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Abstract

Let G be an n-vertex graph with n ≥ 3. A classic result of Dirac from 1952 asserts that

G is hamiltonian if δ(G) ≥ n/2. Dirac’s theorem is one of the most influential results in the

study of hamiltonicity and by now there are many related known results (see, e.g., J. A. Bondy,

Basic Graph Theory: Paths and Circuits, Chapter 1 in: Handbook of Combinatorics Vol.1).

A Halin graph is a planar graph consisting of two edge-disjoint subgraphs: a spanning tree

of at least 4 vertices and with no vertex of degree 2, and a cycle induced on the set of the

leaves of the spanning tree. Halin graphs possess rich hamiltonicity properties such as being

hamiltonian, hamiltonian connected, and almost pancyclic. As a continuous “generalization” of

Dirac’s theorem, in this paper, we show that there exists a positive integer n0 such that any

graph G with n ≥ n0 vertices and δ(G) ≥ (n + 1)/2 contains a spanning Halin subgraph. In

particular, it contains a spanning Halin subgraph which is also pancyclic.

Keywords: Halin graph, Ladder, Dirac’s condition

1 Introduction

A classic theorem of Dirac [11] from 1952 asserts that every graph on n vertices with minimum

degree at least n/2 is hamiltonian if n ≥ 3. Following Dirac’s result, numerous results on

hamiltonicity properties on graphs with restricted degree conditions have been obtained (see, for

instance, [14, 15]). Traditionally, under similar conditions, results for a graph being hamiltonian,

hamiltonian-connected, and pancyclic are obtained separately. We may ask, under certain

conditions, if it is possible to uniformly show a graph possessing several hamiltonicity properties.

The work on finding the square of a hamiltonian cycle in a graph can be seen as an attempt

in this direction. However, it requires minimum degree of 2n/3 for an n-vertex graph G to

contain the square of a hamiltonian cycle, for examples, see [6, 12, 13, 19, 24]. Although

the minimum degree condition of 2n/3 for having the square of a hamiltonian cycle is almost

optimal for the embedding result it implies: Aigner-Brandt Theorem [1] that any n vertex graph

with minimum degree at least (2n − 1)/3 contains all possible graphs of order at most n and

maximum degree at most 2, it is a “waste” for using the square of a hamiltonian cycle in obtaining
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hamiltonicity properties. For bipartite graphs, finding the existence of a spanning ladder is a

way of simultaneously showing the graph having many hamiltonicity properties (see [9, 10]).

In this paper, we introduce another approach of uniformly showing the possession of several

hamiltonicity properties in a graph: we show the existence of a spanning Halin graph in a graph

under a given minimum degree condition.

A tree with no vertex of degree 2 is called a homeomorphically irreducible tree (HIT). A

Halin graph H = T ∪C is a simple planar graph consisting of a HIT T with at least 4 vertices

and a cycle C induced by the set of leaves of T . The HIT T is called the underlying tree of

H . A wheel graph is an example of a Halin graph, where the underlying tree is a star. Halin

constructed Halin graphs in [16] for the study of minimally 3-connected graphs. Lovász and

Plummer named such graphs as Halin graphs in their study of planar bicritical graphs [20], which

are planar graphs having a 1-factor after deleting any two vertices. Intensive researches have

been done on Halin graphs. Bondy [4] in 1975 showed that a Halin graph is hamiltonian. In the

same year, Lovász and Plummer [20] showed that not only a Halin graph itself is hamiltonian,

but each of the subgraph obtained by deleting a vertex is hamiltonian. In 1987, Barefoot [3]

proved that Halin graphs are hamiltonian-connected, i.e., there is a hamiltonian path connecting

any two vertices of the graph. Furthermore, it was proved that each edge of a Halin graph is

contained in a hamiltonian cycle and is avoided by another [23]. Bondy and Lovász [5], and

Skowrońska [22], independently, in 1985, showed that a Halin graph is almost pancyclic and is

pancyclic if the underlying tree has no vertex of degree 3, where an n-vertex graph is almost

pancyclic if it contains cycles of length from 3 to n with the possible exception of a single

even length, and is pancyclic if it contains cycles of length from 3 to n. Some problems that

are NP-complete for general graphs have been shown to be polynomial time solvable for Halin

graphs. For example, Cornuéjols, Naddef, and Pulleyblank [8] showed that in a Halin graph, a

hamiltonian cycle can be found in polynomial time. It seems so promising to show the existence

of a spanning Halin subgraph in a given graph in order to show that the graph possesses many

hamiltonicity properties. But, nothing comes for free, it is NP-complete to determine whether

a graph contains a (spanning) Halin graph [17].

Despite all these nice properties of Halin graphs mentioned above, the problem of determining

whether a graph contains a spanning Halin subgraph has not yet well studied except a conjecture

proposed by Lovász and Plummer [20] in 1975. The conjecture states that every 4-connected

plane triangulation contains a spanning Halin subgraph (disproved recently [7]). In this paper,

we investigate the minimum degree condition for implying the existence of a spanning Halin

subgraph in a graph, and thereby giving another approach for uniformly showing the possession

of several hamiltonicity properties in a graph under a given minimum degree condition. We

obtain the following result.

Theorem 1.1 There exists n0 > 0 such that for any graph G with n ≥ n0 vertices, if δ(G) ≥
(n + 1)/2, then G contains a spanning Halin subgraph. In particular, it contains a spanning

Halin subgraph which is also pancyclic.

Note that an n-vertex graph with minimum degree at least (n+1)/2 is 3-connected if n ≥ 4.

Hence, the minimum degree condition in Theorem 1.1 implies the 3-connectedness, which is

a necessary condition for a graph to contain a spanning Halin subgraph, since every Halin

graph is 3-connected. A Halin graph contains a triangle, and bipartite graphs are triangle-free.

Hence, K⌊n
2
⌋,⌈n

2
⌉ contains no spanning Halin subgraph. For n even, the graph obtained from

two copies of Kn
2
+1 by gluing them together on an edge is 2-connected, so it has no spanning

Halin subgraph. Both these two graphs have minimum degree at most n/2. We see that the
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minimum degree condition in Theorem 1.1 is best possible.

Theorem 1.1 is proved for large graphs. It might be very hard for obtaining a same result for

all graphs, as when constructing a Halin graph in general, we may need to find its underlying

tree first. The minimum degree condition suffices for the existence of a such tree T in G (in fact,

it was showed that an n-vertex graph with minimum degree at least 4
√
2n contains a spanning

tree with no vertex of degree 2 [2]). However, the hardness lies in finding a cycle C spanning on

the set of the leaves of T so that T ∪ C is planar. In other words, when T is fixed, we have to

find a cycle C in G passing through a set of given vertices in some particular order. The other

way of finding a spanning Halin graph H is to find a spanning subgraph which contains H .

For example, spanning structures close to ladder structures (e.g., graphs H1 to H5 as defined in

next section). Particularly, the square of a hamiltonian cycle contains H1 or H2 as a spanning

subgraph, so it contains a spanning Halin subgraph. But the disadvantage of using “uniform”

structures as Hi is that it makes it hard for constructing them “manually”. Nevertheless, we

still suspect that (n + 1)/2 is the right condition for all graphs to contain a spanning Halin

subgraph.

2 Notation and definitions

We consider simple and finite graphs only. Let G be a graph. Denote by V (G) and E(G)

the vertex set and edge set of G, respectively, and by e(G) the cardinality of E(G). We denote

by δ(G) the minimum degree of G and by ∆(G) the maximum degree. Let v ∈ V (G) be a

vertex and S ⊆ V (G) a subset. Then G[S] is the subgraph of G induced by S. Similarly,

G[F ] is the subgraph induced by F if F ⊆ E(G). The notation ΓG(v, S) denotes the set

of neighbors of v in S, and degG(v, S) = |ΓG(v, S)|. We let ΓG(v, S) = S − ΓG(v, S) and

degG(v, S) = |ΓG(v, S)|. Given another set U ⊆ V (G), define ΓG(U, S) =
⋂

u∈U ΓG(u, S),

degG(U, S) = |ΓG(U, S)|, and NG(U, S) =
⋃

u∈U ΓG(u, S). When U = {u1, u2, · · · , uk}, we

may write ΓG(U, S), degG(U, S), and NG(U, S) as ΓG(u1, u2, · · · , uk, S), degG(u1, u2, · · · , uk, S),

and NG(u1, u2, · · · , uk, S), respectively, in specifying the vertices in U . When S = V (G), we

only write ΓG(U), degG(U), and NG(U). Let U1, U2 ⊆ V (G) be two disjoint subsets. Then

δG(U1, U2) = min{degG(u1, U2) |u1 ∈ U1} and ∆G(U1, U2) = max{degG(u1, U2) |u1 ∈ U1}.
Notice that the notation δG(U1, U2) and ∆G(U1, U2) are not symmetric with respect to U1 and

U2. We denote by EG(U1, U2) the set of edges with one end in U1 and the other in U2, the

cardinality of EG(U1, U2) is denoted by eG(U1, U2). We may omit the index G if there is no risk

of confusion. Let u, v ∈ V (G) be two vertices. We write u ∼ v if u and v are adjacent. A path

connecting u and v is called a (u, v)-path. If G is a bipartite graph with partite sets A and B,

we denote G by G(A,B) in emphasizing the two partite sets.

In constructing Halin graphs, we use ladder graphs and a class of “ladder-like” graphs as

substructures. We give the description of these graphs below.

Definition 1 An n-ladder Ln = Ln(A,B) is a balanced bipartite graph with A = {a1, a2, · · · , an}
and B = {b1, b2, · · · , bn} such that ai ∼ bj iff |i − j| ≤ 1. We call aibi the i-th rung of Ln. If

2n(mod 4) ≡ 0, then we call each of the shortest (a1, bn)-path a1b2a3b4 · · ·an−1bn and (b1, an)-

path b1a2b3a4 · · · bn−1an a side of Ln; and if 2n(mod 4) ≡ 2, then we call each of the shortest

(a1, an)-path a1b2a3b4 · · · an−1bn−1an and (b1, bn)-path b1a2b3a4 · · · bn−2an−1bn a side of Ln.

Let L be a ladder with xy as one of its rungs. For an edge gh, we say xy and gh are adjacent

if x ∼ g, y ∼ h or x ∼ h, y ∼ g. Suppose L has its first rung as ab and its last rung as cd, we
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denote L by ab − L − cd in specifying the two rungs, and we always assume that the distance

between a and c and thus between b and d is |V (L)|/2− 1 (we make this assumption for being

convenient in constructing other graphs based on ladders). Under this assumption, we denote L

as
−→
ab−L−−→

cd. Let A and B be two disjoint vertex sets. We say the rung xy of L is contained in

A× B if either x ∈ A, y ∈ B or x ∈ B, y ∈ A. Let L′ be another ladder vertex-disjoint with L.

If the last rung of L is adjacent to the first rung of L′, we write LL′ for the new ladder obtained

by concatenating L and L′. In particular, if L′ = gh is an edge, we write LL′ as Lgh.

We now define five types of “ladder-like” graphs, call them H1, H2, H3, H4 and H5, respec-

tively. Let Ln be a ladder with a1b1 and anbn as the first and last rung, respectively, and

x, y, z, w, u be five new vertices. Then each of Hi is obtained from Ln by adding some specified

vertices and edges as follows. Additionally, for each i with 1 ≤ i ≤ 5, we define a graph Ti

associated with Hi. A depiction of a ladder L4, H1, H2, H3, H4, H5 constructed from L4, and

the graph Ti associated with Hi is given in Figure 1.

H1: Adding two new vertices x, y and the edges xa1, xb1, yan, ybn and xy.

Let T1 = H1[{x, y, a1, b1, an, bn}].
H2: Adding three new vertices x, y, z and the edges za1, zb1, xz, xb1, yan, ybn and xy.

Let T2 = H2[{x, y, z, a1, b1, an, bn}].
H3: Adding three new vertices x, y, z and the edges xa1, xb1, yan, ybn, xz, yz, and either zai or

zbi for some 1 ≤ i ≤ n. Note that H2 is a special case of H3 with i = 1 or n.

Let T3 = H3[{x, y, z, a1, b1, an, bn}].
H4: Adding four new vertices x, y, z, w and the edges wa1, wb1, xw, xb1, yan, ybn, xz, yz, and

either zai or zbi for some 1 ≤ i ≤ n such that ai or bi is a vertex on the side of L which

has b1 as one end.

Let T4 = H4[{x, y, z, w, a1, b1, an, bn}].
H5: Adding five new vertices x, y, z, w, u.

If 2n(mod 4) ≡ 2, adding the edges wa1, wb1, xw, xb1, uan, ubn, yu, ybn, xz, yz, and either

zai or zbi for some 1 ≤ i ≤ n such that ai or bi is a vertex on the shortest (b1, bn)-path in

L;

and if 2n(mod 4) ≡ 0, adding the edges wa1, wb1, xw, xb1, uan, ubn, yu, yan, xz, yz, and

either zai or zbi for some 1 ≤ i ≤ n such that ai or bi is a vertex on the shortest (b1, an)-

path in L.

The graph obtained from H5 by deleting the vertex z and adding the edge xy is identical

with H4 with i = n.

Let T5 = H5[{x, y, z, w, u, a1, b1, an, bn}].

Let i = 1, 2, · · · , 5. Notice that each of Hi is a Halin graph, and the graph obtained from

H5 by deleting the vertex z and adding the edge xy is also a Halin graph. Except H1, each Hi

has a unique underlying tree. Notice also that xy is an edge on the cycle along the leaves of any

underlying tree of H1 or H2. For each Hi and Ti, call x the left end and y the right end, and

call a vertex of degree at least 3 in the underlying tree of Hi a Halin constructible vertex. By

analyzing the structure of Hi, we see that each internal vertex on a/the shortest (x, y)-path in

Hi − xy (for i = 1, 2) or Hi − z (for i = 3, 4, 5) is a Halin constructible vertex. Noting that any

vertex in V (H1) − {x, y} can be a Halin constructible vertex. We call a1b1 the head link of Ti

and anbn the tail link of Ti, and for each of T3, T4, T5, we call the vertex z not contained in any

triangles the pendent vertex. The notation of Hi and Ti are fixed hereafter.
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Let T ∈ {T1, · · · , T5} be a subgraph of a graph G. Suppose that T has head link ab, tail

link cd, and possibly the pendent vertex z. Suppose G − V (T ) contains a spanning ladder L

with first rung c1d1 and last rung cndn such that c1d1 is adjacent to ab, cndn is adjacent to cd.

Additionally, if the pendent vertex z of T exists, then z has a neighbor z′, which is an internal

vertex on a shortest path between the two ends of T in the graph abLcd∪T −z. Then abLcd∪T

or abLcd∪ T ∪ {zz′} is a spanning Halin subgraph of G. This technique is frequently used later

on in constructing a Halin graph. The following proposition gives another way of constructing

a Halin graph based on H1 and H2.

Proposition 1 For i = 1, 2, let Gi ∈ {H1, H2} with left end xi and right end yi be defined as

above, and let ui ∈ V (Gi) be a Halin constructible vertex, then Q := G1 ∪ G2 − {x1y1, x2y2} ∪
{x1x2, y1y2, u1u2} is a Halin graph spanning on V (G1) ∪ V (G2). Let Q = {Q |Gi ∈ {H1, H2}}
be the set of all graphs Q constructed in this way. Then any graph in Q is pancyclic.

Proof. For i = 1, 2, let Gi be embedded in the plane, and let TGi
be a underlying plane

tree of Gi. Then T ′ := TG1
∪ TG2

∪ {u1u2} is a homeomorphically irreducible tree spanning on

V (G1) ∪ V (G2). Moreover, we can draw the edge u1u2 such that TG1
∪ TG2

∪ {u1u2} is a plane

graph. Since Gi[E(Gi) − E(TGi
) − {xiyi}] is an (xi, yi)-path spanning on the set of leaves of

TGi
obtained by connecting the leaves following the order determined by the embedding of TGi

,

we see that G1[E(G1) − E(TG1
) − {x1y1}] ∪ G2[E(G2) − E(TG2

) − {x2y2}] ∪ {x1x2, y1y2} is a

cycle spanning on the set of leaves of T ′ obtained by connecting the leaves following the order

determined by the embedding of T ′. Thus Q is a Halin graph.

To see the pancyclicity of graphs in Q, suppose that H1 has 2n1 + 2 vertices and H2 has

2n2 + 3 vertices. It is easy to check that in Hi, there are (xi, yi)-paths of length from ni + 1

to |V (Hi)| − 1; in H1, there are cycles of length from 3 to 2n1 + 2; and in H2, there are

cycles of length from 3 to 2n2 + 3. Let Q ∈ Q such that Q is constructed based on H1 and

H2. As x1x2, y1y2 ∈ E(Q), then we see that Q has all cycles of length from n1 + n2 + 4 to

n1 + n2 + 5 = |V (Q)|. Together with cycles in Hi, we know that Q contains all cycles of length

from 3 to |V (Q)|. The pancyclicity of other graphs in Q can be checked similarly. �
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Figure 1: L4, Hi constructed from L4, and Ti associated with Hi for each i = 1, 2, · · · , 5
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3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Following the standard setup of proofs applying the

Regularity Lemma, we divide the proof into Non-extremal Case and extremal cases. For this

purpose, we define the two extremal cases in the following.

Let G be an n-vertex graph and V its vertex set. Let 0 < β ≤ 1 be a constant. Let

W ⊆ V (G). We say W is an approximate vertex-cut of G with parameter β if there is a

partition V1 and V2 of V −W such that eG(V1, V2) ≤ βn2 and δ[G[Vi]] ≥ δ(G) − |W | − βn for

each i = 1, 2. The two extremal cases are defined as below.

Extremal Case 1. G has an approximate vertex-cut of size at most 5βn with parameter β.

Extremal Case 2. There exists a partition V1 ∪ V2 of V such that |V1| ≥ (1/2 − 7β)n and

∆(G[V1]) ≤ βn.

Non-extremal Case. We say that an n-vertex graph with minimum degree at least (n+1)/2

is in Non-extremal Case if it is in neither Extremal Case 1 nor Extremal Case 2.

In Extremal Case 1, we will show that G contains a spanning Halin subgraph isomorphic

to a graph in Q (defined in Proposition 1). In all other cases, we will construct a spanning

subgraph of G isomorphic to Hi for some i ∈ {1, 2, 3, 4, 5}. Note that each graph in Q and

each Hi is pancyclic. Hence, to prove Theorem 1.1, we only need to show the existence of the

mentioned graphs above. The following three theorems deal with the Non-extremal Case and

the two extremal cases, respectively, and thus give a proof of Theorem 1.1.

Theorem 3.1 Suppose that 0 < β ≪ 1/(20 · 173) and n is a sufficiently large integer. Let G

be a graph on n vertices with δ(G) ≥ (n+ 1)/2. If G is in Extremal Case 1, then G contains a

spanning Halin isomorphic to a graph in Q (defined in Proposition 1) as a subgraph.

Theorem 3.2 Suppose that 0 < β ≪ 1/(20 · 173) and n is a sufficiently large integer. Let G

be a graph on n vertices with δ(G) ≥ (n+ 1)/2. If G is in Extremal Case 2, then G contains a

spanning Halin subgraph isomorphic to some Hi, i ∈ {1, 2, 3, 4, 5}.

Theorem 3.3 Let n be a sufficiently large integer and G an n-vertex graph with δ(G) ≥ (n +

1)/2. If G is in the Non-extremal Case, then G has a spanning Halin subgraph isomorphic to

H1 or H2.

We need the following lemma in each of the proofs of Theorems 3.1 - 3.2 in dealing with

“garbage” vertices.

Lemma 3.1 Let F be a graph such that V (F ) is partitioned as S ∪ R. Suppose that (i) there

are |R| vertex-disjoint 3-stars (a 3-star is a copy of K1,3) with the vertices in R as their centers,

(ii) for any two vertices u, v ∈ N(R,S), deg(u, v, S) ≥ 6|R|, and (iii) for any three vertices

u, v, w ∈ N(N(R,S), S), deg(u, v, w, S) ≥ 7|R|. Then there is a ladder spanning on R and some

other 7|R|−2 vertices from S. Particularly, the ladder has the vertices on its first and last rungs

in S.

Proof. Let R = {w1, w2, · · · , wr}. Consider first that r = 1. Choose x11, x12, x13 ∈
Γ(w1, S). By (ii), there are distinct vertices y112 ∈ Γ(x11, x12, S) and y123 ∈ Γ(x12, x13, S). Then

the graph L on {w1, x11, x12, x13, y
1
12, y

1
23} with edges in

{w1x11, w1x12, w1x13, y
1
12x11, y

1
12x12, y

1
23x12, y

1
23x13}

is a ladder covering R with |V (L)| = 6. Suppose now r ≥ 2. By condition (i), for each

i with 1 ≤ i ≤ r, there exist distinct vertices xi1, xi2, xi3 ∈ Γ(wi, S). By (ii), we choose
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distinct vertices y112, y
1
23, · · · , yr12, yr23 different from the existing vertices already chosen such that

yi12 ∈ Γ(xi1, xi2, S) and yi23 ∈ Γ(xi2, xi3, S) for each i, and at the same time, we chose distinct

vertices z1, z2, · · · , zr−1 from the unchosen vertices in S such that zi ∈ Γ(xi3, x(i+1),1, S) for

each 1 ≤ i ≤ r − 1. Finally, by (iii), choose distinct vertices u1, u2, · · · , ur−1 from the unchosen

vertices in S such that ui ∈ Γ(yi23, y
i+1
12 , zi, S). Let L be the graph with

V (L) = R ∪ {xi1, xi2, xi3, y
i
12, y

i
23, zi, ui, xr1, xr2, xr3, y

r
12, y

r
23 | 1 ≤ i ≤ r − 1} and

E(L) consisting of the edges wrxr1, wrxr2, wrxr3, y
r
12xr1, y

r
12xr2, y

r
23xr2, y

r
23xr3 and the edges

indicated below for each 1 ≤ i ≤ r − 1:

wi ∼ xi1, xi2, xi3; y
i
12 ∼ xi1, xi2; y

i
23 ∼ xi2, xi3; zi ∼ xi3, xi+1,1; ui ∼ xi3, xi+1,1, zi.

It is easy to check that L is a ladder covering R with |V (L)| = 8r − 2. The ladder has its first

and last rungs in S is seen by its construction. Figure 2 gives a depiction of L for |R| = 2. �
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Figure 2: Ladder L of order 14

We will also need the bipartite version of Lemma 3.1. Since the proof is similar, we omit it.

Lemma 3.2 Let F (A,B) be a bipartite graph such that V (F ) is partitioned as S ∪ R with

R ⊆ A. Suppose that (i) there are |R| vertex-disjoint 3-stars with the vertices in R as their

centers, (ii) for any two vertices u, v ∈ N(R,S), deg(u, v, S) ≥ 3|R|, and (iii) for any three

vertices u, v, w ∈ N(N(R,S), S), deg(u, v, w, S) ≥ 4|R|. Then there is a ladder spanning on R

and some other 7|R| − 2 vertices from S with 3|R| − 1 of them taken from A. Particularly, the

ladder has its first and last rungs in S.

The following simple observation is heavily used in the proofs explicitly or implicitly.

Lemma 3.3 Let U = {u1, u2 · · · , uk}, S ⊆ V (G) be subsets. Then deg(u1, u2, · · · , uk, S) ≥
|S| − (degG(u1, S) + · · ·+ degG(uk, S)) ≥ |S| − k(|S| − δ(U, S)) = kδ(U, S)− (k − 1)|S|.

Extremal Case 1 is easier than the other cases, so we start with it.

3.1 Proof of Theorem 3.1

We assume that G has an approximate vertex-cutW with parameter β such that |W | ≤ 5βn.

Let V1 and V2 be the partition of V −W such that δ[G[Vi]] ≥ (1/2−6β)n. As δ(G) ≥ (n+1)/2,

(1/2− 6β)n ≤ |Vi| ≤ (1/2 + 6β)n. We partition W into two subsets as follows:

W1 = {w ∈ W | deg(w, V1) ≥ (n+ 1)/4− 2.5βn} and W2 = W −W1.
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As δ(G) ≥ (n + 1)/2, we have deg(w, V2) ≥ (n + 1)/4 − 2.5βn for any w ∈ W2. Since G is 3-

connected and (1/2− 6β)n > 3, there are three independent edges p1p2, q1q2, and r1r2 between

G[V1 ∪W1] and G[V2 ∪W2] with p1, q1, r1 ∈ V1 ∪W1 and p2, q2, r2 ∈ V2 ∪W2.

For i = 1, 2, by the partition of Wi, we see that δ(Wi, Vi) ≥ 3|Wi| + 3. Thus, δ(Wi, Vi −
{pi, qi}) ≥ 3|Wi|. There are |Wi − {pi, qi}| vertex-disjoint 3-stars with their centers in Wi −
{pi, qi}. By Lemma 3.3, we have

deg(u, v, Vi − {pi, qi}) ≥ 2δ(G[Vi])− |Vi| ≥ (1/2− 18β)n ≥ 6|Wi|, for any u, v ∈ Vi;

deg(u, v, w, Vi − {pi, qi}) ≥ 3δ(G[Vi])− 2|Vi| ≥ (1/2− 30β)n ≥ 7|Wi|, for any u, v, w ∈ Vi.

By Lemma 3.1, we can find a ladder Li which spans Wi−{pi, qi} and another 7|Wi−{pi, qi}|−2

vertices from Vi − {pi, qi}, if Wi − {pi, qi} 6= ∅. Denote aibi and cidi the first and last rung of

Li (if Li exists), respectively. Let

Gi = G[Vi − V (Li)] and ni = |V (Gi)|.

Then for i = 1, 2, if x ∈ V (Gi) and x 6∈ {pi, qi} ∩W ,

ni ≥ (n+1)/2−6βn−7|Wi| ≥ (n+1)/2−41βn, degGi
(x) ≥ δ(G[Vi])−7|Wi| ≥ (n+1)/2−41βn.

If pi ∈ W , then degGi
(pi) ≥ (n + 1)/4 − 2.5βn − 7|Wi| ≥ (1/4 − 41β)n. Similarly, if qi ∈ W ,

then degGi
(qi) ≥ (1/4− 41β)n.

Let i = 1, 2. We now show that Gi contains a spanning subgraph isomorphic to either H1 or

H2 as defined in the previous section. Since ni ≤ (1/2+ 6β)n and degGi
(x) ≥ (n+1)/2− 41βn

for any x ∈ V (Gi) −W , any subgraph of Gi induced by at least (1/4 − 41β)n vertices not in

W has minimum degree at least (n + 1)/2 − 41βn− (ni − (1/4− 41β)n) ≥ (1/4 − 88β)n, and

thus has a matching of size at least 2. Hence, when ni is even, we can choose independent edges

ei = xiyi and fi = ziwi with

xi, yi ∈ ΓGi
(pi)− {qi} and zi, wi ∈ ΓGi

(qi)− {pi}.

And if ni is odd, we can choose independent edges giyi (we may assume gi 6= ri), fi = ziwi, and

a vertex xi with

gi, xi, yi ∈ ΓGi
(pi)− {qi}, xi ∈ ΓGi

(gi, yi)− {pi, qi} and zi, wi ∈ ΓGi
(qi)− {xi, pi},

where the existence of the vertex xi is possible since the subgraph of Gi induced by ΓGi
(pi) has

minimum degree at least (1/2−41β)n− ((1/2+6β)n−|ΓGi
(pi)|) ≥ |ΓGi

(pi)|−47βn, and hence

contains a triangle. In this case, again, denote ei = xiyi. Let

{

G′
i = Gi − {pi, qi}, if ni is even;

G′
i = Gi − {pi, qi, gi}, if ni is odd.

By the definition above, |V (G′
i)| is even.

The following claim is a modification of (1) of Lemma 2.2 in [10].

Claim 3.1.1 For i = 1, 2, let a′ib
′
i, c

′
id

′
i ∈ E(G′

i) be two independent edges. Then G′
i contains

two vertex disjoint ladders Qi1 and Qi2 spanning on V (G′
i) such that Qi1 has ei = xiyi as its

first rung, a′ib
′
i as its last rung, and Qi2 has c′id

′
i as its first rung and fi = ziwi as its last rung,

where ei and fi are defined prior to this claim.
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Proof. We only show the claim for i = 1 as the case for i = 2 is similar. Notice that by the

definition of G′
1, |V (G′

1)| is even. Since |V (G′
1)| ≤ (1/2+ 6β)n and δ(G′

1) ≥ (n+1)/2− 41βn−
3 ≥ |V (G′

1)|/2 + 4, G′
1 has a perfect matching M containing e1, f1, a

′
1b

′
1, c

′
1d

′
1. We identify a′1

and c′1 into a vertex called s′, and identify b′1 and d′1 into a vertex called t′. Denote G′′
1 as

the resulting graph. Note that s′t′ ∈ E(G′′
1 ) by the way of identifications. Partition V (G′′

1 )

arbitrarily into U1 and U2 with |U1| = |U2| such that x1, z1, s
′ ∈ U1, y1, w1, t

′ ∈ U2, and let

M ′ := (M − {a′1b′1, c′1d′1})∪ {s′t′} ⊆ EG′′

1
(U1, U2). Define an auxiliary graph H ′ with vertex set

M ′ and edge set defined as follows. If xy, uv ∈ M ′ − {s′t′} with x, u ∈ U1 then xy ∼H′ uv if

and only if x ∼G′

1
v and y ∼G′

1
u (we do not include the case that x ∼G′

1
u and y ∼G′

1
v as we

defined a bipartition here). Particularly, for any pq ∈ M ′−{s′t′} with p ∈ U1, pq ∼H′ s′t′ if and

only if p ∼G′

1
b′1, d

′
1 and q ∼G′

1
a′1, c

′
1. Notice that a ladder with rungs in M ′ is corresponding to

a path in H ′ and vice versa. Since (1/2− 41β)n− 3 ≤ |V (G′
1)| ≤ (1/2 + 6β)n− 2 and δ(G′

1) ≥
(n+1)/2−41βn−3, any two vertices in G′

1 has at least (1/2−88β)n−4 ≥ (1/2−89β)n common

neighbors by Lemma 3.3. This together with the fact that |U1| = |U2| ≤ |V (G′′
1 )|/2 ≤ (1/4+3β)n

gives that δ(U1, U2), δ(U2, U1) ≥ (1/4−92β)n. For each edge uv ∈ M ′ with u ∈ U1, u is adjacent

to at least (1/4−92β)n other vertices in U2 saturated byM ′. Thus there are at least (1/4−92β)n

edges {ujvj | vj ∈ ΓG(u, U2)} ⊆ M ′. Among these vertices {uj | vj ∈ ΓG(u, U2)} in U1, at least

(1/4−92β)n−((1/4 + 3β)n− (1/4− 92β)n) = (1/4−187β)n of them are neighbors of v. Thus,

in H ′, uv is adjacent to at least (1/4− 187β)n neighbors, and thus

δ(H ′) ≥ (1/4− 187β)n ≥ |V (H ′)|/2 + 1,

since β < 1/2200 and n is very large. Hence H ′ has a hamiltonian path starting with e1, ending

with f1, and having s′t′ as an internal vertex. The path with s′t′ replaced by a′1b
′
1 and c′1d

′
1 is

corresponding to the required ladders in G′
1. �

We may assume n1 is even and n2 is odd and construct a spanning Halin subgraph of G (the

construction for the other three cases follow a similar argument). Recall that p1p2, q1q2, r1r2 are

the three prescribed independent edges betweenG[V1∪W1] andG[V2∪W2], where p1, q1, r1 ∈ V1∪
W1 and p2, q2, g2, r2 ∈ V2∪W2. For a uniform discussion, we may assume that both of the ladders

L1 and L2 exist. Let i = 1, 2. Recall that Li has aibi as its first rung and cidi as its last rung.

Choose a′i ∈ ΓG(ai, V (G′
i)), b

′
i ∈ ΓG(bi, V (G′

i)) such that a′ib
′
i ∈ E(G) and c′i ∈ ΓG(ci, V (G′

i)),

d′i ∈ ΓG(di, V (G′
i)) such that c′id

′
i ∈ E(G) (a′i, b

′
i, c

′
i, d

′
i are chosen mutually distinct and distinct

from xi, yi, zi, wi, gi, ri). This is possible as δ(Vi, V (G′
i)) ≥ (n + 1)/2 − 41βn− 2. Let Qi1 and

Qi2 be the ladders of G′
i given by Claim 3.1.1. Set Ha = Q11L1Q12 ∪ {p1x1, p1y1, q1z1, q1w1}.

Assume Q21L2Q22 is a ladder can be denoted as −−→x2y2 −Q21L2Q22 −−−→z2w2. To make r2 a Halin

constructible vertex, we let Hb = Q21L2Q22 ∪ {g2x2, g2y2, p2g2, p2y2, q2z2, q2w2} if r2 is on the

shortest (y2, w2)-path in Q21L2Q22, and let Hb = Q21L2Q22∪{g2x2, g2y2, p2g2, p2x2, q2z2, q2w2}
if r2 is on the shortest (x2, z2)-path (recall that g2, x2, y2 ∈ ΓG2

(p2)). Let H = Ha ∪ Hb ∪
{p1p2, r1r2, q1q2}. ThenH is a spanning Halin subgraph of G by Proposition 1 asHa∪p1q1 ∼= H1

and Hb ∪ p2q2 ∼= H2. Figure 3 gives a construction of H for the above case when r2 is on the

shortest (y2, w2)-path in Q21L2Q22.

3.2 Proof of Theorem 3.2

Recall Extremal Case 2: There exists a partition V1 ∪ V2 of V such that |V1| ≥ (1/2− 7β)n

and ∆(G[V1]) ≤ βn. Since δ(G) ≥ (n+ 1)/2, the assumptions imply that

(1/2− 7β)n ≤ |V1| ≤ (1/2 + β)n and (1/2− β)n ≤ |V2| ≤ (1/2 + 7β)n.
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Figure 3: A Halin graph H

Let β and α be real numbers satisfying β ≤ α/20 and α ≤ (1/17)3. Set α1 = α1/3 and α2 = α2/3.

We first repartition V (G) as follows.

V ′
2 = {v ∈ V2 | deg(v, V1) ≥ (1− α1)|V1|}, V01 = {v ∈ V2 − V ′

2 | deg(v, V ′
2) ≥ (1− α1)|V ′

2 |},
V ′
1 = V1 ∪ V01, and V0 = V2 − V ′

2 − V01.

Claim 3.2.1 |V01 ∪ V0| = |V2 − V ′
2 | ≤ α2|V2|.

Proof. Notice that e(V1, V2) ≥ (1/2 − β)n|V1| ≥ 1/2−β
1/2+7β |V1||V2| ≥ (1 − α)|V1||V2| as β ≤

α/20. Hence,

(1− α)|V1||V2| ≤ e(V1, V2) ≤ e(V1, V
′
2) + e(V1, V2 − V ′

2) ≤ |V1||V ′
2 |+ (1− α1)|V1||V2 − V ′

2 |.

This gives that |V01 ∪ V0| = |V2 − V ′
2 | ≤ α2|V2|. �

As a result of moving vertices from V2 to V1 and by Claim 3.2.1, we have the following.

(1/2− 7β)n ≤ |V ′
1 | ≤ (1/2 + β)n+ |V01| ≤ (1/2 + β)n+ α2(1/2 + 7β)n ≤ (1/2 + α2)n,

(1/2− α2)n ≤ |V ′
2 | ≤ (1/2 + 7β)n,

δ(V ′
1 , V

′
2 ) ≥ min{(1/2− β)n− |V2 − V ′

2 |, (1− α1)|V ′
2 |} ≥ (1/2− 2α1/3)n,

δ(V ′
2 , V

′
1 ) ≥ (1 − α1)|V1| ≥ (1− α1)(1/2− 7β)n ≥ (1/2− 2α1/3)n, (1)

δ(V0, V
′
1 ) ≥ (n+ 1)/2− (1 − α1)|V ′

2 | − |V0| ≥ α1n/3 ≥ 6|V0|+ 20,

δ(V0, V
′
2 ) ≥ (n+ 1)/2− (1 − α1)|V1| − |V0 ∪ V01| ≥ α1n/3 ≥ 6|V0|+ 20.

Claim 3.2.2 We may assume that ∆(G) < n− 1.

Proof. Suppose on the contrary and let w ∈ V (G) such that deg(w) = n − 1. Then by

δ(G) ≥ (n+ 1)/2 we have δ(G−w) ≥ (n− 1)/2, and thus G−w has a hamiltonian cycle. This

implies that G has a spanning wheel subgraph, in particular, a spanning Halin subgraph of G.

�
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Claim 3.2.3 There exists a subgraph T ⊆ G with |V (T )| ≡ n (mod 2) such that T and G−V (T )

satisfy the following conditions.

(i) T is isomorphic to some graph in {T1, T2, · · · , T5};
(ii) Let 2m = n − |V (T )|. Then G − V (T ) contains a balanced spanning bipartite graph G′

with partite sets U1 and U2 such that |U1| = |U2| = m.

(iii) There exists a subset W of U1 ∪ U2 with at most α2n vertices such that degG′(x, V (G′)−
W ) ≥ (1− α1 − 2α2)m for all x 6∈ W .

(iv) Assume that T has head link x1x2 and tail link y1y2. There exist x′
1x

′
2, y

′
1y

′
2 ∈ E(G′) such

that x′
i, y

′
i ∈ Ui−W , x′

3−i ∼ xi, and y′3−i ∼ yi, for i = 1, 2; and if T has a pendent vertex,

then the pendent vertex is contained in V ′
1 ∪ V ′

2 −W .

(v) There are |W | vertex-disjoint 3-stars in G′−{x′
1, x

′
2, y

′
1, y

′
2} with the vertices in W as their

centers.

Proof. By (1) and Lemma 3.3, for i = 1, 2, we notice that for any u, v, w ∈ V ′
i ,

deg(u, v, w, V ′
3−i) ≥ 3δ(V ′

i , V
′
3−i)− 2|V ′

3−i| ≥ (1/2− 3α1)n > n/4. (2)

We now separate the proof into two cases according to the parity of n.

Case 1. n is even.

Suppose first that max{|V ′
1 |, |V ′

2 |} ≤ n/2. We arbitrarily partition V0 into V10 and V20

such that |V ′
1 ∪ V10| = |V ′

2 ∪ V20| = n/2. Suppose G[V ′
1 ] contains an edge x1u1 and there is a

vertex u2 ∈ Γ(u1, V
′
2) such that u2 is adjacent to a vertex y2 ∈ V ′

2 . By (2), there exist distinct

vertices x2 ∈ Γ(x1, u1, V
′
2)−{y2, u1}, y1 ∈ Γ(y2, u2, V

′
1)−{x1, u1}. Then G[{x1, u1, x2, y1, u1, y2}]

contains a subgraph T isomorphic to T1. So we assumeG[V ′
1 ] contains an edge x1u1 and no vertex

in Γ(u1, V
′
2) is adjacent to any vertex in V ′

2 . As δ(G) ≥ (n+ 1)/2, δ(G[V ′
2 ∪ V20]) ≥ 1. Let u2 ∈

Γ(u1, V
′
2) and u2y2 ∈ E(G[V ′

2 ∪V20]). Since deg(u2, V
′
1) ≥ (n+1)/2−|V0| > |V ′

1 ∪V10|− |V0| and
deg(y2, V

′
1) ≥ 3|V0|+10, deg(u2, y2, V

′
1 ∪V10) ≥ 2|V0|+10. Let x2 ∈ Γ(x1, u1, V

′
2)−{y2, u2}, y1 ∈

Γ(y2, u2, V
′
1)−{x1, u1}. Then G[{x1, u1, x2, y1, u2, y2}] contains a subgraph T isomorphic to T1.

By symmetry, we can find T ∼= T1 if G[V ′
2 ] contains an edge. Hence we assume that both V ′

1

and V ′
2 are independent sets. Again, as δ(G) ≥ (n + 1)/2, δ(G[V ′

1 ∪ V10]), δ(G[V ′
2 ∪ V20]) ≥ 1.

Let x1u1 ∈ E(G[V ′
1 ∪ V10]) and y2u2 ∈ E(G[V ′

2 ∪ V20]) such that x1 ∈ V ′
1 and u2 ∈ Γ(u1, V

′
2).

Since deg(x1, V
′
2) ≥ (n + 1)/2 − |V0| > |V ′

2 ∪ V20| − |V0| and deg(u1, V
′
2) ≥ 3|V0| + 10, we

have deg(x1, u1, V
′
2) ≥ 2|V0| + 10. Hence, there exists x2 ∈ Γ(x1, u1, V

′
2) − {y2, u2}. Similarly,

there exists y1 ∈ Γ(y2, u2, V
′
1)− {x1, u1}. Then G[{x1, u1, x2, y1, u2, y2}] contains a subgraph T

isomorphic to T1. Let m = (n− 6)/2, U1 = (V ′
1 ∪ V10)− V (T ) and U2 = (V ′

2 ∪ V20)− V (T ), and

W = V0 − V (T ). We then have |U1| = |U2| = m.

Let G′ = (V (G) − V (T ), EG(U1, U2)) be the bipartite graph with partite sets U1 and U2.

Notice that |W | ≤ |V0| ≤ α2|V2| < α2n. By (1), we have degG′(x, V (G′) − W ) ≥ (1 − α1 −
2α2)m for all x /∈ W . This shows (iii). By the construction of T above, we have x1, y1 ∈
V ′
1 − W . Let i = 1, 2. By (1), we have δ(V0, Ui − W ) = δ(V0, V

′
i − V (T )) ≥ 3|V0| + 6. So

|ΓG′(y2, U1 −W )|, |ΓG′(x2, U1 −W )| ≥ 3|V0|+ 6. Applying statement (iii) and Lemma 3.3, we

have eG′(ΓG′(x2, U1 −W ),ΓG′(x1, U2 −W )), eG′(ΓG′(y2, U1 −W ),ΓG′(y1, U2 −W )) ≥ (3|V0|+
6)(1 − 2α1 − 4α2)m > 2m. Hence, we can find independent edges x′

1x
′
2 and y′1y

′
2 such that

x′
i, y

′
i ∈ Ui−W , x′

3−i ∼ xi, and y′3−i ∼ yi. This gives statement (iv). Finally, as δ(V0, Ui−W ) ≥
3|V0|+ 6, we have δ(V0, Ui −W − {x′

1, x
′
2, y

′
1, y

′
2}) ≥ 3|V0|+ 2. Hence, there are vertex-disjoint

3-stars with their centers in W .
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Otherwise we have max{|V ′
1 |, |V ′

2 |} > n/2. By (1), we have the same lower bound for

δ(V ′
1 , V

′
2), δ(V ′

2 , V
′
1), and δ(V0, V

′
1), δ(V0, V

′
2). Furthermore, all the argument in the follow-

ing will depend only on the degree conditions, so we assume, w.l.o.g., that |V ′
1 | ≥ n/2 + 1.

Then δ(G[V ′
1 ]) ≥ 2 and thus G[V ′

1 ] contains two vertex-disjoint paths isomorphic to P3 and

P2, respectively. Let m = (n − 8)/2. We consider three cases here. Case (a): |V ′
1 | − 5 ≤ m.

Then let x1u1w1, y1v1 ⊆ G[V ′
1 ] be two vertex-disjoint paths, and let x2 ∈ Γ(x1, u1, w1, V

′
2), y2 ∈

Γ(y1, v1, V
′
2) and z ∈ Γ(w1, v1, V

′
2) be three distinct vertices. Then G[{x1, u1, w1, x2, z, y1, v1, y2}]

contains a subgraph T isomorphic to T4. Notice that |V ′
2 −V (T )| ≤ m. We arbitrarily partition

V0 into V10 and V20 such that |V ′
1 ∪ V10| = |V ′

2 ∪ V20| = m. Let U1 = (V ′
1 ∪ V10) − V (T ),

U2 = (V ′
2 ∪ V20) − V (T ), and W = V0. Hence we assume |V ′

1 | − 5 = m + t1 for some

t1 ≥ 1. This implies that |V ′
1 | = n/2 + t1 + 1 and thus δ(G[V ′

1 ]) ≥ t1 + 2. Let V 0
1 be

the set of vertices u ∈ V ′
1 such that deg(u, V ′

1) ≥ α1m. Case (b): |V 0
1 | ≥ |V ′

1 | − 5 − m.

Then we form a set W with |V ′
1 | − 5 − m vertices from V 0

1 and all the vertices of V0. Then

|V ′
1 −W | = m+5+ t1−(|V ′

1 |−5−m) = m+5 = n/2+1, and hence δ(G[V ′
1 −W ]) ≥ 2. Similarly

as in Case (a), we can find a subgraph T of G contained in G[(V ′
1 ∪ V ′

2)−W ] isomorphic to T4.

Let U1 = V ′
1 − V (T )−W , U2 = (V ′

2 ∪W )− V (T ). Then |U1| = |U2| = m. Thus we have Case

(c): |V 0
1 | < |V ′

1 | − 5−m. Suppose that |V ′
1 − V 0

1 | = m+ 5 + t′1 = n/2 + t′1 + 1 for some t′1 ≥ 1.

This implies that δ(G[V ′
1 − V 0

1 ]) ≥ t′1 + 2.

We show that G[V ′
1 − V 0

1 ] contains t′1 + 2 vertex-disjoint 3-stars. To see this, suppose

G[V ′
1 − V 0

1 ] contains a subgraph M of at most s < t′1 + 2 3-stars. By counting the number of

edges between V (M) and V ′
1 − V 0

1 − V (M) in two ways, we get that t′1|V ′
1 − V 0

1 − V (M)| ≤
eG−V 0

1
(V (M), V ′

1 − V 0
1 − V (M)) ≤ 4s∆(G[V ′

1 − V 0
1 ]) ≤ 4sα1m. Since |V ′

1 − V 0
1 | = m+ 5+ t′1 =

n/2 + t′1 + 1, |V ′
1 − V 0

1 − V (M)| ≥ m − 3t′1 ≥ m − 6α2m, where the last inequality holds as

|V ′
1 | ≤ (1/2 + β)n + α2|V ′

2 | implying that t′1 ≤ |V ′
1 | − m − 5 ≤ 2α2m. This, together with

the assumption that α ≤ (1/8)3 gives that s ≥ t′1 + 2, showing a contradiction. Hence we

have s ≥ t′1 + 2. Let x1u1w1 and y1v1 be two paths taken from two 3-stars in M . Then

we can find a subgraph T of G isomorphic to T4 in the same way as in Case (a). We take

exactly t′1 3-stars from the remaining ones in M and denote the centers of these stars by W ′.

Let U1 = V ′
1 − V 0

1 − V (T ) − W ′, W = W ′ ∪ V 0
1 ∪ V0, and U2 = (V ′

2 ∪ W ) − V (T ). Then

|U1| = |U2| = m.

For the partition of U1 and U2 in all the cases discussed in the paragraph above, we let

G′ = (V (G) − V (T ), EG(U1, U2)) be the bipartite graph with partite sets U1 and U2. Notice

that |W | ≤ |V0| ≤ α2n if Case (a) occurs, |W | ≤ |V0| + |V ′
1 | − m − 5 ≤ (1/2 + β)n + |V0 ∪

V01| − n/2 − 1 ≤ α2n if Case (b) occurs, and |W | = |W ′ ∪ V 0
1 ∪ V0| = |V ′

1 − U1 − V (T )| +
|V0 ∪ V01| ≤ (1/2 + β)n − (1/2 − 4)n + |V0 ∪ V01| ≤ α2n if Case (c) occurs. (Recall that

|V ′
1 | ≤ (1/2 + β)n + |V01| and |V0 ∪ V01| ≤ α2|V2| from (1).) Since δ(V ′

2 , V
′
1) ≥ (1 − 2α1/3)n

from (1) and |V ′
1−U1| ≤ 2α2m, we have δ(U2−W,U1−W ) ≥ (1−α1−2α2)m. On the other hand,

from (1), δ(V ′
1 , V

′
2) ≥ (1/2− 2α1/3)n. This gives that δ(U1 −W,U2 −W ) ≥ (1 − α1 − 2α2)m.

Hence, we have degG′(x, V (G′) − W ) ≥ (1 − α1 − 2α2)m for all x /∈ W . According to the

construction of T , we have x1, y1 ∈ V ′
1 − W . Applying statement (iii) and Lemma 3.3, we

have eG′(ΓG′(x1, U2 −W ),ΓG′(x2, U1 −W )), eG′(ΓG′(y1, U2 −W ),ΓG′(y2, U1 −W )) ≥ (3|V0|+
6)(1 − 2α1 − 4α2)m > 2m. Hence, we can find independent edges x′

1x
′
2 and y′1y

′
2 such that

x′
i, y

′
i ∈ Ui −W , x′

3−i ∼ xi, and y′3−i ∼ yi. By the construction of T , T is isomorphic to T4, and

the pendent vertex z ∈ V ′
2 ⊆ V ′

1 ∪ V ′
2 −W . This gives statement (iv). Finally, as

δ(V0, U1 −W ) ≥ δ(V0, V
′
1)− |V ′

1 − (U1 −W )| ≥ α1n/3− (1/2 + α2)n+ n/2− 4− α2n

≥ (1/3α1 − 2α2)n− 4 ≥ 3|W |+ 5,
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we have δ(V0, U1−W −{x′
1, x

′
2, y

′
1, y

′
2}) ≥ 3|W |+1. By the definition of V 0

1 , we have δ(V
0
1 , V

′
1 −

W − {x′
1, x

′
2, y

′
1, y

′
2}) ≥ α1m− α2n− 4 ≥ 3|W |. For the vertices in W ′ in Case (c), we already

know that there are vertex-disjoint 3-stars in G′ with centers in W ′. Hence, regardless of the

construction of W , we can always find vertex-disjoint 3-stars with their centers in W .

Case 2. n is odd.

Suppose first that max{|V ′
1 |, |V ′

2 |} ≤ (n + 1)/2 and let m = (n − 7)/2. We arbitrarily

partition V0 into V10 and V20 such that, w.l.o.g., say |V ′
1 ∪ V10| = (n + 1)/2 and |V ′

2 ∪ V20| =
(n − 1)/2. (Again, here we use the symmetry of the lower bounds on δ(V ′

1 , V
′
2), δ(V ′

2 , V
′
1),

and δ(V0, V
′
1), δ(V0, V

′
2) from (1).) We show that G[V ′

1 ∪ V10] either contains two independent

edges or is isomorphic to K1,(n−1)/2. As δ(G) ≥ (n + 1)/2, we have δ(G[V ′
1 ∪ V10]) ≥ 1.

Since n is sufficiently large, (n + 1)/2 > 3. Then it is easy to see that if G[V ′
1 ∪ V10] 6∼=

K1,(n−1)/2, then G[V ′
1 ∪ V10] contains two independent edges. Furthermore, we can choose two

independent edges x1u1 and y1v1 such that u1, v1 ∈ V ′
1 . This is obvious if |V10| ≤ 1. So

we assume |V10| ≥ 2. As δ(V0, V
′
1) ≥ 3|V0| + 10, by choosing x1, y1 ∈ V10, we can choose

distinct vertices u1 ∈ Γ(x1, V
′
1) and v1 ∈ Γ(y1, V

′
1). Let x2 ∈ Γ(x1, u1, V

′
2), y2 ∈ Γ(y1, v1, V

′
2)

and z ∈ Γ(u1, v1, V
′
2). Then G[{x1, u1, x2, y1, v1, y2, z}] contains a subgraph T isomorphic to

T3. We assume now that G[V ′
1 ∪ V10] is isomorphic to K1,(n−1)/2. Let u1 be the center of

the star K1,(n−1)/2. Then each leaf of the star has at least (n − 1)/2 neighbors in V ′
2 ∪ V20.

Since |V ′
2 ∪ V20| = (n − 1)/2, we have Γ(v, V ′

2 ∪ V20) = V ′
2 ∪ V20 if v ∈ V ′

1 ∪ V10 − {u1}. By

the definition of V0, ∆(V0, V
′
1) < (1 − α1)|V1| + |V01| and ∆(V0, V

′
2) < (1 − α1)|V ′

2 |, and so

u1 ∈ V ′
1 , V10 = ∅ and V20 = ∅. We claim that V ′

2 is not an independent set. Otherwise, by

δ(G) ≥ (n + 1)/2, for each v ∈ V ′
2 , Γ(v, V

′
1 ) = V ′

1 . This in turn shows that u1 has degree

n − 1, showing a contradiction to Claim 3.2.2. So let y2v2 ∈ E(G[V ′
2 ]) be an edge. Let w1 ∈

Γ(v2, V
′
1)−{u1} and w1u1x1 be the path containing w1. Choose y1 ∈ Γ(y2, v2, V

′
1)−{w1, u1, x1}

and x2 ∈ Γ(x1, u1, w1, V
′
2)− {y2, v2}. Then G[{x1, u1, x2, w1, v2, y2, y1}] contains a subgraph T

isomorphic to T2. Let U1 = (V ′
1 ∪V10)−V (T ) and U2 = (V ′

2 ∪V20)−V (T ) and W = V0 −V (T ).

We have |U1| = |U2| = m and |W | ≤ |V0| ≤ α2n.

Otherwise we have max{|V ′
1 |, |V ′

2 |} ≥ (n + 1)/2 + 1. By the symmetry of lower bounds on

degrees related to V ′
1 and V ′

2 from (1), we assume, w.l.o.g., that |V ′
1 | ≥ (n + 1)/2 + 1. Then

δ(G[V ′
1 ]) ≥ 2 and thus G[V ′

1 ] contains two independent edges. Let m = (n − 7)/2 and V 0
1 be

the set of vertices u ∈ V ′
1 such that deg(u, V ′

1) ≥ α1m. Since |V ′
1 | ≥ (n+ 1)/2 + 1 > m+ 4, we

assume |V ′
1 | = m+ 4+ t1 for some t1 ≥ 1. We consider three cases here.

Case (a): |V 0
1 | ≥ |V ′

1 | −m− 4. We form a set W with |V ′
1 | − 4−m vertices from V 0

1 and

all the vertices of V0. Then |V ′
1 −W | = m+ 4 + t1 − (|V ′

1 | − 4 −m) = m+ 4 = (n+ 1)/2, and

we have δ(G[V ′
1 −W ]) ≥ 1. As any vertex u ∈ V ′

1 −W is a vertex such that deg(u, V ′
1) < α1m,

we know G[V ′
1 − W ] contains two independent edges. Let x1u1, y1v1 ⊆ E(G[V ′

1 − W ]) be

two independent edges, and let x2 ∈ Γ(x1, u1, V
′
2), y2 ∈ Γ(y1, v1, V

′
2) and z ∈ Γ(w1, v1, V

′
2)

be three distinct vertices. Then G[{x1, u1, x2, z, y1, v1, y2}] contains a subgraph T isomorphic

to T3. Let U1 = V ′
1 − V (T ) − W , U2 = (V ′

2 ∪ W ) − V (T ). Then |U1| = |U2| = m and

|W | ≤ |V0|+ |V ′
1 − U1| ≤ |V2 − V ′

2 |+ βn+ 4 ≤ α2n.

Thus we have |V 0
1 | < |V ′

1 | − 4 −m. Suppose that |V ′
1 − V 0

1 | = m + 4 + t′1 = (n + 1)/2 + t′1
for some t′1 ≥ 1. This implies that δ(G[V ′

1 − V 0
1 ]) ≥ t′1 + 1.

Case (b): t′1 ≥ 2. We show that G[V ′
1 − V 0

1 ] contains t
′
1 + 2 vertex-disjoint 3-stars. To see

this, suppose G[V ′
1 − V 0

1 ] contains a subgraph M of at most s vertex disjoint 3-stars. We may

assume that s < t′1 + 2. Then we have (t1 − 1)|V ′
1 − V 0

1 − V (M)| ≤ eG−V 0

1

(V (M), V ′
1 − V 0

1 −
V (M)) ≤ 4s∆(G[V ′

1 −V 0
1 ]). Since |V ′

1 −V 0
1 | = m+4+ t′1 = (n+1)/2+ t′1, |V ′

1 −V 0
1 −V (M)| ≥

m − 3t′1 ≥ m − 6α2m, where the last inequality holds as |V ′
1 | ≤ (1/2 + β)n + α2|V ′

2 | implying
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that t′1 ≤ |V ′
1 | − m − 4 ≤ 2α2m. This, together with the assumption that α ≤ (1/8)3 gives

that s ≥ t′1 + 2, showing a contradiction. Hence we have s ≥ t′1 + 2. Let x1u1 and y1v1 be two

paths taken from two 3-stars in M . Then we can find a subgraph T of G isomorphic to T3 the

same way as in Case (a). We take exactly t′1 3-stars from the remaining ones in M and denote

the centers of these stars by W ′. Let U1 = V ′
1 − V 0

1 − V (T ) − W ′, W = W ′ ∪ V 0
1 ∪ V0, and

U2 = (V ′
2 ∪W )− V (T ). Then |U1| = |U2| = m.

Case (c): t′1 = 1. In this case, we let m = (n − 9)/2. If G[V ′
1 − V 0

1 ] contains a vertex

adjacent to all other vertices in V ′
1 − V 0

1 , then the vertex would be contained in V 0
1 by the

definition of V 0
1 . Hence, we assume that G[V ′

1 − V 0
1 ] has no vertex adjacent to all other vertices

in V ′
1 − V 0

1 . Then by the assumptions that δ(G) ≥ (n + 1)/2 and |V ′
1 − V 0

1 | = (n + 1)/2 + 1,

we can find two copies of vertex disjoint P3s in G[V ′
1 − V 0

1 ]. Let x1u1w1 and y1v1z1 be two

P3s in G[V ′
1 − V 0

1 ]. There exist distinct vertices x2 ∈ Γ(x1, u1, w1, V
′
2), y2 ∈ Γ(y1, v1, z1, V

′
2) and

z ∈ Γ(w1, z1, V
′
2). Then G[{x1, u1, w1, x2, y1, v1, z1, y2, z}] contains a subgraph T isomorphic to

T5. Let U1 = V ′
1 −V 0

1 −V (T ), W = V 0
1 ∪V0, and U2 = (V ′

2 ∪W )−V (T ). Then |U1| = |U2| = m.

For the partition of U1 and U2 in all the cases discussed in Case 2, we let G′ = (V (G) −
V (T ), EG(U1, U2)) be the bipartite graph with partite sets U1 and U2. Similarly as in Case 1,

we can show that all the statements (i)-(v) hold. �

Let W1 = U1 ∩W and W2 = U2 ∩W . By (v) of Claim 3.2.3, we know that there are |W1|
vertex-disjoint 3-stars with centers in W1 and all other vertices in U2−W2−{x′

1, y
′
1, x

′
2, y

′
2}, and

|W2| vertex-disjoint 3-stars with centers in W2 and all other vertices in U1−W1−{x′
1, y

′
1, x

′
2, y

′
2},

and all these |W1|+ |W2| stars are vertex-disjoint. Let S be the union of the 3-stars with centers

in W2.

For any u, v ∈ U2 − W2, Γ(u, v, U1 − W1 − V (S) − {x′
1, x

′
2, y

′
1, y

′
2}) ≥ 3|W1|, and for any

u, v, w ∈ U1 −W1 − V (S), Γ(u, v, w, U2 − V (S) − {x′
1, x

′
2, y

′
1, y

′
2}) ≥ 4|W1|. By Lemma 3.2, we

can find a ladder L1 disjoint from the 3-stars in S with centers in W2 such that L1 is spanning

on W1, 4|W1| − 1 vertices from U2 −W2 − {x′
1, x

′
2, y

′
1, y

′
2}, and another 3|W1| − 1 vertices from

U1 −W1 − {x′
1, x

′
2, y

′
1, y

′
2}, if W1 6= ∅.

For any u, v ∈ U1 − W1, Γ(u, v, U2 − W2 − V (L1) − {x′
1, x

′
2, y

′
1, y

′
2}) ≥ 3|W2|, and for any

u, v, w ∈ U2 −W2, Γ(u, v, w, U1 −W1 − V (L1) − {x′
1, x

′
2, y

′
1, y

′
2}) ≥ 4|W2|. By Lemma 3.2, we

can find a ladder L2 disjoint from L1 such that L2 is spanning on W2, 4|W2| − 1 vertices from

U1 −V (L1)−{x′
1, x

′
2, y

′
1, y

′
2}, and another 3|W2| − 1 vertices from U2 −V (L1)−{x′

1, x
′
2, y

′
1, y

′
2},

if W2 6= ∅.
Denote a1ia2i and b1ib2i the first and last rungs of Li (if Li exists), respectively, where

a1i, b1i ∈ U1. As |U1| = |U2|, and we took 4|W1|+ 4|W2| − 2 vertices respectively from U1 and

U2 when constructing L1 and L2, we have |U1 − V (L1 ∪ L2)| = |U2 − V (L1 ∪ L2)|. Let

U ′
i = Ui − V (L1 ∪ L2), m′ = |U ′

1| = |U ′
2|, and G′′ = G′′(U ′

1 ∪ U ′
2, EG(U

′
1, U

′
2)).

Since |W | ≤ α2n, m ≥ (n− 9)/2, and n is sufficiently large, we have 1/n+ 7|W | ≤ 15α2m. As

δ(G′ −W ) ≥ (1− α1 − 2α2)m and α ≤ (1/17)3, we obtain the following:

δ(G′′) ≥ 7m′/8 + 1.

Let a′2i ∈ Γ(a1i, U
′
2), a

′
1i ∈ Γ(a2i, U

′
1) such that a′1ia

′
2i ∈ E(G); and b′2i ∈ Γ(b1i, U

′
2), b

′
1i ∈

Γ(b2i, U
′
1) such that b′1ib

′
2i ∈ E(G). We have the claim below.

Claim 3.2.4 The balanced bipartite graph G′′ contains three vertex-disjoint ladders Q1, Q2,

and Q3 spanning on V (G′′) such that the first rung of Q1 is x′
1x

′
2 and the last rung of Q1 is
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a′11a
′
21, the first rung of Q2 is b′11b

′
21 and the last rung of Q2 is a′12a

′
22, the first rung of Q3 is

b′12b
′
22 and the last rung of Q3 is y′1y

′
2.

Proof. Since δ(G′′) ≥ 7m′/8 + 1 > m′/2 + 6, G′′ has a perfect matching M containing

the following edges: x′
1x

′
2, a

′
11a

′
21, b

′
11b

′
21, a

′
12a

′
22, b

′
12b

′
22, y

′
1y

′
2. We identify a′11 and b′11, a

′
21 and

b′21, a
′
12 and b′12, and a′22 and b′22 as vertices called c′11, c

′
21, c

′
12, and c′22, respectively. Denote

G∗ = G∗(U∗
1 , U

∗
2 ) as the resulting graph and let c′11c

′
21, c

′
12c

′
22 ∈ E(G∗). Denote M ′ := M −

{a′11a′21, b′11b′21, a′12a′22, b′12b′22}∪{c′11c′21, c′12c′22}. Define an auxiliary graph H ′ on M ′ as follows.

If xy, uv ∈ M ′ − {c′11c′21, c′12c′22} with x, u ∈ U ′
1 then xy ∼H′ uv if and only if x ∼G′ v and

y ∼G′ u. For any pq ∈ M ′ − {c′11c′21, c′12c′22} with p ∈ U ′
2, pq ∼H′ c′11c

′
21 (resp. pq ∼H′ c′12c

′
22)

if and only if p ∼G′ a′11, b
′
11 and q ∼G′ a′21, b

′
21 (resp. p ∼G′ a′12, b

′
12 and q ∼G′ a′22, b

′
22). Notice

that there is a natural one-to-one correspondence between ladders with rungs in M ′ and paths

in H ′. Since δG∗(U∗
1 , U

∗
2 ), δG∗(U∗

2 , U
∗
1 ) ≥ 3m′/4 + 1, we get δ(H ′) ≥ m′/2 + 1. Hence H ′ has

a hamiltonian path starting with x′
1x

′
2, ending with y′1y

′
2, and having c′11c

′
21 and c′12c

′
22 as two

internal vertices. The path with the vertex c′11c
′
21 replaced by a′11a

′
21 and b′11b

′
21, and with the

vertex c′12c
′
22 replaced by a′12a

′
22 and b′12b

′
22 is corresponding to the required ladders in G′′. �

If T ∈ {T1, T2}, then
H = x1x2Q1L1Q2L2Q3y1y2 ∪ T

is a spanning Halin subgraph of G. Suppose now that T ∈ {T3, T4, T5} and z is the pendent

vertex. Then z ∈ V ′
1 ∪ V ′

2 − W by Claim 3.2.3. Suppose, w.l.o.g., that z ∈ V ′
2 − W . Then

by (iii) of Claim 3.2.3 and δ(V ′
2 , V

′
1) ≥ (1/2 − 2α1/3)n from (1), we have that degG(z, U

′
1) ≥

degG(z, V
′
1−V (L1∪L2)−V (T )) ≥ (1−α1−10α2)m > m/2+1. So z has a neighbor on each side

of the ladder Q1L1Q2L2Q3, which hasm vertices on each side, and each side has at most m/2+1

vertices from each partition of U ′
1 and U ′

2. Let H
′ be obtained from x1x2Q1L1Q2L2Q3y1y2 ∪ T

by suppressing the degree 2 vertex z. Then H ′ is a Halin graph such that there exists one side

of Q1L1Q2L2Q3 with each vertex on it as a degree 3 vertex on a underlying tree of H ′. Let z′

be a neighbor of z such that z′ has degree 3 in the underlying tree of H ′. Then

H = x1x2Q1L1Q2L2Q3y1y2 ∪ T ∪ {zz′},

is a spanning Halin subgraph of G.

3.3 Proof of Theorem 3.3

In this section, we prove Theorem 3.3. In the first subsection, we introduce the Regularity

Lemma, the Blow-up Lemma, and some related results. Then we show that G contains a

subgraph T isomorphic to T1 if n is even and to T2 if n is odd. By showing that G − V (T )

contains a spanning ladder L with its first rung adjacent to the head link of T and its last rung

adjacent to the tail link of T , we get a spanning Halin subgraph H of G formed by L ∪ T .

3.3.1 The Regularity Lemma and the Blow-up Lemma

For any two disjoint non-empty vertex-sets A and B of a graph G, the density of A and B is

the ratio d(A,B) := e(A,B)
|A|·|B| . Let ε and δ be two positive real numbers. The pair (A,B) is called

ε-regular if for every X ⊆ A and Y ⊆ B with |X | > ε|A| and |Y | > ε|B|, |d(X,Y )−d(A,B)| < ε

holds. In addition, if δ(A,B) > δ|B| and δ(B,A) > δ|A|, we say (A,B) an (ε, δ)-super regular

pair.
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Lemma 3.4 (Regularity lemma-Degree form [25]) For every ε > 0 there is an M = M(ε)

such that if G is any graph with n vertices and d ∈ [0, 1] is any real number, then there is a

partition of the vertex-set V (G) into l+1 clusters V0, V1, · · · , Vl, and there is a spanning subgraph

G′ ⊆ G with the following properties.

• l ≤ M ;

• |V0| ≤ εn, all clusters |Vi| = |Vj | ≤ ⌈εn⌉ for all 1 ≤ i 6= j ≤ l;

• degG′(v) > degG(v)− (d+ ε)n for all v ∈ V (G);

• e(G′[Vi]) = 0 for all i ≥ 1;

• in G′, all pairs (Vi, Vj) (1 ≤ i 6= j ≤ l) are ε-regular, each with a density either 0 or greater

than d.

Lemma 3.5 (Blow-up lemma [18]) For every δ,∆, c > 0, there exists an ε = ε(δ,∆, c) and

γ = γ(δ,∆, c) > 0 such that the following holds. Let (X,Y ) be an (ε, δ)-super-regular pair with

|X | = |Y | = N . If a bipartite graph H with ∆(H) ≤ ∆ can be embedded in KN,N by a function

φ, then H can be embedded in (X,Y ). Moreover, in each φ−1(X) and φ−1(Y ) (the inverse image

of X and Y , respectively), fix at most γN special vertices z, each of which is equipped with a

subset Sz of X or Y of size at least cN . The embedding of H into (X,Y ) exists even if we

restrict the image of z to be Sz for all special vertices z.

Besides the above two lemmas, we also need the two lemmas below regarding regular pairs.

Lemma 3.6 If (A,B) is an ε-regular pair with density d, then for any A′ ⊆ A with |A′| ≥ ε|A|,
there are at most ε|B| vertices b ∈ B such that deg(b, A′) < (d− ε)|A′|.

Lemma 3.7 (Slicing lemma) Let (A,B) be an ε-regular pair with density d, and for some

ν > ε, let A′ ⊆ A and B′ ⊆ B with |A′| ≥ ν|A|, |B′| ≥ ν|B|. Then (A′, B′) is an ε′-regular pair

of density d′, where ε′ = max{ε/ν, 2ε} and d′ > d− ε.

3.3.2 Finding subgraph T

Claim 3.3.1 Let n be a sufficient large integer and G an n-vertex graph with δ(G) ≥ (n+1)/2.

If ∆(G) ≤ n− 2, then G contains a subgraph T isomorphic to T1 if n is even and to T2 if n is

odd.

Proof. (The proof can be much easier if uses the assumption that G is not in Extremal

Case 2, but we show it here just using the conditions on minimum and maximum degrees.)

Suppose first that n is even. As ∆(G) ≤ n − 2, G has two vertices x1 and y such that x1y 6∈
E(G). Since δ(G) ≥ (n + 1)/2, there exists x ∈ Γ(x1, y). If G has no independent set of size

n/2− 1, we can find x2 ∈ Γ(x1, x)− {y} and y1, y2 ∈ Γ(y)− {x, x1, x2} such that y1y2 ∈ E(G).

Hence G[{x, y, x1, x2, y1, y2}] contains a subgraph T isomorphic to T1. So we assume G has an

independent set S of size n/2− 1. Then δ(G− S) ≥ 2 and δ(S, V (G)− S) = |V (G)| − |S|. Let
x1y1 and yy2 be two independent edges in G − S, and x, y1 be any two distinct vertices in S.

Then x, y1 ∈ Γ(x1, y1, y, y2) and G[{x, y, x1, x2, y1, y2}] contains a subgraph T isomorphic to T1.

Then assume that n is odd. Assume first that G has no independent set of size (n+1)/2−4.

We show in the first step that G contains a subgraph isomorphic to K−
4 (K4 with one edge

removed). Let yz ∈ E(G). As δ(G) ≥ (n + 1)/2, there exists y1 ∈ Γ(y, z). If there exists

y2 ∈ Γ(y, z) − {y1}, we are done. Otherwise, (Γ(y) − {y1, z}) ∩ (Γ(z) − {y1, y}) = ∅. As

δ(G) ≥ (n + 1)/2, y1 is adjacent to a vertex y2 ∈ Γ(y) ∪ Γ(z) − {y1, y, z}. Assume y2 ∈
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Γ(z) − {y1, y}. Then G[{y, y1, z, y2}] contains a copy of K−
4 . Choose x ∈ Γ(y) − {z, y1, y2}

and choose an edge x1x2 ∈ G[Γ(x) − {y, y1, y2, z}]. Then G[{y, y1, z, y2, x, x1, x2}] contains
a subgraph T isomorphic to T2. Let S be a maximum independent set of G. So we have

|S| ≥ (n+ 1)/2− 4. Let x, y1, z ∈ S. Then there exist an edge x1x2 such that x1, x2 ∈ Γ(x, z),

and y ∈ Γ(x, y1) − {x1, x2, z}. If |S| < (n+ 1)/2− 2, we can find y2 ∈ Γ(y, y1)− {x, x1, x2, z}.
Again, G[{y, y1, z, y2, x, x1, x2}] contains a subgraph T isomorphic to T2. So |S| ≥ (n+1)/2−2.

Assume G − S does not contain any independent set of size at least (n + 1)/2 − 6. For any

u, v, w ∈ S, Γ(u, v, w, V (G)−S) ≥ (n+1)/2− 4 by Lemma 3.3. Let x, y1, z ∈ S. As G−S does

not contain any independent set of size at least (n + 1)/2 − 6, there exist independent edges

x1x2, yy2 such that x1, x2, y, y2 ∈ Γ(x, z, y1, V (G)− S). Then G[{y, y1, z, y2, x, x1, x2}] contains
a subgraph T isomorphic to T2. So we assume that G−S contains an independent set of size at

least (n+ 1)/2− 6. We take Q to be a maximum one. As δ(G− S) ≥ 2 and Q is independent,

there exist two vertices x1, y ∈ V (G) − S −Q such that both of them have at least (n + 1)/13

neighbors in Q. Note that δ(S, V (G) − S) ≥ (n + 1)/2 ≥ |V (G) − S| − 1 and S is a maximum

independent set in G. So there exist x, z ∈ Γ(x1, S) and y1 ∈ Γ(y, S)− {x, z}. As both x1 and

y have at least (n + 1)/13 neighbors in Q and δ(S, V (G) − S) ≥ (n + 1)/2 ≥ |V (G) − S| − 1,

there exist x2 ∈ Γ(x, x1, z, Q) and y2 ∈ Γ(y, y1, Q)− {x2}. So G[{y, y1, z, y2, x, x1, x2}] contains
a subgraph T isomorphic to T2. �

Let T be a subgraph of G as given by Claim 3.3.1. Suppose the head link of T is x1x2 and

the tail link of T is y1y2. Let G′ = G − V (T ). We show in next section that G′ contains a

spanning ladder with its first rung being adjacent to x1x2 and its last rung being adjacent to

y1y2. Let n
′ = |V (G′)|. Then we have δ(G′) ≥ (n+ 1)/2− 7 ≥ n′/2− 4 ≥ (1/2− β)n′, where β

is the parameter defined in the two extremal cases.

3.3.3 Finding a spanning ladder of G′ with prescribed end rungs

Theorem 3.4 Let n′ be a sufficiently large even integer and G′ an n′-vertex subgraph of G

obtained by removing vertices in T , where T ∈ {T1, T2} has head link x1x2 and tail link y1y2.

Suppose that δ(G′) ≥ (1/2− β)n′ and G = G[V (G′) ∪ V (T )] is in Non-extremal Case, then G′

contains a spanning ladder with its first rung adjacent to x1x2 and its last rung adjacent to y1y2.

Proof. We fix the following sequence of parameters

0 < ε ≪ d ≪ β ≪ 1

and specify their dependence as the proof proceeds.

Let β be the parameter defined in the two extremal cases. Then we choose d ≪ β and choose

ε =
1

4
ǫ(d/2, 3, d/4)

following the definition of ǫ in the Blow-up Lemma.

Applying the Regularity Lemma to G′ with parameters ε and d, we obtain a partition of

V (G′) into l+1 clusters V0, V1, · · · , Vl for some l ≤ M ≤ M(ε), and a spanning subgraph G′′ of

G′ with all described properties in the Regularity Lemma. In particular, for all v ∈ V (G′),

degG′′(v) > degG′(v)− (d+ ε)n′ ≥ (1/2− β − ε− d)n′ ≥ (1/2− 2β)n′ (3)

provided that ε+ d ≤ β. On the other hand,

e(G′′) ≥ e(G′)− (d+ ε)

2
(n′)2 > e(G′)− d(n′)2
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by ε < d.

We further assume that l = 2k is even; otherwise, we eliminate the last cluster Vl by removing

all the vertices in this cluster to V0. As a result, |V0| ≤ 2εn′, and

(1− 2ε)n′ ≤ lN = 2kN ≤ n′, (4)

where N = |Vi| for 1 ≤ i ≤ l.

For each pair i and j with 1 ≤ i 6= j ≤ l, we write Vi ∼ Vj if d(Vi, Vj) ≥ d. As in

other applications of the Regularity Lemma, we consider the reduced graph Gr, whose vertex

set is {1, 2, · · · , l} and two vertices i and j are adjacent if and only if Vi ∼ Vj . From δ(G′′) >

(1/2− 2β)n′, we claim that δ(Gr) ≥ (1/2− 2β)l. Suppose not, and let i0 ∈ V (Gr) be a vertex

with degGr(i0) < (1/2− 2β)l. Let Vi0 be the cluster in G corresponding to i0. Then we have

(1/2− β)n′|Vi0 | ≤ |EG′(Vi0 , V − Vi0)| < (1/2− 2β)lN |Vi0 |+ 2εn′|Vi0 | < (1/2− β)n′|Vi0 |.

This gives a contradiction by lN ≤ n′ from inequality (4).

Let A be a cluster of G′′. We say A is an (ε, d)-cluster if for any distinct cluster B of G′′

with d(A,B) > 0, (A,B) is an ε-regular pair with density at least d. Let x ∈ V (G′) be a vertex

and A an (ε, d)-cluster. We say x is typical to A if deg(x,A) ≥ (d− ε)|A|, and in this case, we

write x ∼ A.

Claim 3.3.2 Each vertex in {x1, x2, y1, y2} is typical to at least (1/2−2β)l clusters in {V1, · · · , Vl}.

Proof. Suppose on the contrary that there exists x ∈ {x1, x2, y2, y2} such that x is typical

to less than (1/2− 2β)l clusters in {V1, · · · , Vl}. Then we have degG′(x) < (1/2− 2β)lN +(d+

ε)n′ ≤ (1/2− β)n′ by lN ≤ n′ and d+ ε ≤ β. �

Let x ∈ V (G′) be a vertex. Denote by Vx the set of clusters to which x typical.

Claim 3.3.3 There exist Vx1
∈ Vx1

and Vx2
∈ Vx2

such that d(Vx1
, Vx2

) ≥ d.

Proof. We show the claim by considering two cases based on the size of |Vx1
∩ Vx2

|.
Case 1. |Vx1

∩ Vx2
| ≤ 2βl.

Then we have |Vx1
−Vx2

| ≥ (1/2−4β)l and |Vx2
−Vx1

| ≥ (1/2−4β)l. We conclude that there

is an edge between Vx1
−Vx2

and Vx2
−Vx1

in Gr. For otherwise, let U be the union of clusters

in Vx1
∩Vx2

, W = V0∪U ∪V (T ). Let V1 be the set of vertices contained in clusters in Vx1
−Vx2

,

and V2 be the set of vertices contained in clusters in Vx1
− Vx2

. Then V1 and V2 is a partition

of V (G)−W . Furthermore, |W | ≤ 5βn, e(V1, V2) ≤ (d+ ε)n′|V1| ≤ (d+ ε)n′(1 + 4β)lN ≤ βn2,

and δ(G[Vi]) ≥ δ(G) − 7 − |W | − (d + ε)n′ ≥ δ(G) − |W | − βn. These imply that W is an

approximate vertex-cut of parameter β with size at most 5βn, implying that G is in Extremal

Case 1.

Case 2. |Vx1
∩ Vx2

| > 2βl.

We may assume that Vx1
∩ Vx2

is an independent set in Gr. For otherwise, we are done by

finding an edge within Vx1
∩ Vx2

. Also we may assume that EGr
(Vx1

∩ Vx2
,Vx1

− Vx2
) = ∅ and

EGr
(Vx1

∩Vx2
,Vx2

−Vx1
) = ∅. Since δ(Gr) ≥ (1/2− 2β)l and δGr

(Vx1
∩Vx2

,Vx1
∪Vx2

) = 0, we

know that l−|Vx1
∪Vx2

| ≥ (1/2−2β)l. Hence, |Vx1
∪Vx2

| = |Vx1
|+|Vx2

|−|Vx1
∩Vx2

| ≤ (1/2+2β)l.

This gives that |Vx1
∩ Vx2

| ≥ |Vx1
| + |Vx2

| − (1/2 + 2β)l ≥ (1/2 − 2β)l + (1/2 − 2β)l − (1/2 +

2β)l ≥ (1/2 − 6β)l. Let U be the union of clusters in Vx1
∩ Vx2

. Then |U| ≥ (1/2 − 7β)n and

∆(G[U ]) ≤ (d+ ε)n′ ≤ βn. This shows that G is in Extremal Case 2. �

Similarly, we have the following claim:
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Claim 3.3.4 There exist Vy1
∈ Vy1

−{Vx1
, Vx2

} and Vy2
∈ Vy2

−{Vx1
, Vx2

} such that d(Vy1
, Vy2

) ≥
d.

Claim 3.3.5 The reduced graph Gr has a hamiltonian path X1Y1 · · ·XkYk such that {X1, Y1} =

{Vx1
, Vx2

} and {Xk, Yk} = {Vy1
, Vy2

}.

Proof. We contract the edges Vx1
Vx2

and Vy1
Vy2

in Gr. Denote the two new vertices as

V ′
x and V ′

y respectively, and denote the resulting graph as G′
r. Then we show that G′

r contains

a hamiltonian (V ′
x, V

′
y)-path. This path is corresponding to a required hamiltonian path in Gr.

To show G′
r has a hamiltonian (V ′

x, V
′
y)-path, we need the following generalized version of

a result due to Nash-Williams [21] : Let Q be a 2-connected graph of order m. If δ(Q) ≥
max{(m + 2)/3 + 1, α(Q) + 1}, then Q is hamiltonian connected, where α(Q) is the size of a

largest independent set of Q.

We claim that G′
r is 2βl-connected. Otherwise, let S be a vertex-cut of G′

r with |S| < 2βl and

S the vertex set corresponding to S in G. Since δ(G′
r) ≥ (1/2− 2β)l− 2 and |S| < 2βl, we know

that G′
r−S has exactly two components. Let W = S∪V0∪V (T ), V1 the set of vertices contained

in clusters corresponding to vertices in one component of G′
r − S, and V2 = V (G) − V1 − W .

Then it is easy to check that e(V1, V2) ≤ βn2 and δ(G[Vi]) ≥ δ(G) − |W | − βn. Hence W is an

approximate vertex-cut of parameter β with size at most 5βn, showing that G is in Extremal

Case 1. Since n′ = Nl + |V0| ≤ (l + 2)εn′, we have that l ≥ 1/ε − 2 ≥ 1/β. Hence, G′
r is

2-connected. As G is not in Extremal Case 2, α(G′
r) ≤ (1/2 − 7β)l. By δ(Gr) ≥ (1/2 − 2β)l,

we have δ(G′
r) ≥ (1/2− 2β)l − 2 ≥ max{(l+ 2)/3 + 1, (1/2− 7β)l+ 1}. Thus, by the result on

hamiltonian connectedness given above, we know that G′
r contains a hamiltonian (V ′

x, V
′
y)-path.

�

Claim 3.3.6 For each 1 ≤ i ≤ k, there exist X ′
i ⊆ Xi and Y ′

i ⊆ Yi such that each of the

following holds:

(1) |X ′
1| ≥ (1 − ε)|X1| − 1, |Y ′

k| ≥ (1 − ε)|Yk| − 1, |Y ′
1 | ≥ (1 − ε)|Y1|, |X ′

k| ≥ (1 − ε)|Xk|, and
|X ′

i| ≥ (1− ε)|Xi|, 2 ≤ i ≤ k − 1;

(2) (X ′
i, Y

′
i ) is (2ε, d− 3ε)-super-regular with density at least d− ε;

(3) |Y ′
1 | = |X ′

1|+ 1, |X ′
k| = |Y ′

k|+ 1, and |X ′
i| = |Y ′

i |, 2 ≤ i ≤ k − 1; and

(4) for any A,B ∈ {X ′
1, Y

′
1 , · · · , X ′

k, Y
′
k}, if d(A,B) > 0, then (A,B) is 2ε-regular with density

at least d− ε. Consequently, each A is a (2ε, d− ε) cluster.

Proof. For each 1 ≤ i ≤ k, let

X ′′
i = {x ∈ Xi | deg(x, Yi) ≥ (d− ε)N}, and

Y ′′
i = {y ∈ Yi | deg(y,Xi) ≥ (d− ε)N}.

If necessary, we either take a subset X ′
i of X

′′
i or take a subset Y ′

i of Y ′′
i such that |Y ′

1 | = |X ′
1|+1,

|X ′
k| = |Y ′

k| + 1, and |X ′
i| = |Y ′

i | for 2 ≤ i ≤ k − 1. Since (Xi, Yi) is ε-regular, we have

|X ′′
i |, |Y ′′

i | ≥ (1−ε)N . This gives that |X ′
1|, |Y ′

k| ≥ (1−ε)N−1, |Y ′
1 | ≥ (1−ε)N , |X ′

k| ≥ (1−ε)N ,

and |X ′
i| = |Y ′

i | ≥ (1 − ε)N for 2 ≤ i ≤ k − 1. As a result, we have deg(x, Y ′
i ) ≥ (d − 2ε)N

for each x ∈ X ′
i and deg(y,X ′

i) ≥ (d − 2ε)N − 1 ≥ (d − 3ε)N for each y ∈ Y ′
i . By the

Slicing lemma (Lemma 3.7), (X ′
i, Y

′
i ) is 2ε-regular with density at least d− ε. Hence (X ′

i, Y
′
i ) is

(2ε, d − 3ε)-super-regular for each 1 ≤ i ≤ k. The last assertion is again an application of the

Slicing lemma. �
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For 1 ≤ i ≤ k, we call each X ′
i, Y

′
i a super-regularized cluster (sr-cluster), and call X ′

i

and Y ′
i partners of each other and write P (X ′

i) = Y ′
i and P (Y ′

i ) = X ′
i. Denote R = V0 ∪

(
k
⋃

i=1

((Xi ∪ Yi) − (X ′
i ∪ Y ′

i ))). Since |(Xi ∪ Yi) − (X ′
i ∪ Y ′

i )| ≤ 2εN for 2 ≤ i ≤ k − 1 and

|(X1∪Y1)− (X ′
1∪Y ′

1 )|, |(Xk∪Yk)− (X ′
k ∪Y ′

k)| ≤ 2εN+1, we have |R| ≤ 2εn+2kεN+2 ≤ 3εn′.

As n′ is even and |X ′
1|+ |Y ′

1 |+ · · ·+ |X ′
k|+ |Y ′

k | is even, we know |R| is even. We arbitrarily group

vertices in R into |R|/2 pairs. Given two vertices u, v ∈ R, we define a (u, v)-chain of length 2t

as distinct sr-clusters A1, B1, · · · , At, Bt such that u ∼ A1 ∼ B1 ∼ · · · ∼ At ∼ Bt ∼ v and each

Aj and Bj are partners, in other words, {Aj , Bj} = {X ′
ij , Y

′
ij} for some ij ∈ {1, · · · , k}. Recall

here u ∼ A1 means that deg(u,A1) ≥ (d − 3ε)|A1|, and A1 ∼ B1 means that the two vertices

corresponding to A1 and B1 are adjacent in Gr. We call such a chain of length 2t a 2t-chain.

Claim 3.3.7 For each pair (u, v) in R, we can find a (u, v)-chain of length at most 4 such that

every sr-cluster is contained in at most d2N/5 chains.

Proof. Suppose we have found chains for the first m < 2εn′ pairs of vertices in R such

that no sr-cluster is contained in more than d2N/5 chains. Let Ω be the set of all sr-clusters

that are contained exactly in d2N/5 chains. Then

d2N

5
|Ω| ≤ 4m < 8εn′ ≤ 8ε

2kN

1− 2ε
,

where the last inequality follows from (4). Therefore,

|Ω| ≤ 80kε

d2(1− 2ε)
≤ 80lε

d2
≤ βl/2,

provided that 1− 2ε ≥ 1/2 and 80ε ≤ d2β/2.

Consider now a pair (w, z) of vertices in R which does not have a chain found so far, we want

to find a (w, z)-chain using sr-clusters not in Ω. Let U be the set of all sr-clusters to which w

typical but not in Ω, and let V be the set of all sr-clusters to which z typical but not in Ω. We

claim that |U|, |V| ≥ (1/2− 2β)l. To see this, we first observe that any vertex x ∈ R is typical

to at least (1/2− 3β/2)l sr-clusters. For instead,

(1/2− β)n′ ≤ degG′(x) < (1/2− 3β/2)lN + (d− 3ε)lN + 3εn′,

≤ (1/2− 3β/2 + d)n′

< (1/2− β)n′ (provided that d < β/2 ),

showing a contradiction. Since |Ω| ≤ βl/2, we have |U|, |V| ≥ (1/2− 2β)l. Let P (U) and P (V)
be the set of the partners of clusters in U and V , respectively. By the definition of the chains,

a cluster A ∈ Ω if and only its partner P (A) ∈ Ω. Hence, (P (U) ∪ P (V)) ∩ Ω = ∅. Notice

also that each cluster has a unique partner, and so we have |P (U)| = |U| ≥ (1/2 − 2β)l and

|P (V)| = |V| ≥ (1/2− 2β)l.

If EGr
(P (U), P (V)) 6= ∅, then there exist two adjacent clusters B1 ∈ P (U), A2 ∈ P (V). If

B1 and A2 are partners of each other, then w ∼ A2 ∼ B1 ∼ z gives a (w, z)-chain of length 2.

Otherwise, assume A1 = P (B1) and B2 = P (A2), then w ∼ A1 ∼ B1 ∼ A2 ∼ B2 ∼ z gives a

(w, z)-chain of length 4. Hence we assume that EGr
(P (U), P (V)) = ∅. We may assume that

P (U)∩P (V) 6= ∅. Otherwise, let S be the union of clusters contained in V (Gr)−(P (U)∪P (V)).
Then S∪R∪V (T ) with |S∪R∪V (T )| ≤ 4βn′+3εn′+7 ≤ 5βn (provided that 3ε+7/n′ < β) is an

approximate vertex-cut of G, implying that G is in Extremal Case 1. As EGr
(P (U), P (V)) = ∅,

any cluster in P (U)∩P (V) is adjacent to at least (1/2− 2β)l clusters in V (Gr)− (P (U)∪P (V))
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by δ(Gr) ≥ (1/2−2β)l. This implies that |P (U)∪P (V)| ≤ (1/2+2β)l, and thus |P (U)∩P (V)| ≥
|P (U)|+ |P (V)| − |P (U)∪P (V)| ≥ (1/2− 6β)l. Then P (U)∩P (V) is corresponding to a subset

V1 of V (G) such that |V1| ≥ (1/2− 6β)lN ≥ (1/2− 7β)n and ∆(G[V1]) ≤ (d+ ε)n′ ≤ βn. This

implies that G is in Extremal Case 2, showing a contradiction. �

By Claim 3.3.7, each vertex in R is contained in a unique chain of length at most 4. Let Z

be an sr-cluster, and u ∈ R be a vertex. We say u and Z are chain-adjacent to each other if in

the chain which contains u, Z appears next to u. For each sr-cluster Z ∈ {X ′
1, Y

′
1 , · · · , X ′

k, Y
′
k},

let R(Z) denote the set of vertices in R such that each of the vertices is chain-adjacent to Z.

Let R4(Z) = {u ∈ R(Z) |u is contained in a 4-chain}, and let S4(Z) denote the set of sr-clusters

distinct from Z such that each of them is adjacent to the partner P (Z) of Z in a 4-chain which

contains Z. That is, for each A ∈ S4(Z), there exists u ∈ R4(Z) and v ∈ R− R4(Z) such that

u ∼ Z ∼ P (Z) ∼ A ∼ P (A) ∼ v is a 4-chain. If Z ∈ {X ′
1, · · · , X ′

k}, then for each sr-cluster

A ∈ S4(Z), let c(A) denote the number of 4-chains which contains Z ∼ P (Z) ∼ A ∼ P (A) as

a sequence. For each A ∈ S4(Z), choose c(A) vertices in A such that each of them has at least

(d − 3ε)|Z| > 3d2N/5 neighbors in P (Z). (Since (P (Z), A) is 2ε-regular with density at least

d−ε, we know that there are at least (1−2ε)|A| vertices in A with this property by Lemma 3.6.)

Let R′(Z) be the union of R(Z) and the set of vertices chosen from A ∈ S4(P (Z)) above, and

let

ω(A) =
∑

A∈S4(Z), Z∈{X′

1
,··· ,X′

k
}

c(A).

Note that by the definitions, R′(Z) is only defined for sr-clusters Z ∈ {Y ′
1 , · · · , Y ′

k}, and ω(A)

is defined only for sr-clusters A ∈ {X ′
1, · · · , X ′

k}.

Claim 3.3.8 For each i = 1, 2, · · · , k, each of the following holds.

(a) |R(X ′
i)| ≤ d2N/5 and |R′(Y ′

i )| ≤ d2N/5.

(b) |R(X ′
i)−R4(X

′
i)| = |R(Y ′

i )−R4(Y
′
i )|.

(c) ω(X ′
i) = |R4(Y

′
i )|.

(d) |R′(Y ′
i )−R(Y ′

i )| = |R4(X
′
i)|.

Proof. By Claim 3.3.7, each sr-cluster is contained in at most d2N/5 chains, and a chain

contains X ′
i if and only if it also contains Y ′

i by its definition. Since both |R(X ′
i)| and |R′(Y ′

i )|
are bounded above by the number of chains which contain them, we have that |R(X ′

i)| ≤ d2N/5

and |R′(Y ′
i )| ≤ d2N/5. By the definition of 2-chains, a vertex in R is chain-adjacent to an

sr-cluster A in a 2-chain if and only if there exists another vertex in R which is chain-adjacent

to the partner P (A) of A. Thus |R(X ′
i) − R4(X

′
i)| = |R(Y ′

i ) − R4(Y
′
i )|. By the definition,

if X ′
i ∈ S4(Z) for some sr-cluster Z, then c(X ′

i) is the number of 4-chains which contains

Y ′
i ∼ X ′

i ∼ P (Z) ∼ Z as a sequence. All of such 4-chains is just the set of 4-chains in which Y ′
i

is chain-adjacent to a vertex in R. Since each vertex in R is contained in a unique chain, we then

have that ω(X ′
i) = |R4(Y

′
i )|. Since each vertex in R′(Y ′

i )−R(Y ′
i ) is corresponding to a 4-chain

in which X ′
i is chain-adjacent to a vertex in R, we have that |R′(Y ′

i )−R(Y ′
i )| = |R4(X

′
i)|. �

Claim 3.3.9 For each i = 1, 2, · · · , k, there exist vertex-disjoint ladders Li
x, L

i
y such that

(a) R(X ′
i) ⊆ V (Li

x) ⊆ R(X ′
i) ∪X ′

i ∪ Y ′
i and R′(Y ′

i ) ⊆ V (Li
y) ⊆ X ′

i ∪ Y ′
i ∪R′(Y ′

i );

(b) |(V (Li
x)∪V (Li

y))∩X ′
i | = 4|R(X ′

i)|+3|R(Y ′
i )|+3|R4(X

′
i)|−2 and |(V (Li

x)∪V (Li
y))∩Y ′

i | =
4|R(Y ′

i )|+ 4|R4(X
′
i)|+ 3|R(X ′

i)| − 2; and

(c) the vertices on the first and last rungs of each of Li
x and Li

y are contained in X ′
i ∪ Y ′

i .
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Proof. Notice that by Claim 3.3.6, (X ′
i, Y

′
i ) is 2ε-regular with density at least d − ε. Let

R(X ′
i) = {x1, · · · , xr}. For each j, 1 ≤ j ≤ r, since |Γ(xj , X

′
i)| ≥ (d − 3ε)|X ′

i| > 2ε|X ′
i|, by

Lemma 3.6, there exists a vertex set Bj ⊆ Y ′
i with |Bj | ≥ (1−2ε)|Y ′

i | such that for each b1 ∈ Bj ,

deg(b1,Γ(xj , X
′
i)) ≥ (d−3ε)|Γ(xj , X

′
i)| > 4|R(X ′

i)|. If r ≥ 2, for j = 1, · · · , r−1, by Lemma 3.6,

there also exists a vertex set Bj,j+1 ⊆ Y ′
i with |Bj,j+1| ≥ (1 − 4ε)|Y ′

i | such that for each b2 ∈
Bj,j+1, we have deg(b2,Γ(xj , X

′
i)) ≥ (d − 3ε)|Γ(xj , X

′
i)| > 4|R(X ′

i)| and deg(b2,Γ(xj+1, X
′
i)) ≥

(d−3ε)|Γ(xj+1, X
′
i)| > 4|R(X ′

i)|. When r ≥ 2, since |Bj |, |Bj,j+1|, |Bj+1| ≥ (d−3ε)|Y ′
i | > 2ε|Y ′

i |,
there is a set A ⊆ X ′

i with |A| ≥ (1 − 6ε)|X ′
i| ≥ |R(X ′

i)| such that for each a ∈ A, deg(a,Bj) ≥
(d − 3ε)|Bj|, deg(a,Bj,j+1) ≥ (d − 3ε)|Bj,j+1| and deg(a,Bj+1) ≥ (d − 3ε)|Bj+1|. Notice that

(d−3ε)|Bj |, (d−3ε)|Bj,j+1|, (d−3ε)|Bj+1| ≥ (d−3ε)(1−4ε)|Y ′
i | > 3|R(X ′

i)|. Hence we can choose

distinct vertices u1, u2, · · · , ur−1 ∈ A such that deg(uj, Bj), deg(uj, Bj,j+1), deg(uj, Bj+1) ≥
3|R(X ′

i)|. Then we can choose distinct vertices yj23 ∈ Γ(uj , Bj), zj ∈ Γ(uj, Bj,j+1) and yj+1
12 ∈

Γ(uj , Bj+1) for each j, and choose distinct and unchosen vertices y112 ∈ B1 and yr23 ∈ Br. Finally,

as for each vertex b1 ∈ Bj , we have deg(b1,Γ(xj , X
′
i)) > 4|R(X ′

i)| and for each vertex b2 ∈
Bj,j+1, we have deg(b2,Γ(xj , X

′
i)), deg(b2,Γ(xj+1, X

′
i)) > 4|R(X ′

i)|, we can choose xj1, xj2, xj3 ∈
Γ(xj , X

′
i) − {u1, · · · , ur−1} such that yj12 ∈ Γ(xj1, xj2, Y

′
i ), yj23 ∈ Γ(xj2, xj3, Y

′
i ), and zj ∈

Γ(xi3, xi+1,1, Y
′
i ). (When i ≥ 2, we choose all these vertices such that they are not used by

existing ladders. The possibility of doing this is guaranteed by the degree conditions and the

small sizes of the existing ladders.) Let Li
x be the graph with

V (Li
x) = R(X ′

i) ∪ {xi1, xi2, xi3, y
i
12, y

i
23, zi, ui, xr1, xr2, xr3, y

r
12, y

r
23 | 1 ≤ i ≤ r − 1} and

E(Li
x) consisting of the edges xrxr1, xrxr2, xrxr3, y

r
12xr1, y

r
12xr2, y

r
23xr2, y

r
23xr3 and the edges

indicated below for each 1 ≤ i ≤ r − 1:

xi ∼ xi1, xi2, xi3; y
i
12 ∼ xi1, xi2; y

i
23 ∼ xi2, xi3; zi ∼ xi3, xi+1,1; ui ∼ xi3, xi+1,1, zi.

It is easy to check that Li
x is a ladder spanning on R(X ′

i), 4|R(X ′
i)| − 1 vertices from X ′

i and

3|R(X ′
i)|−1 vertices from Y ′

i . Similarly, we can find a ladder Li
y spanning on R′(Y ′

i ), 4|R′(Y ′
i )|−1

vertices from Y ′
i and 3|R′(Y ′

i )| − 1 vertices from X ′
i. The constructions of ladders Li

x and Li
y

verify both of statements (a) and (c). The statement (b) is seen by the construction of the

ladders and (d) of Claim 3.3.8 which says that |R′(Y ′
i )| = |R(Y ′

i )|+ |R4(X
′
i)|. �

For each i = 1, 2, · · · , k− 1, let X∗∗
i = X ′

i −V (
⋃k

i=1(L
i
x∪Li

y)) and Y ∗∗
i = Y ′

i −V (
⋃k

i=1(L
i
x∪

Li
y)). Using Lemma 3.6, for i ∈ {1, · · · , k − 1}, choose y∗i ∈ Y ∗∗

i such that |Ai+1| ≥ dN/4,

where Ai+1 := X∗∗
i+1 ∩ Γ(y∗i ). This is possible, as (Y

∗∗
i , X∗∗

i+1) is 4ε-regular with density at least

d − 3ε. (Applying Slicing lemma based on (Y ′
i , X

′
i+1).) Similarly, choose x∗

i+1 ∈ Ai+1 such

that |Di| ≥ dN/4, where Di := Y ∗∗
i ∩ Γ(x∗

i+1). Let S = {y∗i , x∗
i+1 | 1 ≤ i ≤ k − 1}, and let

X∗
i = X∗∗

i − S and Y ∗
i = Y ∗∗

i − S. We have the following holds.

Claim 3.3.10 For each i = 1, 2, · · · , k, |X∗
i | = |Y ∗

i | and (X∗
i , Y

∗
i ) is (4ε, d/2)-super-regular.

Proof. We show that |X∗
i | = |Y ∗

i | for each i, 1 ≤ i ≤ k. Since |Y ′
1 | = |X ′

1| + 1, |X ′
k| =

|Y ′
k|+1, and |X ′

i| = |Y ′
i | for 2 ≤ i ≤ k−1, and |X∗∗

1 | = |X∗
1 |, |Y ∗∗

k | = |Y ∗
k |, and |X∗∗

i | = |X∗
i |−1,

|Y ∗∗
j | = |Y ∗

j | − 1 for 2 ≤ i ≤ k, 1 ≤ j ≤ k− 1, it suffices to show that |X ′
i ∩V (

⋃k
i=1(L

i
x ∪Li

y))| =
|Y ′

i ∩ V (
⋃k

i=1(L
i
x ∪ Li

y))|. This is clear by (b) of Claim 3.3.9 and Claim 3.3.8. As

|X ′
i ∩ V (

⋃k
i=1(L

i
x ∪ Li

y))| = 4|R(X ′
i)|+ 3|R(Y ′

i )|+ 3|R4(X
′
i)| − 2 + ω(X ′

i)

= 4|R(X ′
i)−R4(X

′
i)|+ 3|R(Y ′

i )−R4(Y
′
i )|+ 7|R4(X

′
i)|+ 3|R4(Y

′
i )| − 2 + ω(X ′

i)

= 7|R(X ′
i)−R4(X

′
i)|+ 7|R4(X

′
i)|+ 4|R4(Y

′
i )| − 2,
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and

|Y ′
i ∩ V (

⋃k
i=1(L

i
x ∪ Li

y))| = 3|R(X ′
i)|+ 4|R(Y ′

i )|+ 4|R4(X
′
i)| − 2

= 3|R(X ′
i)−R4(X

′
i)|+ 4|R(Y ′

i )−R4(Y
′
i )|+ 7|R4(X

′
i)|+ 4|R4(Y

′
i )| − 2

= 7|R(X ′
i)−R4(X

′
i)|+ 7|R4(X

′
i)|+ 4|R4(Y

′
i )| − 2.

Since |R(X ′
i)|, |R′(Y ′

i )| ≤ d2N/5 for each i, by the first part of argument, |X ′
i ∩V (

⋃k
i=1(L

i
x∪

Li
y))| ≤ 4|R(X ′

i)| + 4|R′(Y ′
i )| − 2 ≤ 2d2N − 2 and |Y ′

i ∩ V (
⋃k

i=1(L
i
x ∪ Li

y))| ≤ 4|R(X ′
i)| +

4|R′(Y ′
i )| − 2 ≤ 2d2N − 2. Thus |X∗

i |, |Y ∗
i | ≥ (1− ε− 2d2)N . As ε, d ≪ 1, we can assume that

1− ε− 2d2 < 1/2. Thus, by Slicing lemma based on the 2ε-regular pair (X ′
i, Y

′
i ), we know that

(X∗
i , Y

∗
i ) is 4ε-regular. Recall from Claim 3.3.6 that (X ′

i, Y
′
i ) is (2ε, d − 3ε)-super-regular, we

know that for each x ∈ X∗
i , deg(x, Y

∗
i ) ≥ (d − 3ε− 2d2)|Y ∗

i | > d|Y ∗
i |/2. Similarly, we have for

each y ∈ Y ∗
i , deg(y,X

∗
i ) ≥ d|X∗

i |/2. Thus (X∗
i , Y

∗
i ) is (4ε, d/2)-super-regular. �

For each i = 1, 2, · · · , k − 1, now set Bi+1 := Y ∗
i+1 ∩ Γ(x∗

i+1) and Ci := X∗
i ∩ Γ(y∗i ).

Since (X∗
i , Y

∗
i ) is (4ε, d/2)-super-regular, we have |Bi|, |Ci| ≥ d|X∗

i |/2 > d|X∗
i |/4. Recall from

Claim 3.3.5 that {X1, Y1} = {Vx1
, Vx2

} and {Xk, Yk} = {Vy1
, Vy2

}. We assume, w.l.o.g., that

X1 = Vx1
and Xk = Vy1

. Let A1 = X∗
1 ∩ Γ(x1), B1 = Y ∗

1 ∩ Γ(x2), Ck = X∗
k ∩ Γ(y1), and Dk =

Y ∗
k ∩Γ(y2). Since deg(x1, X1) ≥ (d−ε)N , we have deg(x1, X

∗
1 ) ≥ (d−ε−2ε−2d2)N ≥ d|X∗

1 |/4,
and thus |A1| ≥ d|X∗

1 |/4. Similarly, we have |B1|, |Ck|, |Dk| ≥ d|X∗
1 |/4. For each 1 ≤ i ≤ k,

we assume that Li
x = ai1b

i
1 − Li

x − ci1d
i
1 and Li

y = ai2b
i
2 − Li

y − ci2d
i
2, where aij , c

i
j ∈ Y ′

i ⊆ Yi

and bij, d
i
j ∈ X ′

i ⊆ Xi for j = 1, 2. For j = 1, 2, let Ai
j = X∗

i ∩ Γ(aij), Ci
j = X∗

i ∩ Γ(cij),

Bi
j = Y ∗

i ∩ Γ(bij), and Di
j = Y ∗

i ∩ Γ(dij). Since (X ′
i, Y

′
i ) is (2ε, d− 3ε)-super-regular, for j = 1, 2,

we have |Γ(aij , X ′
i)|, |Γ(cij , X ′

i)| ≥ (d − 3ε)|X ′
i| and |Γ(bij , Y ′

i )|, |Γ(dij , Y ′
i )| ≥ (d − 3ε)|Y ′

i |. Thus,

we have |Ai
j |, |Bi

j |, |Ci
j |, |Di

j| ≥ (d− 3ε)|X ′
i| − 2d2N ≥ d|X∗

i |/4 = d|Y ∗
i |/4.

We now apply the Blow-up lemma on (X∗
i , Y

∗
i ) to find a spanning ladder Li with its first and

last rungs being contained in Ai ×Bi and Ci ×Di, respectively, and for j = 1, 2, its (2j)-th and

(2j + 1)-th rungs being contained in Ai
j ×Bi

j and Ci
j ×Di

j , respectively. We can then insert Li
x

between the 2nd and 3rd rungs of Li and Li
y between the 4th and 5th rungs of Li to obtained a

ladder Li spanning on Xi ∪ Yi − S. Finally, L1y∗1x
∗
2L2 · · · y∗k−1x

∗
kLk is a spanning ladder of G′

with its first rung adjacent to x1x2 and its last rung adjacent to y1y2.

The proof is now complete. �
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