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STABILITY OF NONLOCAL DIRICHLET INTEGRALS AND

IMPLICATIONS FOR PERIDYNAMIC CORRESPONDENCE

MATERIAL MODELING∗

QIANG DU† AND XIAOCHUAN TIAN‡

Abstract. Nonlocal gradient operators are basic elements of nonlocal vector calculus that play
important roles in nonlocal modeling and analysis. In this work, we extend earlier analysis on nonlocal
gradient operators. In particular, we study a nonlocal Dirichlet integral that is given by a quadratic
energy functional based on nonlocal gradients. Our main finding, which differs from claims made
in previous studies, is that the coercivity and stability of this nonlocal continuum energy functional
may hold for some properly chosen nonlocal interaction kernels but may fail for some other ones.
This can be significant for possible applications of nonlocal gradient operators in various nonlocal
models. In particular, we discuss some important implications for the peridynamic correspondence
material models.

Key words. Nonlocal gradient, nonlocal models, peridynamics, elasticity, constitutive relation,
stability, coercivity
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1. Introduction. Recently, there have been much interests developing nonlocal
models for a variety of problems arising in physics, biology, materials and social sci-
ences [6, 8, 15, 19, 32]. A nonlocal model made up by nonlocal integral operators
can potentially allow more singular solutions than the classical differential equation
counterpart, thus offering great promise in the effective modeling of singular defects
and anomalous properties such as cracks and fractures [27]. Nonlocal gradient op-
erators are basic elements of nonlocal vector calculus that play important roles in
nonlocal modeling and analysis [9, 10, 24]. The development of a systematic mathe-
matical framework for nonlocal problems, in parallel to that for local classical partial
differential equations (PDEs), in turn has provided foundation and clarity to prac-
tical nonlocal modeling techniques such as peridynamics. In particular, the rigorous
mathematical studies of nonlocal gradient operators have found successful applica-
tions ranging from nonlocal gradient recovery for robust a posteriori stress analysis
in nonlocal mechanics to nonlocal in time modeling of anomalous diffusion [11, 13].
Asymptotically compatible schemes to discretize the nonlocal gradient operators have
also been presented in [11], following the framework given in [33, 34].

In this work, we continue our analysis of nonlocal gradient operators initiated in
[9, 10] and further explored in [11, 13, 24]. We address the coercivity and stability
of energy functionals with the energy density formed by the nonlocal gradient. As a
representative example, the functional considered here is what we refer to as a nonlocal
Dirichlet integral, which is simply a quadratic energy of the nonlocal gradient. Given
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2 DU AND TIAN

that the most popular forms of the nonlocal gradients are often exclusively determined
by some nonlocal interaction kernels (micro-modulus functions), the issue of coercivity
and stability of simple energies like the Dirichlet integral rests largely on properties
of the underlying interaction kernel functions (beside possibly boundary conditions or
nonlocal constraints). While there were claims made in the literature on the universal
loss of coercivity and stability for all feasible kernels, we show that, contrary to such
claims, there is a class of kernels that can assure the coercivity and stability. The
coercviity result established here is quite strong in the sense that it holds uniformly
with respect to the horizon parameter that measures the range of nonlocality, so that,
in the local limit, we recover the well-known coercivity result of the classical, local
Dirichlet integrals formed by the conventional local derivative. Providing conditions
to characterize this class of kernels is the main contribution of this work.

Our main finding has a number of implications for nonlocal modeling. In particu-
lar, in the context of peridynamic correspondence material models (see a brief descrip-
tion in the next section and additional discussions in [27, 17] and [4, 11, 16, 35]), we
can conclude that there may not be any loss of stability if proper kernels are used for
the correspondence formulation. This is an encouraging news to the community that
has found convenience in using peridynamic correspondence material models. How-
ever, identifying the right kernels is crucial, in addition to requiring their consistency
to the underlying physical processes and principles, In simple terms, the requirement
on the kernels to assure the energy coercivity is that one should suitably enforce
stronger interactions as the undeformed bond length gets shorter. The specific form
of the strengthening is given in the assumption and theorems in section 5, We also
point out that, in contrast, the weakening of interactions (or the lack of sufficient
strengthening) among materials points in closer proximity is likely going to cause a
loss of coercivity of the correspondence formulation. In short, this means that the
choice of nonlocal interaction kernels is a much more subtle issue for the correspon-
dence theory, in comparison with, for example, other nonlocal formulations such as
the bond-based or state-based peridynamics of linear elasticity [21, 22].

To avoid technical complications, we only present the derivation in one space di-
mension for a scalar field, though the extension to multidimensional cases and vector
fields are immediate, based on similar calculations give in [12]. For simplicity, we
also only consider periodic boundary conditions to avoid the discussion near physical
boundary. By utilizing this special geometry, we can carry out the needed mathe-
matical derivations using simple Fourier analysis and elementary calculations. The
extensions to more general boundary conditions or more appropriate nonlocal volu-
metric constraints [9, 10] are more involved and will be left as future work. Further
studies on the discrete level can also be carried out in a similar fashion but it is beyond
the scope of the current work so that in this work we can focus on delivering a simple
but importance message on nonlocal correspondence models on the continuum level.
Indeed, as shown in [33, 34] and again in this work, delineating the effects on physical
and continuum scales from those arising from numerical resolutions in order to better
investigate their interplay has proven to be a helpful strategy to validate nonlocal
modeling and simulations. Moreover, the conditions given later on the nonlocal in-
teraction kernels rule out many popular choices used in existing simulation codes and
applications. Again, this is another instance related to nonlocal modeling and simu-
lations where popular practices in the past may need to be carefully scrutinized. As
another example, simple mid-point quadrature and piecewise constant Galerkin finite
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element approximations are both popular discretizations of bond-based peridynamics
but they are not robust and run the risk of converging to wrong physical solutions
[33, 34]. Ensuring properly defined models and convergent algorithms is particularly
important to subjects like peridynamics since their main goal is to deal with com-
plex systems involving multiscale features, patterns and singular solutions potentially
generated by inherent material instabilities so that one does not mix up model or
numerical instability with the physically reality.

The remainder of the paper is organized as follows. In section 2, some general
background on the subject is given. We then provide more discussions on the nonlocal
gradient operator for one dimensional scalar field in section 3. Equivalent formula-
tions are presented in section 4 to draw connections with nonlocal diffusion operators.
The main stability analysis is in section 5. Different variants are considered in section
6. Finally, in section 7, we make some conclusions on the implications and general-
izations.

2. Background. In nonlocal mechanical models and nonlocal diffusion equa-
tions, the primary quantities used are often displacement and density variables. Draw-
ing analogy to classical and local models, the notion of nonlocal gradient is indispens-
able as it is related naturally to concepts of nonlocal strain and stress and nonlocal
flux, see [17, 27] and [4, 11, 16, 35].

Indeed, it is a widely accepted practice of continuum mechanics to use classical
local gradients to help defining constitutive relations that are central to the underlying
mathematical models. Taking the peridynamic model in Rd as an example, if we
use u to denote the deformation vector field from Rd to Rd, the so-called nonlocal
deformation gradient tensor F(x) = G

δ
ρu(x) is given by

(2.1) G
δ
ρu(x) =

(∫

Bδ(x)

ρδ(|y − x|)
y − x

|y − x|
⊗

u(y) − u(x)

|y − x|
dy

)
K−1(x)

where δ > 0 represents the horizon measuring the range of nonlocal interactions, ρδ is
a scalar function (micromodulus function as named in [27]) representing the nonlocal
interaction kernel, and K = K(x) is the shape tensor defined by

K(x) =

∫

Bδ(x)

ρδ(|y − x|)
y − x

|y − x|
⊗

y − x

|y − x|
dy .

It has been suggested that, corresponding to a well-defined local constitutive model
σ = σ(ε) where σ is the stress tensor and ε the strain tensor, one can formally derive a
nonlocal peridynamic analog as σ = σ(F̄) where F̄ is the symmetric part of F. This in
essence leads to the peridynamic correspondence material models or correspondence
theory for short [29]. More discussions and additional references in the context of
peridynamics can be found in [1, 2, 5, 14, 30, 31, 35], among others.

We note that in more mathematical generality, a nonlocal gradient operator for
vector field u defined on a domain Ω may take on the form of a second order tensor
given by

G
δ
ρu(x) := lim

ǫ→0

∫

Ω\Bǫ(x)

ρδ(|y − x|)Mδ(y − x)
u(y) − u(x)

|y − x|
dy,



4 DU AND TIAN

where Mδ is a 3rd-order odd tensor, thanks to the Schwartz kernel theorem [24]. The
simpler version given in (2.1) is nevertheless sufficient to serve the purpose of our
discussion here.

Though the form given in (2.1) is appealing and is formally consistent to the
classical deformation gradient in the local limit with suitably normalized nonlocal
interaction kernel ρδ, there have been various issues concerning its use in the corre-
spondence theory [3, 29, 35]. Similar issues have been noticed in other applications
such as those involving particle discretizations [4]. Some of these issues are related
to numerical implementations but there are also fundamental limitations on the level
of the continuum models, see [29] for a recent study that provided a comprehensive
summary on the topic. In particular, it has been made aware of the loss of coercivity
(stability) of the nonlocal energy functionals constructed explicitly via the nonlocal
deformation gradient. We may use Dirichlet integrals as representative examples of
energy functionals given by a quadratic energy density corresponding to the linear
elasticity. With the nonlocal deformation gradient F = Gδ

ρu, the nonlocal Dirichlet
integral is given by

(2.2) Eδ(u) =

∫
|F̄(x)|2dx =

∫ ∣∣∣∣∣
Gδ

ρu(x) + (Gδ
ρu(x))

T

2

∣∣∣∣∣

2

dx ,

which is an nonlocal analog of the usual Dirichlet integral defined for the local gradient
as follows:

E0(u) =

∫ ∣∣∣∣
∇u(x) + (∇u(x))T

2

∣∣∣∣
2

dx .

The lack of coercivity in the nonlocal version is unfortunate as the the local version
is well-known to be coercive subject to suitable boundary conditions or constraints.
Despite the existing issues and improved understanding, formulations based corre-
spondence theory continue to be popular among practitioners and, at the same time,
they are also challenged by the community given the lingering debate on the relevant
controversies. The latest attempt [29] has suggested the addition of a penalty term
that does provide the needed stability to the elastic energy on the continuum level,
however, the additional term to the elastic energy generically is not a null-Lagrangian,
meaning that the equilibrium solutions, for example, of the associated energy may be
different from its original form without the penalty unless linear deformation fields
are obtained. Thus, the additional term does not vanish and its effect, unlike a
null-Lagrangian, is present in general. A central question remains, that is, in what
circumstances can one ensure the coercivity of the original energy functionals, such
as (2.2), defined by the nonlocal deformation gradient.

3. Nonlocal gradient operator and Dirichlet integral in 1D. To illustrate
the key concepts, we focus on a nonlocal gradient operator for a scalar function field
defined on a one dimensional periodic cell given by Ω = (0, 1). The simple setting
allows us to more clearly present the central findings without much more tedious
technical derivations for higher dimensional vector fields. It is expected that our
approach works also for such a more general scenario.

To be more specific about the scalar nonlocal gradient operator (or nonlocal first
derivative) Gδ

ρ, we consider suitably scaled kernels so that the local limit of Gδ
ρ as δ
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goes to zero recovers exactly the first order derivative d
dx denoted by G0. A popular

choice of the kernel ρδ(s) is based on a rescaling ρδ(s) = δ−1ρ(s/δ) with the following
assumptions on ρ:

(3.1) ρ(−s) = ρ(s),

{
ρ(s) ≥ 0, ∀s ∈ (−1, 1),

ρ(s) = 0, ∀s /∈ (−1, 1),
and

∫ 1

−1

ρ(s)ds = 1 ,

with further assumptions on ρ = ρ(s) to be discussed later.

Specializing (2.1) for a one dimensional scalar field u = u(x) that are assumed
to be square integrable and periodic with a periodic cell Ω, we focus on the nonlocal
gradient operators defined below:

G
δ
ρu(x) =

∫ δ

−δ

ρδ(|s|)
u(x+ s)− u(x)

s
ds(3.2)

=

∫ δ

−δ

ρδ(|s|)
u(x)− u(x− s)

s
ds(3.3)

=

∫ δ

−δ

ρδ(|s|)
u(x+ s)− u(x− s)

2s
ds(3.4)

=

∫ δ

0

ρδ(s)
u(x+ s)− u(x− s)

s
ds .(3.5)

Since ρδ = ρδ(s) can be seen as a density function defined on (−δ, δ), Gδ
ρ is effec-

tively a continuum weighted average of some discrete first order difference operators
up to the scale δ. If ρδ = ρδ(s) gets localized as δ → 0 and behaves like a Dirac-delta
measure at the origin in the limit, we may indeed see G0 = d

dx as the formal local
limit of Gδ

ρ.

Detailed studies of operators defined by (2.1) and the specialized form (3.2) ad
well as their local limits are the subject of recently developed nonlocal vector calculus,
see [9] for formal derivations and [24] and [13] for more extended functional analysis.
Nonlocal analog of integration by parts formula has also been rigorously derived [13,
24].

The one dimensional version of the Dirichlet integral associated with Gδ
ρ and its

local form can be written as

(3.6) Eδ(u) =

∫

Ω

|Gδ
ρu(x)|

2dx E0(u) =

∫

Ω

|∇u(x)|2dx ,

for any scalar periodic function u with the periodic cell Ω.

Due to the periodic boundary condition, a constraint is needed to determine the
constant shift in the deformation field. We thus only consider those functions that
satisfy

(3.7)

∫

Ω

u(x)dx = 0 .

There are also the one sided versions (see [11, 13] for related discussions)

(3.8) G
±
δ u(x) = ±2

∫ δ

0

ρδ(s)
u(x± s)− u(x)

s
ds .
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Similarly, nonlocal diffusion operators that are analogs of the classical diffusion or
second derivative operators have also been a subject of extensive study [9, 10, 21, 22,
23]. The connections between these operators are to be further discussed in the next
section.

4. Equivalent formulation of Dirichlet integral. In the one dimensional
case, it is particularly convenient to connect the nonlocal Dirichlet integral given by
Eδ(u) in (3.6) with another popular nonlocal version of E0(u):

(4.1) Êδ(u) =

∫

Ω

∫
ωδ(s)

∣∣∣∣
u(x+ s)− u(x)

s

∣∣∣∣
2

dsdx .

In the context of peridynamics, Êδ(u) may be seen as the linearized bond-based elastic
energy associated with a nonlocal interaction kernel ωδ = ωδ(s).

We now discuss the relations between (3.6) and (4.1). Let Dδ denote (−δ, δ)2 and
Hδ = Ω×Dδ. Note first that in the principal value sense of the integrals, we have

G
δ
ρu(x) =

∫ δ

−δ

ρδ(|s|)
u(x+ s)

s
ds = −

∫ δ

−δ

ρδ(|s|)
u(x − s)

s
ds

Thus,

Eδ(u) =

∫

Ω

|Gδ
ρu(x)|

2dx

= −

∫

Hδ

ρδ(|s|)ρδ(|t|)

st
u(x+ s)u(x− t)dsdtdx

= −

∫

Hδ

ρδ(|s|)ρδ(|t|)

st
u(y + s+ t)u(y)dsdtdy

where we have done a shift in the variable y = x − t but the domain of integration
remains the same due to the periodicity of u = u(x) in x. From the above, we then
notice that, after switching y back to x,

Eδ(u) = −

∫

Hδ

ρδ(|s|)ρδ(|t|)

st
u(x+ s+ t)u(x)dsdtdx

=

∫

Hδ

ρδ(|s|)ρδ(|t|)

2st
[u(x+ s+ t)2 − 2u(x+ s+ t)u(x) + u(x)2]dsdtdx

=

∫

Hδ

ρδ(|s|)ρδ(|t|)

2st
[u(x+ s+ t)− u(x)]2 dsdtdx .

Now, consider the transformation a = s + t and b = t − s wit x unchanged, we use
Ĥδ to denote the region in the new variables obtained from the transformation of Hδ,
then

Eδ(u) =

∫

Ĥδ

ρδ

(∣∣∣∣
a− b

2

∣∣∣∣
)
ρδ

(∣∣∣∣
a+ b

2

∣∣∣∣
)

2a2

a2 − b2

∣∣∣∣
u(x+ a)− u(x)

a

∣∣∣∣
2

dadbdx

=

∫

Ω

∫ 2δ

−2δ

ωδ(|a|)

∣∣∣∣
u(x+ a)− u(x)

a

∣∣∣∣
2

dadx ,
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where

ωδ(a) = ωδ(|a|) =

∫ −|a|+2δ

|a|−2δ

ρδ

(∣∣∣∣
a− b

2

∣∣∣∣
)
ρδ

(∣∣∣∣
a+ b

2

∣∣∣∣
)

2a2

a2 − b2
db

is a kernel function supported in a ∈ (−2δ, 2δ).

This implies that Eδ(u) is equivalent to Êδ(u) with the kernel ωδ = ωδ(|a|).
Consequently, the corresponding nonlocal diffusion operator (that is, the variation of
the energy, or the bond force operator in peridynamics) is given by

−Lδu(x) =

∫ 2δ

−2δ

ωδ(s)
u(x + s)− 2u(x) + u(x− s)

s2
ds .

As we have elucidated in our earlier works, the nonlocal operator Lδ may be viewed as
a nonlocal continuum weighted average of the classical second order central difference
operator with the kernel ωδ serving as the weight function. A direct calculation shows
that

∫ 2δ

−2δ

ωδ(a)da = 1,

which gives the correct normalization condition on ωδ. However, it can also be seen
that

∫ 2δ

−2δ

ωδ(a)

a2
da = 0,

which implies that the nonlocal interaction kernel is a sign-changing one. That is,
for example, in the context of linear bond-based peridynamics, we get both repulsive
and attractive bond forces. Naturally, repulsive interaction with a positive sign of
kernel more likely yields coercivity and stability. Having attractive interactions may
cause the loss of coercivity but this is not always the case. In [20], well-posedness
of linear bond-based peridynamics with a sign changing kernel has been established.
In essence, as long as the repulsive effects are dominant, we could still expect a well-
defined nonlocal model.

We take the moment to consider a couple of properties of ωδ in connection with
ρδ. First, we note that if ρδ is taken to be rescaled from a horizon (δ) independent
kernel ρ(s), that is ρδ(s) = δ−1ρ(s/δ) with ρ satisfying (3.1). Then, by a change of
variables a = ãδ and b = b̃δ, we have

(4.2) ωδ(a) =
1

δ

∫ −|ã|+2

|ã|−2

ρ(|
ã− b̃

2
|)ρ(

∣∣∣∣∣
ã+ b̃

2

∣∣∣∣∣)
2ã2

ã2 − b̃2
db̃ =

1

δ
ω1(

a

δ
) .

This means, not surprisingly, that ωδ is also rescaled from a kernel ω1 symmetrically
defined on (−1, 1). Next, we note that it is easy to see

∫ 2δ

−2δ

|ωδ(a)|

a2
da ≤

(∫ δ

−δ

ρδ(s)

|s|
ds

)2

,

which tells us in particular that the singular behavior of ρδ at the origin likely controls
the singularity of ωδ near the origin. Clearly, if |s|−1ρδ(s) is integrable, then so
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is a−2|ωδ(a)|. This in turn implies that Gδ
ρ and the associated nonlocal diffusion

operator Lδ are bounded operators on the space of square integrable functions. While
kernels with integrable |s|−1ρδ(s) and a−2|ωδ(a)| are among the popular choices in
applications, they are not necessarily good choices, as shown later, for correspondence
formulations like (3.6) are to be adopted.

In the following, we provide more detailed calculations to give some explicit con-
ditions on ρδ under which the coercivity of (3.6) can be assured. The periodic setting
allows us to use Fourier analysis, a very convenient and frequently used tool in studies
of nonlocal models, see for example [37]. The type of calculations involved is similar
to dispersion analysis, see for instance [3, 27, 36] for studies related to peridynamics.

5. Stability of nonlocal Dirichlet integral. Let us first clarify the stability
or coercivity that we refer to, namely, we define a function space Vδ that is the
completion of C∞ periodic functions with mean zero subject to the nonlocal norm

‖u‖δ = (Eδ(u) +

∫

Ω

|u(x)|2dx)1/2.

The coercivity (or variational stability) of the Dirichlet integral Eδ(u) refers to the
fact that over the space Vδ, we have a positive constant C > 0, such that

Eδ(u) ≥ C‖u‖2δ, ∀u ∈ Vδ.

Obviously, this can be seen as a consequence of the so-called nonlocal Poincaré in-
equality [21, 22]: there exists a constant c > 0 such that

(5.1) Eδ(u) =

∫

Ω

|Gδ
ρu(x)|

2dx ≥ c

∫

Ω

|u(x)|2dx, ∀u ∈ Vδ.

We note that the argument presented in [29, Proposition 2] for the failure of
stability of Eδ(u) was based the choice of an increment in the deformation field by
a Dirac-delta point measure. Such a choice is not feasible in the space Vδ. We now
attempt to specify some conditions on the kernel ρδ so that (5.1) can be verified and
thus leading to the stability of Eδ(u). We take advantage of the periodicity of u to
adopt Fourier analysis.

Under periodic conditions and the constraint (3.7), we could write u in terms of
their Fourier series, namely,

u(x) =

∞∑

k=1

û(k)ei2πkx , where û(k) =

∫

Ω

u(x)e−i2πkxdx .

The rest of the technical derivations is focused on one dimensional scalar fields.
For the vector field case in high dimensions, we refer to [12]. Let us first present the
so-called Fourier symbols of the operator Gδ

ρ.

Lemma 1. The Fourier transform of the nonlocal gradient operator Gδ
ρ is given

by

Ĝδ
ρu(k) = ibδ(k)û(k)(5.2)
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where bδ(k) are the Fourier symbols of Gδ
ρ given by

bδ(k) = 2

∫ δ

0

ρδ(s)

s
sin(2πks)ds .(5.3)

Proof. Using (3.5) and the periodicity of u, we have

Ĝδ
ρu(k) =

∫

Ω

G
δ
ρu(x)e

−i2πkxdx

=

∫

Ω

∫ δ

0

ρδ(s)
u(x+ s)− u(x− s)

s
e−i2πkxdsdx

=

∫

Ω

∫ δ

0

ρδ(s)

s
(ei2πks − e−i2πks)u(x)e−i2πkxdsdx

= 2i

∫ δ

0

ρδ(s)

s
sin(2πks)ds

∫

Ω

u(x)e−i2πkxdx

= ibδ(k)û(k) .

The following simple fact on the sine Fourier coefficient, a special form of Riemann-
Stieltjes type integrals, is useful to our discussion.

Lemma 2. Given a measurable, non-negative and non-increasing function g =
g(x) with xg(x) integrable, we have

(5.4)

∫ 2π

0

g(x) sin(x)dx ≥ 0

with the equality holds only for g being a constant function. Consequently, for any
h > 0 and a > 0, we have

(5.5)

∫ h

0

g(x) sin(ax)dx ≥ 0 ,

with the equality holds only for g being a constant function (and with value zero if ha
is not an integer multiple of 2π).

Proof. The inequality (5.4) follows immediately from the observation that
∫ 2π

0

g(x) sin(x)dx =

∫ π

0

[g(x)− g(x+ π)] sin(x)dx ≥ 0.

By the non-increasing property, we see that the equality holds only for g being a
constant function. The more general case follows by applying a change of variable
and taking a zero extension of g outside (0, h) to cover complete periods of the scaled
sine function.

The expressions of Fourier symbols {bδ(k)} given in Lemma 1 have a number of
immediate consequences upon simple observations. First, if as δ → 0 we have 2ρδ(s),
which is a density on (0, δ), approaches to the Dirac-delta measure at the origin, then
for any given k and δ → 0,

bδ(k) = 2

∫ δ

0

ρδ(s)

s
sin(2πks)ds = 2πk

∫ δ

0

2ρδ(s)
sin(2πks)

2πks
ds → 2πk ,
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which again gives the obvious connection of the nonlocal derivative to the local deriva-
tive.

Another immediate consequence, coming from Lemma 2, is that bδ(k) stays pos-
itive for any finite wave number k if s−1ρδ(s) is non-increasing and not a constant.
This provides a sufficient condition to assure bδ(k) 6= 0. While not necessary, violat-
ing such a condition may result in undesirable effects. We can see from the simple
example that s−1ρδ(s) being a constant function leads to bδ(k) = 0 for some wave
number k. Indeed, for such a choice of ρδ,

bδ(k) = c

∫ δ

0

sin(2πks)ds =
c

2πk
(1 − cos(2πkδ)),

which is zero if kδ is an integer. The Fourier modes corresponding to such wave
numbers may be interpreted as the so-called zero-energy modes, reinforcing the un-
derstanding that there are inherent instabilities associated with the correspondence
theory at the continuum level [29]. However, such zero-energy modes do not exist for
proper choices of the kernel described below.

Naturally, the coercivity of the Dirichlet integral is not only concerned with bδ(k)
for finite k but also its asymptotic and uniform behavior as k → ∞. The latter
is a feature of the continuum theory that allows the wave number going to infinity,
though, unfortunately, it has not been given adequate attention in the existing litera-
ture before. From the Riemann-Lebesgue lemma, we know that bδ(k) → 0 as k → ∞
if s−1ρδ(s) is integrable. Thus, requiring s−1ρδ(s) being non-integrable becomes nec-
essary, a fact that should be taken into consideration seriously when working with the
correspondence theory.

Note that requiring s−1ρδ(s) both non-increasing and non-integrable, in order to
get the non-degeneracy of bδ(k) for finite k and as k → ∞, would lead to a restricted
growth of ρδ(s) near the origin. That is, as the undeformed bond length approaches
zero, the prescription of the nonlocal interaction is limited. A most general discussion
about necessary and sufficient conditions on the kernel to assure the coercivity is
beyond the scope of this work. Instead, to keep the mathematical discussions to a
minimal level, we present a result on the coercivity of the nonlocal Dirichlet integral
under the following sufficient conditions.

Assumption 1. We assume that the kernel ρδ is given by a rescaled kernel ρδ(s) =
ρ(s/δ)/δ with ρ = ρ(s) satisfying (3.1) and the following:
1) ρ(s)/s is non-increasing for s ∈ (0, 1);
2) ρ(s) is of fractional type in at least a small neighborhood of origin, namely, there
exists some ǫ > 0 such that for s ∈ (0, ǫ) we have

(5.6) ρ(s) =
c

sα
,

for some constant c > 0 and α ∈ (0, 1).

Note that the condition associated with (5.6) automatically implies the non-
integrability of s−1ρδ(s) in the one space dimensional case under consideration.

Theorem 3. Under the Assumption 1, the nonlocal Poincaré inequality holds,
namely, there exists a constant C independent of u such that

(5.7) ‖u‖2L2(Ω) ≤ CEδ(u) .
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Moreover, C is also independent of δ as δ → 0.

Proof. Under periodic conditions, (5.7) is equivalent to showing that bδ(k) is
uniformly bounded from below. In fact, we can write

bδ(k) = 2

∫ δ

0

ρδ(s)

s
sin(2πks)ds =

2

δ

∫ 1

0

ρ(s)

s
sin(as)ds

where a = 2πkδ. Notice that the above quantity is positive with the assumption that
ρ(s)/s is non-increasing and not a constant.

For a < 1, we use

sin(as) ≥ as−
(as)3

6

to get

bδ(k) ≥
2a

δ

∫ 1

0

ρ(s)ds−
a3

3δ

∫ 1

0

ρ(s)s2ds ≥
5a

3δ
=

10π

3
k ≥

10π

3
.

For a ∈ [1, 2π/ǫ], where ǫ is the parameter defined in Assumption 1, we know that

2

∫ 1

0

ρ(s)

s
sin(as)ds > 0

is a continuous function of a, thus it has a lower bound C1, then

bδ(k) ≥
C1

δ
≥ C1ǫk .

Now for a > 2π/ǫ, we write

bδ(k) =
2

δ

∫ 1

0

ρ(s)

s
sin(as)ds =

2

δ

(∫ 2π

a

0

ρ(s)

s
sin(as)ds+

∫ 1

2π

a

ρ(s)

s
sin(as)ds

)
.

Using Lemma 2 and the assumption that ρ(s)/s is non-increasing on (0, 1), we have

∫ 1

2π

a

ρ(s)

s
sin(as)ds =

∫ 1− 2π

a

0

ρ(s+ 2π/a)

s+ 2π/a
sin(as)ds ≥ 0 .

Then

(5.8) bδ(k) ≥
2

δ

∫ 2π

a

0

ρ(s)

s
sin(as)ds ≥

caα

δ

∫ 2π

0

1

s1+α
sin(s)ds =

C̃kα

δ1−α
,

where the Assumption 1 is used with α ∈ (0, 1). Thus bδ(k) has a lower bound for all
integer k ≥ 1 independent of δ, which implies the Poincaré inequality (5.7).

Theorem 3 shows the stability of the Dirichlet integral while the kernel ρ(s) a
fractional-type kernel near origin with the fractional component α ∈ (0, 1). We can
further see from its proof that the generated function space is equivalent to a fractional
Sobolev space.
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Theorem 4. Under the Assumption 1, for each fixed δ > 0, the space Vδ defined
by the nonlocal norm ‖ · ‖δ is equivalent to the fractional Sobolev space Hα(Ω), where
α ∈ (0, 1) is the index defined in (5.6).

Proof. In the proof of Theorem 3, notice that in the case a > 2π/ǫ, we first have
the lower bound given by (5.8). Moreover, we could also write

bδ(k) =
2

δ

∫ 1

0

ρ(s)

s
sin(as)ds =

2

δ

(∫ π

a

0

ρ(s)

s
sin(as)ds+

∫ 1

π

a

ρ(s)

s
sin(as)ds

)
.

Using Lemma 2 once again, we have

∫ 1

π

a

ρ(s)

s
sin(as)ds =

∫ 1−π

a

0

ρ(s+ π/a)

s+ π/a
sin(as+ π)ds

=−

∫ 1−π

a

0

ρ(s+ π/a)

s+ π/a
sin(as)ds < 0 .

Thus we obtain the upper bound given by

bδ(k) ≤
2

δ

∫ π

a

0

ρ(s)

s
sin(as)ds ≤

caα

δ

∫ π

0

1

s1+α
sin(s)ds =

C̃kα

δ1−α
.

Combining both the lower and upper bounds, we get the equivalence to the fractional
space and norm.

We remark that an alternative way to see the above is to use the equivalent
formulation given in (4.1) for the kernel ωδ in (4.2). For the kernel ρ(s) in (5.6) that
grows like s−α near the origin, a direct calculation shows that ωδ(s) grows like s

1−2α.
Hence, the nonlocal Dirichlet integral gives a canonical form of the square of a Hα

semi-norm.

The equivalence of function spaces mentioned above is not simply a mathemat-
ical statement, it too bears significance in nonlocal modeling of physical processes
involving singularities such as the peridynamic modeling of cracks. In practice, in
order to allow discontinuous solutions in the underlying energy space Vδ, we see that
one should make α < 1/2 (in one space dimension) by the standard Sobolev space
embedding result. Based on the above theorems and the characterization on the ker-
nels given in the Assumption 1, we see that there are indeed reasonable choices of
the nonlocal interaction kernels that provide coercive (and stable) forms of energy for
the correspondence theory (to maintain a well-behaved mathematical model), while
allowing the discontinuous deformation field (to keep a physically desirable feature).
However, these possible choices may be limited, for example, they may be subject
to conditions given in Assumption 1. Note again, we do not claim that the assump-
tion here is the most general one possible since our objective is to establish some
rigorous results with fairly elementary calculations without making the mathematical
derivations too technical.

6. Other nonlocal variants of the Dirichlet integrals. In [29], an alterna-
tive formulation to the elastic energy is provided as a possible remedy to alleviate the
loss of coercivity of the original correspondence peridynamic materials models. The
main ingredient consists of an additional contribution involving the nonuniform part
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of the deformation field u that is denoted by z. In the linearized theory and one space
dimension, we have

z(y, x) = u(y + x)− u(y)−G
δ
ρu(y)x.

Note that if taking z = z(y, x) as a peridynamic state [28] (with dependence on both
y and x), we have

G
δ
ρz(y, x) = G

δ
ρu(y + x) −G

δ
ρu(y),

which is in general nonzero for nonlinear deformation field u. The stabilized energy
suggested in [29] is given by the following variant of the nonlocal Dirichlet integral:

(6.1) Ẽδ(u) =

∫

Ω

|Gδ
ρu(x)|

2dx+

∫

Ω

∫ δ

−δ

σδ(|s|)

∣∣∣∣
u(x+ s)− u(x)

s
−G

δ
ρu(x)

∣∣∣∣
2

dsdx ,

where σδ = σδ(|s|) is assumed to be a compactly supported kernel for |s| ≤ δ. In this
case, the coercivity of Ẽδ can be established under some conditions on σδ but without
imposing the stronger conditions on the kernel ρδ = ρδ(s) given in the Assumption 1.
Here, we present an argument that is different from that given in [29]. Let us denote

∫ δ

−δ

σδ(|s|)ds = β > 0 .

Then

Ẽδ(u) =

∫

Ω

|Gδ
ρu(x)|

2dx+

∫

Ω

∫ δ

−δ

σδ(|s|)

∣∣∣∣
u(x+ s)− u(x)

s
−G

δ
ρu(x)

∣∣∣∣
2

dsdx

=

∫

Ω

(1 + β)|Gδ
ρu(x)|

2dx+

∫

Ω

∫ δ

−δ

σδ(|s|)

∣∣∣∣
u(x+ s)− u(x)

s

∣∣∣∣
2

dsdx

−2

∫

Ω

∫ δ

−δ

σδ(|s|)
u(x+ s)− u(x)

s
G

δ
ρu(x)dsdx.

Notice that

2

∣∣∣∣
u(x+ s)− u(x)

s
G

δ
ρu(x)

∣∣∣∣ ≤
2

2 + β

∣∣∣∣
u(x+ s)− u(x)

s

∣∣∣∣
2

+
2 + β

2
|Gδ

ρu(x)|
2 .

So

Ẽδ(u) ≥
β

2

∫

Ω

|Gδ
ρu(x)|

2dx+
β

2 + β

∫

Ω

∫ δ

−δ

σδ(|s|)

∣∣∣∣
u(x+ s)− u(x)

s

∣∣∣∣
2

dsdx .

Now we can see that the second term represents a typical energy for a linear bond-
based model and, for a positive σδ = σδ(s), the term vanishes only for a constant field
that is identically zero by (3.7).

In fact, under suitable assumptions on σδ as those presented in [7] and [26] (and
extended to vector fields in [20, 21, 22]), we have the Poincaré inequality

∫

Ω

∫ δ

−δ

σδ(|s|)

∣∣∣∣
u(x+ s)− u(x)

s

∣∣∣∣
2

dsdx ≥ c

∫

Ω

|u(x)|2dx
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for a constant c > 0, hence the coercivity of the energy Ẽδ. This line of argument has
a striking similarity with the study of coercivity of the energy functionals for the lin-
earized state-based peridynamic Navier equation. The state-based energy functional
involves contributions from two terms similar to those in (6.1) but with different
mechanical interpretations: one from the elongational part and the other from the
deviatoric part, see [21] for more details.

While the coercivity of Ẽδ can be guaranteed, such a variant presents other is-
sues. For instance, one issue with (6.1) is that while for linear deformation field the
energy remains independent of β, there are obvious discrepancies when more general
nonlinear deformation fields are considered, leading to different physical responses
that are dependent on the choices of β. The same can be said about the variational
problems related to (6.1) subject to the work of an external force. The equilibrium so-
lutions, for the same given external force, will be generically different when β changes.
Similarly, the Fourier symbols associated with the modified operator (and thus the
dispersion relations) also differ from their original and un-modified forms. Thus, the
extra penalty term could play a significant role for nonzero β, which may become
an undesirable feature in practice. In contrast, for more careful choices of the kernel
ρδ, our analysis in the previous section shows that there is no need to introduce the
penalty term for the sake of coercivity or variational stability.

Besides the variant discussed above, there are also other options to get a nonlo-
cal Dirichlet integral that is different from (3.6). For example, we may replace the
nonlocal gradient operator in (3.2) by the one-sided versions given in (3.8). Similar
discussions can be made with these new choices, along with extensions to vector fields
defined in higher space dimensions (see [12] for related calculations).

7. Implications and generalizations. An important message taken from the
investigation presented in this work is that one should evaluate carefully the choices
of the nonlocal interaction kernels when correspondence models are adopted. An in-
tuitive interpretation of our rigorous analysis is that strengthened interactions among
close-by materials points tend to promote stability. This is perhaps not surprising as
the well-posed local model, when physically valid, represents the extreme case that
all interactions are concentrated at the same materials points. On the other hand, in
order to allow solutions with defects and singularities like discontinuities in the defor-
mation field for periydnamics, it is equally important to have the interactions spread
over a nonlocal region. Moreover, the close-by interactions should not be too strong
to disallow the formation of such singular behavior. Hence, adopting appropriate non-
local interaction kernels becomes a subtle issue when one desires to take advantage
of the correspondence theory to model complex systems. This finding sheds light on
the range of applicability of peridynamic correspondence material models. The latter
should not be adopted blindly but needs not be thrown out entirely. Via Fourier
analysis, we are able to offer a rather precise characterization on the feasible choices
of nonlocal interaction kernels that helps maintaining coercivity and stability on the
continuum level.

We note that our discussion here is focused on the continuum level since nonlocal
models like peridynamics are indeed fundamentally continuum theory in the first
place. The stability and coercivity issues should thus be variational (or continuum
model) properties, independent of discretizations. While the discussion is focused
on one dimensional scalar fields, generalizations to high dimensional vector fields are
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possible, and one can find relevant discussions in [12]. One may also consider geometric
settings other than the periodic domain, in which case, Fourier analysis is no longer
effective, but one may use techniques similar to those in [20] for peridynamic models
with a sign-changing kernel to study the stability of energy with a more general class
of kernels subject to various nonlocal constraints.

There are inevitably additional issues when numerical discretizations are con-
cerned. In fact, a side-effect of the strengthened interaction for close-by materials
points is that more accurate quadrature rules may have to be adopted in discretiza-
tion. Still, one may follow similar ideas presented here to reach further understanding
of the numerical stability and coercivity issues as well. This would allow us to de-
lineate the roles of physical scale and level of numerical resolutions, a point that is
worthwhile to be emphasized for nonlocal modeling. One can also attempt to develop
asymptotically compatible discretizations [11, 33, 34] to the correspondence models
so as to retain consistency and robustness of the numerical approximations. In ad-
dition, the current study can further enable us to introduce mixed formulation to
numerically approximate the nonlocal models based on the correspondence material
models whenever the latter are physically sound and mathematically valid. Lastly,
the notion of nonlocal gradient may also be related to the use of kernel-based integral
approximations to differential operators in methods like SPH and RKPM [12, 18, 25].
Future studies can help build a stronger connections between these similar subjects.

Acknowledgement: The authors would like to thank S. Silling, M. Gunzburger, R.
Lehoucq, J. Foster, F. Bobaru, J.S. Chen, W.K. Liu, and in particular T. Mengesha,
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