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Abstract. We prove that it is NP-hard to determine whether the crossing number of an input graph
is even or odd.

1 Introduction

For many graph invariants, the complexity of determining the parity of the invariant is the same
as that of determining the invariant itself. Suppose, for example that we have an algorithm for
finding the parity of the chromatic number χ(G) of a graph G. Then we can apply the algorithm
to the graphs K1 ∪ G,K2 ∪ G, . . . where Kn is the complete graph with n vertices. The sequence
of parities is first constant and then alternating. The number of elements in the constant part of
the sequence is the chromatic number of G. Similar arguments apply to the clique number ω(G)
and the independence number α(G). It also applies to the genus g(G) of a graph G, since one can
construct, in polynomial time, a graph G′ such that g(G′) = α(G)− |E(G)|, as proved in [16].

The crossing number cr(G) of a graph G is the minimum number of pairwise edge crossings in
a drawing of G in the plane. The crossing number has a certain similarity to the genus: For planar
graphs, the invariants agree, and for each fixed k the questions ”Is cr(G) ≤ k”, and ”Is g(G) ≤ k”
are in P. The former can easily be reduced to a planarity problem (see also [6]). The latter is in
P by the Robertson-Seymour theory. Both problems are NP-complete when k is part of the input
[5],[16]. Both problems remain NP-complete even for very restricted graphs, and they may be hard
to determine even for very simple classes of graphs such as complete graphs and complete bipartite
graphs where the crossing numbers are still unknown. The crossing number problem is NP-complete
even for cubic graphs [8] and for graphs that become planar after removing only one edge [4], and
also for drawings where all local orientations are prescribed [13]. Even approximation is hard: There
exists a number c > 1 such that the crossing number cannot be approximated within the factor c
in polynomial (unless NP=P) time [3].

For some graphs we know the parity of the crossing number, i.e., the value (cr(G) mod 2), for
example for G = Kp and G = Kq,r when all p, q, r are odd, see [10, 7, 1]. Knowledge of parity is
sometimes useful for determining the crossing number.

It seems that the hardness results for crossing numbers in [3–5, 8, 13], do not answer to the asso-
ciated parity question, and Schaefer [15] asks the question: What is the complexity of determining
(cr(G) mod 2)?

The purpose of this note is to point out that a recent hardness result on crossing numbers of
tiles by Hliněný and Derňár [9] can be used to prove that that the parity question is NP-hard.
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Fig. 1. Two possible drawings of a twisted join of two planar tiles T1, T2. Clearly tcr(T1 ⊗ lT2) ≤
min{tcr(T1

l), tcr(T2
l)}, although strict inequality might be achieved by a different drawing.

2 Crossing number of graphs and tiles

We consider multigraphs (although we can subdivide loops and parallel edges in order to make the
graphs simple if we wish so). We follow basic terminology of topological graph theory, see e.g. [12].
In a drawing of a graph G in the plane, the vertices of G are distinct points, and the edges are
simple curves joining their endvertices. An edge contains no vertex, except its ends. Two edges are
disjoint except for common ends. Finally, no three edges meet in a common point. A crossing is a
point which is not a vertex and which belongs to two distinct edges.

The crossing number cr(G) of a graph G is the minimum number of crossings in a drawing of
G in the plane.

Hence, a graph G is planar if and only if cr(G) = 0.

Inspired by [11, 14] we define a tile T = (G, a, b, c, d) where G is a graph and a, b, c, d is a
sequence of distinct vertices. We call a, b the left wall and c, d the right wall of T . The right-inverted
tile T l is the tile (G, a, b, d, c) and the left-inverted tile lT is (G, b, a, c, d).

A tile drawing of a tile T = (G, a, b, c, d) is a drawing of the underlying graph G in the unit
square such that the vertices a, b, c, d are the upper left, lower left, lower right, and upper right
corner, respectively.

The tile crossing number tcr(T ) of a tile T is the minimum number of crossings over all tile
drawings of T . A tile T is planar if tcr(T ) = 0.

The join of two tiles T = (G, a, b, c, d) and T ′ = (G′, a′, b′, c′, d′) is defined as the tile T ⊗ T ′ :=
(G′′, a, b, c′, d′), where G′′ is the graph obtained from the disjoint union of G and G′, by identifying
c, b′ and d, a′

Clearly, the join of two planar tiles is again a planar tile.

Let T1, T2 be planar tiles. Then tcr(T1 ⊗ lT2) ≤ min{tcr(T1
l), tcr(T2

l)}. This is illustrated in
Figure 1.

We now define a diagonally separated planar tile as a planar tile, which has the following
additional property: there exists a path Q ⊆ G, called a special diagonal path, from a to c such that
every tile drawing of T l with tcr(T l) crossings has no crossing on Q.

The definition of a diagonally separated planar tiles in [9, Definition 9] is more restricted that
the definition above. Hence [9, Lemma 10 and Corollary 12] implies the following.

Theorem 1 ([9]). Let T be a diagonally separated planar tile. Then computing tcr(T l) is an NP-
hard problem.

3 Hardness reduction

Let Sk be the tile with 6 vertices and 5 + k edges as in Figure 2, where the edge between r and d
consists of k parallel edges.
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Fig. 2. A planar tile Sk used in Theorem 2. The thick edge rd consists of k parallel edges.

Theorem 2. Let T be any diagonally separated planar tile with q edges and a special diagonal
path Q, and let k be any natural number. Replace every edge in Q by q2 parallel edges and call the
resulting tile T1. Similarly, replace every edge in the path a r c of Sk by q2 parallel edges and call
the result S′

k = T2. Then

tcr(T1 ⊗ lT2) = min{tcr(T1
l), tcr(S′

k
l)} = min{tcr(T l), k}.

Proof. Clearly, tcr(T1 ⊗ lT2) ≤ min{tcr(T1
l), tcr(S′

k
l)} = min{tcr(T l), k}.

Suppose now that there is a tile drawing of T1⊗ lS′
k with fewer than min{tcr(T l), k} crossings.

Then the multiple edge rd is not involved in any crossing because that would imply at least k
crossings. Also, no edge of the paths Q or arc is involved in any crossing since that would imply at
least q2 > tcr(T l) crossings. So S′

k is drawn without crossings, and therefore the paths ard and bsc
are disjoint. If necessary, we can redraw them so that they do not cross any edge of T . Using these
paths we hence obtain a tile drawing of T l. However such a drawing has at least tcr(T l) crossings,
a contradiction which completes the proof. ut

Using Theorems 1 and 2 we proceed to the main result.

Theorem 3. The problem of determining the parity of the crossing number (cr(G) mod 2) for any
given graph G is NP-hard in general.

Proof. We prove that the problem of determining (cr(G) mod 2) for any graph G is at least as hard
as the problem of computing tcr(T l) for any diagonally separated planar tile T .

Consider therefore an algorithm A for determining (cr(G) mod 2) for any graph G. Let T be any
diagonally separated planar tile T . Now we form a graph Gk as follows: We form the tile T1⊗lS′

k as
in Theorem 2. We let p denote the number of edges (outside the special diagonal paths) in this tile
and add p2 edges between the four corners of the unit square in which the tile T1 ⊗ lS′

k is drawn,
more precisely, between the pairs (a, b), (b, c′), (c′, d′), (d′, a); see Figure 3. The crossing number of
the resulting graph Gk equals tcr(T1 ⊗ lS′

k) since none of the edges ab, bc′, c′d′, d′a are involved in
crossings in an optimum drawing of Gk. By Theorem 2, cr(Gk) = tcr(T1 ⊗ lS′

k) = min{tcr(T l), k}.
We now apply the algorithm A to the graphs G1, G2, . . .. This results in a sequence which is

first alternating, and then constant. The number of entries in the maximal alternating subsequence
equals tcr(T l) which is hard to find, by Theorem 1. ut

4 Conclusions

Our arguments can easily be extended to show that deciding, for any fixed integer p ≥ 2, whether
cr(G) is divisible by p is NP-hard.
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Fig. 3. A sketch of the construction of Gk from the tile T in the proof of Theorem 3. Each of the four thick lines
represents many parallel edges which cannot be crossed in an optimal drawing.

The method in this note also extends to other variants of the crossing number. For example, it
is NP-hard to determine the parity of the rectilinear crossing number since the crossing number of
a graph G equals the rectilinear crossing number of an appropriate subdivision of G. On the other
hand, it is shown in [8] that it is NP-hard to determine the so-called minor crossing number [2].
But, we do not know if it is equally hard to determine the parity.

References

1. Dan Archdeacon and R. Bruce Richter. On the parity of crossing numbers. Journal of Graph Theory, 12(3):307–
310, 1988.

2. Drago Bokal, Gasper Fijavz, and Bojan Mohar. The minor crossing number. SIAM J. Discrete Math., 20(2):344–
356, 2006.

3. Sergio Cabello. Hardness of approximation for crossing number. Discrete & Computational Geometry, 49(2):348–
358, 2013.

4. Sergio Cabello and Bojan Mohar. Adding one edge to planar graphs makes crossing number and 1-planarity
hard. SIAM J. Comput., 42(5):1803–1829, 2013.

5. Michael R. Garey and David S. Johnson. Crossing number is NP-complete. SIAM J. Alg. Discr. Meth., 4:312–316,
1983.

6. Martin Grohe. Computing crossing numbers in quadratic time. J. Comput. Syst. Sci., 68(2):285–302, 2004.
7. Richard K. Guy. Crossing numbers of graphs. In Graph Theory and Applications: Proceedings of the Conference

at Western Michigan University, May 10-13, 1972, volume 303 of Lecture Notes in Mathematics, pages 111–124.
Springer, 1972.
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