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Abstract

We consider an n-player symmetric stochastic game with weak interactions between
the players. Time is continuous and the horizon and the number of states are finite. We
show that the value function of each of the players can be approximated by the solution
of a partial differential equation called the master equation. Moreover, we analyze the
fluctuations of the empirical measure of the states of the players in the game and show
that it is governed by a solution to a stochastic differential equation. Finally, we prove the
regularity of the master equation, which is required for the above results.
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1 Introduction

We consider a finite horizon game in continuous-time with weakly interacting n players over a
finite state space. Each player controls its own rate of transition from its state to another one,
aiming to minimize a cost. The value function for each player is defined via a symmetric Nash-
equilibrium. We associate the game with a partial differential equation, known as the master
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equations. Then we show that the solution of this equation gives an O(n−1) approximation to
the value function. We provide a stochastic differential equation that governs the limit behavior
of the fluctuations of the empirical measure of the game. At last, we prove the regularity of
the master equation.

The theory of mean field games (MFGs) was initiated a decade ago with the independent
seminal works of Lasry and Lions [25, 26, 27], and Huang, Malhamé, and Caines [20, 19]. This
field studies limiting models for weakly interacting n-player stochastic games. The research in
this area involves the analysis of the limiting model as well as the convergence of the n-player
games to it. The convergence was analyzed from several points of views. First, by showing
that an optimal control from the MFG can be used in the n-player game in order to generate
an asymptotic Nash equilibrium, see e.g., [4] and [6]. Lacker [23, 24] and Fischer [15] proved
a converse result: they showed that any solution of the limiting problem can be approximated
by an εn-Nash equilibrium in the prelimit game. In the influential work of Cardaliaguet,
Delarue, Lasry, and Lions [5] the convergence of the value functions and empirical measure of
the n players to the value function and the distribution of the state of the MFG is established
using the master equation. This is a parabolic partial differential equation with a terminal
condition, whose variables are time, state, and measure. Its solution approximates the value
function of an arbitrary player from the n-player game at a given time when one takes the
arguments as the players’ state and the empirical distribution of the other players. The master
equation for finite state mean field games has been studied by Gomes, Velho, and Wolfarm in
[16, 17]. A comparison between this paper and the present one is given towards the end of the
introduction. For further reading on the master equation see [7] and [3].

Continuous-time finite state MFGs were studied first by Gomes , Mohr, and Souza [18].
They showed that the value functions of the n- players solve a coupled system of n differential
equations. Recalling the symmetry between the players, it is shown further that, over a small
time horizon, this system can be approximated by the solution of a coupled system of two
differential equations with initial-terminal conditions, which emerges from the MFG; one of
the equations stands for the value function and the other for the flow of measures. Carmona
and Wang studied in [8] a version of the game that includes a major player. They find an
asymptotic equilibrium in the n-player game using the analysis of the MFG. The authors
also present the master equation in this framework, but do not use it for the approximation.
More recently, Cecchin and Fischer [9] used probabilistic methods in order to show that MFG
solutions provide symmetric εn-Nash equilibria for the n-player game. In [2] a finite state
continuous-time n-player game is studied. However, the analysis is done under heavy-traffic
so that the number of states increases with n and the limiting problem has a diffusion noise.
A numerical scheme associated with this model is studied in [1]. Another paper that studies
finite state MFGs in continuous time is given in [12]. However, while the limiting problem is
set in continuous-time, the prelimit problem is a discrete-time n-player game with a finite set
of actions. As opposed to the papers mentioned in this paragraph, after an inspiring discussion
with Daniel Lacker, we perform our analysis using the master equation.

Our game borrows the framework introduced by Gomes et al. [18]. We provide three main
results. The first one, namely Theorem 2.1, deals with the convergence of the value functions
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of the n players to the solution of the master equation. Specifically, we show that the average
of all the individual value functions of the players is approximately the solution of the master
equation with the same entries. The second main result, Theorem 2.2, provides the fluctuations
of the empirical measure. In Theorem 3.1, adapting the results of [5] to discrete state space
set-up, we show that the master equation is regular under reasonable assumptions on the data
of the problem, which are required for the above results to hold.

Let us describe some of the technical details. Recall that in general control problems, the
optimal control can be expressed as a minimizer of a Hamiltonian and as so depends on the
value function. Therefore, in order to establish the fluctuations, the first step is to show that
the empirical measure driven by the minimizer of the Hamiltonian calculated using the value
function of the representative player in the symmetric n-player game and the empirical measure
driven by the minimizer of the Hamiltonian calculated using the master equation are close to
each other up to order O(n−1). Then the second step is to characterize the fluctuations of the
dynamics of the latter empirical distribution. To tackle the first step we couple two games. In
the first game, the equilibrium strategies are driven by the value function of the representative
player of the symmetric n-player game; and in the second game strategies are driven by the
solution of the master equation. While in controlled diffusion games there is a trivial coupling:
every two player with the same index (one from each game) share the same noise. A more
sophisticated coupling is required in the finite state setup.

A rigorous analysis of the fluctuations in many player diffusion games as well as the deriva-
tion of large deviation and concentration inequalities are studied by Delarue, Lacker, and Ra-
manan [11]. For the second step we associate every state with arrival and departure processes.
By scaling them and using tightness arguments and the martingale central limit theorem and
benefiting from the fact that the number of states is finite, the fluctuations can be described
as a solution to a stochastic differential equation, which arguably gives more intuition about
the behavior of the system. Compare that to the diffusion case, where the fluctuation limit
is a solution to a stochastic partial differential equation. Finally, we show that a variant of
the assumptions given in [18] is sufficient to get our results, which holds on an arbitrary time
horizon. Our results therefore extend results from [18] to arbitrary time horizon. The results
above require regularity of the master equation, which we prove in the last section by con-
structing it from the coupled system of forward-backward partial differential equations that
were described in [18].1

The rest of the paper is organized as follows. In Section 2, we analyze the n-player game:
we introduce the game, the master equation associated with it, and provide the convergence
results. In Section 3, we provide simple sufficient conditions for the results in Section 2 to
hold.

1During the review of this paper it was brought to our attention that Cecchin and Pelino [10] also indepen-
dently analyzed the finite-state MFG using the master equation approach. The n-player game in that paper
is formulated using the formulation in [9] while we follow the formulation given in [18]. We prove our main
result, the fluctuations, using a probabilistic approach which relies on coupling, whereas [10] uses an analytical
approach relying on the convergence of the generators. It also happens that our assumptions for the conver-
gence results (in Section 2) are slightly weaker. In obtaining sufficient conditions, Section 3.4 of this paper,
both papers adapt the approach of [5] to discrete state space.
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In the rest of this section we will list some frequently used notation.

1.1 Notation

We use the following notation. For every a, b ∈ R, a ∧ b = min{a, b} and a ∨ b = max{a, b}.
We denote [0,∞) by R+. The set of positive integers is denoted by N. For every d ∈ N and
a, b ∈ R

d, a · b denotes the usual scalar product, ‖ · ‖ denotes Euclidean norm, and a⊤ is the
transpose of a. {e1, . . . , ed} is the standard basis of Rd. Also, set exz = ez−ex. For any k ∈ N,
the set {1, . . . , k} is denoted by [k]; throughout the paper we will take k = d, n. For every
x ∈ [d], let

R
d
x :=

{

η ∈ R
d : ∀[d] ∋ y 6= x, ηy ≥ 0 and ηx = −

∑

z∈[d],z 6=x

ηz

}

and R
d
[d] = ∪x∈[d]R

d
x. Let Qd×d be the set of all d×d transition rate matrices; that is α ∈ Qd×d

if for every different x, y ∈ [d], αxy ≥ 0, and
∑

z∈[d] αxz = 0. Let D([0, T ],Rd) be the space of

functions that are right-continuous with finite left limits mapping [0, T ] → R
d. Endow these

spaces with the uniform norm topology.

2 The n-player game and the MFG

2.1 The stochastic model

We consider a finite state continuous-time symmetric n-player game with weak interactions.
The players’ positions can be any of the states in [d], where d is an integer greater than one.
At every time instant each of the players chooses the rate of transition from its own state to
the others, aiming to minimize a cost. Both the transition rates and the cost depend on the
current time, the player’s state, and the empirical distribution of the players over the states.

We now give a precise description of the controlled stochastic processes of interest. Fix
a finite horizon T > 0. Let (Ω,F , {Ft},P) be a filtered probability space that supports unit
rate independent Poisson processes Pn,i,x, n ∈ N, i ∈ [n], x ∈ [d]. The controlled jump process
(Xn,i(t))t∈[0,T ], which stands for players i’s state, is taking values in [d] and is defined through

Pn,i,x, x ∈ [d], in a way that Xn,i jumps to state x whenever the Cox process P̂n,i,x, which
is introduced below, jumps. The initial states {Xn,i(0)}ni=1 are independent and identically
distributed according to µn0 . We assume that limn→∞ µn0 exists in distribution. Player i chooses
a measurable function an,i : [0, T ] × [d] → R

d
[d] satisfying these following conditions: for every

distinct x, y ∈ [d], an,iy (t, x) ∈ R+ and an,ix (t, x) = −∑y∈[d],y 6=x a
n,i
y (t, x). For every x 6= Xn,i(t),

the expression an,ix (t,Xn,i(t)) represents player i’s rate of transition from its current state to
state x.

4



For every n ∈ N, i ∈ [n], and x ∈ [d], let us denote

P̂n,i,x(t) := Pn,i,x
(

∫ t

0
(an,ix (s,Xn,i(s)) ∨ 0)ds

)

, t ∈ [0, T ]

and

ρn,i,x(t) := P̂n,i,x(t)−
∫ t

0
(an,ix (s,Xn,i(s)) ∨ 0)ds, t ∈ [0, T ]. (2.1)

The processes described in (2.1) are {Ft}-martingales with the predictable quadratic variations
processes given by

〈ρn,i,x, ρn,j,y〉(t) = δij,xy

∫ t

0
(an,ix (s,Xn,i(s)) ∨ 0)ds, (2.2)

where δij,xy = 1 if i = j and x = y and 0 otherwise. Note that according to (2.1), the Poisson

process Pn,i,x is “not active” while an,ix ≤ 0. By our definition of the control, the last inequality
obviously holds during the time the process Xn,i equals x.

The empirical distribution of the states of the players in the set [n] \ {i} at time t is given
by

µn,i(t) :=
1

n− 1

∑

j,j 6=i

eXn,j(t) =
( 1

n− 1

∑

j,j 6=i

1{Xn,j(t)=x} : x ∈ [d]
)

,

where hereafter the parameters i, j, and k represent a player and belong to [n]. Moreover,
∑

j,j 6=i stands for
∑

j∈[n],j 6=i. Also, denote

P([d]) :=
{

η ∈ R
d
+ :

∑

i∈[n]

ηi = 1
}

and

Pn([d]) := {η ∈ P([d]) : nη ∈ (N ∪ {0})d}.

The total expected cost for player i starting at time t, associated with the initial condition
(Xn,i(t), µn,i(t)) = (x, η) ∈ [d] × Pn−1([d]) and the profile of strategies a = (an,1, . . . , an,n) is
given by,

Jn,i(t, x, η, a) := E

[

∫ T

t
f(Xn,i(s), µn,i(s), an,i(s,Xn(s)))ds + g(Xn,i(T ), µn,i(T ))

]

,

where f : [d]×P([d])×R
d
[d] → R is the running cost and g : [d]×P([d]) is the terminal cost. For

every (x, η), the function a 7→ f(x, η, a) is assumed to be independent of the x-th component of
a. Also, f and g are measurable functions that will be required to satisfy additional conditions,
which will be introduced in the sequel (see Assumptions 2.1 and 2.2, and Remark 2.2).

We are interested in finding an asymptotic Nash equilibrium, where the goal of each player
is to minimize its own cost Jn,i given the other player actions.
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2.2 The HJB equation

Consider the Hamiltonian

H(x, η, p) = inf
a∈Rd

x

h(x, η, a, p),

where h : [d]× P([d]) × R
d
x × R

d → R is defined as

h(x, η, a, p) = f(x, η, a) +
∑

y,y 6=x

aypy.

Throughout, the parameters x, y, and z represent a state of the system and belong to [d]. Also,
∑

y,y 6=x stands for
∑

y∈[d],y 6=x. The following assumption requires a unique minimizer for the
Hamiltonian.

Assumption 2.1 There is a unique measurable function a∗ : [d] × P([d]) × R
d → R

d
[d] such

that

a∗(x, η, p) = argmin
a∈Rd

x

h(x, η, a, p),

where uniqueness is considered up to its x-th coordinate, since f(x, η, a) is independent of the
x-th component of a.

We set a∗x(x, η, p) = −∑y,y 6=x a
∗
y(x, η, p). This assumption enables us to establish the unique-

ness of the optimal response of any reference player to the other players’ strategies, and in the
MFG, which will be introduced in the next subsection, the uniqueness of the optimal control
of the decision maker. It is a standard assumption in the MFG literature, see [18, (5)], [8,
Hypotheses 8], and [9, Assumption (C)] in the context of finite state MFGs and [6, Lemma
2.1] [5, (13)], and [2, Assumption 3.1.(b)] for diffusion scaled MFGs.

The differential equations associated with this game are given in [18] and in [8]. However,
for completeness of the presentation, we shortly illustrate its derivation. Fix i ∈ [n]. We refer
to player i as a reference player. Assume that all the players in the set [n] \ {i} use the same
control an,−i. Denote the cost for player i who uses the control a in this case by Jn,i

an,−i(t, x, η, a).
Also, set

V n,i(t, x, η) = V n,i
an,−i(t, x, η) := inf

an,i
Jn,i
an,−i(t, x, η, a

n,i), (t, x, η) ∈ [0, T ] × [d]× Pn−1([d]),

where the infimum is taken over controls an,i.Then V n,i solves














−∂tV n,i(t, x, η) =
∑

y,z

[

V n,i
(

t, x, η + 1
n−1eyz

)

− V n,i(t, x, η)
]

(n− 1)ηya
n,−i
z (t, y)

+H
(

x, η,∆xV
n,i(t, ·, η)

)

,

V n,i(T, x, η) = g(x, η),
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where (t, x, η) ∈ [0, T ]× [d]× Pn−1([d]) and for every x ∈ [d] and φ : [d] → R,

∆xφ(·) := (φ(l)− φ(x) : l ∈ [d]) ,

and
∑

y,z =
∑

y∈[d]

∑

z∈[d].

In a symmetric equilibrium we expect that the controls of all the players would be the same
as the one of player i. That is, each player j ∈ [n] would use the same control:

a∗z(X
n,j(t), µn,j(t),∆Xn,j (t)V

n,j(t, ·, η)), (t, z) ∈ [0, T ]× [d].

The symmetry between the players also yields that V n,j = V n,i for every j ∈ [n]. We denote
V n = V n,i. Therefore, the last system becomes

(HJB(n))














−∂tV n(t, x, η) =
∑

y,z
ηyD

n,y,zV n(t, x, η)a∗z(y, η +
1

n−1eyx,∆yV
n(t, ·, η + 1

n−1eyx))

+H (x, η,∆xV
n(t, ·, η)) ,

V n(T, x, η) = g(x, η),

where2

Dn,y,zφ(t, x, η) := (n − 1)
(

φ
(

t, x, η + 1
n−1eyz

)

− φ(t, x, η)
)

, (2.3)

for (t, x, η) ∈ [0, T ]×[d]×Pn−1([d]). The reason for the additional term 1
n−1eyx in the argument

of a∗ is that we need to modify η so that it represents the position of the player that stands
for position y.

Gomes et al. (2013) provide sufficient conditions for Assumption 2.1 to hold and for the
existence and uniqueness of a solution of this system, in addition to equilibrium strategies,
which we now summarize.

Lemma 2.1 [Proposition 1 and Theorems 4, 5, and 6 in [18]] Suppose that the running cost
f and the terminal cost g satisfy the following conditions.

1. (Lipschitz-continuity) The function f is differentiable with sepect to (w.r.t.) a and there
exists a constant cL > 0 such that for every x ∈ [d], η, η′ ∈ P([d]), and a ∈ R

d
+,

|g(x, η) − g(x, η′)|+ |f(x, η, a) − f(x, η′, a)|+ ‖∇af(x, η, a)−∇af(x, η
′, a)‖

≤ cL‖η − η′‖.

2. (strong convexity) There exists a constant cV > 0 such that for every x ∈ [d], η ∈ P([d]),
and a, a′ ∈ R

d
+,

f(x, η, a)− f(x, η, a′) ≥ ∇af(x, η, a
′)(a− a′) + cV ‖a− a′‖2.

2For simplicity, we are abusing notation here and in the sequel and write
∑

y,z
for

∑
y∈[d],η(y) 6=0

∑
z∈[d]

whenever the coefficient ηy appears in the sum.
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3. (superlinearity) For every (x, η) ∈ [d]× P([d]) and {ay}y 6=x ⊂ R+,

lim
ax→∞

f(x, η, a)

‖a‖ = ∞. (2.4)

Then,

a. Assumption 2.1 holds and the function a∗ is uniformly Lipschitz in its arguments.

b. The Hamiltonian H is uniformly Lipschitz in its arguments over compact sets.

c. The system (HJB(n)) has a unique classical solution, which coincides with the value
function associated with equilibrium strategies that for every j ∈ N are given by

an,j(t,Xn,j(t)) = a∗(Xn,j(t), µn,j(t),∆Xn,j(t)V
n(t, ·, µn,j(t))).

2.3 The master equation and the MFG

In this section we present the master equation associated with the game described in the
previous subsection. We provide heuristics for its derivation from both PDE and probabilistic
perspectives. The MFG is fully analyzed in [18]. A rigorous derivation of the master equation
from the MFG is given in Section 3. In the next subsection we focus on the relationship
between the master equation and (HJB(n)), which is used to establish the fluctuations of the
empirical measure in Section 2.5.

The master equation associated with the n-player game is given by
{

−∂tU(t, x, η) =
∑

y,z ∂ηzU(t, x, η)ηya
∗
z(y, η,∆yU(t, ·, η)) +H(x, η,∆xU(t, ·, η)),

U(T, x, η) = g(x, η),
(ME)

where U : [0, T ] × [d] × P([d]) → R. Informally, the structure of the master equation follows
from (HJB(n)) using the approximation

(

V n
(

t, x, η + 1
n−1eyz

)

− V n(t, x, η)
)

(n− 1) ≈ ∂ηzV
n(t, x, η) − ∂ηyV

n(t, x, η), (2.5)

together with our setting
∑

z∈[d] a
∗
z(y, η, p) = 0, (z, η, p) ∈ [d]× P([d]) × R

d.

We now provide a probabilistic illustration of the master equation using a MFG problem.
The MFG was studied by Gomes et al. in [18] and [9] and with an additional major player in
[8]. Fix η ∈ P([d]) and a function β : [0, T ] → Qd×d, see Section 1.1. Using the terminologies
from the n-player game, we consider a reference player, which we refer to as the decision
maker (DM). The matrix β stands for the transition matrix of the non-reference players. Let
µβ : [0, T ] → P([d]) be the solution of

{

d
dtµ

β
y (t) =

∑

x∈[d] µ
β
x(t)βxy(t), (t, y) ∈ [0, T ]× [d],

µβ(0) = µ0.
(2.6)
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The function µβ represents the limit of the evolution in time of the distribution of the non-
reference players. Consider the following Markov decision problem. At any time instant, the
DM chooses the rate of transition from its current state to another state in the set [d] as
follows. Let (X(t))t∈[0,T ] be a [d]-valued controlled process that stands for the state process of

the DM. A Markovian control of the DM is a process (a(t))t∈[0,T ] taking values in R
d
[d], such

that for every t ∈ [0, T ] and every x 6= X(t), ax(t) is the transition rate from the current state
X(t) to state x. Also, set aX(t)(t) = −∑x 6=X(t) ax(t). The total expected cost for the DM

starting at time t, associated with the initial condition (X(t), µβ(t)) = (x, η) ∈ [d]×P([d]) and
the control a is given by,

Jβ(t, x, η, a) := E

[

∫ T

t
f(X(s), µβ(s), a(s))ds + g(X(T ), µβ(T ))

]

.

The value function is therefore given by

Vβ(t, x, η) = inf
a
Jβ(t, x, η, a), (t, x, η) ∈ [0, T ]× [d]× P([d]),

where the infimum is taken over a set of admissible controls, which we do not define rigorously.
The value function solves the following HJB

{

− d
dtVβ(t, x, µ

β(t)) = H(x, µβ(t),∆xVβ(t, ·, µβ(t))), (t, k) ∈ [0, T ]× [d],

Vβ(T, x, µ
β(T )) = g(x, µβ(T )),

(2.7)

At the end of this subsection we provide sufficient conditions for the existence and uniqueness
of a solution to the system given in (2.6) and (2.7). This system gives,

−∂tVβ(t, x, µβ(t)) =
∑

z∈[d]

∂ηzVβ(t, x, µ
β(t))

d

dt
µβz (t) +H(x,∆xVβ(t, ·, µβ(t)))

=
∑

y,z

∂ηzVβ(t, x, µ
β(t))µβz (t)βyz(t) +H(x,∆xVβ(t, ·, µβ(t))).

The optimal control is thus given by

aβ(t) = a∗(X(t), µβ(t),∆X(t)Vβ(t, ·, µβ(t))), t ∈ [0, T ].

In a symmetric equilibrium all players are expected to use β that satisfies

βxy(t) = a∗y(x, µ
β(t),∆xVβ(t, ·, µβ(t))), (t, x, y) ∈ [0, T ]× [d]2.

Hence, the forward-backward system is























d
dtµy(t) =

∑

x∈[d] µx(t)a
∗
y(x, µ(t),∆xV (t, ·, µ(t))),

−∂tV (t, x, µ(t)) =
∑

y,z ∂ηzV (t, x, µ(t))µz(t)a
∗
z(x, µ(t),∆xV (t, ·, µ(t)))

+H(x, µ(t),∆xV (t, ·, µ(t))),
µ(0) = µ0, V (T, x) = g(x, µ(T )),

(2.8)
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where (t, x, y, µ0) ∈ [0, T ] × [d]2 × P([d]). Observe that the master equation comes from the
second differential equation. We will make this connection more rigorous in Section 3, where
we construct a smooth solution of the master equation using the forward-backward system.

The next lemma tells us when the above system has a unique smooth solution.

Lemma 2.2 [Proposition 4 and Theorem 2 in [18]] Under the assumptions from Lemma 2.1
there exists a solution to the system of equations given in (2.8). Moreover, under the following
additional assumptions we also have uniqueness.

1. For any η, η′ ∈ P([d]),
∑

x∈[d]

(ηx − η′x)(g(x, η) − g(x, η′)) ≥ 0.

2. For every M > 0 there exists a parameter cM > 0 such that for every x ∈ [d], η ∈ P([d]),
and p, p′ ∈ [−M,M ]d,

H(x, η, p) −H(x, η, p′)− a∗(x, η, p′) · (p− p′) ≤ −cM‖p− p′‖2. (2.9)

3. There exists a positive parameter cH such that for every t ∈ [0, T ], η, η′ ∈ P([d]), and
p, p′ ∈ R

d,

η · (H(·, η′, p)−H(·, η, p)) + η′ · (H(·, η, p′)−H(·, η′, p′)) ≤ −cH‖η − η′‖2,

where H(·, η, p) := (H(x, η, p) : x ∈ [d]).

Remark 2.1 [Section 2.8 in [18]] Simple sufficient conditions for the assumptions above are
that η 7→ (g(x, η) : x ∈ [d]) is the gradient of a convex function and that H can be rewritten as

H(x, η,∆xz) = H1(x,∆xz) +H2(x, η),

with H1 satisfying (2.9) and H2 satisfying

(H2(·, η′)−H2(·, η)) · (η′ − η) ≥ cH‖η − η′‖2,

where H2(·, η) := (H2(x, η) : x ∈ [d]). The last property holds, for instance, if η 7→ (H2(x, η) :
x ∈ [d]) is the gradient of a convex function.

2.4 Convergence of the value functions

We start by introducing key conditions that are necessary for all the results in the rest of
Section 2. As we state below, some of the conditions are derived from the conditions given in
Lemma 2.1. Yet, we choose to state only the most primitive conditions that are necessary for
the proofs.
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Assumption 2.2 1. The systems of the differential equations (HJB(n)) and (ME) have
unique classical solutions.

2. The function ∇ηU is uniformly bounded over [0, T ]× [d]×P([d]). Moreover, There exists
cL > 0 such that for every t ∈ [0, T ], x ∈ [d], and η, η′ ∈ P([d]),

‖∇ηU(t, x, η) −∇ηU(t, x, η′)‖ ≤ cL‖η − η′‖. (2.10)

Denote cU := sup(t,x,η) |U(t, x, η)|, which is finite by the continuity of U over its compact
domain.

3. Modifying cL if necessary, we assume3 that for every M > 0 there is a parameter cM > 0
such that for every x ∈ [d], η, η′ ∈ P([d]), and p, p′ ∈ [−M,M ]d,

‖a∗(x, η, p) − a∗(x, η′, p′)‖ ≤ cM
(

‖η − η′‖+ ‖p − p′‖
)

. (2.11)

Moreover, for every distinct x, y ∈ [d], the function a∗y(x, ·, ·) is uniformly bounded below
away from zero.

4. For every M > 0 there is a parameter cM > 0 such that for every x ∈ [d], and η ∈ P([d]),
and p, p′ ∈ [−M,M ]d,

|H(x, η, p) −H(x, η, p′)| ≤ cM‖p − p′‖.

Remark 2.2 i. Recall that the existence and uniqueness of a solution to (HJB(n)) is guaran-
teed under the conditions from Lemma 2.1. The existence and uniqueness of a solution to (ME)
as well as its properties are given in Section 3. From [18, Proposition 6] the value functions
V n,i are bounded above, uniformly in (t, x, η, n, i). Set cV := cU ∨ sup(t,x,η,n,i) |V n,i(t, x, η)|,
Notice that the continuity of a∗ over the compact domain [d] × P([d]) × [−2cV , 2cV ] implies
that it is uniformly bounded above. Together with the third part of the assumption we get that
there is a constant cB > 0 such that for every x, y ∈ [d], η ∈ P([d]), and p ∈ [−2cV , 2cV ]

d,

1

cB
≤ a∗y(x, η, p) ≤ cB . (2.12)

The uniform lower bound of the optimal appears in [13, Definition 3.2.(iii)] and [9, Lemma 3].
It is somewhat equivalent to the requirement in the diffusion case that the diffusion coefficient,
which drives the noise, is bounded away from zero. Such a condition holds if we restrict the
controls to be greater than a given positive constant, or alternatively, if the running cost satisfies
(2.4) with ax → 0+.

ii. In the light of (2.5), the uniform Lipschitz-continuity of ∇ηU is needed below in order
to uniformly approximate Dn,y,zU by ∂ηzU . Kolokoltsov and Yang (2013) provide sufficient

3In fact for the result in this subsection we do not need the Lipschitz-continuity of the control w.r.t. η. It is
used to show the fluctuations in Section 2.5. We choose to state it here for the presentation’s sake.
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conditions for a statement equivalent to Assumption 2.2.2 in the diffusion case, see [22, The-
orem 4.3]. The Lipschitz-continuity of a∗ and H is a standard requirement in the literature of
MFGs. As stated in Lemma 2.1 above, Gomes et al. (2013) derives them as well as Assump-
tion 2.1 from their assumptions. For further references in the context of finite state MFGs see
[8, Hypothesis 3] and [9, Section 2.1.1]. For the references in the diffusion setup see e.g., [6,
Assumptions (A.2), (A.3), (A.4), and (A.5)], [22, Assumption (A3)], [5, Section 2.3], and [2,
Assumptions 3.1.(a) and 5.1].

iii. The convergence results of Gomes et al. [18] hold only if the horizon T is sufficiently
small. This restriction emerges from their need that the functions {V n}n be uniformly Lips-
chitz, see [18, Proposition 7]. Using the master equation to approximate the value function,
we bypass this requirement and therefore can handle an arbitrary time horizon. Specifically,
instead of working with the equilibrium controls that can be expressed using V n, we use con-
trols that are defined using the solution of the master equation U . This is because the empirical
distribution generated by the equilibrium controls can be approximated by the empirical distri-
bution of the states generated by the controls which are defined through U , as we demonstrate.
As a result, in order to attain the convergence of V n to U we only need that ∇ηU is Lipschitz
as is shown in Section 3.

Consider the functions V n and U that solve (HJB(n)) and (ME), respectively. The next
theorem provides an O(n−1) approximation to the value function in the n-player game. An
equivalent result in the diffusion case was established in [5, Theorem 6.6].

Theorem 2.1 Set W n := V n − U . Under Assumptions 2.1 and 2.2, there exists C > 0 such
that for every n ≥ 2 it holds that

sup
t∈[0,T ]

E

[

∣

∣W n
(

t,Xn,i(t), µn,i(t)
)
∣

∣

2
]

+

∫ T

0
E

[

∥

∥∆Xn,i(s)W
n
(

s,Xn,i(s), µn,i(s)
)∥

∥

2
]

ds ≤ C

n2
. (2.13)

Moreover, setting x = (x1, . . . , xn) ∈ [d]n, and defining mn,i
x := 1

n−1

∑

j,j 6=i exj
, we have that

sup
t∈[0,T ]

1

n

∑

i∈[n]

∣

∣V n(t, xi,m
n,i
x

)− U(t, xi,m
n,i
x

)
∣

∣ ≤ C

n
. (2.14)

Proof. Inequality (2.14) follows from (2.13), which we now prove. Fix i ∈ [n]. Let us denote
for every (t, y, j) ∈ [0, T ] × [d]× [n],

an,jy (t) = a∗y
(

Xn,j(t), µn,j(t),∆Xn,j (t)V
n(t, ·, µn,j(t)

)

,

and for every t ∈ [0, T ] and z ∈ [d],

Bi,z(t) =
∣

∣W n
(

t, z, µn,i(t)
)∣

∣

2 −
∣

∣W n
(

t,Xn,i(t), µn,i(t)
)∣

∣

2
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and for every k 6= i,

Bk,z(t) =
∣

∣

∣
W n

(

t,Xn,i(t), µn,i(t) + 1
n−1eXn,k(t)z

)
∣

∣

∣

2
−
∣

∣W n
(

t,Xn,i(t), µn,i(t)
)∣

∣

2

=
[

W n
(

t,Xn,i(t), µn,i(t) + 1
n−1eXn,k(t)z

)

+W n
(

t,Xn,i(t), µn,i(t)
)

]

× 1

n− 1
Dn,Xn,k(t),zW n

(

t,Xn,i(t), µn,i(t)
)

.

Recall the definitions of P̂n,j,x and ρn,j,x from (2.1) and the paragraph preceding it. Now,
applying Itô’s formula to |W n|2 and using (HJB(n)) and (ME) we get that
∣

∣W n
(

T,Xn,i(T ), µn,i(T )
)
∣

∣

2 −
∣

∣W n
(

t,Xn,i(t), µn,i(t)
)
∣

∣

2

= 2

∫ T

t
W n

(

s,Xn,i(s), µn,i(s)
)

∂tW
n
(

s,Xn,i(s), µn,i(s)
)

ds (2.15)

+

∫ T

t

{

∑

j∈[n]

∑

z 6=Xn,j(s)

Bj,z(s−)dP̂n,j,z(s)
}

= Υ+

∫ T

t

{

Φ1(s) + Φ2(s) + 2W n
(

s,Xn,i(s), µn,i(s)
)

[Ψ1(s) + Ψ2(s) + Ψ3(s) + Ψ4(s)]
}

ds,

where

Υ :=

∫ T

t

∑

j∈[n]

∑

z 6=Xn,j(s)

Bj,z(s−)dρn,j,z(s),

Φ1(s) :=
∑

j,j 6=i

∑

z 6=Xn,j(s)

Bj,z(s)a
n,j
z (s),

Φ2(s) :=
∑

z 6=Xn,i(s)

Bi,z(s)a
n,i
z (s),

and

Ψ1(s) :=
∑

y,z

[

a∗z
(

y, µn,i(s),∆yU
(

s, ·, µn,i(s)
))

(2.16)

− a∗z

(

y, µn,i(s) + 1
n−1eyXn,i(s),∆yV

n
(

s, ·, µn,i(s) + 1
n−1eyXn,i(s)

)) ]

× µn,iy (s)∂ηzU
(

s,Xn,i(s), µn,i(s)
)

,

Ψ2(s) :=
∑

y,z

(∂ηz −Dn,y,z)U
(

s,Xn,i(s), µn,i(s)
)

µn,iy (s)

× a∗z

(

y, µn,i(s) + 1
n−1eyXn,i(s),∆yV

n
(

s, ·, µn,i(s) + 1
n−1eyXn,i(s)

))

,

Ψ3(s) := −
∑

y,z

Dn,y,zW n
(

s,Xn,i(s), µn,i(s)
)

µn,iy (s)

× a∗z

(

y, µn,i(s) + 1
n−1eyXn,i(s),∆yV

n
(

s, ·, µn,i(s) + 1
n−1eyXn,i(s)

))

,

Ψ4(s) :=
[

H
(

Xn,i(s), µn,i(s),∆Xn,i(s)U
(

s, ·, µn,i(s)
))

−H
(

Xn,i(s), µn,i(s),∆Xn,i(s)V
n
(

s, ·, µn,i(s)
))]

.
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Notice that

Φ1(s) + 2W n
(

s,Xn,i(s), µn,i(s)
)

Ψ3(s)

=
1

n− 1

∑

y,z

∣

∣Dn,y,zW n
(

s,Xn,i(s), µn,i(s)
)
∣

∣

2
µn,iy (s)

× a∗z

(

y, µn,i(s) + 1
n−1eyXn,i(s),∆yV

n
(

s, ·, µn,i(s) + 1
n−1eyXn,i(s)

))

≥ 0

and

Φ2(s) =
∑

z 6=Xn,i(s)

(

W n
(

s,Xn,i(s), µn,i(s)
)

−W n
(

s, z, µn,i(s)
))2

an,iz (s)

+ 2W n
(

s,Xn,i(s), µn,i(s)
)

Ψ5(s),

where we set

Ψ5(s) :=
∑

z 6=Xn,i(s)

[

W n
(

s, z, µn,i(s)
)

−W n
(

s,Xn,i(s), µn,i(s)
)]

an,iz (s).

By Cauchy–Schwartz inequality and (2.12),

|Ψ5(s)| ≤
√
dcB

∥

∥∆Xn,i(s)W
n
(

s, ·, µn,i(s)
)
∥

∥ .

Another way of presenting Ψ1 is given by

Ψ1(s) =
1

n

∑

j∈[n]

∑

z∈[d]

∂ηzU
(

s,Xn,i(s), µn,i(s)
)

×
[

a∗z
(

Xn,j(s), µn,i(s),∆Xn,j(s)U
(

s, ·, µn,i(s)
))

− a∗z
(

Xn,j(s), µn,j(s),∆Xn,j (s)V
n
(

s, ·, µn,j(s)
))

]

.

Recalling Assumptions 2.2.2 and 2.2.3, Remark 2.2, and noticing that for sufficiently large n,
sups∈[0,T ] |µn,i(s)− µn,j(s)| ≤ 3n−1 we get that

|Ψ1(s)| ≤
C

n

∑

j∈[n]

∥

∥∆Xn,j(s)W
n
(

s, ·, µn,j(s)
)∥

∥+
C

n
,

where in the above expression and in the rest of the proof, C refers to a finite positive constant
that is independent of t and n and which can change from one line to the next. From As-
sumption 2.2.3, a∗ is uniformly bounded. Moreover, Assumption 2.2.2 and Lemma 1.1, imply
the uniform bound | (∂ηz −Dn,y,z)U | ≤ C/n and thus, |Ψ2(t)| ≤ C

n . Finally, Assumption 2.2.4
implies,

|Ψ4(t)| ≤ C
∥

∥∆Xn,i(t)W
n
(

t, ·, µn,i(t)
)
∥

∥ .
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From the martingale property of ρn,i,z’s, E[Υ] = 0. Taking expectation on both sides of
(2.15) and recalling that W n(T,Xn,i(T ), µn,i(T )) = 0, (2.12), and the above equalities and
estimates yield

E

[

∣

∣W n
(

t,Xn,i(t), µn,i(t)
)
∣

∣

2
]

+
1

cB

∫ T

t
E

[

∥

∥∆Xn,i(s)W
n
(

s, ·, µn,i(s)
)
∥

∥

2
]

ds (2.17)

≤ E

[

∣

∣W n
(

t,Xn,i(t), µn,i(t)
)
∣

∣

2
]

+

∫ T

t
E

[

∑

z 6=Xn,i(s)

(

W n
(

s,Xn,i(s), µn,i(s)
)

−W n
(

s, z, µn,i(s)
))2

an,iz (s)
]

ds

≤ 2E
[

∫ T

t

∣

∣W n
(

s,Xn,i(s), µn,i(s)
)
∣

∣

(

|Ψ1(s)|+ |Ψ2(s)|+ |Ψ4(s)|+ |Ψ5(s)|
)

ds

≤ C1E

[

∫ T

t

∣

∣W n
(

s,Xn,i(s), µn,i(s)
)∣

∣

( 1

n

∑

j∈[n]

∥

∥∆Xn,j(s)W
n
(

s, ·, µn,j(s)
)∥

∥

+
∥

∥∆Xn,i(s)W
n
(

s, ·, µn,i(s)
)∥

∥+
1

n

)

ds,

where C1 > 0 and is independent of t and n. Applying Young’s inequality, |uv| ≤ εu2/2 +
v2/(2ε), for all u, v ∈ R and ε > 0, to the n + 2 products that we obtained in the last line of
the equation separately with ε = (2cBC1)

−1, we get

≤ 3C2
1cBE

[

∫ T

t

∣

∣W n
(

s,Xn,i(s), µn,i(s)
)
∣

∣

2
ds
]

+
1

4cBn

∫ T

t
E

[

∑

j∈[n]

∥

∥∆Xn,j(s)W
n
(

s, ·, µn,j(s)
)
∥

∥

2
]

ds

+
1

4cB

∫ T

t
E

[

∥

∥∆Xn,i(s)W
n
(

s, ·, µn,i(s)
)
∥

∥

2
]

ds +
T

4cBn2
.

Recall that the random variables {Xn,j(t)}nj=1 and therefore also the random variables
{

∆Xn,j(t)W
n
(

t, ·, µn,j(t)
)

: j ∈ [n]
}

are identically distributed. Hence, we obtain the following
bound

≤ 3C2
1cBE

[

∫ T

t

∣

∣W n
(

s,Xn,i(s), µn,i(s)
)
∣

∣

2
ds
]

+
1

2cB

∫ T

t
E

[

∥

∥∆Xn,i(s)W
n
(

s, ·, µn,i(s)
)
∥

∥

2
]

ds

+
T

4cBn2
.

Combining the last bound with (2.17) we get

E

[

∣

∣W n
(

t,Xn,i(t), µn,i(t)
)∣

∣

2
]

≤ E

[

∣

∣W n
(

t,Xn,i(t), µn,i(t)
)
∣

∣

2
]

+
1

2cB

∫ T

t
E

[

∥

∥∆Xn,i(s)W
n
(

s, ·, µn,i(s)
)
∥

∥

2
]

ds

≤ 3C2
1cBE

[

∫ T

t

∣

∣W n
(

s,Xn,i(s), µn,i(s)
)
∣

∣

2
ds
]

+
T

4cBn2
.
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Grönwall’s inequality implies that

sup
t∈[0,T ]

E

[

∣

∣W n
(

t,Xn,i(t), µn,i(t)
)∣

∣

2
]

≤ Cn−2,

and therefore

1

2cB

∫ T

0
E

[

∥

∥∆Xn,i(s)W
n
(

s, ·, µn,i(s)
)
∥

∥

2
]

ds

≤ 3C2
1cBE

[

∫ T

0

∣

∣W n
(

s,Xn,i(s), µn,i(s)
)∣

∣

2
ds
]

+
T

4cBn2
≤ Cn−2.

The last two bounds establish (2.13).

✷

2.5 Fluctuations of the empirical measure

In this section we provide the dynamics of the process
√
n(µn − µ) for some appropriate

µ : [0, T ] → P([d]), where

µn(t) :=
1

n

∑

j∈[n]

eXn,j (t), t ∈ [0, T ], (2.18)

is the Nash equilibrium empirical measure of the states of all the players. That is, its generator
is

Ln
t g(η) =

∑

x,y∈[d]

nηxa
∗
y

(

x, n
n−1η − 1

n−1ex,∆xV
n,i(t, ·, n

n−1η − 1
n−1ex)

)

(

g(η + 1
nexy)− g(η)

)

,

where g : Pn([d]) → R. Throughout this subsection we assume that the following limit exists
ψ0 := limn→∞

√
n(µn(0) − µ(0)). For example, for µ(0) = (px : x ∈ [d]) ∈ P([d]) and for

every n ∈ N and i ∈ [n], the random variables Xn,i(0) are i.i.d. with distribution µ(0), ψ0 has
a multivariate normal distribution with mean 0 and a d × d covariance matrix, whose ij-th
component is pi(δij − pj), where δij is the Kronecker delta. To establish the fluctuations, we
start by coupling two jump processes whose transition rates are driven by the functions V n

and U . They serve us to show that the difference between the empirical measures driven by
these transition rates is of order O(n−1) and therefore we can restrict the fluctuations analysis
to the dynamics that are driven by U .

Construction 2.1 Let {Xn,j(0) : j ∈ [n]} be a collection of independent identically distributed
(i.i.d.) random variables taking values in [d] and set Y n,j(0) = Xn,j(0), j ∈ [n]. Fix i ∈ [n]
and consider a Cox process Qn,i with rate

a(t) := max







∑

x∈[d]

aXx (t),
∑

x∈[d]

aYx (t)







, t ∈ [0, T ],
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where

aXx (t) = max{0, a∗x(Xn,i(t), µn,i(t),∆Xn,i(t)V
n(t, ·, µn,i(t))},

aYx (t) = max{0, a∗x(Xn,i(t), νn,i(t),∆Xn,i(t)U(t, ·, νn,i(t))},

for x ∈ [d], t ∈ [0, T ], and

µn,i(t) :=
1

n− 1

∑

j,j 6=i

eXn,j (t), νn,i(t) :=
1

n− 1

∑

j,j 6=i

eY n,j(t), (t, i) ∈ [0, T ] × [n].

We assume that the processes {Qn,i}i∈[n] satisfy
〈

Qn,i(·)−
∫ ·

0
an,i(s)ds,Qn,j(·)−

∫ ·

0
an,j(s)ds

〉

(t) = δij

∫ t

0
an,i(s)ds, t ∈ [0, T ],

where δij = 1 if i = j and 0 otherwise.

Let

τn,i := inf{t ≥ 0 : Xn,i(t) 6= Y n,i(t)} ∧ T,

with the convention that inf ∅ = ∞. On the time interval [0, τn,i], whenever Qn,i jumps, the
2-dimensional process

(

Xn,i, Y n,i
)

jumps to state











(x, x), with probability min{aXx (t), aYx (t)}/a(t),
(

x,Xn,i(t)
)

, with probability
(

aXx (t)−min{aXx (t), aYx (t)}
)

/a(t),
(

Xn,i(t), x
)

, with probability
(

aYx (t)−min{aXx (t), aYx (t)}
)

/a(t),

Notice that in the last two cases at most one of the processes Xn,i and Y n,i jumps.

On the time interval [τn,i, T ] the processes Xn,i and Y n,i move independently according to
the transition rates (aXx (t) : x ∈ [d]) and (aYx (t) : x ∈ [d]), respectively.

One can verify by induction over the jumps that the processes Qn,i,Xn,i, and Y n,i, i ∈ [n], are
well-defined. The next proposition provides an approximation of order O(n−1) to the empirical
measure in the n-player game. We also consider the empirical measures of the states of all the
players µn, which is given in (2.18) and

νn(t) :=
1

n

∑

j∈[n]

eY n,j(t). (2.19)

That is, its generator is

Ln
t g(η) =

∑

x,y∈[d]

nηxa
∗
y

(

x, n
n−1η − 1

n−1ex,∆xU(t, ·, n
n−1η − 1

n−1ex)
)

(

g(η + 1
nexy)− g(η)

)

where g : Pn([d]) → R.
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Proposition 2.1 Under Assumptions 2.1 and 2.2, there exists C > 0 such that for every
n ≥ 2,

E

[

sup
s∈[0,T ]

∥

∥µn,i(s)− νn,i(s)
∥

∥

]

≤ 2E
[

sup
s∈[0,T ]

∣

∣Xn,i(s)− Y n,i(s)
∣

∣

]

≤ C

n
, (2.20)

and as a consequence

E

[

sup
s∈[0,T ]

‖µn(s)− νn(s)‖
]

≤ C + 2

n
(2.21)

and

√
n sup

[0,T ]
‖µn − νn‖ converges in probability to 0. (2.22)

Proof. The proof of (2.20) is the most demanding part, so we start with the other two.
Inequality (2.21) merely follows from it, since

sup
s∈[0,T ]

[

∥

∥µn(s)− µn,i(s)
∥

∥+
∥

∥νn(s)− νn,i(s)
∥

∥

]

≤ 2

n
,

and (2.22) follows from (2.21) by Markov’s inequality.

We now turn to proving (2.20). The first inequality follows since for every (xj : j ∈ [n]), (yj :
j ∈ [n]) ∈ [d]n,

∥

∥

∥

1

n

∑

j∈[n]

exj
− 1

n

∑

j∈[n]

eyj

∥

∥

∥
≤ 2

n

∑

j∈[n]

|xj − yj|

and since the processes {Xn,j − Y n,j : j ∈ [n]} are identically distributed. The inequality
above follows since the Euclidean norm is bounded by the l1 norm for which the inequality is
straightforward. Therefore, we now turn to proving the second inequality. From Construction
2.1 and the inequality 1− e−x ≤ x, it follows that for every t ∈ [0, T ]

E

[

sup
s∈[0,t]

∣

∣Xn,i(s)− Y n,i(s)
∣

∣

]

≤ (d− 1)P
(

τn,i ≤ t
)

= (d− 1)
(

1− E

[

e−
∑

z∈[d]

∫ t

0 |aXz (s)−aYz (s)|ds])

≤ (d− 1)
∑

z∈[d]

∫ t

0
E
[∣

∣aXz (s)− aYz (s)
∣

∣

]

ds.
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Now, the Lipschitz-continuity of a∗ given in (2.11) implies that

E

[

sup
s∈[0,t]

∣

∣Xn,i(s)− Y n,i(s)
∣

∣

]

(2.23)

≤ cLd(d − 1)

(
∫ t

0
E
[
∥

∥µn,i(s)− νn,i(s)
∥

∥

]

ds

+

∫ t

0
E
[
∥

∥∆Xn,i(s)V
n(s, ·, µn,i(s))−∆Xn,i(s)U(s, ·, µn,i(s))

∥

∥

]

ds

+

∫ t

0
E
[
∥

∥∆Xn,i(s)U(s, ·, µn,i(s))−∆Xn,i(s)U(s, ·, νn,i(s))
∥

∥

]

ds

)

.

By the definition of the operator ∆y and since U is uniformly Lipschitz, we get that the last
integral is bounded above by

2
√
dcL

∫ t

0
E
[
∥

∥µn,i(s)− νn,i(s)
∥

∥

]

ds ≤ 2
√
dcL

n− 1

∫ t

0

∑

j,j 6=i

E
[
∣

∣Xn,j(s)− Y n,j(s)
∣

∣

]

ds

= 2
√
dcL

∫ t

0
E
[
∣

∣Xn,i(s)− Y n,i(s)
∣

∣

]

ds,

where the equality follows by the symmetry of the players. The last bound applied to (2.23)
together with (2.13) and Grönwall’s inequality imply that there is a constant C > 0 such that
for every t ∈ [0, T ] and n ≥ 2,

E

[

sup
s∈[0,T ]

∣

∣Xn,i(s)− Y n,i(s)
∣

∣

]

≤ C

n
.

✷

The next theorem provides the fluctuations of the process µn. In the light of (2.22), our
proof will focus on the fluctuations of νn. Therefore, we set the Qd×d-valued function α∗ by

α∗
xy(s, η) = a∗y(x, η,∆xU(s, ·, η)), x, y ∈ [d],

where pay attention that the operator ∆x acts on U and not on V n. Also, the following notation
is necessary for the statement of the theorem. For every Qd×d-valued function η 7→ α(η), its
gradient is a d×d matrix, whose xy component is the vector ∇ηαxy(η). For any vector c ∈ R

d,
the product c⊗∇ηα(η) is a d×d matrix, whose xy component is the inner product c·∇ηαxy(η).
Finally, in order to establish the fluctuations we require convergence of the initial state of the
system and some regularity of the optimal control a∗.

Assumption 2.3 Modifying cL from Assumption 2.2 if necessary, we assume that for every
x, y ∈ [d], η, η′ ∈ P([d]), and p, p′ ∈ [−2cU , 2cU ]

d, one has

‖∇ηa
∗
y(x, η, p)−∇ηa

∗
y(x, η

′, p′)‖+ ‖∇pa
∗
y(x, η, p)−∇pa

∗
y(x, η

′, p′)‖ ≤ cM
(

‖η − η′‖+ ‖p− p′‖
)

.
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The bound for the first part on the left-hand side of the above follows easily if for example the
running cost can be expressed as f(x, η, a) = f1(x, a) + f2(x, η) for some functions f1 and f2,
in which case a∗ is independent of η. The optimal control in this case, a∗(x, η,∆xU(t, ·, η))
depends on the empirical measure only through the function U . A sufficient condition for
bounding the second term by the right-hand side (r.h.s.) is given by in Assumption 3.1.5, for
more details see its proceding paragraph.

Theorem 2.2 Let (µ(t))t∈[0,T ] be given by d
dtµ(t)

⊤ = µ(t)⊤α∗(t, µ(t)), with the given initial
condition µ(0) = µ0 ∈ P([d]). Under Assumptions 2.1 and 2.2, the process

√
n(µn − µ) is

stochastically bounded. That is,

lim
k→∞

sup
n

P

(

sup
t∈[0,T ]

√
n‖µn(t)− µ(t)‖ > k

)

= 0. (2.24)

Moreover, if in addition Assumption 2.3 holds, then
√
n(µn(·)−µ(·)) ⇒ ψ(·), where ψ uniquely

solves

dψ(t) =
[

(α∗(t, µ(t)))⊤ψ(t) + (ψ(t)⊗∇ηα
∗(t, µ(t)))⊤ µ(t)

]

dt+Σ(t)dB(t), (2.25)

on the interval [0, T ], with the initial condition ψ(0) = ψ0. The process B is a standard
d-dimensional Brownian motion and Σ : [0, T ] → R

d×d is given by

(Σ2)xy(t) = −µy(t)α∗
yx(t, µ(t))− µx(t)α

∗
xy(t, µ(t)), x 6= y

(Σ2)xx(t) =
∑

z,z 6=x

µz(t)α
∗
zx(t, µ(t)) + µx(t)

∑

z,z 6=x

α∗
xz(t, µ(t)).

Proof. We start with the case that Assumption 2.3 holds. The more general case is treated
later. The stochastic differential equation admits a unique solution since the dt component
is linear in ψ and the terms of α∗ and ∇ηα

∗ are bounded. We now turn to showing the
convergence. First, note that by (2.22) it is sufficient to show that

ψn :=
√
n(νn − µ) ⇒ ψ.

For every x ∈ [d], let An
x and Sn

x be the arrival and departure processes, respectively, associated
with state x. That is, An

x(t) (resp., S
n
x (t)) counts how many times players moved into (from)

state x during the time interval [0, t], so that
∑

x∈[d]A
n
x(t) =

∑

x∈[d] S
n
x (t) is the total number

of jumps of the process
(

Xn,i : i ∈ [n]
)

during [0, t]. The rates of transition of An
x(t) and S

n
x (t)

are, respectively, nλnx(t) and nσ
n
x(t), where,

λnx(t) :=
∑

y,y 6=x

νny (t)α
∗
yx(t, ν

n,♯,y(t)), σnx (t) := νnx (t)
∑

y,y 6=x

α∗
xy(t, ν

n,♯,x(t)), t ∈ [0, T ],

where for every (x, η) ∈ [d]× Pn([d]) we set the P([d]) element,

η♯,x :=

{

n
n−1η − 1

n−1ex, when ηx > 0,

η, when ηx = 0.
(2.26)
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The term νn,♯,x(t) stands for the empirical distribution of the rest of the players from the point
of view of a player whose state is x. Also, for every x ∈ [d], set the martingales

Mn
x (t) =

1√
n

(

An
x(t)−

∫ t

0
nλnx(s)ds

)

, Nn
x (t) =

1√
n

(

Sn
x (t)−

∫ t

0
nσnx(s)ds

)

,

where t ∈ [0, T ] and denote Mn(t) = (Mn
x (t) : x ∈ [d]), t ∈ [0, T ].

We start with the fluid scale and show that

sup
t∈[0,T ]

‖νn(t)− µ(t)‖ converges in probability to 0. (2.27)

From the limit
√
n(µn(0)− µ(0)) ⇒ 0 and (2.22),

νn(0) ⇒ µ(0). (2.28)

Simple algebraic manipulations yield that

νn(t)− µ(t) = νn(0) − µ(0) +
1√
n
(Mn(t)−Nn(t)) (2.29)

+

∫ t

0

[

νn(s)⊤α∗(s, νn,♯(s))− µ(s)⊤α∗(s, µ(s))
]

ds,

where α∗
xy(s, ν

n,♯(s)) reads as α∗
xy(s, ν

n,♯,x(s)). By Assumption 2.2 and the bound

sup
(t,x)∈[0,T ]×[d]

‖νn(t)− νn,♯,x(t)‖ ≤ 2(n − 1)−1, (2.30)

we obtain that

sup
s∈[0,t]

‖νn(s)− µ(s)‖ ≤ ‖νn(0)− µ(0)‖ + 1√
n

sup
s∈[0,t]

‖Mn(s)−Nn(s)‖

+C
(

∫ t

0
sup

u∈[0,s]
‖νn(u)− µ(u)‖ds + 1

n

)

,

where in the above expression, and in the rest of the proof, C refers to a finite positive constant
that is independent of t and n and which can change from one line to the next. Now, Grönwall’s
inequality implies that

sup
s∈[0,T ]

‖νn(s)− µ(s)‖ ≤ C
(

‖νn(0)− µ(0)‖ + 1√
n

sup
s∈[0,T ]

‖Mn(s)−Nn(s)‖+ 1

n

)

. (2.31)

Since any pair of {An
x, S

n
y : x, y ∈ [d]} is orthogonal, see (2.2), we have for every x ∈ [d],

〈Mn
x −Nn

x 〉(t) =
1

n

〈

An
x(·)−

∫ ·

0
nλnx(s)ds

〉

(t) +
1

n

〈

Sn
x (·)−

∫ ·

0
nσnx(s)ds

〉

(t) (2.32)

=

∫ t

0
λnx(s)ds +

∫ t

0
σnx (s)ds.
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Since λnx and σnx are uniformly bounded we get that

sup
t∈[0,T ]

〈

1√
n
(Mn

x −Nn
X)

〉

(t) ≤ C

n
.

Therefore, from Burkholder–Davis–Gundy inequality ([28, Theorem 48]), (2.31), (2.28), and
Markov inequality we get (2.27).

We now study the diffusion scale. From (2.29)

ψn(t)− ψn(0) =Mn(t)−Nn(t) + Ln(t) +Kn(t), (2.33)

where

Ln(t) :=

∫ t

0
ψn(s)⊤α∗(s, νn,♯(s))ds, (2.34)

Kn(t) :=

∫ t

0

√
nµ(s)⊤

[

α∗(s, νn,♯(s))− α∗(s, µ(s))
]

ds. (2.35)

To attain convergence, we use tightness arguments.4 In the next few paragraphs we
will also use the following characterization of C-tightness for processes with sample paths
in D([0, T ],Rk), see [21, Proposition VI.3.26]: The sequence {Fn}n is C-tight if and only if the
sequence {sup0≤t≤T ‖Fn(t)‖}n is tight and for every ε > 0 and γ > 0 there exist N0 and θ > 0
such that for every n ≥ N0,

P
(

sup
0≤s≤t≤(s+θ)∧T

‖Fn(t)− Fn(s)‖ > γ
)

< ε.

Next, we argue the C-tightness of {(ψn,Mn−Nn, Ln+Kn)} in D([0, T ],R3d). From [21, Ch. VI,
Corollary 3.33] and (2.33) it is sufficient to show separately the C-tightness of {Mn −Nn} and
{Ln + Kn}. Observe that merely tightness of the last two sequences does not imply the
tightness of their sum or their joint distribution. Hence, we appeal to C-tightness. We start
with {Mn −Nn}. Notice that for any x 6= y,

〈Mn
x −Nn

x ,M
n
y −Nn

y 〉(t) = −〈Mn
x , N

n
y 〉(t)− 〈Mn

y , N
n
x 〉(t)

= −
∫ t

0
[νny (s)α

∗
yx(s, ν

n,♯,y(s)) + νnx (s)α
∗
xy(s, ν

n,♯,x(s))]ds.

The Martingale central limit theorem ([14, Ch. 7, Theorem 1.4]), which holds due to (2.27),
(2.32), (2.30), and the last equation implies that

(M −N)(·) := lim
n→∞

(Mn −Nn)(·) =
∫ ·

0
Σ(t)dB(t).

4The following definition is borrowed from [21, Definition VI.3.25]. A sequence of stochastic processes with
sample paths in D([0, T ],Rk), k ∈ N, is said to be C-tight if it is tight and every subsequential limit has
continuous sample paths with probability 1.
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Therefore, {Mn −Nn} is C-tight.

We now turn to the C-tightness of {Ln +Kn}. First, Assumption 2.3, (2.10), Lemma 1.1,
and the boundedness of ∇ηα

∗, as a continuous function, imply,

Kn(t) =

∫ t

0
µ(s)⊤

[

ψn(s)⊤ ⊗∇ηα
∗(s, µ(s))

]

ds (2.36)

+O
(

sup
(s,x)∈[0,T ]×[d]

‖ψn(s)‖‖νn,♯,x(s)− µ(s)‖
)

.

Next, we wish to bound ‖ψn(t)‖. From the definition of Ln, the last representation of Kn,
and again the boundedness of α∗ and ∇ηα

∗ it follows that ‖Ln(t) +Kn(t)‖ ≤ C
∫ t
0 ‖ψn(s)‖ds.

Going back to (2.33) and using Grönwall’s inequality, we get the following estimation

‖ψn(t)‖ ≤ C‖Mn(t)−Nn(t)‖, t ∈ [0, T ].

The tightness of {Mn −Nn} implies that

lim
k→∞

lim sup
n

P

(

sup
t∈[0,T ]

‖Mn(t)−Nn(t)‖ ≥ k

)

= 0.

Then, together with (2.34) and (2.36), the boundedness of α∗ and the elements of ∇ηα
∗, and

(2.30), we get that {Ln +Kn} is C-tight in D([0, T ],Rd).

The last step is to show that any weak limit ψ of ψn satisfies (2.25). Since {(ψn,Mn −
Nn, Ln +Kn)} is tight it has a convergence subsequence, which we relabel as {n}, with limit
{(ψ,M −N,L+K)}. Then, (2.33) yields

ψ(t)− ψ(0) = (M −N)(t) + (L+K)(t), t ∈ [0, T ].

From (2.27), we get that for every x ∈ [d], (νn, νn,♯,x) converges in probability to (µ, µ).
Therefore,

(L+K)(t) =

∫ t

0

[

ψ(s)⊤α∗(s, µ(s)) + µ(s)⊤
(

ψ(s)⊤ ⊗∇ηα
∗(s, µ(s))

) ]

ds.

In case that Assumption 2.3 does not hold, using merely the Lipschitz-continuity of a∗, the
approximation (2.36) to (2.35) is replaced by the bound

‖Kn(t)‖ ≤ C

∫ t

0
‖ψn(s)‖ds,

for some constant C > 0 independent of n and t. The boundedness of a∗ implies the same
bound for Ln(t). Now from (2.33), Grönwall’s inequality, and the C-tightness of {Mn −Nn},
we obtain (2.24).

✷
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3 Sufficient conditions for Theorems 2.1 and 2.2

In this section we show that a variant of the conditions imposed in [18] are sufficient for
Assumptions 2.1–2.3 to hold. Throughout this process we explicitly show how to derive the
master equation from the MFG.

Assumption 3.1 1. (control set) The minimal rate of transition allowed from one state to
another is positive.

2. (separation) The function f can be expressed as f(x, η, a) = f1(x, a)+f2(x, η), (x, η, a) ∈
[d]× P([d]) × R

d.

3. (Lipschitz-continuity) The functions f2 and g are differentiable w.r.t. η and there exists
a constant cL such that for every x ∈ [d], and η, η′ ∈ P([d]),

‖∇ηg(x, η) −∇ηg(x, η
′)‖+ ‖∇ηf2(x, η) −∇ηf2(x, η

′)‖ ≤ cL‖η − η′‖.

4. (monotonicity) For every η, η′ ∈ P([d]),
∑

x∈[d]

(ηx − η′x)(g(x, η) − g(x, η′)) ≥ 0,

∑

x∈[d]

(ηx − η′x)(f2(x, η) − f2(x, η
′)) ≥ 0.

From the representation of f it follows that H(x, η, p) = H1(x, p) + f2(x, η), where
H1(x, p) := infa{f1(x, a)+

∑

y,y 6=x aypy}, and the infimum is taken over the controls that satisfy
property 1 above.

5. (concavity) The function H1 is twice continuously differentiable. Moreover, for every
M > 0 there exists a parameter cM > 0 such that for every x, y, z ∈ [d] and p ∈ [−M,M ]d,

∂2px,pyH1(z, p) ≤ −cM ,
where ∂2px,py stands for the second partial derivative. Moreover, for every x, y, z ∈ [d],

p 7→ ∂2px,pyH1(z, p) is Lipschitz continuous on [−M,M ]d.

Notice that Assumption 3.1, which is in force in [5], implies the conditions given in Lemmas
2.1 and 2.2. The conditions here are stronger than the ones given in Lemma 2.1 and Remark
2.1 as we consider now a lower bound for the control set and a more regular structure. By
the regularity of H1, a

∗
x(y, p) = ∂pxH1(y, p) and ∂pza

∗
x(y, p) = ∂2pz ,pxH1(y, p). By the regularity

and the monotonicity of f2 and g, for every p ∈ M([d]) = {η ∈ R
d :
∑

x∈[d] ηx = 0},
∑

x∈[d]

px∇ηg(x, µ(T )) · p ≥ 0, (3.1)

∑

x∈[d]

px∇ηf2(x, µ(t)) · p ≥ 0. (3.2)
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Notice also that by the separation condition, for any x, y ∈ [d], η, η′ ∈ P([d]), and p ∈ R,
a∗x(y, η, p) = a∗x(y, η

′, p). Therefore, we abuse notation and in this section we use the notation
a∗x(y, p). As a result Assumption 2.3 holds trivially.

The only seemingly missing parts from Assumptions 2.1 and 2.2 are that the master equa-
tion (ME) has a unique classical solution with a Lipschitz gradient. The next theorem states
that these conditions are guaranteed. Before stating the theorem, we provide an example that
satisfies the conditions of Assumption 3.1.

Example 3.1 Fix a control set [l, L]. Consider twice continuously differentiable and convex
functions b1, b2 : [0, 1] → R. Set g(x, η) = b1(ηx) and f2(η) = b2(ηx). Also, set a function
b3 : [d] → R and constants {cy}y∈[d], {qy}y∈[d], where qy ∈ (l, L), x ∈ [d]. Consider the
function f1(x, a) = b1(x) +

∑

y,y 6=x cy(ay − qy)
2. Then for sufficiently large {cx}x, the fifth

condition holds.

Theorem 3.1 Under Assumption 3.1 the master equation (ME) admits a unique classical
solution U and its gradient with respect to the measure argument, ∇ηU , is continuous over
[0, T ] × [d] × P([d]). Moreover, there exists cL > 0 such that for every t ∈ [0, T ], x ∈ [d], and
η, η′ ∈ P([d]),

‖∇ηU(t, x, η) −∇ηU(t, x, η′)‖ ≤ cL‖η − η′‖. (3.3)

The proof of the theorem is done in several steps and is given after a few preliminary
lemmas and propositions. In the rest of this section we assume that Assumption 3.1 is in
force. The proof is inspired by [5] and its idea is as follows. We first consider the forward-
backward system given in (2.8), and use its solution to define a function U . We show that
U is differentiable w.r.t. the measure component and satisfies the master equation (ME).
Finally, we show its regularity. The function u(t, x) stands for V (t, x, µ(t)) from (2.8). Also,
set (t0, µ0) ∈ [0, T ]× P([d]) and consider the forward-backward system:











d
dtµx(t) =

∑

y∈[d] µy(t)a
∗
x(y,∆yu(t, ·)),

− d
dtu(t, x) = H1(x,∆xu(t, ·)) + f2(x, µ(t)),

u(T, x) = g(x, µ(T )), µ(t0) = µ0,

(3.4)

where µ : [t0, T ] → P([d]) and u : [t0, T ] × [d] → R. The x-th component of µ(t) is denoted
by µx(t), x ∈ [d]. This system has a unique classical solution; see Lemma 2.2. Every function
φ : [d] → R can be identified with a d-dimensional vector φ ∈ R

d. Hence ‖φ(·)‖ should be
understood as the Euclidean norm of its vector presentation. The next lemma provides a
sensitivity result for the last system.

Lemma 3.1 Fix 0 ≤ t0 ≤ T and µ0, µ̂0 ∈ P([d]). Let (µ, u) and (µ̂, û) be two solutions to
(3.4) with the initial conditions µ(t0) = µ0 and µ̂(t0) = µ̂0. Then, there is a constant C > 0
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independent of t0, µ0, and µ̂0, such that

sup
t∈[t0,T ]

(‖µ(t)− µ̂(t)‖+ ‖u(t, ·) − û(t, ·)‖) ≤ C‖µ0 − µ̂0‖. (3.5)

Proof. From (3.4),

d

dt
(µx(t)− µ̂x(t)) =

∑

y∈[d]

(µy(t)− µ̂y(t))a
∗
x(y,∆yu(t, ·))

+
∑

y∈[d]

µ̂y(t)[a
∗
x(y,∆yu(t, ·)) − a∗x(y,∆yû(t, ·))].

From Assumption 2.2.3 and Grönwall’s and Jensen’s inequalities, for every t ∈ [t0, T ],

‖µ(t)− µ̂(t)‖ ≤ C
(

‖µ(t0)− µ̂(t0)‖+
∫ t

t0

∑

y∈[d]

µ̂y(s)‖∆yu(s, ·)−∆yû(s, ·)‖ds
)

(3.6)

≤ C‖µ(t0)− µ̂(t0)‖+ C
(

∫ t

t0

∑

y∈[d]

µ̂y(s)‖∆yu(s, ·)−∆yû(s, ·)‖2ds
)1/2

,

where here and in the rest of the proof, C refers to a finite positive constant that is independent
of t0, t̂0, µ0, and µ̂0 and which can change from one line to the next.

Now, by [18, Equation (20)], Assumptions 3.1.4 and 3.1.5 imply that for every t ∈ [t0, T ],

∑

y∈[d]

µ̂y(t)‖∆yu(t, ·)−∆yû(t, ·)‖2 ≤ − d

dt
[(µ(t)− µ̂(t)) · (u(t, ·) − û(t, ·))] .

Integrating both sides and recalling Assumption 3.1.4, we obtain

∫ T

t0

∑

y∈[d]

µ̂y(s)‖∆yu(s, ·)−∆yû(s, ·)‖2ds ≤ ‖µ(t0)− µ̂(t0)‖‖u(t0, ·)− û(t0, ·)‖,

Plugging this into (3.6), we get that

sup
t∈[t0,T ]

‖µ(t)− µ̂(t)‖ ≤ C
[

‖µ(t0)− µ̂(t0)‖+ (‖µ(t0)− µ̂(t0)‖‖u(t0, ·)− û(t0, ·)‖)1/2
]

.

Using the Lipschitz continuity of p 7→ H1(·, p), η 7→ f2(·, η), and η 7→ g(·, η) and Grönwall’s
inequality, we can derive from (3.4) that

sup
t∈[t0,T ]

‖u(t, ·)− û(t, ·))‖ ≤ C sup
t∈[t0,T ]

‖µ(t)− µ̂(t))‖, (3.7)

which together with the previous bound implies (3.5).

✷
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Since H1, f2, and g are Lipschitz it follows from (3.4) that u is bounded. Using the conti-
nuity of p 7→ (a∗x(y, p),∇pa

∗
x(y, p)), which follows since H1 is twice continuously differentiable,

we get that a∗x(y,∆yu(t, ·)) and ∇pa
∗
x(y,∆yu(t, ·)) are bounded. We will make use of these

properties more than once in the sequel.

We now introduce a linearized forward-backward system, (ρ,w), which will be in use several
times in the analysis. Recall the definition of M([d]) given before (3.1) and set measurable
and bounded functions k : [t0, T ] → M([d]), l : [t0, T ] → R

d, and ζ : [d] → R. Also, set
ρ0 ∈ M([d]), and consider a solution to (3.4), denoted by (µ, u), associated with the initial
condition µ(t0) = µ0 ∈ P([d]). Let (ρ,w) be the solution of










d
dtρx(t) =

∑

y∈[d] ρy(t)a
∗
x(y,∆yu(t, ·)) +

∑

y∈[d] µy(t)∇pa
∗
x(y,∆yu(t, ·)) ·∆yw(t, ·) + kx(t),

− d
dtw(t, x) = ∆xw(t, ·) · a∗(x,∆xu(t, ·)) +∇ηf2(x, µ(t)) · ρ(t) + lx(t),

w(T, x) = ∇ηg(x, µ(T )) · ρ(T ) + ζ(x), ρ(t0) = ρ0,

(3.8)

where ρ : [t0, T ] → R
d and w : [t0, T ] × [d] → R. The x-th components of ρ(t), k(t), and l(t)

are denoted by ρx(t), kx(t), and lx(t), x ∈ [d].

Proposition 3.1 The system (3.8) has a unique classical solution. Moreover, there is a con-
stant C > 0, independent of t0, ρ0, ζ, k, and l, such that

sup
t∈[t0,T ]

(‖ρ(t)‖+ ‖w(t, ·)‖) ≤ C
(

‖ρ0‖+ ‖ζ‖+ sup
t∈[t0,T ]

(‖k(t)‖ + ‖l(t)‖)
)

. (3.9)

Proof. The proof appeals to the Leray–Schauder fixed point theorem: let Φ be a continuous
and compact mapping of a Banach Space X to itself such that the set A = {ρ ∈ X : ρ =
λΦ(ρ) for some 0 ≤ λ ≤ 1} is bounded. Then Φ has a fixed point.

We now define a mapping Φ : C([t0, T ],M([d])) → C([t0, T ],M([d])), where C([0, T ],M([d]))
is the space of continuous functions, mapping [t0, T ] → M([d]). Fix ρ ∈ C([t0, T ],M([d])) and
let w be the classical solution of

{

− d
dtw(t, x) = ∆xw(t, ·) · a∗(x,∆xu(t, ·)) +∇ηf2(x, µ(t)) · ρ(t) + lx(t),

w(T, x) = ∇ηg(x, µ(T )) · ρ(T ) + ζ(x).
(3.10)

Given the solution w, set Φ(ρ) = ρ̂ to be the solution of
{

d
dt ρ̂x(t) =

∑

y∈[d] ρ̂y(t)a
∗
x(y,∆yu(t, ·)) +

∑

y∈[d] µy(t)∇pa
∗
x(y,∆yu(t, ·)) ·∆yw(t, ·) + kx(t),

ρ̂(t0) = ρ0.

Notice that since
∑

x∈[d] a
∗
x(y, p) = 0 and by the choice of k and ρ0, we get that ρ̂ ∈ C([t0, T ],M([d])).

The mapping Φ is clearly continuous. In the rest of the proof we will demonstrate that A is
bounded. It will then be clear also that (3.9) holds. First let us show

sup
t∈[t0,T ]

‖w(t, ·)‖ ≤ C
(

sup
t∈[t0,T ]

‖ρ(t)‖+ ‖ζ‖+ sup
t∈[t0,T ]

‖l(t)‖
)

, (3.11)
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where, here and in the rest of the proof, C refers to a generic positive constant, independent of
t0, ρ0, ζ, k, and l, and which can change from one line to the next. Fix t ∈ [t0, T ]. Integrating
both sides of (3.10) and recalling that a∗, ∇ηf2, and ∇ηg are bounded, we get that for every
x ∈ [d],

w(t, x) = ∇ηg(x, µ(T )) · ρ(T ) + ζ(x)

+

∫ T

t

[

∆xw(s, ·) · a∗(x,∆xu(s, ·)) +∇ηf2(x, µ(s)) · ρ(s) + lx(s)
]

ds

≤ C‖ρ(T )‖+ ‖ζ‖+ C

∫ T

t

[

‖w(s, ·)‖ + ‖ρ(s)‖+ ‖l(s)‖
]

ds

Therefore,

‖w(t, ·)‖ ≤ C
(

‖ζ‖+ sup
s∈[t0,T ]

(‖ρ(s)‖+ ‖l(s)‖) +
∫ T

t
‖w(s, ·)‖ds

)

.

Grönwall’s inequality gives (3.11).

Fix λ ∈ [0, 1]. The identity ρ = λΦ(ρ) implies that (ρ,w) satisfies























d
dtρx(t) =

∑

y∈[d] ρy(t)a
∗
x(y,∆yu(t, ·))

+λ
(

∑

y∈[d] µy(t)∇pa
∗
x(y,∆yu(t, ·)) ·∆yw(t, ·) + kx(t)

)

,

− d
dtw(t, x) = ∆xw(t, ·) · a∗(x,∆xu(t, ·)) +∇ηf2(x, µ(t)) · ρ(t) + lx(t),

w(T, x) = ∇ηg(x, µ(T )) · ρ(T ) + ζ(x), ρ(t0) = λρ0,

Therefore,

d

dt

∑

x∈[d]

w(t, x)ρx(t)

= −
∑

x∈[d]

ρx(t)∆xw(t, ·) · a∗(x,∆xu(t, ·)) −
∑

x∈[d]

ρx(t)∇ηf2(x, µ(t)) · ρ(t)−
∑

x∈[d]

ρx(t)lx(t)

+ λ
∑

x,y∈[d]

w(t, x)µy(t)∇pa
∗
x(y,∆yu(t, ·)) ·∆yw(t, ·) + λ

∑

x∈[d]

w(t, x)kx(t)

+
∑

x,y∈[d]

w(t, x)ρy(t)a
∗
x(y,∆yu(t, ·)).

The first and last terms on the r.h.s. sum up to 0. This is because
∑

y∈[d] a
∗
y(x, p) = 0.
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Integrating both sides and rearranging, we get

λ

∫ T

t0

∑

x,y∈[d]

w(t, x)µy(t)∇pa
∗
x(y,∆yu(t, ·)) ·∆yw(t, ·)dt (3.12)

=
∑

x∈[d]

ρx(T )∇ηg(x, µ(T )) · ρ(T ) + ζ · ρ(T )− λw(t0, ·) · ρ0

+
∑

x∈[d]

∫ T

t0

[

ρx(t)∇ηf2(x, µ(t)) · ρ(t) + ρx(t)lx(t)− λw(t, x)kx(t)
]

dt

≥ ζ · ρ(T )− λw(t0, ·) · ρ0 +
∑

x∈[d]

∫ T

t0

[

ρx(t)lx(t)− λw(t, x)kx(t)
]

dt,

where the inequality follows from (3.1) and (3.2). Using again
∑

y∈[d] a
∗
y(x, p) = 0, one may

express the sum within the integral on the left-hand side as

−
∑

y∈[d]

µy(t)(∆yw(t, ·))⊤A(y)∆yw(t, ·),

where A(y) is a d× d matrix, whose components are given by Ax,z(y) = −∂za∗x(y,∆yu(t, ·)) =
−∂2px,pzH(y,∆yu(t, ·)). Notice that A(y) is symmetric and positive semidefinite. Thus,

λ

∫ T

t0

∑

y∈[d]

µy(t)(∆yw(t, ·))⊤A(y)∆yw(t, ·), (3.13)

≤ C
(

sup
t∈[t0,T ]

‖ρ(t)‖
(

‖ζ‖+ sup
t∈[t0,T ]

‖l(t)‖
)

+ λ sup
t∈[t0,T ]

‖w(t, ·)‖
(

‖ρ0‖+ sup
t∈[t0,T ]

‖k(t)‖
))

.

Fix ξ : [d] → R and s ∈ (t0, T ] and consider the system

− d

dt
ŵ(t, x) = ∆xŵ(t, ·) · a∗(x,∆xu(t, ·)) on [t0, s], w(s, x) = ξ(x).

The same way we obtained (3.11), we may obtain the bound supt∈[t0,s] ‖ŵ(t, ·)‖ ≤ C‖ξ‖,
where C > 0 is independent of ξ and s. Repeating the same steps as above, now for
d
dt

∑

x∈[d] ŵ(t, x)ρx(t), and using that µ(t) ∈ P([d]), we get that

ρ(s) · ξ(s) = λŵ(t0, ·) · ρ0 + λ
∑

x∈[d]

∫ s

t0

ŵ(t, x)kx(t)dt

− λ

∫ s

t0

∑

x∈[d]

µx(t)(∆xŵ(t, ·))⊤A(x)∆xw(t, ·)dt

≤ λC
[

‖ξ‖‖ρ0‖+ ‖ξ‖ sup
t∈[t0 ,s]

‖k(t)‖

+
(

∫ s

t0

∑

x∈[d]

µx(t)(∆xŵ(t, ·))⊤A(x)∆xŵ(t, ·)dt
)1/2

×
(

∫ s

t0

∑

x∈[d]

µx(t)(∆xw(t, ·))⊤A(x)∆xw(t, ·)dt
)1/2]

.
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From (3.13) and since the elements of A(y) are bounded and supt∈[t0,s] ‖ŵ(t, ·)‖ ≤ C‖ξ‖, we
get that the r.h.s. of the above is bounded by

C‖ξ‖
(

λ‖ρ0‖+ λ sup
t∈[t0,T ]

‖k(t)‖ + λ1/2 sup
t∈[t0,T ]

‖ρ(t)‖1/2
(

‖ζ‖1/2 + sup
t∈[t0,T ]

‖l(t)‖1/2
)

+ λ sup
t∈[t0,T ]

‖w(t, ·)‖1/2
(

‖ρ0‖1/2 + sup
t∈[t0,T ]

‖k(t)‖1/2
))

.

Taking sups∈(t0,T ] sup{ξ:‖ξ‖=1} on both sides and rearranging, we obtain that

sup
t∈[t0,T ]

‖ρ(t)‖ ≤ Cλ
(

‖ρ0‖+ ‖ζ‖+ sup
t∈[t0,T ]

(‖k(t)‖ + ‖l(t)‖)

+ sup
t∈[t0,T ]

‖w(t, ·)‖1/2
(

‖ρ0‖1/2 + sup
t∈[t0,T ]

‖k(t)‖1/2
)

.

From the last bound, (3.11), and Young’s inequality, we obtain that A is bounded. It also
easily follows that any fixed point satisfies (3.9). Since the system is linear, this bound also
implies uniqueness.

✷

Equipped with the last proposition, consider the solution of (3.8) associated with (µ, u),
the functions k, l, ζ ≡ 0, and an initial condition m0 ∈ M([d]); denote it by (m, v). That is,











d
dtmx(t) =

∑

y∈[d]my(t)a
∗
x(y,∆yu(t, ·)) +

∑

y∈[d] µy(t)∇pa
∗
x(y,∆yu(t, ·)) ·∆yv(t, ·),

− d
dtv(t, x) = ∆xv(t, ·) · a∗(x,∆xu(t, ·)) +∇ηf2(x, µ(t)) ·m(t),

v(T, x) = ∇ηg(x, µ(T )) ·m(T ), m(t0) = m0.

(3.14)

From Proposition 3.1, supt∈[t0,T ] ‖(m, v)‖ is bounded by a constant that depends on (µ, u) and
m0, which in turn depends on the data of the problem given in Assumption 3.1. The next
lemma provides a sensitivity result for (m, v), similar to Lemma 3.1.

Lemma 3.2 Fix 0 ≤ t̂0 ≤ t0 ≤ T and µ0, µ̂0 ∈ P([d]). Let (µ, u) and (µ̂, û) be two solutions
to (3.4) with the initial conditions µ(t0) = µ0 and µ̂(t̂0) = µ̂0. Also, let (m, v) and (m̂, v̂) be
two solutions to (3.8) associated with (µ, u) and (µ̂, û), respectively and satisfying the initial
conditions m(t0) = m̂(t̂0) = m0. Then, there is a constant C > 0 independent of t0, t̂0, µ0,
and µ̂0, such that

sup
t∈[t0,T ]

(‖m(t) − m̂(t)‖ + ‖v(t, ·) − v̂(t, ·)‖) ≤ C
(

|t0 − t̂0|+ ‖µ0 − µ̂0‖
)

, (3.15)

sup
t∈[t̂0,t0]

‖m̂(t)− m̂(t0)‖ ≤ C|t0 − t̂0|. (3.16)

Proof. Applying Proposition 3.1 to (m̂, v̂), we obtain the bound

sup
t∈[t̂0,T ]

(‖m̂(t)‖+ ‖v̂(t, ·)‖) ≤ C,

30



where hereafter in the rest of the proof, C is a positive constant, independent of t0, t̂0, µ0, and
µ̂0 (but may depend on m0), that can change from line to the next. Moreover, since a∗, µ,
∇pa

∗ are bounded, we obtain (3.16).

Now, from (3.4) and (3.14) it follows that (ρ,w) := (m − m̂, v − v̂) satisfies (3.8) on the
time interval [t0, T ] with the following data: ρ0 = m0 − m̂(t0),

kx(t) :=
∑

y∈[d]

µy(t)[∇pa
∗
x(y,∆yu(t, ·)) −∇pa

∗
x(y,∆yû(t, ·))] ·∆xv̂(t, ·)

+
∑

y∈[d]

[µy(t)− µ̂y(t)]∇pa
∗
x(y,∆yû(t, ·)) ·∆xv̂(t, ·)

+
∑

y∈[d]

m̂y(t)[a
∗
x(y,∆yu(t, ·)) − a∗x(y,∆yû(t, ·))]

lx(t) := [a∗(x,∆xu(t, ·)) − a∗(x,∆xû(t, ·))] ·∆xv̂(t, ·)
+ [∇ηf2(x, µ(t)) −∇ηf2(x, µ̂(t))] · m̂(t),

ζ(x) := [∇ηg(x, µ(T )) −∇ηg(x, µ̂(T ))] · m̂(T ).

Again
∑

x∈[d] a
∗
x(y, p) = 0 implies that

∑

x∈[d] kx(t) = 0, hence the image of k is in M([d]).
From Proposition 3.1 it is sufficient to show that

‖ρ0‖+ ‖ζ‖+ sup
t∈[t0,T ]

(‖k(t)‖ + ‖l(t)‖) ≤ C(|t0 − t̂0|+ ‖µ0 − µ̂0‖).

The bound for ‖ρ0‖ follows from (3.16). The rest of the bound follows from Lemma 3.1
observing that µ, ∇pa

∗, m̂,and v̂ are bounded, and ∇pa
∗, a∗, ∇ηf2, and ∇ηg are Lipschitz

continuous.

✷

We now connect the functions u and v.

Lemma 3.3 Fix t0 ∈ [0, T ] and µ0, µ̂0 ∈ P([d]). Let (u, µ) and (û, µ̂) be solutions of (3.4)
with the initial conditions µ(t0) = µ0 and µ̂(t0) = µ̂0. Also, let (v,m) be the solution of (3.8)
with the initial condition m(t0) = µ̂0 − µ0. Then, there is a constant C > 0 independent of t0,
µ0, and µ̂0, such that

sup
t∈[t0,T ]

(‖µ̂(t)− µ(t)−m(t)‖+ ‖û(t, ·) − u(t, ·)− v(t, ·)‖) ≤ C‖µ0 − µ̂0‖2.

Proof. From (3.4) and (3.14) it follows that (ρ,w) := (µ̂ − µ −m, û − u − v) satisfies (3.8)
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with the following data: ρ0 = 0,

kx(t) :=
∑

y∈[d]

(µ̂y(t)− µy(t))∇pa
∗
x(y,∆yu(t, ·)) · (∆yû(t, ·) −∆yu(t, ·))

+
∑

y∈[d]

µ̂y(t)[a
∗
x(y,∆yû(t, ·)− a∗x(y,∆yu(t, ·))

−∇pa
∗
x(y,∆yu(t, ·) · (∆yû(t, ·)−∆y(t, ·))],

lx(t) := H1(x,∆xû(t, ·))−H1(x,∆xu(t, ·)) − a∗(x,∆xu(t, ·)) · [∆xû(t, ·) −∆xu(t, ·)]
+ f2(x, µ̂(t))− f2(x, µ(t)) − (µ̂(t)− µ(t)) · ∇ηf2(x, µ(t)),

ζ(x) := g(x, µ̂(T ))− g(x, µ(T )) − (µ̂(T )− µ(T )) · ∇ηg(x, µ̂(T )).

Again the image of k is in M([d]). The proof follows by Proposition 3.1, using the boundedness
of ∇pa

∗ and µ̂, the Lipschitz continuity of ∇pa
∗, H1, f2, and g, and Lemma 3.1.

✷

For every (t0, x, y, µ0) ∈ [0, T ] × [d]2 × P([d]) set Ky(t0, x, µ0) := vt0,µ0,ey(t0, x), where
vt0,µ0,m solves (3.8) with the initial conditions µ(t0) = µ0 and m(t0) = m0 ∈ R

d. Denote
K = (Ky : y ∈ [d]). From the linearity of the system (3.8), it follows that

vt0,µ0,m0(t0, x) = K(t0, x, µ0) ·m0. (3.17)

Notice that from Lemma 3.2, for every 0 ≤ t̂0 ≤ t0 ≤ T and µ0, µ̂0 ∈ P([d]),

|vt0,µ0,ey(t0, x)− vt̂0,µ̂0,ey
(t̂0, x)|

≤ |vt0,µ0,ey(t0, x)− vt̂0,µ̂0,ey
(t0, x)|+ |vt̂0,µ̂0,ey

(t0, x)− vt̂0,µ̂0,ey
(t̂0, x)|

≤ C(|t0 − t̂0|+ ‖µ0 − µ̂0‖),

where C > 0 is independent of t0, t̂0, µ0, and µ̂0. Therefore, we get that

the mapping (t0, µ0) 7→ K(t0, x, µ0) is Lipschitz continuous. (3.18)

Also define the function U : [0, T ]× [d]× P([d]) → R by

U(t0, x, µ0) = ut0,µ0(t0, x),

where u = ut0,µ0 solves (3.4) with the initial condition µ(t0) = µ0. We are now ready to prove
the theorem. Namely, that U uniquely solves (ME) and has a Lipschitz η-gradient.

Proof. [Proof of Theorem 3.1] Differentiability: From Lemma 3.3 and (3.17) we obtain
that

‖U(t0, ·, µ̂0)− U(t0, ·, µ0)−K(t0, x, µ0) · (µ̂0 − µ0)‖ ≤ C‖µ̂0 − µ0‖2, (3.19)

and therefore, the function U is differentiable w.r.t. the measure component and∇ηU(t0, x, µ0) =
K(t0, x, µ0). Moreover, from (3.18), we get the continuity of ∇ηU .
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Lipschitz continuity: From (3.18) and (3.19) the function ∇ηU is Lipschitz continuous
w.r.t. η, uniformly in t. That is, (3.3) holds.

Satisfying (ME): In this part we show that U satisfies (ME). Clearly,

1

h
(U(t0 + h, x, µ0)− U(t0, x, µ0)) =

1

h
(U(t0 + h, x, µ0)− U(t0 + h, x, µ(t0 + h))) (3.20)

+
1

h
(U(t0 + h, x, µ(t0 + h))− U(t0, x, µ0)).

Set the matrix α ∈ Qd×d by αxy(t, η) := a∗y(x, η,∆xU(s, ·, η)). For every s ∈ [0, 1], denote by
µs := (1− s)µ(t0) + sµ(t0 + h). Then,

U(t0 + h, x, µ(t0 + h))− U(t0 + h, x, µ0)

=

∫ 1

0
∇ηU(t0 + h, x, µs) · (µ(t0 + h)− µ(t0))ds

=

∫ 1

0

∫ t0+h

t0

∇ηU(t0 + h, x, µs) · (α⊤(t, µ(t))µ(t))dtds,

where the matrix α⊤ is the transpose of α. For the last equality we used the differential
equation for µ from (3.4) and that ∆xu(t, ·) = ∆xU(t, ·, µ(t)). Recall (3.18), taking limh→0 on
both sides, we get that

1

h
(U(t0 + h, x, µ(t0 + h))− U(t0 + h, x, µ0))

= ∇ηU(t0, x, µ0) · (α⊤(t0, µ0)µ0).

From the definition of U , we get

lim
h→0

1

h
(U(t0 + h, x, µ(t0 + h)) − U(t0, x, µ0))

= lim
h→0

1

h
(u(t0 + h, x)− u(t0, x)) =

d

dt
u(t0, x) = H(x, µ0,∆xU(t0, ·, µ0)),

where in the last equality we used the differential equation for u from (3.4), that H = H1+ f2,
and again the identity ∆xu(t0, ·) = ∆xU(t0, ·, µ0). Combining the last two limits with (3.20),
we get that d

dtU(t0, x, µ0) exists and that (ME) holds.

Uniqueness: We now show that the master equation (ME) has a unique solution. Let
Ũ be a solution of the master equation, we show that Ũ = U . Fix µ0 ∈ P([d]) and let
µ̃ : [t0, T ] → P([d]) be the unique solution of

{

d
dt µ̃

⊤(t) = µ̃⊤(t)α(t, µ̃(t)),

µ̃(t0) = µ0.
(3.21)
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Define the function ũ : [t0, T ]× [d] → R by ũ(t, x) = Ũ(t, x, µ̃(t)). Then, using (3.21) and the
fact that Ũ solves (ME), we get that

d

dt
ũ(t, x) = ∂tŨ(t, x, µ̃(t)) +∇ηŨ(t, x, µ̃(t)) · ∂tµ̃(t) = H1(x,∆xũ(t, ·)) + f2(x, µ̃(t)).

That is (ũ, µ̃) is a solution to (3.4), which by Lemma 3.1 has a unique solution. Therefore,
ũ = u and as a consequence Ũ = U and uniqueness of the solution of the master equation is
established.

✷

A Technical lemma

Lemma 1.1 Let D ⊆ R
d and f : [0, T ] × D → R whose gradient w.r.t. x ∈ D is Lipschitz-

continuous uniformly in t ∈ [0, T ]. Then there exists a function g : [0, T ] × R
2d → R, bounded

by the Lipchitz constant such that for every x, y ∈ R
d,

f(t, x) = f(t, y) + (x− y) · ∇xf(t, y) + g(t, x, y)‖x − y‖2.

Proof. Fix t ∈ [0, T ] and x 6= y and set

g(t, x, y) =
f(t, x)− f(t, y)− (x− y) · ∇xf(t, y)

‖x− y‖2 . (A.1)

For any x, y ∈ R
d set the function h(t, ·) = hx,y(t, ·) : R → R, given by h(t, u) = f(t, y + u(x−

y)/‖x− y‖). By Lagrange’s mean value theorem and since the function f is differentiable, we
get that there exists ut,x,y ∈ [0, ‖x − y‖] such that

f(t, x)− f(t, y) = h(t, ‖x − y‖)− h(t, 0) = h′(ut,x,y)‖x− y‖
= (x− y) · ∇xf(t, y + ut,x,y(x− y)/‖x − y‖).

Plugging this into A.1, we obtain

|g(t, x, y)| ≤ ‖∇xf(t, y + ut,x,y(x− y)/‖x− y‖)−∇xf(t, y)‖ /‖x− y‖
≤ cut,x,y/‖x− y‖ ≤ c,

where c is the Lipschitz constant of ∇xf .

✷
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