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THE DISTRIBUTION OF MINIMUM-WEIGHT CLIQUES AND
OTHER SUBGRAPHS IN GRAPHS WITH RANDOM EDGE

WEIGHTS

ALAN FRIEZE∗, WESLEY PEGDEN† , AND GREGORY B. SORKIN‡

Abstract. We determine, asymptotically in n, the distribution and mean of the weight of a
minimum-weight k-clique (or any strictly balanced graph H) in a complete graph Kn whose edge
weights are independent random values drawn from the uniform distribution or other continuous
distributions. For the clique, we also provide explicit (non-asymptotic) bounds on the distribution’s
CDF in a form obtained directly from the Stein-Chen method, and in a looser but simpler form. The
direct form extends to other subgraphs and other edge-weight distributions. We illustrate the clique
results for various values of k and n. The results may be applied to evaluate whether an observed
minimum-weight copy of a graph H in a network provides statistical evidence that the network’s
edge weights are not independently distributed but have some structure.

1. Introduction. In this note we consider the distribution of the minimum-
weight copy of a fixed subgraph H in a randomly edge weighted complete graph Kn;
a natural special case that may be of particular interest is when H is a k-clique. This
seemingly natural problem seems to be absent from the literature thus far. It can be
viewed as a fixed-size version of the NP-complete Maximum Weighted Clique Problem
(MWCP); the review article [3] on Maximum Clique includes discussion of MWCP al-
gorithms (Section 5.3) and the performance of heuristics on random graphs (in Section
6.5). The same article reviews applications, including in telecommunications, fault
diagnosis, and computer vision and pattern recognition. Wikipedia’s article [5] on
the Clique problem includes applications in chemistry, bioinformatics, and social net-
works, and many of these seem more naturally modelled as weighted than unweighted
problems. Research on fast algorithms for MWCP in “massive graphs” arising in prac-
tice is ongoing; a recent example, [4], notes applications in telecommunications and
biology (specifically, the study [11] of finding a 5-protein gene marker for Alzheimer’s
disease).

The weight distribution of a minimum-weight subgraph H of a randomly weighted
network is a natural question in discrete mathematics and probability, and in addition
has statistical ramifications that we think may be of importance in applied settings.
Taking the clique for purposes of discussion, the distribution we seek would allow
one to judge whether the weight of the smallest-weight clique in a given network
provides statistical evidence that the network’s edge weights are not independently,
uniformly random. Because uniformity is not essential to our analysis (see Section
6), an anomalous weight is evidence that the edge weights are not independent, i.e.,
that the network’s weights have some structure. The statistics could alternatively be
performed by repeated simulations of random networks matching the null hypothesis
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but our approach is preferable for the usual reasons that simulation is cumbersome, it
does not provide rigorous results, and the number of simulations must be more than
the reciprocal of the desired significance level (potentially quite large). Additionally,
each simulation must find the minimum-weight k-clique, seemingly requiring time
Ω(nk) (unless it is possible to improve on the naive approach).

We focus on the case where each edge e in G has an independent weight Xe which
is uniform in [0, 1], and H is a complete graph Kk, and here we derive explicit (non-
asymptotic) bounds. We also obtain asymptotic results for other graphs H, and we
extend both sets of results to other distributions. We only consider finding subgraphs
H of the complete graph Kn, but the same approach may be applicable to other
networks of interest.

The density of a graph H is defined as den(H) = e(H)/v(H) where e(H) and v(H)
denote the number of edges and vertices of H, and H is strictly balanced if

den(H) > den(H ′) for all strict subgraphs H ′ ⊂ H.

Theorem 1. Let H be a fixed strictly balanced graph with v vertices, m edges, a
automorphisms, and density d = m/v. Let the edges of Kn be given independent
uniform [0, 1] edge weights, and let W denote the minimum weight of a subgraph
isomorphic to H. Then, for any non-negative z = z(n) asymptotically in n,

P
(
W ≥ z

n1/d

)
= exp

{
− zm

m! a

}
+ o(1).(1)

Also,

E(W ) ∼ µ̂ := n−1/d (m! a)1/m

m
Γ

(
1

m

)
.(2)

Here Γ denotes the usual gamma function and f(n) ∼ g(n) means that f(n)/g(n)→ 1
as n→∞, which we may also write as f(n) = g(n) (1 + o(1)).

In the case when H is a clique we have made some effort to control the o(1) error, to
demonstrate that our approach is useful for reasonable problem sizes.

Theorem 2. Fix k ≥ 3, let the edges of Kn be given independent uniform [0, 1] edge
weights, and let W denote the minimum weight of a clique Kk. Let

w =
z

n2/(k−1)
and λ =

(
n

k

)
w(k2)(
k
2

)
!
∼ z(

k
2)

k!
(
k
2

)
!

(as in (9)).

Then, for z ≤ min
{
n2/(k2), n2/(k−1) exp(−k−1

k−2 )
}

(equivalently, w ≤ min
{
n−2/k, exp(−k−1

k−2 )
}

),

∣∣∣P(W ≥ w =
z

n2/(k−1)

)
− exp(−λ)

∣∣∣ ≤ 8

7

(k − 2)(
k
2

)
!(k − 1)!2

z(
k
2)+k−1

n
.(3)

Theorem 3 derives tighter bounds for the clique than those of Theorem 2, but is
presented later because it requires additional notation.
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The proofs use the Stein-Chen method. Section 2 presents the method as applied to
finding a low-weight clique, and establishes the explicit probability bounds of Theorem
3. Section 3 outlines how explicit bounds could be obtained for other distributions,
and other subgraphs H. Section 4 simplifies (but loosens) the bounds to give Theorem
3.

Section 5 applies the Stein-Chen method to strictly balanced graphs H to obtain the
asymptotic probability bounds and asymptotic expectation of Theorem 1. Section 6
generalizes Theorem 1 to non-uniform edge weight distributions, as Theorem 6,

Section 7 presents plots and tables for the application of Theorem 3 to various clique
sizes k and graph sizes n, giving an indication of where our results are effective and
where they need improvement. The Conclusions in Section 8 recapitulate the results
achieved and discuss where they might be applied and how they might be extended.

2. Stein-Chen Method. We use a version of the Stein-Chen method given
in [1, Theorem 1]. We will summarize the general formulation, which may become
clearer when we then show how it applies in our case. The formulation characterizes
the distribution of a value X =

∑
α∈I Xα where I is an arbitrary index set and each

Xα is a Bernoulli random variable, Xα ∼ Be(p), that is, Xα is 1 with probability p
and 0 otherwise. For each α ∈ I there is a “neighborhood of dependence” Bα ⊆ I
with the property that Xα is independent of all the Xβ for β outside of Bα. With
λ = EX, Z ∼ Po(λ) a Poisson random variable with mean λ, and

b1 :=
∑
α∈I

∑
β∈Bα

pαpβ ,(4)

b2 :=
∑
α∈I

∑
α 6=β∈Bα

pαβ , where pαβ = E(XαXβ),(5)

the conclusion of [1, Theorem 1] is that

(6) TVD(X,Z) ≤ b1 + b2,

where TVD(X,Z) denotes the total variation distance between the two distributions,
i.e., the maximum, over events E, of the difference in the probabilities of E under
the two distributions. (The full theorem involves an additional term b3 if there are
weak dependencies, but we do not need this. Also, we have adjusted for our use of
the standard definition of TVD, where [1] defines TVD as twice this.)

In our case, with G = Kn, we are interested in

X = number of k-cliques of G weighing ≤ w.

We are specifically interested in P(X = 0) i.e. the probability that there is no such
clique. We have

X =
∑
α∈I

Xα

where the index set I is the set of all k-cliques of G,

(7) I =

(
[n]

k

)



4 A. FRIEZE, W. PEGDEN, AND G. SORKIN

and

Xα =

{
1, if clique α has weight ≤ w
0, otherwise.

Denoting the number of edges in a k-clique by

m =

(
k

2

)
,

each Xα satisfies

Xα ∼ Be(p)

where, for w ≤ 1,

(8) p = p(w) := E(Xα) =
wm

m!
,

the probability that the sum of m i.i.d. uniform [0, 1] variables is at most w. The
sum of i.i.d. uniform random variables has an Irwin-Hall distribution, whose CDF is
well known (more on this in Section 3.1), but it is not hard to see that when w ≤ 1
this probability is given by (8). For a clique to have total weight ≤ w, first, each of
its m edges must have weight ≤ w. With i.i.d. uniform [0, 1] random edge weights,
conditioned on the vector of m edge weights lying in [0, w]m, the vector is a uniformly
random point in this m-dimensional cube, the event that the sum of its coordinates
is ≤ w is the event that the point lies in a standard m-dimensional simplex scaled by
w, and the volume of this simplex is wm/m!.

Immediately,

λ = λ(w) := EX =

(
n

k

)
p =

(
n

k

)
wm

m!
∈ nk

k!

wm

m!

[
1− k2

2n
, 1

]
.(9)

The neighborhood of dependence Bα is the set of cliques that share an edge with
clique α. Breaking this down more finely, into cliques sharing ` vertices with α, we
see that

|Bα| =
k∑
`=2

u` where u` =

(
k

`

)(
n− k
k − `

)
.(10)

Then,

b1 =

(
n

k

) k∑
`=2

u`p
2.(11)

To calculate b2, suppose that two cliques (or indeed copies of any graph H) α and β
have a edges in common and each has b edges not in the other (with a+ b = m). The
event that XαXβ = 1, i.e., that both cliques weigh ≤ w, is equivalent to the shared
edges weighing some Wa ≤ w, and both sets of unshared edges weighing ≤ w −Wa.
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As in (8), the CDF for the sum of s edges to be at most r is Fs(r) = rs/s!, so the
corresponding density is fs(r) = rs−1/(s− 1)!. Thus,

pαβ = pαβ(α, β, w) =

∫ w

0

fa(wa)(Fb(w − wa))2 dwa(12)

=

∫ w

0

1

(a− 1)!
(wa)a−1

(
1

b!
(w − wa)b

)2

dwa(13)

which by a change of variable to t = wa/w is

=
wa+2b

(a− 1)! (b!)2

∫ 1

0

ta−1(1− t)2b dt.

By Euler’s integral of the first kind, B(x, y) =
∫ 1

0
tx−1(1−t)y−1dt = Γ(x)Γ(y)/ Γ(x+ y),

this is

=
wa+2b

(a− 1)! (b!)2
· (a− 1)!(2b)!

(a+ 2b)!
(14)

=
wa+2b

(a+ 2b)!

(
2b

b

)
.(15)

Cliques α and β sharing ` vertices share a =
(
`
2

)
edges, while the number of edges

unique to β is

b = m` :=

(
k

2

)
−
(
`

2

)
.

Thus, from (15), with (5) and (10),

b2 =

(
n

k

) k−1∑
`=2

u` pαβ
((
`
2

)
,
(
k
2

)
−
(
`
2

)
, w
)

(16)

=

(
n

k

) k−1∑
`=2

u`
wm+m`

(m+m`)!

(
2m`

m`

)
.(17)

With

Z ∼ Po(λ)

the conclusion from [1, Theorem 1], per (6), is that

|P(W ≥ w)− exp(−λ)| = |P(X = 0)− P(Z = 0)| ≤ TVD(X,Z) ≤ b1 + b2.

We have thus proved the following theorem:

Theorem 3. Fix k ≥ 3, let the edges of Kn be given independent uniform [0, 1] edge
weights, and let W denote the minimum weight of a clique Kk. Let w = z/n2/(k−1),

λ =
(
n
k

)
w(k2)

(k2)!
∼ z(

k
2)

k!(k2)!
(as in (9)), and b1 and b2 be as given in (11) and (17) (calling

in turn on (8) and (10)). Then, for z ≤ n2/(k−1) (equivalently, w ≤ 1),∣∣∣P(W ≥ w =
z

n2/(k−1)

)
− exp(−λ)

∣∣∣ ≤ b1 + b2.(18)
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3. Extensions of Theorem 3. In this section, we illustrate how we could, with
the aid of a computer, extend Theorem 3 and obtain precise values for b1, b2 in more
general circumstances.

Given any edge weight distribution, we can at least in principle know the CDF Fm(w)
for a set of m edges to have total weight at most w, and the corresponding PDF fm(w).
We may then generalise (8) to p = Fm(w), where as usual m =

(
k
2

)
, as before define

λ by (9) and b1 by (11), and compute b2 through (16), with pαβ given by (12).

3.1. Uniform edge weights. With edge weights uniformly distributed as be-
fore, but removing Theorem 3’s restriction to w ≤ 1, the sum of m uniform weights
has Irwin-Hall distribution, with distribution and density functions

Fm(w) =
1

m!

bwc∑
i=0

(−1)i
(
m

i

)
(w − i)m

fm(w) =
1

(m− 1)!

bwc∑
i=0

(−1)i
(
m

i

)
(w − i)m−1;

see [7, eq(12)], [8], [10, eq(26.48)].

Given k (thus m) and w it is straightforward to calculate Fm(w) and thus p, λ, and
b1. Calculating b2 reduces, for each ` in (16), to calculating pαβ through the integral
in (12). Break the range of integration into intervals within which neither w nor wa
takes an integral value, by splitting at the points where either does take an integral
value; since w ≤ m there are at most 2m such points. Within each subintegral, the
integrand is the product of a polynomial in wa (from fa(wa)) and a polynomial in
(w − wa) (from the square of Fb(w − wa)). Each term of this can be integrated as
an Euler integral of the first kind, as was done in going from (13) to (14), or indeed
expanded to a polynomial in wa (the powers are all bounded in terms of k) where
each term can be integrated straightforwardly (even as an indefinite integral).

In principle, then, we can extend Theorem (3) to all w ≤ m. Indeed, for each w we can
produce p and pαβ , thus giving b1 and b2 as explicit functions of n. (We cannot get
an explicit function of w, at least by the method above, because the partition of the
integral into sub-integrals is different for each w.) In practice, a naive implementation
in Maple struggles with k = 10 both in computation time and numerical stability.

3.2. Exponential edge weights. We may also consider exponentially distributed
edge weights. Without loss of generality we assume rate 1; anything else is a simple
rescaling. The sum of m rate-1 exponentials has Erlang distribution with well known
distribution and density functions that can be stated in a variety of forms including

Fm(w) = 1− e−w
m−1∑
i=0

wi

i!

fm(w) =
wm−1e−w

(m− 1)!
;

see for example [6] and [9, eq(17.2)].

Again given w it is straightforward to compute p, λ, and b1, while computing b2
requires computing pαβ for each ` in the sum in (16) and the key is to evaluate
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(12). In this case the form of Fb(w) means that the integrand is a finite sum (with
length a function of k), each term of which has form a constant (with respect to w)
times (wa)ae−wa (coming from fa(wa)) times (w−wa)re−s(w−wa) (from the square of
Fb(w−wa)), for some integers r and s. These may in turn be expanded to terms of form
(wa)reswa . Each of these is integrable (even as an indefinite integral); alternatively,
each definite integral (over wa from 0 to w) is a lower incomplete gamma function.

It thus seems feasible, if unenviable, to extend Theorem 3 to provide explicit bounds
for exponential edge weights. In practice, Maple has little difficulty with the calcula-
tions through k = 6 but they quickly get more difficult: at k = 10 is is challenging to
calculate even a single ` the corresponding function pαβ(w).

3.3. Subgraphs H other than cliques. Generalising Theorem 3 to subgraphs
H other than cliques appears straightforward. The neighborhood of dependence of
a given copy of H needs more careful treatment, but this can be done in this non-
asymptotic setting precisely as presented in Section 5 for asymptotic calculations. The
explicit calculations here do not even require that H be strictly balanced, but it can
be expected that the error term b2 will be large if it is not (for the same reasons that
the strict balance is generally required in application of the second moment method).

4. Calculating bounds. Given values of k and w, in practice one would apply
Theorem 3 using (18), calculating b1 + b2 exactly from (11) and (17), as indeed we do
in Section 7. However, to characterize the quality of the estimate of P(W ≥ w) we
derive an upper bound on b1 + b2 as a relatively simple (summation-free) function of
k and w.

We start with b2, the more difficult and (as we will see) larger of these two parameters.
First, in lieu of (15), we observe that for clique β to have weight at most w, the m`

edges unique to it must have total weight ≤ w, and therefore

P(Xβ = 1 | Xα = 1) ≤ wm`

m`!
≤ wm`

(k − 1)!
.(19)

In the first inequality we have used that since these edges are unique to β, conditioning
on the weight of α being at most w is irrelevant. The second is simply because, over
the range of ` from 2 to k − 1, m` ≥

(
k
2

)
−
(
k−1

2

)
= k − 1. Also,

u` ≤
(
k

`

)
nk−`

(k − `)!
.(20)

Substituting (19) and (20) into (16), it follows that

b2 ≤ b′2 :=

(
n

k

) k−1∑
`=2

v` where v` =

(
k

`

)
nk−`

(k − `)!
p

wm`

(k − 1)!
.(21)

Claim 4. Assuming that w ≤ min
{
n−2/k, exp(−k−1

k−2 )
}

, over 2 ≤ l ≤ k − 1, v` is

maximized at ` = k − 1.

Proof We first claim that v` is log-convex over 2 ≤ ` ≤ k − 1, so that the
maximum occurs either at ` = 2 or ` = k − 1. For k = 3 and 4 this is trivial.
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Otherwise, for 3 ≤ ` ≤ k − 2,

v`+1

v`
=

(k − `)2

w`n(`+ 1)

and

v2
`

v`−1v`+1
=
`+ 1

`
·
(
k − `+ 1

k − `

)2

w.(22)

To establish that v` is log-convex over 2 ≤ l ≤ k − 1 it suffices to show that (22) is
≤ 1 over 3 ≤ l ≤ k − 2. Using 1 + x ≤ exp(x), from (22) we have

v2
`

v`−1v`+1
≤ w exp

{
1

`
+

2

k − `

}
≤ w exp

{
k − 1

k − 2

}
≤ 1,

where the final inequality is by hypothesis and the previous one because 1
` + 2

k−`
is convex, so its maximum occurs at one of the extremes, either ` = 3 or (in fact)
` = k − 2.

Thus, v` is log-convex and its maximum occurs either at v2 or vk−1. However,

v2

vk−1
=

(
k
2

)
nk−2w(k2)−(2

2)/(k − 2)!(
k
k−1

)
n1w(k2)−(k−1

2 )/(1!)
=

k − 1

2(k − 2)!
(nw

1
2k)k−3 ≤ 1,

by the hypothesis that w ≤ n−2/k. Thus, v2 ≤ vk−1, proving the claim. �

It follows from (21) and Claim 4 that

b2 ≤ b′2 ≤
(
n

k

)
(k − 2) · vk−1 ≤

(
n

k

)
(k − 2) ·

(
k

k − 1

)
n1

1!

w(k2)(
k
2

)
!

wk−1

(k − 1)!

≤ (k − 2)(
k
2

)
!(k − 1)!2

nk+1w(k2)+k−1.(23)

Recalling (11), using (20), and by analogy with (21),

b1 ≤ b′1 :=

(
n

k

) k∑
`=2

v′` where v′` =

(
k

`

)
nk−`

(k − `)!
p2.(24)

From the definitions of v` and v′` in (21) and (24), for 2 ≤ ` ≤ k − 1,

v′`
v`

=
p

wm`/ (k − 1)!
=

wm/m!

wm`/ (k − 1)!
≤ 1

3
w(`2) ≤ 1

3
w ≤ 1

3
exp

(
−k − 1

k − 2

)
≤ 1

3e
.

It follows (referring now to the definitions of b′2 and b′1 in (21) and (24)) that the sum
of all but the ` = k term in b′1, which has no counterpart in b′2, is at most 1

3eb
′
2. Also,

from (24), the ` = k term of b′1 is is small compared with its ` = k − 1 term:

v′k
v′k−1

=

(
k
k

)
n0/0!(

k
k−1

)
n1/1!

=
1

kn
≤ 1

9
.
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That is, the last term in the summation for b′1 is at most 1/9 times the second-last,
therefore it is at most 1/9 times the sum of all but the last, so that

b1 ≤ b′1 ≤
(

1 +
1

9

)
1

3e
b′2 <

b′2
7
.(25)

Equation (3) of Theorem 2 follows from (25), (23), and (18) of Theorem 3, since

substituting w = z/n2/(k−1) into the term nk+1w(k2)+k−1 of (23) gives z(
k
2)+k−1/n.

5. Strictly balanced H. Let H be a strictly balanced graph with v vertices, m
edges, and automorphism group aut(H) of cardinality a. We apply the Stein-Chen
method in parallel with Section 2. A bit more care is needed in defining the index
set I. Think of a copy of H in G as defined by a set of v vertices of G, together with
a 1-to-1 mapping from these vertices to those of H. The set S of vertices is drawn

from the collection
(

[n]
v

)
, the set of all v-element subsets of [n], with

∣∣∣([n]
v

)∣∣∣ =
(
n
v

)
.

Taking the elements of S in lexicographic order, the mapping into V (H) is given by
a permutation π of the values 1 . . . v, taken modulo the automorphism group of H.
Thus we may draw π from a set L of permutations, with

|L| = v!

a
,

L consisting of one permutation from each equivalence class.

Then, in analogy with Section 2’s equation (7), here

I =

(
[n]

v

)
× L.

With no change from before, the number of copies of H of weight ≤ w is given by a
random variable X =

∑
α∈I Xα, the Xα Bernoulli random variables. In parallel with

(8), each Xα has expectation

p := E(Xα) =
wm

m!
,

assuming w ≤ 1, and in parallel with (9),

(26) λ = λ(w) := EX = |I| · p =

(
n

v

)
v!

a

wm

m!
.

As before, we focus on b2 and then treat b1. The structure of dependent events here
is a bit subtle, and an example may be useful. Suppose H is the 2-path with edges
{1, 2} and {2, 3}. Its only automorphism is relabeling 123 to 321. On vertices, say
S = {9, 11, 15} of G, there are then 3 index sets: the set {9, 11, 15} in combination
with any permutation chosen from L = {123, 231, 312}, corresponding respectively
to paths 9–11–15, 11–15–9, and 15–9–11. (For instance in 231, we take the 2nd,
3rd, and 1st elements of the set in that order.) The permutations 321, 132, and 213
are eliminated from L by automorphism, and correspond respectively to paths 15–
11–9, 9–15–11, and 11–9–15 already listed. Suppose α is vertex set {9, 11, 15} with
permutation 123, giving path 9–11–15. Consider all possible dependent indices β on
vertices {11, 15, 18}. With π = 123, β gives path 11–15–18, sharing edge 11–15 with
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α. With π = 312, β gives path 18–11–15, again sharing edge 11–15 with α. Finally,
with π = 231, β gives path 15–18–11, sharing no edges with α, and thus β /∈ B(α).

For β ∈ B(α), the pair (α, β) describes an overlapping pair of copies of H: a pair

of labeled graphs (V1, E1) and (V2, E2), each isomorphic to H, V1, V2 ∈
(

[n]
v

)
, with

|E1 ∩ E2| ≥ 1 and thus ` := |V1 ∩ V2| ≥ 2. Their union is a graph F = (V1 ∪ V2, E1 ∪
E2), and for strictly balanced H, den(F ) > den(H). (This is easy to show, well known,
and the reason for introducing strict balance; one early reference is [2, eq(4.3)]. Any
such graph F has at most 2v − 2 vertices, so up to the labeling of the vertices there
are only finitely many possibilities. Let

d′ = d′(H)(27)

be the minimum density of all such graphs F . For example, if H = Kk then d′ is

obtained for two k-cliques sharing k − 1 vertices, and d′ =
2(k2)−(k−1

2 )
2k−(k−1) = (k−1)(k+2)

2(k+1) >

d = k−1
2 .

For copies α and β both to have weight ≤ w, their union graph F must have weight
≤ 2w, and as in (8) this event has probability (2w)m(F )/m(F )!, assuming 2w ≤ 1.
Thus, if the two copies overlap in ` vertices, implying that m(F ) ≥ d′(2v−`), we have

E(XαXβ) ≤ (2w)m(F )

m(F )!
≤ (2w)d

′(2v−`)

(d′(2v − `))!
.(28)

It follows that

b2 ≤ |I|
v∑
`=2

(
v

`

)(
n− v
v − `

)
|L| (2w)d

′(2v−`)

(d′(2v − `))!

= O

(
nv

v∑
`=2

nv−`wd
′(2v−`)

)

= O

(
v∑
`=2

(nwd
′
)2v−`

)
= O

(
(nwd

′
)v
)

= o(1),

the last pair of inequalities holding subject to the condition that

w = o(n−1/d′) or equivalently z = wn1/d = o(n1/d−1/d′).(29)

Note that unlike in (17) the sum here includes ` = v but nonetheless capitalizes on
β 6= α from the definition of b2 (see (5)): the vertex sets of β and α may be equal but
the index sets themselves are different, so that the union graph F is not isomorphic
to H, and therefore den(F ) ≥ d′ > d.

Now compare b1 and b2 from their definitions in (4) and (5). For each term (α, β)
common to both sums, the summand in b1 is pαpβ = p2 = O(w2m), and (with w ≤ 1)
this is of smaller order than the corresponding summand in b2 (see (5) and (28)),
which is of order wm(F ). (F is formed of two copies of H sharing at least one edge,
thus m(F ) ≤ 2m − 1.) Only the terms (α, α) are unique to b1, within b1 they are
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fewer than the other terms, and all terms are equal, so they do not change the order
of b1. It follows that

b1 = O(b2).

We have established that, subject to (29),

|P(W ≥ w)− e−λ| ≤ b1 + b2 = O
(

(nwd
′
)v
)

= o(1).(30)

With z = wn1/d, and using the usual falling-factorial notation, observe from (26)
that

λ =
(n)v
a

wm

m!
∼ nv

a

wm

m!
=

zm

m! a
=: λ′.

By the intermediate value theorem, there is a point λ′′ ∈ [λ, λ′] at which d
dλe
−λ =

(exp(−λ)− exp(−λ′))/(λ− λ′). It follows that

e−λ
′
− e−λ = (λ′ − λ) · d

dλ
exp(−λ)

∣∣
λ=λ′′

(31)

= o(1)λ′′ · exp(−λ′′) = o(1),

using that both λ and λ are λ′′(1 + o(1)) and that λ′′ exp(−λ′′) ≤ 1/e for any λ′′ ≥ 0.
Now, in (30) substitute w = z/n1/d, yielding∣∣∣P(W ≥ z

n1/d

)
− e−λ

′
∣∣∣ ≤ ∣∣∣P(W ≥ z

n1/d

)
− e−λ

∣∣∣+
∣∣∣e−λ − e−λ′ ∣∣∣ = o(1).(32)

This completes the proof of (1) subject to (29), i.e., for z = o(n1/d−1/d′).

To extend this to all z = z(n), we will observe that there is a weight threshold w0

(see (33) below) where w0 is large compared with n−1/d so that a cheap copy of H
(cheaper than w0) is almost certainly present, but w0 is small compared with n−1/d′

so that an overlapping pair of cheap copies is almost certainly not present and thus
the error bound b1 + b2 is small. Values w < w0 are controlled by the previous case,
while for values w > w0, (1) holds trivially because all its terms are o(1). The same
thresholding around w0 will be used shortly in proving (2). We now implement this
idea.

For any 0 < α < 1 (throughout, α = 1/2 will do), define

w0 = n−(1−α)(1/d)−(α)(1/d′) and z0 = w0 n
1/d = nα(1/d−1/d′).(33)

By construction,

w0 n
1/d′ = n(1−α)(1/d′−1/d) = o(1)(34)

so that (29) is satisfied, while at the same time

z0 = w0 n
1/d = n(α)(1/d−1/d′) = ω(1).(35)

A putative counterexample to Theorem 1 equation (1) consists of an infinite sequence
z = z(n) for which the error terms are not o(1). Divide such a sequence into two
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subsequences according to whether z ≤ z0 or z > z0. We have just established that
the subsequence with z ≤ z0 must give error terms o(1), so consider the subsequence
with z > z0. Here,∣∣∣∣P(W ≥ z

n1/d

)
− exp

{
− zm

m! a

}∣∣∣∣ ≤ P
(
W ≥ z0

n1/d

)
+ exp

{
− zm

m! a

}
≤
(

exp

{
− zm0
m! a

}
+ o(1)

)
+ exp

{
− zm

m! a

}
= o(1),

where the application of (32) is justified by (34) and both exponential terms are small
because of (35) and z ≥ z0. This completes the proof of (1) for all z.

We now turn to Theorem 1, Equation (2). We have

E(W ) =

∫ m

0

P(W ≥ w) dw =

∫ w0

0

P(W ≥ w) dw +

∫ m

w0

P(W ≥ w) dw.

Setting

c =
(n)v
am!

and substituting (30) into the first integral (as justified by (34) and (29)) gives

E(W ) =

∫ w0

0

(
e−cw

m

+O
(

(nwd
′
)
v
))

dw +

∫ m

w0

P(W ≥ w) dw

=

∫ w0

0

e−cw
m

dw +

∫ w0

0

O
(

(nwd
′
)
v
)
dw +

∫ m

w0

P(W ≥ w) dw(36)

= (1 + o(1))n−1/d (am!)−1/m

m
Γ

(
1

m

)
+ o(n−1/d) +O(exp(−nΩ(1)));(37)

we will prove (37) by considering each of the three integrals in (36) in turn.1 From
(37), Theorem 1, Equation (2) follows immediately.

The first integral in (36) is the principal one. Let x = cwm so that w = (x/c)1/m and

dw = c−1/m 1
mx

1
m−1dx. Then∫ w0

0

e−cw
m

dw =
c−1/m

m

∫ cwm0

0

e−x x
1
m−1dx

∼ n−1/d (am!)−1/m

m
Γ

(
1

m

)
.

The asymptotic equality above follows from considering the two multiplicands sepa-
rately. For the first multiplicand, c−1/m/m, we just observe that c’s term ((n)v)

−1/m ∼
n−v/m = n−1/d. For the second multiplicand, the integral, the upper limit of inte-
gration is tending to infinity: cwm0 is of order nvwm0 = (n1/dw0)m → ∞, by (35).

Thus the integral is asymptotic to
∫∞

0
e−x x

1
m−1dx, which is equal to Γ

(
1
m

)
: it is an

example of Euler’s integral of the second kind, Γ(t) =
∫∞

0
xt−1e−xdx.

1Landau notation does not normally presume the sign of the quantity in question, but in error
expressions like (38) and (37) we mean for Ω to denote a positive quantity.
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For the second integral in (36),∫ w0

0

O
(

(nwd
′

0 )
v
)
dw = O

(
w0 · (n1/d′w0)d

′v
)

which, from n1/d′w0 = o(1) by (34) and v ≥ 2 is

= O
(
w0 · (n1/d′w0)2d′

)
= O

(
w0 · (nwd

′

0 )2
)
.

To show that this is o(n−1/d) as claimed in (37) means showing that, when multiplied
by n1/d, it is o(1). This follows from

n1/d · w0 · (nwd
′

0 )2 = n(1/d−1/d′) (2αd′+α−2d′) = n−Ω(1) = o(1),(38)

the final two inequalities holding if 2αd′+α−2d′ < 0, i.e., if α < 2d′/(2d′+1). Recall
from (27) that d′ is the density of a graph F describing an overlapping pair of copies
of H; say F has m′ edges and v′ vertices. Since F is connected, v′ ≤ m′ + 1 and
d′ = m′/v′ ≥ m′/(m′ + 1). Since there is at least one edge shared between the two
copies and one edge unique to each copy, m′ ≥ 3, so d′ ≥ 3/4. Thus (38) holds for
any α < (2 ·3/4)/(2 ·3/4+1) = 3/5. Fixing for example α = 1/2 (in all other parts of
the proof, any α strictly between 0 and 1 will do), the integrated error term is indeed
o(n−1/d).

For the third integral in (36), while P(W ≥ w) of course decreases with w, it is difficult
for us to capitalize on this since our estimates cannot be applied for w > n1/d′

where condition (29) is violated. If as for the second integral we reason through
P(W ≥ w) ≤ P(W ≥ w0), the estimate is not good enough: we get an expression like

(38) but with its integration range of w0 replaced by Θ(1), giving n−
1
d [(d′−d)(2−2α)−1],

and if d′ and d are nearly equal the exponent is not negative for any α between 0 and
1.

Claim 5. For any 0 < α < 1, with w0 given by (33), P(W > w0) ≤ exp(−nΩ(1)).

Proof First, we claim that an Erdős–Rényi random graph G ∼ G(n,w0) contains
a copy of H w.p. > 1/2. This can be obtained as a classical application of the second-
moment method, but it also follows trivially from (32): The set of edges of weight
≤ w0 forms a random graph G, the claim is that this subgraph includes a copy of H
w.p. > 1/2, and (32) says that with even higher probability (namely 1 − o(1)) there
exists such a copy with additional properties (not only is each edge weight ≤ w0, but
the total is also ≤ w0).

In particular, the set of edges of weight ≤ w0 forms a random graph G1 ∼ G(n,w0),
and G1 contains a copy of H w.p. > 1/2.

Now form a second, independent random graph G2 ∼ G(n,w0), each of whose edges
has weight ≤ 2w0, by the following standard trick. For an edge appearing in G1,
accept it into G2 w.p. w0. For an edge not appearing in G1, accept it into G2 with
probability 1 − w0 if its weight is between w0 and 2w0, and otherwise reject it.
Note that in the second case, the weight is in the range (w0, 2w0) with probability
w0/(1−w0), and then we take it only w.p. 1−w0, for a net probability of w0. Thus,
each edge appears in G2 with probability exactly w0 independent of G1 and the other
edges.
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As an Erdős–Rényi random graph, G2 contains a copy of H w.p. > 1/2, independently
of G1, and in such a copy every edge has weight ≤ 2w0.

Repeat this process for graphs G3, . . . , Gk. With probability ≥ 1− 2−k at least one
of these graphs contains a copy of H, and if so all its edges have weight ≤ kw0 for
total weight ≤ kmw0.

To get the claim, given α, choose smaller constants 0 < α′′ < α′ < α. These give rise
to corresponding values w′′0 < w′0 < w0, and the ratios ∆′′ = w′0/w

′′
0 and ∆′ = w0/w

′
0

are both of order nΩ(1). Given G1, G2, . . . Gk with k = ∆′′, we look for H in the k
copies of G(n,w′′0 ): we find such a copy of H w.p. 1− 2−∆′′ = 1− exp(−nΩ(1)), and
any such copy has weight at most k ·m · w′′0 ≤ ∆′′ ·∆′ · w′′0 = w0. �

From Claim 5 it is immediate that

0 <

∫ m

w0

P(W ≥ w) dw ≤ m · P(W ≥ w0) = m · exp(−nΩ(1)),

and we absorb the constant m into the Ω. This concludes analysis of the third integral
in (36), and thus concludes the proof of Theorem 1, Equation (2).

6. Extension of Theorem 1. Theorem 1 extends to distributions other than
uniform on [0, 1]; such extensions are common in situations where, intuitively, only
edges with very small weights are relevant.

Theorem 6. The conclusions of Theorem 1 hold under the same hypotheses except
that now the edge weights are i.i.d. copies of any non-negative random variable X
with finite expectation and a continuous distribution function F that is differentiable
from the right at 0, with slope F ′(0) = 1.

The assumption that F ′(0) = 1 is without loss of generality. As is standard, it can
be extended to a variable X for which F ′(0) = c, for any c > 0, simply by rescaling:
applying the theorem to cX.

To prove the theorem, couple X with a random variable U = F (X). As the quantile
of X, U is distributed uniformly on [0, 1].

As in (33), fix 0 < α < 1/2 and define w0 accordingly; recall that w0 → 0 as n→∞.
Any edge of weight wU ≤ 2w0 → 0 in model U has weight wX = F−1(wU ) =
wU (1 + o(1)) in model X, since F ′(w0) → 1. Symmetrically, any edge with weight
wX ≤ 2w0 in model X has weight wU = F (wX) = wX (1 + o(1)) in model U .

Let HU and HX denote the lowest-weight copies of H in the two models, and WU

and WX the corresponding optimal weights. If WU ≤ w0 then WX ≤ WU (1 + o(1)),
since HU would give such an X-weight (each of its constituent edges has weight
wU ≤ w0, thus asymptotically equal weight wX) and the weight of HX may be even
smaller. Taking the same hypothesis not the symmetric one as might be expected, if
WU ≤ w0, then WX ≤ 2w0 (this is why we introduced the factor of 2), in which case
(now symmetrically) WU ≤WX(1 + o(1)).

Thus, if WU ≤ w0 — call this “event E” — then

WX/L ≤WU ≤WXL(39)

for some L = L(w0) = 1 + o(1)) in the limit n→∞ and thus w0 → 0. Let Ē be the
complementary event and recall from Claim 5 that P(E) = 1− exp(n−Ω(1)).
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We now prove the distributional result (1) for X ∼ F . Rewrite (1) as

P(WU ≥ w) = f(w) + o(1),(40)

where f(w) = exp
{
− (wn1/d)m

m! a

}
. Note that if we change w by a factor L = 1 + o(1)

then the argument of the exponential changes by a factor Lm = 1 + o(1) and thus, by
(31), f changes by an additive o(1), i.e., f(wL) = f(w) + o(1).

Given any w, and conditioning on event E,

P(WX ≥ w | E) ≥ P(WU/L ≥ w) from (39)

= P(WU ≥ wL)

= f(wL) + o(1) from (1) and (40)

= f(w) + o(1) by the argument below (40).

Symmetrically, P(WX ≥ w | E) ≤ P(WU ≥ w/L) = f(w) + o(1) and thus P(WX ≥
w | E) = f(w) + o(1). For any event A, and any event E of probability 1 − o(1) it
holds that P(A) = P(A | E) + o(1), so here it follows that P(WX ≥ w) = P(WX ≥ w |
E) + o(1) = f(w) + o(1).

This completes the proof of the distributional result. We now prove the expectation
result (2) for X ∼ F .

Let w0 and event E be as above. Recall from Claim 5 that P(Ē) = exp(−nΩ(1)), and
from Theorem 1 that E(WU ) = Θ(n−1/d). By the law of total expectation,

E(WU ) = E(WU | E)P(E) + E(WU | Ē)P(Ē)

which in this case gives E(WU ) = E(WU | E)(1 + o(1)) and thus

E(WU | E) = E(WU )(1 + o(1)).(41)

Also by the law of total expectation,

E(WX) = E(WX | E)P(E) + E(WX | Ē)P(Ē).(42)

As previously established, under event E, WX = WU (1 + o(1)). It follows that

E(WX | E) = E(WU | E) (1 + o(1)) = E(WU ) (1 + o(1)),(43)

where in the second equality we have used (41). In the event Ē, WX lies between 0
and the weight of a prescribed copy of H (say, on vertices 1, . . . , v, in that order). We
may test for event E by revealing edge weights up to w0 in model U , so for each edge
we know either the exact weight (at most w0), or know that the weight is ≥ w0. In
the X model, correspondingly, in the prescribed copy we know the edge weights up to
x0 = F−1(w0), or that the weight is ≥ x0. The expected weight of each edge is larger
in the case that it is known to be ≥ x0 and, even making this pessimistic assumption
for every edge in the prescribed copy, we have

0 < E(WX | Ē) ≤ m · E(X | X > x0)) = O(1).(44)
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(The conditional expectation E(X | X > x0) cannot be infinite, as then by the law
of total expectation the expectation of X itself would be infinite, contradicting our
hypothesis.)

Substituting (43) and (44) into (42) gives

E(WX) = E(WU ) (1 + o(1)) +O(1) exp(−nΩ(1)) ∼ E(WU ).

This completes the proof of the extended expectation result.

7. Sample Results and Discussion. In this section we discuss the quality
of the results provided by Theorem 3, the lower and upper bounds — call them
respectively F−(w) and F+(w) — on the CDF F (w) of the weight W of a minimum-
weight k-clique in a randomly edge-weighted complete graph of order n.

Figure 1 shows F− and F+ for k = 3, n = 100 (left) and k = 3, n = 1, 000 (right).
The vertical axis indicates cumulative probability; the horizontal axis indicates w and
is given in units of the estimated mean µ̂ given by (2) of Theorem 1. Here m =

(
k
2

)
,

d = m/k = (k − 1)/2, and a = k!, and by (2) of Theorem 1,

E(W ) ∼ µ̂ =
1

n2/(k−1)

((
k
2

)
!k!
)1/(k2)(
k
2

) Γ

(
1(
k
2

)) .
For k = 3 this gives E(W ) ∼ µ̂ = 1

n
361/3

3 Γ(1/3) = (1.2878 . . .)n−1.

Looking at Figure 1, for k = 3, n = 100 we are getting good estimates in the lower
tail, mediocre estimates for values of w near the (estimated) mean, and poor estimates
in the upper tail. For k = 3, n = 1, 000 we get good results in the lower tail and
through the mean, but still poor results in the upper tail.

Fig. 1. CDFs for k = 3, n = 100 (left) and k = 3, n = 1, 000 (right).

The probability bounds from the theorem can be less than 0 or greater than 1. In
the following discussion and in Figure 1, we have truncated both bounds to the range
[0, 1], in particular capping F+ at 1. Also, because the error terms increase with W ,
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k n 0.05 µ̂ LB UB 0.95 max gap
3 100 0.04862 0.02949 0.44556 0.55215 — 0.41804
3 1,000 0.04986 0.00295 0.50278 0.51387 — 0.11282
3 10,000 0.04999 0.00029 0.50871 0.50983 0.96326 0.02310
3 100,000 0.05 0.00003 0.50931 0.50942 0.95124 0.00403
4 100 0.04470 0.21895 0.31442 0.58856 — 0.66515
4 1,000 0.04947 0.04717 0.45684 0.48193 — 0.19120
4 10,000 0.04995 0.01016 0.47005 0.47236 0.98093 0.03674
4 100,000 0.05 0.00219 0.47127 0.47149 0.95236 0.00594

10 3,000,000 0.04998 0.88550 0.43948 0.43978 0.95220 0.00409
10 10,000,000 0.05 0.67763 0.44100 0.44109 0.95077 0.00131

Table 1
Measurements of the quality of lower and upper bounds on the CDF for various values of k

and n. The column “0.05” gives the value of F−(w) at the w where F+(w) = 0.05. The next
three columns give the estimated mean µ̂ of W along with F−(µ̂) and F+(µ̂). The column “0.95”
gives F+(w) where F−(w) = 0.95. The column “max gap” is the largest difference, over all w, of
F+(w) − F−(w); in all cases, it was equal to the gap between the maximum of F− and 1.

F− is not monotone increasing. In the following discussion we artificially force it to
be (weakly) increasing, by replacing F−(w) with max {w′ ≤ w : F−(w′)}. (To show
the nature of the calculated bounds, though, this was not done in Figure 1.)

These preliminary observations on Figure 1 suggest a few measures of interest, com-
piled in Table 1. Let us explain the table and the results observed.

Lower tail tests The most natural application of our results is to perform lower tail
tests. It is easy to imagine contexts which would result in smaller-weight cliques than
i.i.d. edge weights would produce, for example social networks in which if there is an
affinity (modeled as a small weight) between A and B, and an affinity between B and
C, then there is likely also to be an affinity between A and C.

If we wish to show that values of W as small as one observed occur with probability
less than (say) 5% under the null hypothesis (that weights are i.i.d. uniform (0, 1)
random variables), then that observation must be at or below the point w where
F+(w) = 0.05. If at this point the lower bound is, say, F−(w) = 0.02, and if the
latter happens to be the truth (if F− rather than F+ is a good approximation to F
here), then we require an observation at the 2% level to demonstrate significance at
the 5% level, and this may prevent our doing so.

We therefore take as a measure of lower-tail performance the value of F−(w) at the
point w where F+(w) = 0.05, that is, F−(w)|F+(w)=0.05. Show in the table column
“0.05”, if this value is close to 0.05 our estimates have given up little, and this is seen
largely to be the case throughout the table.

Of course we may be interested in one-tail significance tests at confidence levels α <
0.05 (0.05 being the largest threshold in common use). In this case we would hope
for a small gap (F+(w) − F−(w))|F+(w)=α or small ratio F+(w)/F−(w)|F+(w)=α.
Experimentally, both of these measures appear to be increasing functions of α (i.e.,
decreasing as α decreases), and thus the high quality of our bounds at α = 0.05
implies the same for any α ≤ 0.05. Our bounds thus appear to be quite useful for
lower tail tests.
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Mid-range values It is natural to check how good our probability bounds are for
typical values of W . Taking the estimated mean µ̂ of W to stand in for a typical
value, the table reports µ̂ and the lower and upper bounds F−(µ̂) and F+(µ̂) on the
CDF F (w) at this point. It can be seen that the quality of this mid-range estimate is
poor for k = 3, n = 100, where the gap F+(µ̂)−F−(µ̂) is above 0.1, but considerably
better for n = 1, 000 and n = 10, 000, where the gap is only about 0.01 or 0.001
respectively.

Upper tail estimates Our results might also be applied to perform upper tail tests.
This would be appropriate for contexts that would produce heavier minimum-weight
cliques than i.i.d. edge weights would produce, perhaps a social “enmity” network in
which if there is enmity (modeled as a small weight) between A and B, and enmity
between B and C, then (on the basis that “the enemy of my enemy is my friend”)
there is likely to be less enmity (larger weight) between A and C.

Our first measure here is the obvious analogue of the lower-tail one: the value of F+

at the point where F− is 0.95, F+(w)|F−(w)=0.95. This is shown in the table in the
column “0.95”. In many cases F− never even reaches 0.95, this measure is undefined,
and the implication is that it is impossible to establish upper-tail significance with
our method even at the 5% confidence level. However, once n is large enough that
the measure is defined, larger values of n quickly lead to a small gap (Fp(w) −
F−(w))|F+(w)=0.95: if we can in principle establish upper-tail significance, we can
often do so fairly efficiently.

A second measure relevant here is the maximum gap between our lower and upper
bounds, maxw>0(F+(w) − F−(w)). Typically the maximum gap is achieved at the
smallest point where F+(w) = 1, and thus if the gap is larger than 0.05 (as for
instance for k = 3, n = 1, 000, for which the maximum gap is around 0.11) an upper-
tail significance at the 5% level cannot possibly be established. We chose this measure
rather than the maximum of F− because this has the stronger interpretation that our
probability estimates are this accurate across the range: for any observed W , we
can report lower and upper bounds on the corresponding CDF value (under the null
hypothesis) no further apart than this gap.

Parameter values and potential improvements For k = 3, values of n as small
as 100 give good estimates in the lower tail, and modestly good ones for typical values
of W , but no upper tail results. By n = 10, 000, results are good across the range,
with a maximum gap of around 0.02; with n = 100, 000 this decreases to 0.004.

For k = 4 there is a similar pattern, with only slightly less sharp results for the same
n.

For k = 10 the picture is significantly different. Recall that our methods restrict us
to estimating F (w) for w ≤ 1 and here that leaves us hopelessly far into the left
tail. With k = 10 and n = 100, 000, the estimated mean of W is µ̂ = 1.8856, while
F+(1) is less than 10−12. For n = 1, 000, 000, with w ≤ 1 we still cannot access the
estimated mean µ̂ = 1.13036, and F+(1) ∼ 0.00231: our methods would be useful
for observations anomalously small at the 0.1% confidence level (to name a standard
value near 0.00231), but nothing much above that.

However, with k = 10, W is concentrated near µ̂, and thus, once n is large enough
that µ̂ falls below 1, our methods give good results across the range, as shown in the
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table. So, for k = 10, the problem we observe is with the range of validity of our
estimates rather than their quality. If Theorem 3 is extended as outlined in Section
3.1, the results might well be adequately tight.

One other weakness of our methods is that the lower bound F− falls significantly
short of 1 for k = 3 and k = 4 with n = 100 and n = 1, 000, revealed in the table’s
large “maximum gap” measures. It might be possible to improve this by applying the
method used in proving Claim 5, but we have not attempted this.

8. Conclusions. The object studied in this work is the distribution of a
minimum-weight clique, or copy of a strictly balanced graph H, in a complete graph
G with i.i.d. edge weights. Theorem 1 provides asymptotic characterizations of the
distribution and its mean for any strictly balanced graph H, while Theorems 2 and 3
provide explicit (non-asymptotic) descriptions of the distribution for cliques.

This distribution is a natural object of mathematical study, but also likely to have
practical relevance, particularly for statistical determination that a given network’s
weights are not i.i.d. We look forward to seeing such applications of the work. Some
potential applications would involve networks that are not complete graphs, and ex-
tending our results to such cases seems challenging, whether by extending to other
infinite graph classes of graphs or by including a particular graph as part of the input.

As presented, our explicit methods are for cliques, the uniform distribution and clique
weights at most 1. However, as discussed in Section 3, it is easy to write down calcula-
tions for the uniform distribution and all clique weights, the exponential distribution,
and probably other common distributions. In doing so we encountered computational
challenges, but these seem surmountable if the incentive is more than just fleshing
out a table. As noted in Section 3.3, extending explicit results to subgraphs H other
than cliques is straightforward.

The quality of the results from our methods, as discussed in Section 7, is largely good,
especially when we are interested in lower-tail results and relatively small cliques, or
larger cliques in very large graphs. To improve the probability bounds in the middle
range, near the mean, would seem to require an approach other than Stein-Chen, but
we have no concrete alternative suggestions. Improving the bounds in the upper tail
might be done, as suggested earlier, by applying the ideas of Claim 5.
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