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Abstract

High density implants such as metals often lead to serious artifacts in the reconstructed CT images
which hampers the accuracy of image based diagnosis and treatment planning. In this paper, we propose
a novel wavelet frame based CT image reconstruction model to reduce metal artifacts. This model is
built on a joint spatial and Radon (projection) domain (JSR) image reconstruction framework with a
built-in weighting and re-weighting mechanism in Radon domain to repair degraded projection data.
The new weighting strategy used in the proposed model makes the regularization in Radon domain
by wavelet frame transform more effective. The proposed model, which will be referred to as the re-
weighted JSR model, combines the ideas of the recently proposed wavelet frame based JSR model [20]
and the normalized metal artifact reduction model [38], and manages to achieve noticeably better CT
reconstruction quality than both methods. To solve the proposed re-weighted JSR model, an efficient
alternative iteration algorithm is proposed with guaranteed convergence. Numerical experiments on both
simulated and real CT image data demonstrate the effectiveness of the re-weighted JSR model and its
advantage over some of the state-of-the-art methods.

Keywords: Computerized tomography, metal artifact reduction, tight wavelet frame, joint spatial-
Radon domain reconstruction.

1 Introduction

X-ray based computerized tomography (CT) is one of the most important imaging modalities in diagnosis
and treatment planning of various diseases such as cancer. Although magnetic resonance imaging (MRI) is a
safer alternative to CT, the acquisition time of MRI is normally much longer than CT, and it is prohibited for
patients with metal implants. However, metal implants often lead to serious degradations in the reconstructed
CT images. This is mainly due to the commonly adopted assumption that the CT imaging process is linear
with monochromatic X-ray source. This assumption works well when the imaged region contains similar
types of materials such as soft tissue and muscles which have similar attenuation coefficient [30]. In practice,
however, the X-ray source available is multi-chromatic and the detected photons are only the mean energy
after attenuation. When the X-ray beam passes through high density materials such as bones and metals,
the low energy components of the X-ray are attenuated more than high energy components. As a result,
the reconstructed CT image by a simple model such as the widely used filtered backprojection will suffer
serious degradations [5]. Therefore, more careful design of the CT image reconstruction model is necessary
to suppress metal artifacts. In this paper, we focus on metal artifact reduction in 2-dimensional (2D) CT
image reconstruction. Generalization to 3D is straightforward in theory, though requires further numerical
studies.

Based on the Lambert-Beer Law, the measured photon intensity from multi-chromatic energy X-ray can
be described by

I =

∫ EM

Em

S(E)e−PuEdE, (1.1)
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where P denotes the imaging process, S(E) = I0(E)/
∫ EM

Em
I0(E)dE with I0(E) being the incident photons

of X-ray at energy level E ∈ [Em, EM ], and uE is the linear attenuation coefficient at energy level E. In
this case, the imaging process is nonlinear if the photon intensity S(E) is not constant and uE is varied at
each energy level E. In practice, the exact S(E) at each energy level E is not readily available and difficult
to measure, and solving a huge nonlinear system is overwhelmingly challenging. Therefore, monochromatic
energy is a common assumption adopted in the literature. In the monochromatic energy X-ray imaging,
model (1.1) is simplified to

Pu ≈ Y , (1.2)

where Y = − lnI is the measured projection data with I obtained from (1.1). However, since (1.2) is merely
an approximation of (1.1), when high density components such as metal implants are present, simple models
solving the linear inverse problem (1.2) may lead to severe metal artifacts in the reconstructed images.
The regions corresponding to metals in the Radon domain, which are referred to as the metal trace, are
nonlinearly degraded. Most existing metal artifact reduction methods introduce different techniques to repair
the degraded projection data Y or/and to suppress metal artifacts in spatial domain using regularization.

Classical CT image reconstruction algorithms include filtered backprojection(FBP) [33], FDK [25] and
Simultaneous Algebraic Reconstruction Technique(SART) [1, 49]. Since the problem (1.2) is an ill-posed
linear inverse problem, when metals are present in the reconstructed images, images reconstructed by these
classical approaches may be seriously degraded. In the past three decades, different strategies for example,
hardware filtering, dual energy CT (DECT) [17, 3] and statistical reconstruction methods are combined
with the aforementioned classical reconstruction algorithms to reduce the metal artifacts. Nonetheless,
suppressing metal artifact in CT images remains a great challenge.

In image processing, regularization based approach has been playing an important role, since most of the
image processing tasks, such as super-resolution, deblurring, inpanting, etc., are ill-posed inverse problems.
Total variation (TV) [44, 2, 11] and wavelet frame based approach [9, 10, 6, 21] are two successful examples
among others. In low-dose CT imaging, the iterative reconstruction model with TV regularization [47, 41, 32]
and wavelet frame based regularization [48, 36, 31, 54, 58, 20, 52, 13] were proposed and achieved better
visual quality of the reconstructed images than traditional methods. However, these methods are effective in
suppressing artifacts caused by noise and lack of projection data, while they are less effective in suppressing
metal artifacts.

Recently in [38], the authors proposed a normalized metal artifact reduction (NMAR) model which
outperforms classical reconstruction methods such as FBP. It first normalizes the measured projection data
using the projection of a segmented image which is obtained from thresholding of a roughly reconstructed
image. Then, interpolation is conducted on the normalized projection data to repair the degradations caused
by metals. Finally, it reconstructs the CT image from the repaired projection data using FBP. However,
the NMAR model only works well when noise level of the projection data is low. In [37], a nonconvex CT
image metal artifact reduction model with sparsity based interpolation in wavelet domain was shown to
outperform the NMAR model. But the convergence of this model is not guaranteed since the `0-norm was
used to promote sparsity. A TV regularization based metal artifact reduction model was proposed in [53]
and it outperforms the NMAR method on simulated and real data set at the presence of noise. Other TV
based metal artifact reduction models can be found in [56, 55] and wavelet frame based model in [57]. Note
that, the TV based model works well for piecewise constant images, whereas textures in the image may be
smeared out. The prior image constrained iterative compressed sensing(PICCS) reconstruction technique
is able to reduce metal artifacts [4] by estimating the removed metal degraded projection data with prior
image constrains, which also can be used to reduce the limited angle artifacts [12].

Another strategy to reduce the metal artifact is based on the analysis of the geometric property of the
metal trace in Radon domain, which does not require any interpolation. Metal artifacts in the reconstructed
CT image is characterized mathematically by the wavefront set through microlocal analysis of the projection
data [39]. Based on such characterization, a beam hardening corrector is proposed in [40] to reduce the
metal artifacts. However, this model requires the knowledge of the X-ray energy spectrum which is generally
hard to acquire in practice. One may refer to [27] for a systematic review of the metal artifact reduction
techniques in CT image reconstruction.

In this work, we propose a new model for metal artifact reduction in CT image reconstruction. This
model, which will be referred to as the re-weighted JSR model, has a weighting and re-weighting mechanism
naturally embedded in a framework of joint Radon domain inpainting and spatial domain regularization.
The re-weighted JSR model is composed of different terms specialized in different tasks, and yet highly
collaborative with each other. In one of the terms, weights are applied to the projection data, which are
calculated from the projection of a segmented CT image. After weighting the projection data, the inpainting
in Radon domain becomes easier since the weighted projection data has sparser representation in the wavelet

2



frame domain than the original projection data. The effect of weighting is cancelled out in another term of
the re-weighted JSR model to ensure a correct reconstruction in spatial domain. Such weighting strategy also
ensures that the corrected projection data and the unknown CT image obey the linear model (1.2) better
than the original projection data. Regularization by wavelet frame transforms is applied in both spatial and
Radon domain to suppress noise and preserve features, and to facilitate a stable image reconstruction.

The rest of the paper is organized as follows. In Section 2, we briefly review the concept of wavelet frames
and wavelet frame transforms, followed by a detailed description of how metal trace and weights that will
be needed in the re-weighted JSR model are estimated. Section 3 introduces the re-weighted JSR model
and an efficient optimization algorithm solving the proposed model. Numerical experiments are presented
in Section 4 for phantoms and in Section 4.2 for a real scan data. Finally, we summarize our contributions
and findings in Section 5.

2 Preliminaries

2.1 Tight wavelet frames

In this subsection, we briefly recall some of the basics of tight wavelet frames that will be used in later sections.
Tight wavelet frame systems are redundant systems. Their redundancy not only grants robustness to the
system, but also grants vast flexibility in designing frame systems satisfying properties that are desirable in
various applications (e.g. short support, symmetry and high order of vanishing moments). Together with
their multiscale structure, tight wavelet frame systems can robustly decompose piecewise smooth functions
(such as images) into smooth and sparse components, which is the key to their success in image restoration.
The interested readers should consult [42, 43, 15, 16] for theories of wavelet frames, [46, 22] for a short survey
on the theory and applications of wavelet frames, and [21] for a more detailed survey.

Given a set of compactly supported functions Ψ = {ψ` ∈ L2(Rd) : 1 ≤ ` ≤ r}, with d ∈ N, the quasi-affine
system X(Ψ) generated by Ψ is defined by the collection of dilations and shifts of Ψ as

X(Ψ) = {ψ`,j,k ∈ L2(Rd) : 1 ≤ ` ≤ r, j ∈ Z,k ∈ Zd} (2.1)

where ψ`,j,k is defined by

ψ`,j,k =

{
2

jd
2 ψ`(2

j · −k), j ≥ 0,
22jdψ`(2

j · −2jk), j < 0.
(2.2)

Then, X(Ψ) is called a tight wavelet frame of L2(Rd) if

‖f‖2L2(Rd) =
∑

ψ∈X(Ψ)

|〈f, ψ〉|2.

In the tight wavelet frame system X(Ψ), each generator function ψ` is called a framelet.
The constructions of compactly supported and desirably (anti)symmetric framelets Ψ are usually based

on the multiresolution analysis (MRA) generated by some refinable function φ with refinement mask h0

satisfying

φ = 2d
∑
k∈Zd

h0[k]φ(2 · −k).

The idea of an MRA-based construction of framelets Ψ = {ψ1, . . . , ψr} is to find masks h`, which are finite
sequences (or filters), such that

ψ` = 2d
∑
k∈Zd

h`[k]φ(2 · −k), ` = 1, 2, . . . , r. (2.3)

The sequences h1, . . . ,hr are called wavelet frame masks, or the high pass filters associated to the tight
wavelet frame system, and h0 is also known as the low pass filter.

The unitary extension principle (UEP) [42] provides a rather general characterization of MRA-based
tight wavelet frames. Roughly speaking, as long as {h1, . . . ,hr} are finitely supported and their Fourier

series ĥ` satisfy
r∑
`=0

|ĥ`(ξ)|2 = 1 and

r∑
`=0

ĥ`(ξ)ĥ`(ξ + ν) = 0, (2.4)
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for all ν ∈ {0, π}d \ {0} and ξ ∈ [−π, π]d, the quasi-affine system X(Ψ) with Ψ = {ψ1, . . . , ψr} defined by
(2.3) forms a tight frame of L2(Rd). Note that the quasi-affine system is shift-invariant and it corresponds
to the undecimated wavelet (frame) transform [42, 14], which performs better than the traditional wavelet
system in image restoration. Furthermore, undecimated wavelet frame transform has a more natural link to
differential operators in the framework of variational and PDEs models [6, 7, 19, 23].

Example 1. Let h0 = 1
4 [1, 2, 1] be the refinement mask of the piecewise linear B-spline B2(x) = max{1 −

|x|, 0}. Define the high pass filters h1 =
√

2
4 [1, 0,−1] and h2 = 1

4 [−1, 2,−1]. Then h0,h1,h2 satisfy the UEP
(2.4). Hence, the system X(Ψ) with Ψ = {ψ1, ψ2} defined by (2.1) is a tight frame of L2(R).

Example 2. Let h0 = 1
16 [1, 4, 6, 4, 1] be the refinement mask of the piecewise cubic B-spline B4. Define the

high pass filters h1, h2, h3, h4 as follows:

h1 =
1

16
[1,−4, 6,−4, 1], h2 =

1

8
[−1, 2, 0,−2, 1], (2.5)

h3 =

√
6

16
[1, 0,−2, 0, 1], h4 =

1

8
[−1,−2, 0, 2, 1]. (2.6)

Then h0,h1,h2,h3,h4 satisfy the UEP (2.4) and the system X(Ψ) with Ψ = {ψ1, ψ2, ψ3, ψ4} defined by
(2.1) is a tight frame of L2(R).

In the discrete setting, the L-level wavelet frame transform/decomposition with filter banks {h0,h1, ...,hr}
is defined by

Wu = {W`,lu : 1 ≤ ` ≤ r, 0 ≤ l ≤ L− 1} ∪ {W0,L−1u}, ∀u ∈ `2(Z2).

The wavelet frame coefficients of image u are computed by W`,lu = h`,l[−·] ~ u, where ~ denotes the
convolution operator with a certain boundary condition, e.g., periodic boundary condition, and h`,l is defined
by

h`,l = h̃`,l ~ h̃l−1,0 ~ ...~ h̃0,0 with h̃`,l[k] =

{
h`[2

−lk], k ∈ 2lZ2,
0, k /∈ 2lZ2.

(2.7)

Denote the inverse wavelet frame transform (or wavelet frame reconstruction operator) as W>, which is the
adjoint operator of W , then the UEP leads to a perfect reconstruction formula as

u = W>Wu, ∀u.

For the 2D image processing, fast decomposition/reconstruction algorithms are available for the quasi-
affine system X(Ψ), which is constructed by the tensor product from the univariate wavelet frame. We
briefly recall how a set of 2D filters can be constructed from a given set of 1D filters by tensor product.
Given a set of univariate masks {h` : ` = 0, 1, . . . , r}, define the 2D masks hi,j [k1, k2] as

hi,j [k1, k2] := hi[k1]hj [k2], 0 ≤ i, j ≤ r; (k1, k2) ∈ Z2.

It is known that if the set of 1D filters satisfies the UEP conditions, so does the corresponding set of 2D
filters constructed by tensor product [21].

Among many different choices of framelets, the ones constructed from B-splines are popular in image
processing. This is mainly due to their short supports and symmetry which are desirable in many applica-
tions. A tight frame system constructed from a low order B-spline has less filters and each filter has shorter
support than the tight frame systems constructed from high order B-splines. Thus, low order B-spline
framelets are more computationally efficient to use than high order B-spline framelets, whereas the latter
can capture richer image features than the former. Furthermore, since high order B-spline framelets have
larger supports, they may introduce more numerical viscosity which often lead to smoother reconstructions
in image restoration tasks such as denoising, deblurring, inpainting, etc. Therefore, the choice of B-spline
framelets really depends on the task and the computation load one can afford. In all the models we use
in the following sections, we choose the Haar framelets for spatial domain regularization and the piecewise
cubic B-pline framelets for projection domain regularization. The reason for such choice is simply because
most CT images can be well approximated by piecewise constant functions and their corresponding projec-
tion images have higher regularity. Throughout the rest of the paper, we fix the level of decomposition to
L = 3. We finally note that, choices of W (e.g. choice of framelets and levels of decomposition) indeed affect
the reconstruction. For example, using a data-driven tight frame can generate better reconstructions than
B-spline framelets in sparse view [52] and limited view [13] CT reconstruction. However, we forgo a more
detailed discussion on the choices of W in order not to dilute the main focus of this paper.
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2.2 Initialization

The proposed re-weighted JSR model requires a pre-estimation of the metal trace and weights in projection
domain. They can be obtained fairly easily from a roughly reconstructed CT image using a simple reconstruc-
tion model. In this paper, we use the tight wavelet frame based analysis model [8]. This subsection describes
the details on how metal trace and weights are computed using the NURBS-based cardiac-torso(NCAT)
phantom [45]. Two metal components are implanted in the NCAT phantom as shown in Figure 1(a) and
the simulated projection data is obtained from a multi-chromatic X-ray source. Details on the settings of
the imaging system are postponed to Section 4.1.1.

2.2.1 Metal trace estimation

Given the measured projection data Y from the multi-chromatic X-ray source imaging system (1.2) and the
projection operator P , the unknown CT image can be approximately reconstructed by the following tight
wavelet frame based analysis model

min
u

1

2
||Pu− Y ||2 + ||λ ·Wu||1,2, (2.8)

where W is the tight wavelet frame transform as reviewed in the previous subsection, and ‖ · ‖ is the `2
norm. The second term of (2.8) is defined by

||λ ·Wu||1,2 =

∥∥∥∥∥∥
L−1∑
l=0

(
r∑
`=1

λ`,l|(Wu)`,l|2
) 1

2

∥∥∥∥∥∥
1

.

The definition of the `1,2 norm was first introduced by [6], whose corresponding proximal operator is the
isotropic soft shrinkage (3.5).

The optimization problem (2.8) can be solved by the split Bregman algorithm [29, 8] efficiently, which is
also equivalent to the alternating direction method of multipliers (ADMM) [24, 26, 28]. The reconstructed
phantom image by model (2.8), denoted by ua, is shown in Figure 1(b). Metal location in image domain
can be robustly estimated by the summation of the high frequency wavelet frame coefficients (Figure 1(c))
followed by a simple thresholding. Then, the index of the metal trace in Radon domain, denoted by Γ, can
be identified by the projection of the indicator function associated to the metal location (Figure 1(d)).

Note that one may estimate the metal location by simply thresholding the initially reconstructed image.
However, the metal artifacts may have a significant influence on the estimation if the threshold is not
properly chosen. Thanks to the multiscale structure of the wavelet frame transform, we are able to robustly
detect features from poorly reconstructed images based on the summation of high frequency tight framelet
coefficients. This has already been observed in the past [18, 7]. In Table 1, we show that the quality of
the reconstructed image using the proposed re-weighted JSR model is not very sensitive to the choice of the
threshold (denoted by τ) on the summation of high frequency tight framelet coefficients. Furthermore, the
proposed approach is better than directly thresholding on the initially reconstructed image.

Table 1: NCAT phantom reconstructed by the proposed re-weighted JSR model using different thresholding
parameter τ for metal trace estimations.

Thresholding wavelet

Threshold SSIM RelErr

frame coefficients

τ = 0.1 0.9826 0.0835

(proposed)

τ = 0.2 0.9835 0.0842
τ = 0.3 0.9835 0.0845
τ = 0.4 0.9839 0.0860
τ = 0.5 0.9830 0.0877
τ = 0.6 0.9821 0.0887

Thresholding initially

τ = 1.1 0.9758 0.0873

reconstructed image

τ = 1.2 0.9816 0.0883
τ = 1.3 0.9824 0.0892
τ = 1.4 0.9823 0.0894
τ = 1.5 0.9824 0.0890
τ = 1.6 0.9825 0.0893
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(a) (b)

(c) (d)

Figure 1: (a) The reference NCAT phantom with red curve marked metal components. (b) The reconstructed
image ua from the analysis model (2.8). (c) Summation of high frequency wavelet coefficients of reconstructed
image. (d) Projection data of the estimated metal position indicator function in Radon domain.

2.2.2 Weights estimation

To suppress the effect of data inconsistency in the Radon domain near the metal trace Γ, we will weight
the projection data in the proposed re-weighted JSR model. This subsection describes how the weights are
estimated.

Given the metal trace Γ obtained from the previous subsection, we first solve the following tight wavelet
frame based analysis model

min
u

1

2
||RΓc(Pu− Y )||2 + ||λ ·Wu||1,2, (2.9)

where RΓc is the restriction operator with respect to the domain Γc. The restriction operator RΛ is defined
as: RΛv[k] = v[k] for k ∈ Λ; and RΛv[k] = 0 for k ∈ Λc. The optimization problem (2.9) can be solved
similar to (2.8) by the split Bregman algorithm. We denote the solution of (2.9) as ur (Figure 2(a)).

The weights will be computed by projecting a segmented image that approximates tissue classification
of the unknown CT image. One may obtain such approximated tissue classification by segmenting image
ua obtained from (2.8) or ur obtained from (2.9). However, the approximation from either image will be
rather inaccurate since ua has severe artifacts in between metal locations (Figure 1(b)), while the metal
components are missing from ur (Figure 2(a)) though there are less artifacts in between metal locations.
Therefore, we propose to segment a combined image defined by

uc = (1− σ)ua + σur, 0 ≤ σ ≤ 1, (2.10)

with σ a tuning parameter. In this paper, the segmentation of uc is obtained by the algorithm proposed
by [34, 35]. The segmented image, denoted as us (Figure 2(b)), contains three components: the air, the

6



low density components such as soft tissues, and the high density components such as bones and metals.
The intensity values of the segmented image us from prior image uc are assumed to be constant for each
segmented component. We propose to use the mean values of uc in the segmented regions as the constants.
After obtaining us, the weight that will be used in our re-weighted JSR model is defined by Ys := Pus.
Finally, we note that the reconstructed image using the re-weighted JSR model is relatively insensitive to
the choice of the parameter σ in (2.10), which is demonstrated in Table 2 using NCAT phantom.

Table 2: NCAT phantom reconstructed by the re-weighted JSR model from different segmentations.

σ SSIM RelErr
σ = 0 0.9611 0.1127
σ = 0.2 0.9678 0.1020
σ = 0.4 0.9764 0.0918
σ = 0.6 0.9764 0.0918
σ = 0.8 0.9810 0.0938
σ = 1 0.9794 0.1003

(a) (b)

Figure 2: (a) Image ur reconstructed by model (2.9). (b) Segmented image from uc.

3 A re-weighted joint spatial-Radon domain reconstruction for
metal artifact reduction

In this section, we propose a new re-weighted joint spatial-Radon domain reconstruction (re-weighted JSR)
model to reconstruct CT images from the multi-chromatic X-ray imaging system with reduced metal artifacts.
Efficient algorithm is adopted to solve the proposed model. Intuition of the weighting strategy is discussed
at the end of this section.

3.1 The re-weighted JSR model

To reduce metal artifacts and reconstruct high quality CT images, we propose the following re-weighted JSR
model

min
u,f

1

2
||Pu− Ysf ||2 + ||λ1 ·W1u||1,2 +

α

2
||RΓc(f − Y

Ys
)||2 + ||λ2 ·W2f ||1,2. (3.1)

Here, Y is the measured projection data from the multi-chromatic X-ray source imaging system which is
contaminated by Poisson noise, W1 is the Haar framelet transform (multilevel with L = 3), W2 is the
piecewise cubic B-spline framelet transform (multilevel with L = 3), RΓc is the restriction operator that
extracts the projection data in the complement of metal trace, and Ys = Pus. The division Y

Ys
is defined

point-wisely.
The novelty of the proposed re-weighted JSR model (3.1) is how the weights Ys are introduced to the

joint spatial-Radon reconstruction framework. In (3.1), the projection data Y is weighted by Ys so that the
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inpainting mechanism induced by the last two terms of (3.1) is more effective. The weighting is cancelled
out during the reconstruction of u from the first two terms of (3.1) to ensure a correct reconstruction. An
empirical explanation of such weighting strategy will be presented in Section 3.2.

A special case of the re-weighed JSR model (3.1) is

min
u,f

1

2
||Pu− f ||2 + ||λ1 ·W1u||1,2 +

α

2
||RΓc(f − Y )||2 + ||λ2 ·W2f ||1,2, (3.2)

where the weight Ys is removed. The model (3.2) was proposed in [20] for sparse angle CT image recon-
struction. Although in principle, model (3.2) can also be applied to metal artifact reduction, it introduces
new artifacts in the reconstructed images. For convenience, we refer to the model (3.2) as the unweighted
JSR model. In Section 4, we shall compare the unweighted JSR model with the re-weighted JSR model to
demonstrate the effectiveness of the proposed weighting strategy.

To solve the re-weighted JSR model, we first rewrite it into a more succinct form. For convenience

of notation, we temporarily let α = 1 and λ = λ1 = λ2. Denote A =

(
P −Ys
0 RΓc

)
, X =

(
u
f

)
, B =(

0
RΓc( YYs

)

)
, W =

(
W1 0
0 W2

)
. Then, model (3.1) can be rewritten as

min
X

1

2
‖AX −B‖2 + ‖λ ·WX‖1,2, (3.3)

where the `1,2 norm is defined block-wisely. Model (3.3) is a standard analysis based model and can be
efficiently solved by the split Bregman algorithm [29, 8] with guaranteed convergence. The split Bregman
algorithm solving (3.3) takes the following form

Xk+1 = arg min
X

1

2
‖AX −B‖2 +

µ

2
‖WX −Zk +Ck‖2

Zk+1 = arg min
Z
‖λ ·Z‖1,2 +

µ

2
‖WXk+1 −Z +Ck‖2

Ck+1 = Ck + (AXk+1 −Zk+1). (3.4)

Each subproblem has a closed form solution.
Details of the algorithm is presented in Algorithm 1. Since the u,f sub-variables are coupled together

in the X-subproblem, they can be updated alternatively. The linear system in the step solving for uk+1

is solved using the conjugate gradient (CG) algorithm. The thresholding operator T λj/µj
, j = 1, 2, is the

isotropic soft shrinkage operator [6]. Now, we recall the definition of the isotropic soft shrinkage operator.
Given the wavelet frame coefficients v := {v`,l : 1 ≤ ` ≤ r, 0 ≤ l ≤ L− 1} ∪ {v0,L−1} =: Wu and thresholds
λ := {λ`,l : 1 ≤ ` ≤ r, 0 ≤ l ≤ L − 1} ∪ {λ0,L−1} with λ`,l ≥ 0, the shrinkage operator T λ(v) used in
Algorithm 1 is the isotropic shrinkage operator [6] defined by

(T λ(ν))`,l =
ν`,l
Vl

max{Vl − λ`,l, 0} (3.5)

where Vl =
(∑

1≤`≤r |ν`,l|2
)1/2

. As convention, we choose λ0,L−1 = 0.

For a better presentation of the proposed CT image reconstruction method with reduced metal artifacts,
we summarize the entire procedure in the flow chart shown in Figure 3.

3.2 Why does the weighting strategy work ?

In this subsection, we give some empirical observations on the weighting strategy used in the proposed model
(3.1). For simplicity, all the numerical results in this subsection are obtained using the NCAT phantom.
The re-weighted JSR model can be viewed as a combination of the following two models: the spatial domain
reconstruction model

min
u

1

2
||Pu− Ysf ||2 + ||λ1 ·W1u||1,2, (3.6)

and the Radon domain inpainting model

min
f

1

2
||RΓc(f − Y

Ys
)||2 + ||λ2 ·W2f ||1,2. (3.7)
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Algorithm 1 Re-weighted JSR algorithm

Input: Set u0 = 0, f0 = 0, α > 0, µ1 > 0, µ2 > 0, λ1 > 0. λ2 > 0. Ys = Pus, where us is the
segmented image.
while Stoppingcriteriaisnotmet do

Update Xk+1

uk+1 = (P>P + µ1I)−1
[
P>(Ysf

k) + µ1W
>
1 (dk1 − bk1)

]
fk+1 =

[
αRΓc + Y 2

s + µ2I
]−1

[
αRΓc

Y

Ys
+ YsPuk + µ2W

>
2 (dk2 − bk2)

]
,

Update Zk+1

dk+1
1 = T λ1/µ1

(W1u
k+1 + bk1),

dk+1
2 = T λ2/µ2

(W2f
k+1 + bk2),

Update Ck+1

bk+1
1 = bk1 + (W1u

k+1 − dk+1
1 ),

bk+1
2 = bk2 + (W2f

k+1 − dk+1
2 ).

k = k + 1; {u∗,f∗}.

Measured
projection data Y

Initially reconstructed
images by model
(2.8) and (2.9)

1) Obtain the metal
trace Γ from the
solution of (2.8).

2) Obtain the seg-
mented image us

from the com-
bined image (2.10)

Re-weighted
JSR model (3.1)

Reconstructed
image u

Γ, Ys = Pus

Figure 3: Flow chart of the proposed CT image reconstruction with reduced metal artifacts.

Obviously, (3.6) is an analysis model with tight wavelet frame regularization. The Radon domain inpainting
model (3.7) is another analysis based model aims at repairing the degraded projection data around the metal
trace.

We observe that the weighted projection data Y
Ys

admits a sparse representation than the measured
projection data Y in wavelet frame domain. The distributions of wavelet frame coefficients (using piecewise
linear tight wavelet frame system) are plotted in Figure 4. To have a fair comparison, Y and Y

Ys
are

normalized to the same scale, and the coefficients near the metal trace are removed. From the distributions
we can see that the weighted projection data Y

Ys
has a sparser representation than the original projection

data Y . Therefore, the sparsity prior ||λ2 ·W2f ||1,2 in the inpainting model (3.7) is more effective than
directly using Y as input.

By combining (3.7) with (3.6), the proposed re-weighted JSR model is able to repair the degraded
projection so that the repaired data YsfReWJSR is closer to Putrue, where fReWJSR is the Radon domain
solution from (3.1) and utrue is the unknown ground-truth CT image. Note that it is hard to obtain the
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ground truth image for polychromatic energy CT with varying attenuation coefficients with respect to the
energy level, we choose the NCAT phantom (Figure 1(a)) as the approximated ground truth CT image utrue.
Empirically, the repaired projection data YsfReWJSR fits the linear inverse problem (1.2) better than the
repaired projection data fNMAR and fJSR computed from the NMAR and the unweighted JSR model (3.2)
respectively. This is the key to the success of the re-weighted JSR model since the linear model (1.2) is
what we commonly assume for CT imaging. Such linear assumption is not correct (though reasonable) for
a multi-chromatic imaging system.

To support such claim, we present comparisons of Putrue with Y , fNMAR, fJSR and YsfReWJSR in
Figure 5 using the NCAT phantom. We observe that YsfReWJSR is a better approximation to the projection
of the reference image Putrue than the repaired projection data from the JSR and NMAR model (see
Figure 5(c),(d)). The NMAR model also generates a better repaired projection fNMAR than the unweighted
JSR model due to its re-weighting strategy. However, the unweighted JSR model is still able to reduce the
majority of the metal artifacts in the reconstructed image due to its sparsity based joint regularization. These
observations, together with the reconstruction results in Section 4, show that the re-weighted JSR model
combines the merits of the NMAR model’s weighting strategy and the sparsity based joint regularization of
the unweighted JSR model.

To quantitatively measure the difference between Putrue and the repaired projection data from different
models and the measured projection data Y , we calculate the `2-norms ‖YsfReWJSR − Putrue‖, ‖fJSR −
Putrue‖, ‖fNMAR−Putrue‖ and ‖Y −Putrue‖. Since the region of the metal trace Γ has major contribution
to these quantities, we also compute the `2-norms excluding the regions of the metal trace. Results are shown
in Table 3. Obviously, the repaired projection data from the re-weighted JSR model is closer to Putrue than
that from the NMAR and JSR model. However, although YsfReWJSR is closer to Putrue in regions outside of
Γ, Y is overall closer to Putrue than YsfReWJSR due to the inaccurate recovery of the projection data inside
the metal trace Γ by the re-weighted JSR model (see Figure 5(c)). This is probably why the re-weighted
JSR model still cannot fully remove metal artifacts, though it improves over the unweighted JSR and the
NMAR model.

Table 3: The `2-norm of the difference between the projection data of the reference image, i.e. Putrue, and
the corrected projection data from different models.

NCAT

Models Including Γ Excluding Γ
Measured Data 1547.6 713.8

NMAR 2802.1 713.4
JSR 3048.2 709.7

Re-weighted JSR 2777.5 688.3
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Figure 5: (a) The 450th column of the NCAT phantom projection data. (b) The 550th column of the NCAT
phantom projection data. (c) Zoom-in view of the curve in (a) . (d) Zoom-in view of the curve in (a).
Putrue is the projection of the reference image utrue. fJSR is the inpainted projection data from unweighted
JSR model (3.2), and fReWJSR is the inpainted projection data from the re-weighted JSR model (3.1).

4 Numerical experiments

In this section, we validate the effectiveness of the re-weighted JSR model using both simulated phantoms
and real data. All numerical experiments are implemented in MATLAB running on a platform with 16 GB
RAM and Intel(R) Core(TM) i7-6700T CPU at 2.8-GHz with 4 cores.

The regularization parameter λ appeared in any of the models presented in the previous sections takes
the form λ = {( 1

2 )lλ | l = 0, 1, ..., L − 1} where λ > 0 is a tuning parameter. The stopping criterion for
Algorithm 1 is

‖uk+1 − uk‖
‖uk+1‖

≤ tol = 2× 10−3.

The unweighted JSR model and the TV-FADM model are solved using the algorithms proposed in [20]
and [53] respectively with the same stopping criterion as above. We set the maximum allowable number of
iteration of all the iterative algorithms to 700. We use the relative error (RelErr) and structural similarity
(SSIM) index [51] to quantitative evaluate the reconstructed images from different methods.
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Figure 6: Energy spectrum I0(E) of X-ray source used to simulate the projection data Y0.

4.1 Experiments on image phantoms

4.1.1 Experimental design

The fan-beam CT imaging system similar to [50] is chosen for all the simulations in this subsection. The
source to detector distance is 949.075 mm, the distance from the source to the iso-center is 541 mm and the
strip width is 1.024 mm. The source trajectory covers the full circular orbit of 360◦ with 984 angular views
and the number of bins per view is 888. The tube potential is 140kvp with 2.5mm aluminum and 0.5mm
copper filters.

The NCAT phantom (shown in Figure 1(a)) and the cerebral phantom1 (shown in Figure 8(a)) are chosen
as image phantoms. For the NCAT phantom, it has 256×256 pixels. Two metal components (Titanium) are
implanted in the image, which is shown in Figure 1(a) with red curves labeling the locations of the metals.
For the cerebral phantom, it has 512 × 512 pixels and three metal components (Titanium) are implanted.
Both of the phantoms contain three major components, i.e. soft tissue, bone and metal components, and
their linear attenuation coefficients can be found in [30].

The projection data Y0 is obtained from a multi-chromatic X-ray imaging system definition by (1.1) with
the energy spectrum I0(E) shown in Figure 6. The measured projection data Y contaminated by Poisson
noise is generated in the following way

Y = − log(max{Poissrnd(I0 exp(−Y0))/I0, 1/I0}), (4.1)

where Poissrnd(·) is used to add the Poisson noise, I0 is the incident photons’ number and the term 1/I0 is
used to replace the 0 pixel value after adding Poisson noise. In this subsection, we select I0 = 105 in (4.1).

4.1.2 Reconstruction results

Table 4 is the parameter setting of re-weighted JSR model (3.1) and unweighed JSR model (3.2) for both
phantoms. The analysis model (2.8), the inpainting model (2.9), the unweighted JSR model (3.2) and the
re-weighted JSR model (3.1) are all initialized with u0 = 0. The number of CG iteration in all the algorithms
involved is set to 5. We compare the re-weighted JSR model (3.1) with the classical FBP algorithm [33], the
unweighted JSR model (3.2), NMAR [38] and TV-FADM [53]. The codes of TV-FADM are provided by the
authors of [53]. Comparisons of the aforementioned methods using the NCAT and cerebral phantoms are
shown in Figure 7 and Figure 8, respectively.

Figure 7(a) shows that the reconstructed NCAT phantom from FBP has severe metal artifacts and is
noisy. The reconstructed image from the unweighted JSR model (3.2) shown in Figure 7(b) has a better
visual effect with noticeably less noise and metal artifacts. Sharp edges are also well preserved except for the
blurry effects in the region surrounding the metals. The reconstructed image from NMAR shown in Figure
7(c) also has most of the metal artifacts suppressed and the regions surrounding the metals are much less
blurry than the unweighted JSR. However, the unweighted JSR does a better job than NMAR in suppressing
noise and preserving sharp image features away from the metals. TV-FADM is able to reconstruct images
with minimum metal artifacts and noise, as shown in Figure 7(d). However, the metal components are

1http://see.xidian.edu.cn/vipsl/database_CTMR.html
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Table 4: Parameter setting in Model (3.1) for NCAT and cerebral phantoms.

(a) NCAT

re-weighted JSR
paremeters α λ1 λ2 µ1 µ2

value 1 3.6 0.15 0.3 0.3

unweighted JSR
paremeters α λ1 λ2 µ1 µ2

value 1 1 0.6 0.1 9

(b) Cerebral

re-weighted JSR
paremeters α λ1 λ2 µ1 µ2

value 18 1.6 0.15 0.6 1.2

unweighted JSR
paremeters α λ1 λ2 µ1 µ2

value 1 0.8 0.45 0.1 2

Table 5: Relative error, SSIM index and the CPU time (sec.) of the NCAT and cerebral phantoms re-
constructed by different algorithms, i.e. FBP, unweighted JSR (3.2), NMAR [38], TVFADM [53] and the
proposed re-weighted JSR (3.1).

(a) NCAT

Model Relative error SSIM Time

FBP 0.1927 0.4903 -

Unweighted JSR 0.0947 0.9645 356

NMAR 0.1109 0.8431 -

TV-FADM 0.0911 0.9870 69

re-weighted JSR 0.0860 0.9839 239

(b) Cerebral

Model Relative error SSIM Time

FBP 0.2816 0.4847 -

Unweighted JSR 0.1410 0.9006 812

NMAR 0.1330 0.8532 -

TV-FADM 0.3336 0.9090 516

re-weighted JSR 0.1129 0.9155 309

fused with nearby structures which is highlighted by the red arrow. The reconstructed image from proposed
re-weighted JSR model has the best overall quality with rather minor metal artifacts.

Figure 8 shows the reconstructed cerebral phantom from different methods. We highlight some regions
with more distinct differences with red contours. Since the cerebral phantom contains more textures, it is
more challenging than the NCAT phantom. The pros and cons of these methods are mostly the same as
the previous example. However, we note that the reconstructed image from TV-FADM shown in Figure
8(e) has severe artifact, which is due to the well-known staircase artifact of TV regularization. We found
that TV-FADM is relatively sensitive to the choice of its parameters. It is not easy to balance between
sharpness of image features and metal artifacts reduction. The soft tissue around metal components is also
not well preserved by the NMAR method as indicated by the blue arrow in Figure 8(d). Furthermore, the
circled areas in Figure 8(d) show that there are still some artifacts around the metal. Same as the NCAT
phantom, the proposed re-weighted JSR model has the best overall performance. Notice that the intensity
of metals in Figure 8(d) and 8(f) seems lower than the rest of the reconstructed images. This is because we
set the intensity of the metal components in the segmentation us with the same mean value as that of bones.
Increasing the value of metal components of us can increase the intensity of metals in the reconstructed
images, whereas it also introduces more artifacts around the metals.

Quantitative assessments of the reconstruction quality of these methods are given in Table 5, where the
relative errors, SSIM values and computation time are presented. Although Algorithm 1 that solves the
re-weighted JSR model is relatively time consuming, we are able to gain on quality of the reconstructed
images. Finally, to numerically demonstrate the convergence of the Algorithm 1, we present the decay of

13



log
(

0.5‖u
k+1−uk‖
‖uk+1‖

)
, log

(
0.5‖f

k+1−fk‖
‖fk+1‖

)
and the cost function of the re-weighted JSR model in Figure 9(a),

9(b) and 9(c) respectively.

4.2 Numerical experiments: real data

We perform a CT scan of a chicken leg placed in a disposable cup (Figure 10(a)). We first scan the chicken
leg without metals (Figure 10(b)) to create a reference image using FBP algorithm. Then, we place two
steel thread nails on each side of the chicken leg and scan the subject again using the same scanning protocol
(Figure 10(c)). The projection data is acquired from a MicroCT scanner equipped at the Division of Nuclear
Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences. The X-ray
source is with 90 kV and 70 mA energy and the flat plane detector contains 1024×1024 pixels. The scanning
trajectory is a full circle with equally spaced views at 1◦ per view. The physical size of each detector unit is
0.127mm× 0.127mm. The distance from the X-ray source to the detector is 789mm. In order to conduct a
2D experiment, we choose the 512th row of the detector array.

Figure 11 shows the images reconstructed using FBP, the analysis model (2.8), the inpainting model (2.9)
and the segmented image from the image obtained by (2.10). The reference image without metal implants
are shown in Figure 11(a). All the images in this subsection are displayed within the grayscale interval
[0, 0.05]. The segmented image us shown in Figure 11(e) is used to estimate the weights needed in NMAR
and the re-weighted JSR model.

Figure 12 shows a comparison between the reconstructed image from NMAR and the unweighted JSR
model. Figure 13 shows a comparison between the reconstructed images from TV-FADM and the proposed
re-weighted JSR model. Zoom-in views are provided in both Figure 12 and Figure 13 for a better visual
assessment. As one can see that the reconstructed images from the unweighted JSR model and TV-FADM
are less noisy than NMAR as indicated by the blue ellipse curve, whereas NMAR does a better job in
preserving image features and suppressing metal artifacts. However, there are also new artifacts around
the metal on the right as shown in Figure 12(d). The proposed re-weighted JSR model has best overall
performance in terms of feature preservation, noise and metal artifact reduction.

5 Conclusion

In this paper, we proposed a new model for metal artifact reduction in multi-chromatic X-ray CT imaging.
The proposed model had a weighting and re-weighting mechanism naturally embedded in a framework of joint
Radon domain inpainting and spatial domain regularization. Regularization by wavelet frame transforms
was applied in both spatial and Radon domain to facilitate a high quality and stable image reconstruction.
The proposed model was then rewritten into a more compact form so that the split Bregman algorithm could
be directly applied to solve the model efficiently. Our numerical experiments using both image phantoms and
real data showed that the proposed model was more effective than the classical FBP method [33], the popular
NMAR method [38], and the recently proposed TV-FADM method [53]. Comparisons with the unweighted
JSR model [20] further illustrated the effectiveness of the weighting and re-weighting mechanism.
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(a) FBP

(b) Unweighted JSR (c) NMAR

(d) TV-FADM (e) re-weighted JSR

Figure 7: Comparison of reconstruction results using NCAT phantom.
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(a) Original (b) FBP

(c) Unweighted JSR (d) NMAR

(e) TV-FADM (f) re-weighted JSR

Figure 8: Comparison of reconstruction results using cerebral phantom.
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Figure 9: Convergence of Algorithm 1 on the NCAT phantom.

(a) Chicken leg with nails placed on
each side.

(b) Scanning of the reference image
(without metal)

(c) Scanning again with metals

Figure 10: Real data scanning.
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(a) Reference

(b) FBP (c) Model (2.8)

(d) Model (2.9) (e) Segmented image

Figure 11: (a) Reference image without meal implants. (b) FBP reconstructed image with 1024 × 1024
pixels. (c) Reconstructed image from the analysis model (2.8). (d) Reconstructed image from the inpainting
model (2.9). (e) Segmented image from the image (2.10).
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(a) unweighted JSR (b) zoom-in of unweighted JSR

(c) NMAR (d) zoom-in of NMAR

Figure 12: Comparisons of the reconstructed images.
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(a) TV-FADM (b) zoom-in of TV-FADM

(c) re-weighted JSR (d) zoom-in of re-weighted JSR

Figure 13: Comparisons of the reconstructed images.
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