\gamma ) v; \gamma ) d\mu (\gamma ) =

\int 
\Gamma 

\langle \widetilde fi(\gamma ), \widetilde \Phi i(\gamma ) v\rangle d\mu (\gamma ) \forall v \in H,\int 
\Gamma 

a(\widetilde \Phi i(\gamma ) \widetilde wi, \widetilde \Phi \ast (\gamma ) \widetilde wi; \gamma ) d\mu (\gamma ) =

\int 
\Gamma 

\langle \widetilde fi(\gamma ), \widetilde \Phi \ast (\gamma ) \widetilde wi\rangle d\mu (\gamma ) \forall \widetilde \Phi \ast \in L2(\Gamma , d\mu ),

where \widetilde f1 = f , and \widetilde fi is defined by

(65)

\int 
\Gamma 

\langle \widetilde fi(\gamma ), v(\gamma )\rangle d\mu (\gamma ) = \int 
\Gamma 

\langle f(\gamma ), v(\gamma )\rangle d\mu (\gamma ) - \=a(\widetilde ui - 1, v) \forall v \in L2(\Gamma , H; d\mu ),

with

(66) \widetilde ui - 1(\gamma ) =

i - 1\sum 
j=1

\widetilde \Phi j(\gamma ) \widetilde wj for i \geq 2.

If problem (64) admits a solution such that \widetilde wi \not = 0, then the second equation in
(64) is equivalent to

a(\widetilde \Phi i(\gamma ) \widetilde wi, \widetilde wi; \gamma ) = \langle \widetilde fi(\gamma ), \widetilde wi\rangle d\mu -a.e. \gamma \in \Gamma ,

D
ow

nl
oa

de
d 

01
/1

4/
19

 to
 1

50
.2

14
.1

82
.2

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INTRINSIC POD FOR ELLIPTIC PROBLEMS 5443

which in turn is equivalent to

(67) \widetilde \Phi i(\gamma ) = \langle \widetilde fi(\gamma ), \widetilde wi\rangle 
a( \widetilde wi, \widetilde wi; \gamma ) d\mu -a.e. \gamma \in \Gamma .

Then the first equation in (64) is equivalent to the nonlinear variational problem
(68)

\widetilde wi \in H,

\int 
\Gamma 

\langle \widetilde fi(\gamma ), \widetilde wi\rangle 
a( \widetilde wi, \widetilde wi; \gamma ) \langle \widetilde fi(\gamma ), v\rangle d\mu (\gamma ) =

\int 
\Gamma 

\langle \widetilde fi(\gamma ), \widetilde wi\rangle 2
a( \widetilde wi, \widetilde wi; \gamma )2 a( \widetilde wi, v; \gamma ) d\mu (\gamma ) \forall v \in H.

Note that this problem is just problem (63) with w replaced by \widetilde wi and f replaced by\widetilde fi.
Conversely, if problem (68) admits a solution, then the pair ( \widetilde wi, \widetilde \Phi i), with \Phi 

defined by (67), is a solution of the PGD problem (64).
Consequently the sequence (\Phi i, wi) provided by the deflation algorithm (39)--(40)

is also a solution of the PGD algorithm (64)--(66), with \~fi = fi for all i \geq 1. Thus,

if the PGD algorithm is computed in such a way that at each step \widetilde \Phi i \widetilde wi = \Phi i wi(=
si), the analysis developed in section 5 proves that the sequence \widetilde ui converges in
L2(\Gamma , H; d\mu ) to the parametric solution u(\gamma ) of problem (3).

However, there is the possibility that problem (64) admits several solutions and
that some of these do not provide a solution of the optimization problem (45). Then
the convergence properties studied in section 5 may be lost. It is then convenient
to solve the PGD problem (64), ensuring that the solution does provide an optimal
subspace.

The previous analysis presents some differences from preceding works on the ana-
lysis of convergence of PGD methods applied to the solution of PDEs and optimization
problems. Let us describe some of them. In [2] the authors prove the convergence of
the PGD for finite-dimensional linear systems Ax = b where A \in \BbbR N\times N is an invert-
ible high-dimensional matrix, i.e., N = N1N2 \cdot \cdot \cdot Nn. The solution is searched as a
series of rank 1 summands, belonging to \BbbR N = \BbbR N1 \otimes a \BbbR N2 \otimes a \cdot \cdot \cdot \otimes a \BbbR Nn (where \otimes a
denotes the algebraic tensor product). Also, in [8] the authors prove the convergence
of the PGD algorithm applied to the Laplace problem in a tensor product domain,

 - \Delta u = f in \Omega x \times \Omega y, u| \partial \Omega x\times \Omega y = 0,

where \Omega x \subset \BbbR and \Omega y \subset \BbbR are two bounded domains. The authors solve the problem
on the tensor space H1

0 (\Omega x)\otimes aH1
0 (\Omega y) which is dense in H1

0 (\Omega x\times \Omega y) for the norm of
H1

0 (\Omega x \times \Omega y). The work [9] proves the convergence of the PGD for the following op-
timization problem: Find u \in L2(\Omega , H1(I)) such that u \in argmin\bfv \in L2(\Omega ,H1(I)) \scrE (v),
where \scrE is a strongly convex functional, with Lipschitz gradient on bounded sets. This
method can be used for high-dimensional nonlinear convex problems. Further, in [12]
the authors prove the convergence of a PGD-like algorithm, where the set of rank
1 tensors in a tensor space is substituted by a closed cone \Sigma , to solve the following
variational problem: Find u \in X such that u \in argmin\bfv \in X \scrE (v), where \scrE : X  - \rightarrow \BbbR 
is a convex functional defined over a reflexive Banach space X. Moreover, in [11] the
authors prove the convergence of the PGD for elliptic PDEs in the form Au = f where

u and f belong to a Hilbert tensor space H = H1 \otimes a H2 \otimes a \cdot \cdot \cdot \otimes a Hn
| | | \cdot | | | 

. Here the
norm | | | \cdot | | | 2 = \langle \cdot , \cdot \rangle is given by \langle \cdot , \cdot \rangle = \langle \cdot , \cdot \rangle 1\langle \cdot , \cdot \rangle 2 \cdot \cdot \cdot \langle \cdot , \cdot \rangle n. This is a generalization of
the Eckart--Young theorem.

The results reported in the present paper are a generalization of [11] when the
operator A depends on a parameter.
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7. Conclusion. In this paper we have introduced an iterative deflation algo-
rithm to solve parametric symmetric elliptic equations. It is a proper generalized
decomposition (PGD) algorithm, as it builds a tensorized representation of the pa-
rameterized solutions, by means of optimal subspaces that minimize the residual in
the mean quadratic norm. It is intrinsic in the sense that in each deflation step the
residual is minimized in the ``natural"" parametric norm generated by the paramet-
ric elliptic operator. It is conceptually close to the proper orthogonal decomposition
(POD) with the difference that in the POD the residual is minimized with respect
to a fixed mean quadratic norm. Due to this difference, spectral theory cannot be
applied.

We have proved the existence of the optimal subspaces of dimension less than
or equal to a fixed number, as required in each iteration of the deflation algorithm,
with specific analysis for the one-dimensional case. Also, we have proved the strong
convergence in the parametric elliptic norm of the deflation algorithm for quite general
parametric elliptic operators.

We have further proved that the method introduced is a genuine extension of both
POD and PGD methods, and that in particular it provides a theoretical analysis of the
PGD method, when this method is applied in such a way that it provides the optimal
subspaces: The PGD expansion is strongly convergent to the targeted solution in
parametric elliptic norm.

We will next focus our research on the analysis of convergence rates of the intrin-
sic PGD expansion that we introduced. We will analyze whether the standard PGD
provides the optimal subspaces, and compare the convergence rates with those of the
POD expansion, to determine whether the use of optimal modes provides improved
convergence rates. We will also work on the use of optimization techniques as an al-
ternative way to compute the optimal modes, rather than the power iteration method
that is common in PGD computations.

All the results obtained in the present paper refer to the case when a is symmetric.
In future work we will consider the nonsymmetric case.
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